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Nature of spin-charge separation in thet-J model
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Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204-5506

~Received 10 November 1999!

Quasiparticle properties are explored in an effective theory of thet-J model which includes two important
components: spin-charge separation and unrenormalizable phase shift. We show that the phase shift effect
indeed causes the system to be a non-Fermi liquid as conjectured by Anderson on general grounds. But this
phase shift also drastically changes a conventional perception of quasiparticles in a spin-charge separation
state: an injected hole will remainstabledue to the confinement of spinon and holon by the phase shift field
despite the background is a spinon-holon sea. Truedeconfinementonly happens in thezero-dopinglimit where
a bare hole will lose its integrity and decay into holon and spinon elementary excitations. The Fermi-surface
structure is completely different in these two cases, from a large band-structure-like one to four Fermi points
in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in
between, where the ‘‘gaplike’’ effect is amplified further by a microscopic phase separation at low temperature.
Unique properties of the single-electron propagator in both normal and superconducting states are studied by
using the equation of motion method. We also comment on some influential ideas proposed in the literature
related to the Mott-Hubbard insulator and offer a unified view based on the present consistent theory.
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I. INTRODUCTION

High-Tc cuprates are regarded by many as essential
doped Mott-Hubbard insulator.1 At half-filling such an insu-
lator is a pure antiferromagnet with only the spin degrees
freedom not being frozen at low energy. And a meta
phase with gapless charge degrees of freedom emerge
holes are added to the filled lower Hubbard band. To ch
acterize the doped Mott-Hubbard insulator in the meta
regime, two important ideas were originally introduced
Anderson: spin-charge separation2 and the unrenormalizabl
phase shift effect.3,4 The first one is about elementary exc
tations of such a system and the second one is responsib
its non-Fermi-liquid behavior.

The spin-charge separation idea may be generally st
as the existence of two independent elementary excitati
charge-neutral spinon and spinless holon, which carry s
1/2 and charge1e, respectively. It can be easily visualize
in a short-range resonating-valence-bond~RVB! state5 and
has become a widely used terminology in literature, of
with an additional meaning attached to it. For example
spin-charge separation may be mathematically realized in
so-called slave-particle representation6 of the t-J model,

cis5hi
†f is , ~1.1!

where the no-double-occupancy constraint, reflecting
Hubbard gap in its extreme limit, is handled by an equa
hi

†hi1(s f is
† f is51 which commutes with the Hamiltonian

Here one sees the close relation of the spin-charge separ
and the constraint condition through the counting of
quantum numbers. But the spin-charge separation also
quires anew meaning here: If those holon (hi

†) and spinon
( f is) fields indeed describe elementary excitations, the h
~electron! is no longer a stable object and must decay int
holon-spinon pair once being injected into the system
shown by Fig. 1~a!. This instability of a quasiparticle will be
PRB 610163-1829/2000/61~18!/12328~14!/$15.00
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later referred to as thedeconfinement, in order to distinguish
it from the narrow meaning of thespin-charge separation
about elementary excitations. We will see later that these
are generallynot the same thing.

The second idea, the so-called ‘‘unrenormalizable ph
shift,’’ 3,4 may be described as follows. In the presence of
upper Hubbard band, adding a hole to the lower Hubb
band could change the whole Hilbert space due to the on
Coulomb interaction: Theentirespectrum of momentumk’s
may be shifted through the phase shift effect. It leads to
orthogonality of a bare doped hole state with its true grou
state such that the quasiparticle weightZ[0, the key crite-
rion for a non-Fermi liquid. In general, it implies

cis5eiseiQ i, ~1.2!

where eis is related to elementary excitation fields, e.
hi

†f is in a spin-charge separation framework. Such an
pression means that in order for a bare hole created bycis to
become low-lying elementary excitations, amany-body
phase shiftQ i must take place in the background. In mome
tum space, it is easy to see how such a phase shift cha
the Hilbert space by shiftingk values. Note thateks

5(k8hk8
† f k1k8s wherek and k8 belong to thesameset of

FIG. 1. Schematical illustration of the quasiparticle deconfin
ment ~a! and confinement~b! due to the phase shift field.
12 328 ©2000 The American Physical Society
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quantized values@for example, in a two-dimensional~2D!
square sample with sizeL3L, the momentum is quantized a
ka5(2p/L)n under the periodic boundary condition wit
a5x, y and n5 integer#. But because of a nontrivialQ i ,
cks and eks generally may no longer be described by t
same set ofk’s or in the same Hilbert space, which thu
constitutes an essential basis for a possible non-Fermi liq

The 1D Hubbard model serves as a marvelous examp
favor of the decomposition~1.2! over Eq.~1.1!. The quanti-
tative value of the phase shift was actually determined
Anderson and Ren2,7 using the Bethe-ansatz solution8 in the
largeU limit, and Z was shown to decay at large sample s
with a finite exponent. An independent path-integ
approach9 without using the Bethe ansatz also reaches
same conclusion which supports Eq.~1.2! as thecorrect de-
composition oftrue holon and spinon.

Another important property of the Mott-Hubbard insul
tor, which is well known but has not been fully appreciate
is the bosonizationof the electrons at half-filling. Namely
the fermionic nature of the electrons completely disappe
and is replaced by abosonicone. This is one of the mos
peculiar features of the Mott-Hubbard insulator due to
strong on-site Coulomb interaction. In fact, under the n
double-occupancy constraint, thet-J model reduces to the
Heisenberg model in this limit. Its ground state for anyfinite
bipartite lattice is singlet according to Marshall10 and the
wave function is real and satisfies atrivial Marshall sign rule
as opposed to a much complicated ‘‘sign problem’’ asso
ated with the fermionic statistics in a conventional fermion
system. This bosonization is the reason behind a very
cessful bosonic RVB description of the antiferromagnet: T
variational bosonic RVB wave functions can produce str
ingly accurate ground-state energy11,12 as well as an elemen
tary excitation spectrum over the whole Brillouin zone.12 A
mean-field bosonic RVB approach,13 known as Schwinger-
boson mean-field theory~SBMFT!, provides a fairly accurate
and mathematically useful framework for both zero- a
finite-temperature spin-spin correlations.

Starting from either the slave-boson14 or slave-fermion15

representation, a 2D version of the decomposition~1.2! has
been previously constructed such that the electron boson
tion can be naturally realized at half-filling to restore t
correct antiferromagnetic~AF! correlations. In the 1D case
this decomposition also recovers the aforementioned spin
holon decoupling and reproduces the correct Luttinger-liq
behavior.15 Even in the two-leg ladder system where holo
and spinons are recombined together to form quasiparti
in the strong rung case,16 a many-body phase shift field i
this decomposition still exists at finite doping, playing a no
trivial role. Such a decomposition form can be genera
written as

cis5hi
†bisei Q̂ is. ~1.3!

It may be properly called abosonizationformulation as the
holon operatorhis

† and spinon operatorbis are bothbosonic
fields here. They still satisfy the no-double-occupancy c
strainthi

†hi1(sbis
† bis51. Thefermionicnature ofcis is to

be represented through the phase shift fieldQ̂ is which re-
places the description of Fermi-surface patchesand Fermi-
surface fluctuations in the usual bosonization language17,4
id.
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The phase shift field in 2D is related to a nonlocal vortexli

operator byei Q̂ is[(2s) ieiQ is
string

@the sign (2s) i keeps
track of the Marshall sign just for convenience# with the
vorticity given by15

R
G
dr•¹Qs

string56p(
l PG

F(
a

anla
b 212snl

hG ,
~1.4!

whereG is an arbitrary closed loop without passing any la
tice site except the sitei and the summation on the right-han
side ~RHS! of Eq. ~1.4! runs over lattice sitesl within the
loop G. Herenla

b and nl
h are spinon and holon number op

erators, respectively.
Such a vortexlike phase shift originates from the fact t

a doped hole moving on an AF spin background will alwa
pick up sequential1 and 2 signs, (11)3(21)3(21)3
•••, first identified in Ref. 18. These signs come from t
Marshall signs hidden in the AF background which a
scrambled by the hopping of the doped hole on its pa
determined by simply counting the indexs of each spin
exchanged with the hole during its hopping.18 The signifi-
cance of such a phase string is that it represents thesole
source to generate phase frustrations in thet-J model ~at
finite doping, the only additional signs coming from the fe
mionic statistics of doped holes in the original slave-fermi
representation are also counted in!. Namely, the ground-state
wave function would become real and there should be
‘‘sign problem’’ only if such a phase string effect is abse
~like in the zero-doping case!. The phase shift field in Eq
~1.3! precisely keeps track of such a phase string effect15 and
therefore can be considered to be a general consequen
the t-J model.

The decomposition~1.3! definesa unique spin-charge
separation theory where the relation between the phys
electron operator and the internal elementary excitations,
lon and spinon, is explicitly given. The thermodynamic pro
erties will be obtained in terms of the energy spectra of ho
and spinon fields, while the physically observable quantit
will be determined based on Eq.~1.3! where the singular
phase shift field with vorticities is to play a very essent
role in contrast to the conventional spin-charge separa
theories in the slave-particle decompositions of Eq.~1.1!.

Note that the total vorticity of Eq.~1.4! is always equal to
2p3 integer due to the no-double-occupancy constraint s
that the phase shift factorei Q̂ is be single valued. Such a
phase shift field will play different roles in different chan
nels. For example, in the spin channel one hasSi

1

5bi↑
† bi↓(21)ie2 i [Q i↑

string
2Q i↓

string] where the total vorticity

2 R
G
dr•¹~Q↑

string2Q↓
string!562p(

l PG
nl

h . ~1.5!

It obviously vanishes atd→0 (d is the doping concentra
tion! so that the aforementioned bosonization is natura
realized. And at finite doping, the vorticity shown in E
~1.5! reflects the recovered fermionic effect and is resp
sible for a doping-dependent incommensurate momen
structure19 in the dynamic spin susceptibility function whic
provides a unique reconciliation of neutron scattering a
NMR measurements in the cuprates. On the other hand
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thesingletpairing channel, the phase shift field appearing
the local pairing operator will contribute to a vorticity

R
G
dr•¹~Q↑

string1Q↓
string!562p(

l PG
F(

a
anla

b 21G ,
~1.6!

which decides thephase coherenceof Cooper pairs. Accord-
ing to Eq. ~1.6!, besides a trivial 2p flux quantum per site,
each spinon also carries a fictitious (6)2p flux tube. To
achieve the phase coherence or superconducting cond
tion, ↑ and ↓ spinons have to bepaired off to remove the
vorticities associated with individual spinons in Eq.~1.6!,
which then connects20,21 Tc to a characteristic spinon energ
scale, in consistency with the experimental result of cupr
superconductors and resolving the issue whyTc is too high
in usual RVB theories.

The purpose of the present work is to explore the con
quences of the bosonization decomposition~1.3! in 2D qua-
siparticle channel. First of all, we show that the phase sh
field indeed causes the quasiparticle weightZ to vanish.
Namely, this spin-charge separation stateis a 2D non-Fermi
liquid, a fact almost trivial in such a particular formulatio
A surprising ‘‘by-product’’ of this phase shift field is that
also plays a role ofconfinement forceto ‘‘glue’’ spinon and
holon constituents together inside a quasiparticle, as il
trated in Fig. 1~b!. In other words, a hole injected into th
system generally doesnot break up into spinon-holon el
ementary particles, even though the background is a spin
holon sea. Such a quasiparticle may be regarded as a sp
holon bound state or more properly acollective mode but
will generally remainincoherentdue to the same phase sh
field.

Due to the confinement, an equation-of-motion desc
tion of the quasiparticle excitation is constructed, in whi
the dominant ‘‘scattering’’ process is described as the ‘‘v
tual’’ decay of the quasiparticle into holon-spinon compo
ite. In the superconducting phase, the composite nature o
quasiparticle predicts a unique non-BCS structure for
single-electron Green’s function which is consistent with
experimental measurements. In particular, we find the re
ration of the quasiparticle coherence with regard to the in
herence in the normal state.

A true deconfinement or instability of the quasipartic
only happens in the zero-doping limit where an injected h
indeed can decay into a holon and spinon pair, wh
provides22 a consistent explanation of angle-resolved pho
emission spectroscopy~ARPES! measurements.23 The con-
trast of a large band-structure-like Fermi surface in the c
finement phase to the four Fermi points in the deconfinem
phase at the zero-doping limit may provide a unique exp
nation for the ARPES experimental measurements in cup
superconductors. In the weakly doped regime, a ‘‘partia
deconfinement of the quasiparticle between full-blown
confinement and confinement will be reflected in the sing
electron Green’s function which may explain the ‘‘spin-gap
phenomenon.24

The remainder of the paper is organized as follows.
Sec. II, we first briefly review the effective spin-charge se
ration theory based on the decomposition~1.3!. Then in Sec.
II B, we show that the phase shift field leads toZ50, i.e., a
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non-Fermi-liquid state. In Sec. II C, we demonstrate how
phase shift field causes the confinement of the holon
spinon within a quasiparticle except in the zero-doping lim
In Sec. II D, we study the single-electron propagator in b
normal and superconducting states based on an equatio
motion approach. We then discuss an underdoped case
crossover regime from a Fermi-point structure in the o
hole case with the holon-spinon deconfinement to a la
Fermi surface in the confinement case. Finally, Sec. III
devoted to discussing some of the most influential ideas p
posed in the literature related to the Mott-Hubbard insula
and high-Tc cuprates and offers a unified view based on
present consistent theory.

II. PROPERTIES OF A QUASIPARTICLE IN THE
SPIN-CHARGE SEPARATION STATE

A. Effective spin-charge separation theory

The decomposition~1.3! determines an effective spin
charge separation theory of thet-J model in which spinon
and holon fields constitute the elementary particles. Bef
proceeding to the discussion of the quasiparticle propertie
next subsections, we first briefly review some basic featu
of this theory based on Refs. 15 and 20.

In the operator formalism, the phase shift fieldQ is
string

satisfying Eq.~1.4! can be explicitly written down in a spe
cific gauge as follows:15

Q is
string[

i

2
@F i

b2sF i
h#, ~2.1!

where

F i
b5(

lÞ i
u i~ l !S (

a
anla

b 21D ~2.2!

and

F i
h5(

lÞ i
u i~ l !nl

h . ~2.3!

Hereu i( l ) is defined as an angle

u i~ l !5Im ln~zi2zl !, ~2.4!

with zi5xi1 iy i representing the complex coordinate of
lattice sitei.

In 2D, an effective Hamiltonian based on the decompo
tion ~1.3! after a generalized mean-field decoupling20 in the
t-J model can be written down:

He f f5Hh1Hs , ~2.5!

where the holon Hamiltonian

Hh52th(̂
i j &

~eiAi j
f
!hi

†hj1H.c. ~2.6!

and the spinon Hamiltonian
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Hs52Js (
^ i j &s

@~eisAi j
h
!bis

† bj 2s
† 1H.c.#

2(
i j s

Ji j
s ~eisAi j

h
!bis

† bj s , ~2.7!

with th;t, Js;J. In the second term ofHs , Ji j
s ;dtÞ0 only

for i andj on the same sublattice sites, which originates fr
Ht where a phase shift occurs20 in the spinon mean-field
wave function and results in the same-sublattice hopping
spinons. The lattice gauge fieldsAi j

f and Ai j
h in the specific

gauge choice of Eqs.~2.2! and ~2.3! are given by

Ai j
f 5

1

2 (
lÞ i , j

@u i~ l !2u j~ l !#S (
s

snls
b 21D[Ai j

s 2f i j
0

~2.8!

and

Ai j
h 5

1

2 (
lÞ i , j

@u i~ l !2u j~ l !#nl
h . ~2.9!

In general,Ai j
s andAi j

h can be regarded as ‘‘mutual’’ Chern
Simons lattice gauge fields as, for example,Ai j

h is determined
by the density distribution of holons but only seen
spinons.

The above effective theory is based on a RVB pair
order parameter20

Ds5(
s

^e2 isAi j
h
bisbj 2s&, ~2.10!

which in the zero-doping limitd→0 reduces to the well-
known bosonic RVB order parameter13 asAi j

h 50. And He f f

recovers the Schwinger-boson mean-field Hamiltonian13 of
the Heisenberg model. So this theory can well describe
correlations at half-filling. At finite doping, the ‘‘mutual’
Chern-Simons gauge fieldsAi j

f and Ai j
h will play important

roles in shaping superconductivity, magnetic, and trans
properties, and some very interesting similarities with c
prate superconductors have been discussed based on
model.20 In contrast to the slave-fermion approach,25 Ds re-
mains the only order parameter at finite doping, controll
the short-range spin-spin correlations aŝSi•Sj&5
21/2uDsu2 for nearest-neighboringi and j. It is noted that
due to the presence of the RVB pairing~2.10!, the conven-
tional gauge fluctuations26,27 are suppressed as the gauge
variancehi

†bis5@hi
†eiu i#@bise2 iu i# is apparently broken by

Ds. Here spinons no longer contribute to transport and
really charge-neutral particles.

In the ground state of the uniform-phase solution~Ref.
20!, Ai j

f and Ai j
h both become simplified:Ai j

f simply de-
scribes ap flux per plaquette,(hAi j

f '2(hf i j
0 52p since

Ai j
s is suppressed due to the spinon pairing in the gro

state;Ai j
h describes a uniform flux(hĀi j

f 5pd due to the
Bose condensation of holons. Self-consistently,Hh @Eq.
~2.6!# determines a Bose-condensed ground state of ho
where thep flux produced byAi j

f merely enlarges the effec

tive mass near the band edge byA2. On the other hand,Āi j
h

in Hs @Eq. ~2.7!# leads to a ‘‘resonancelike’’ energy structu
in the spinon spectrum and the corresponding dynamic
of

F

rt
-
this

g

-

re
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in

susceptibility function at the AF vector (p,p) is illustrated
in Fig. 2. Note thatEg in Fig. 2 is twice as large as th
corresponding spinon energyEs . The doping dependence o
Eg is shown in the inset. Finally, the superconducting ord
parameter D i j

SC5^(ssciscj 2s& has a finite value~for
nearest-neighboringi and j ) in the ground state,20

D i j
SC5Ds~21! i^hi

†ei (F i
b
1F j

b)/2hj
†&Þ0, ~2.11!

due to the Bose condensation of holons as well as the pa
of spinons which leads toDsÞ0 and the vortex-antivortex

confinement inei (F i
b
1F j

b)/2. Thus the ground state is alway
superconducting condensed with a pairing symmetry ofd-
wave-like.20

Besides the above uniform ground state, possible non
form solutions characterized by the coexistence of the B
condensations of holons and spinons have been also
cussed in Ref. 20 where the spinon spectrum has on
pseudogap. In any case, the ground state can be regard
a spinon-holon sea, and low-lying elementary excitations
described in terms of spinons and holons. What we
mainly interested in this paper is to answer the question h
a hole~electron! as a composite of spinon and holon behav
in this spin-charge separation state. This is one of the m
fundamental questions not only because it can be dire
tested in an ARPES measurement, but also because it
make a crucial distinction between a conventional Fermi
uid and a non-Fermi liquid. Let us begin with the question
this spin-charge separation state is a non-Fermi liquid.

B. Non-Fermi liquid with ZÄ0

The definition of the quasiparticle weightZk at momen-
tum k is given byZk5u^CG(Ne21)ucksuCG(Ne)&u2, and it
measures the overlap of a bare hole state at momentumk,
created bycks in the ground state ofNe electrons, with the
ground state ofNe21 electrons. For a Fermi-liquid state
one always hasZkf

Þ0 at the Fermi momentumkf . If Zk

50 for any k, then the system is a non-Fermi liquid b

FIG. 2. Dynamical spin susceptibility at the AF vector (p,p) in
the uniform phase ford50 and 0.143, respectively. The inset: th
doping dependence of the characteristic spin ‘‘resonancelike’’
ergy Eg52Es (Es denotes the corresponding spinon energy!.
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definition. In the following we will show that the bare ho
statecksuCG(Ne)& acquires an ‘‘angular’’ momentum due t
the vorticities ineQ̂ is in the decomposition~1.3!. Due to such
a distinct symmetry, it is always orthogonal to the grou
stateuCG(Ne21)&, leading toZ[0.

One can construct a ‘‘rotational’’ operation by making
transformation

u i~ l !→u i~ l !1f. ~2.12!

It corresponds to a simple change of reference axis for
angle functionu i( l ) defined in Eq.~2.4!. It is easy to see tha
the Hamiltonians~2.6! and~2.7! are invariant since the gaug
fields, in which u i( l ) appears, are obviously not change
Ai j

h, f→Ai j
h, f . Both the ground stateuCG& as well as single-

valued hi
† and bis fields are apparently independent off.

But a bare hole state will change under the transforma
~2.12! as follows:

cisuCG&→eifPi
s
3cisuCG& ~2.13!

due to the phase shift factorei Q̂ is with Pi
s5Sz2sNh/2

2(N212s)/2 which remains an integer for a bipartite la
tice (Sz andNh denote total spin and hole numbers, resp
tively, andN is the lattice size!. This implies thatcisuCG&
indeed has a nontrivial ‘‘angular’’ momentum in contrast
uCG& which carries none.

It is probably more transparent to see the origin of
angular momentum if one rewrites, for example,

ei Q̂ i↓5)
lÞ i

~zi2zl↑!1/2)
lÞ i

~zi* 2zl↓* !1/2

3)
lÞ i

~zi2zlh!1/2)
lÞ i

~zi* 2zl* !1/23Fi , ~2.14!

wherezl↑ , zl↓ , andzlh denote the complex coordinates of↑,
↓ spinons, and holons, respectively. AndFi5) lÞ i uzi2zl u is
a constant~which is obtained by using the no-doubl
occupancy constraint!. It is important to note that despite th
fractional ~‘‘semion’’ ! exponents of 1/2 in Eq.~2.14!, it can
be directly verified that the phase shift fieldei Q̂ i↓ remains
single valuedunder the no-double-occupancy constrai
Generally the vortex field~2.14! introduces an extra angula
momentum which can be easily identified as

l 5Sz1
Nh

2
. ~2.15!

Here l is always an integer. Then one has

^CG~Ne21!ucisuCG~Ne!&50 ~2.16!

due to theorthogonal condition28 as lÞ0 @Sz5O(1), Nh

5O(N) at finite doping# for cisuCG&. By extending the
same argument, one can quickly see that the bare hole
cisuCG(Ne)& has no overlap not only withuCG(Ne21)& but
also with all the elementary excitations composed of sim
holons and spinons withl 50. Socis is more like a creation
operator of a ‘‘collective’’ mode whose quantum numberl is
different from a simple spinon-holon pair.
e

:

n

-

e

.

ate

e

C. Quasiparticle: Spinon-holon confinement

The difference in symmetry between a quasiparticle an
holon-spinon pair implies that the former cannot simply d
cay into the latter even though they share the same quan
numbers of charge and spin. In this section, we demonst
that generally the holon and spinon constituents will becon-
finedby the phase shift field within a quasiparticle althou
the background is a spinon-holon sea.

Intuitively such a confinement is easy to understand
the holon and spinon constituents inside a quasiparticle co
move away independently by themselves, as schematic
shown in Fig. 3, the vortex phase shift fieldei Q̂ is left behind
would cost a logarithmicallydivergentenergy as to be shown
below. But a quasiparticle statecisuCG& as a local excitation
should only cost a finite energy relative to the ground-st
energy. Such a discrepancy can be reconciled only if
holon and spinon constituents no longer behave as free
ementary excitations: They have to absorb the effect of
vortexlike phase shift and by doing so make themsel
bound together.

Let us consideruC8&[ei Q̂ isuCG& and compute the energ
cost for the vortexlike phase shift:

^C8uHe f fuC8&2^CGuHe f fuCG&. ~2.17!

We first focus on the contribution from the holon partHh

@Eq. ~2.6!#. Define EG
h 5^CGuHhuCG&. One has

2th^CGuhl
†hmeiAlm

f
uCG&5Eh/4N for any nearest-neighbo

link ~lm! due to the translational symmetry. Then a straig
forward manipulation leads to

^C8uHhuC8&2EG
h 52

EG
h

2N (
^ lm&

$12cos@u i~ l !2u i~m!#/2%.

~2.18!

Notice that if the (lm) link ~say, along thex̂ direction! is far
away from the site i, then one has uu i( l )2u i(m)u
→ausinuu/r wherer denotes the distance between the cen
of the link and the sitei andu is the azimuth angle. Then i
is easy to see that the summation over those links on
RHS of Eq.~2.18! will contribute as*r dr du sin2u/r2}ln R
(R denotes the sample size!. Namely, the vortexlike phase
shift will cost a logarithmically diverged energy if it is lef
alone. It should be noted that the same conclusion still ho
if one replacesHe f f by the exactt-J model in the represen
tation of Eq.~1.3! ~Ref. 15!.

FIG. 3. Schematical illustration of the case when a quasipart
decays into spinon and holon constituents.



be
a

is

n

to

it

t o

th

en

es
er

e.
e

ate
ss.

st-

e

lti-
s

i-

can

-

g
p-
o-

t in
ng,
lt of
it

n
for

e
ut
ill
ase
the

s a
on
ral
ore
at a

in
ume
-

PRB 61 12 333NATURE OF SPIN-CHARGE SEPARATION IN THEt-J MODEL
Hence the vortexlike phase shift field has to be absor
by the holon and spinon fields in order to keep the quasip
ticle energy finite. In the following, let us illustrate how th
will happen. We first use the vortex phase1

2 F i
b in Eq. ~2.1!

as an example. Let us write down the following identity:

expS i
1

2
F i

bD5FexpS i(
ch

Af Dexp@ iK b~ch!#GexpS i
1

2
F j

bD ,

~2.19!

in which

(
ch

Af[(
s

Amsms11

f , ~2.20!

wherem05 i , m1 , . . . ,mkch
[ j are sequential lattice sites o

an arbitrary pathch connecting i and j. And Kb(ch)
[ 1

2 (s@ums21
(ms)2ums11

(ms)#((aanmsa
b 21) which is a

stringlike field only involving spinons on the pathch . By
contrast, the line summation(ch

Af is contributed by spinons
from the whole system nonlocally. Note that, according
Hh @Eq. ~2.6!#, holons see the gauge fieldAf in the Hamil-
tonian, and if a holon moves from sitei to j via the same path
ch , it should acquire a phase factor exp(2i(ch

Af) which can
exactly compensate the similar phase in Eq.~2.19!. In other

words, if the vortex phase factoreiF i
b/2 is bound to a holon to

form a new composite objecth̃i
†5hi

†eiF i
b/2, then there will be

no more vortex effect as it moves on the pathch shown in
Fig. 3, except for a phase string fieldKh(ch) left on its path,
and the new object should cost only a finite energy.

Similarly, for the vortex field (2s/2)F i
h in Eq. ~2.1! one

can rewrite

expS 2 i
s

2
F i

hD5FexpS 2 is(
cs

AhDexp@2 isKh(cs)#G
3expS 2 i

s

2
F j 8

h D , ~2.21!

in which

(
cs

Ah[(
s

Amsms11

h , ~2.22!

where the line summation runs over a sequential lattice s
on an arbitrary pathcs connectingi and j 8 shown in Fig. 3.
And then we can similarly see that the spinon constituen
the quasiparticle also has to be bound toe2 isFh/2 in order to
compensate the logarithmically divergent energy cost by
vortex structure, and the new composite will only leave
phase string behind given byKh(cs)[

1
2 (s@ums21

(ms)

2ums11
(ms)#nms

h .

However, there is one problem in the above argum

about the absorption of the vortex phase factorseiF i
b/2 and

eisF i
h/2 by the holon and spinon constituents. Namely, th

two phase factors are not single valued except in the z
doping limit. In fact, only the total phase factorei Q̂ is is al-
ways well defined and single valued as mentioned befor
thus means that both holon and spinon constituents hav
d
r-

es

f

e
a

t

e
o-

It
to

be bound to the total phase shift fields together to elimin
the divergent energy while maintaining single-valuedne
There is another way to see this. Note thatums21

(ms)
2ums11

(ms) describes the angle between the neare
neighboring links (ms21 ,ms) and (ms11 ,ms); it can have an
uncertainty by62p3 integer, and it is easy to see that th
phase string factorseiK b(ch) ande2 isKh(cs) in Eqs.~2.19! and
~2.21! are not well defined by themselves as they are mu
valued except atd50. On the other hand, if one choose
ch5cs5c in Fig. 3, the mathematical ambiguity is elim
nated in the total phase string field,

Ks~c![Kb~c!2sKh~c!

5(
s51

kc

@ums21~ms!2ums11~ms!#

3
1

2 S (
a

anmsa
b 212snms

h D , ~2.23!

since by using the no-double-occupancy constraint, one
show that 1

2 ((aanmsa
b 212snms

h )52(11s)/21snmss
b

which is an integer such thateiK s(c) remains single valued.
Physically, it is because afermionicquasiparticle may not

decay into twobosonicholon and spinon elementary excita
tions in 2D. The only exception is in thezero-dopinglimit.
We have pointed out in the Introduction that at half-fillin
the ‘‘fermionic’’ nature of the electrons essentially disa
pears and is replaced by a ‘‘bosonic’’ one due to the n
double-occupancy constraint. Then it is not surprising tha
the one-hole doped case which is adjacent to the half-filli
the deconfinement of holon-spinon can happen as a resu
the electron ‘‘bosonization.’’ Indeed, in the zero-doping lim
F i

h defined in the gauge~2.3! vanishes. Without F i
h , the

original reason for inseparablee2 isF i
h/2 andeiF is

b /2 in ei Q̂ is is
no longer present: In this case, the phase shift fieldei Q̂ is

reduces toeiF i
b/2 which itself becomes well defined, and ca

solely accompany the holon during the propagation. As
the spinon part,Hs in Eq. ~2.7! reduces to the well-known
SBMFT Hamiltonian withAh50 and the corresponding lin
summation(cA

h is also absent in the propagator. Witho
leading to the multivalue ambiguity, the quasiparticle w
break into a spinon and a composite of holon-vortex ph
which can propagate independently. More discussions of
one-hole problem can be found in Sec. II D 3.

How a quasiparticle behaves in a spinon-holon sea a
single entity at finite doping will be the subject of discussi
in the next subsection. In the following we will make seve
remarks on some implications of the confinement bef
concluding the present subsection. First of all, we note th
quasiparticle generally remains an incoherent excitation
contrast to the coherent spinons and holons and we ass
that it will not contribute significantly to either thermody
namic and dynamic properties. In the equal-time limitt502,
the single-electron propagator can be expressed as

Ge~ i , j ;02!5 i ~2s! i 2 j K Fbj s
† expS i

s

2 (
c

AhD bisG
3FhjexpS 2 i(

c
Af Dhi

†GeiK s(c)L . ~2.24!



lin
g

ha
t

s
ffe

t
t

re
ar
c
th
r
on
h
22
ne

e
r

i
e

it

e
ili

e

he
th

i
at
e
on

rg
io
ca
on
he

at
o

-
m

n

to

ti-
of

on-

But
asi-
if-

l-
an-
ith
ust

ve
on,
si-

n

less
oxi-

ip-
h
rge
the
n-

:

ert

o
-

qs.
n
th
the

12 334 PRB 61Z. Y. WENG, D. N. SHENG, AND C. S. TING
At finite t, temporal components have to be added to the
summations,(cA

h and (cA
f , as well as in the phase strin

field Ks(c) above. Even though mathematically the pathc
can be chosen arbitrarily in Eq.~2.24!, a natural choice is for
c to coincide with the real path of the quasiparticle such t
the line summations can be precisely compensated by
phases picked up by the holon and spinon constituent
mentioned above. In this case, all the singular phase e
will be tracked byeiK s(c) which is nothing but the previously
identified phase string effect,18 where it has been shown tha
the phase string effect is nonrepairable and represents
dominant phase interference at low energy. Physically, it
flects thefermionicexchange relation between the quasip
ticle under consideration and those electrons in the ba
ground. Such a phase string field accompanying
propagation of the quasiparticle is a many-body operato
terms of elementary holon and spinon fields. Even in the
hole case, such a phase string effect results in the inco
ency of the quasiparticle as has been discussed in Ref.

One may also see how a Fermi-surface structure is ge
ated from the phase shiftQ̂ is in some limits. For example, in
the 1D case~whereAi j

h, f5015!, since one may always defin
ums21(ms)2ums11(ms)56p, the phase string facto

eiK s(c) in Eq. ~2.24! can be written as

(2s) i 2 jeiskf (xi2xj )eidkf
s(xi2xj ) which produces the 1D Ferm

surface atkf56p(12d)/2 ~heredkf
s denotes Fermi-surfac

fluctuations witĥ dkf
s&50 which is crucial to the Luttinger-

liquid behavior15!. In the 2D one-hole case,Q̂ is also leads to
a ‘‘remnant’’ Fermi-surface structure in the equal-time lim
while it gives rise to four Fermi pointsk0 at low energyas
discussed in Ref. 22. At finite doping, the doping-depend
incommensurate peaks in the dynamic spin susceptib
function has been also related to such a phase shift field.19 In
general, the Luttinger-volume theorem may even be und
stood based oneiK s(c) as it involves the counting of the
background electron numbers. Nevertheless, theprecise
Fermi-surface topology will not be solely determined by t
phase shift field in 2D and one must take into account of
dynamic effect.

Finally, a stable but incoherent quasiparticle excitation
which a pair of holon and spinon are confined means th
photoemission experiment, in which such a quasiparticle
citation can be created through ‘‘knocking out’’ an electr
by a photon, does not directly probe theintrinsic information
of coherent elementary excitations anymore, and the ene
momentum structure of the single-electron Green’s funct
is no longer a basis as fundamental and useful as in the
of conventional Fermi-liquid metals to understand superc
ductivity, spin dynamics, and transport properties in ot
channels.

D. Description of the quasiparticle: Equation-of-motion
method

Now imagine a bare hole is injected into the ground st
of Ne electrons. By symmetry, such a state should be
thogonal to the ground state ofNe21 electrons. Its dissolu
tion into a holon and a spinon is also prohibited by the sy
metry introduced by the phase shift field@Eq. ~1.3!# and the
latter would otherwise cost a logarithmically divergent e
e
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ergy if being left alone unscreened. Therefore, one has
treat a quasiparticle as anindependentcollective excitation
in this spin-charge separation system.

Involving infinite-bodyholons and spinons, a quasipar
cle cannot be simply described by the mean-field theory
individual holon and spinon. The previously discussed c
finement is one example of thenonperturbativeconse-
quences caused by the infinite-body phase shift field.
such a confinement of the holon and spinon inside a qu
particle will enable us to approach this problem from a d
ferent angle.

Here it may be instructive to recall how a low-lying co
lective mode is determined in the BCS theory. In BCS me
field theory, quasiparticle excitations are well defined w
an energy gap. But quasiparticle excitations do not exha
all the low-lying excitations, and there exists a collecti
mode in the absence of long-range Coulomb interacti
which may be also regarded as a ‘‘bound’’ state of a qua
particle pair due to theresidualattractive interaction. A cor-
rect way29 to handle this ‘‘bound’’ state is to use thefull
BCS Hamiltonian to first write down the equation of motio
for a quasiparticle pair andthen apply the BCS mean-field
treatment to linearize the equation to produce the gap
spectrum, which is equivalent to the random phase appr
mation ~RPA! scheme.30 Including the long-range Coulomb
interaction29 will turn this collective mode into the well-
known plasma mode.

Similarly we can establish an equation-of-motion descr
tion of the quasiparticle as a ‘‘collective mode,’’ whic
moves on the background of the mean-field spin-cha
separation state. For this purpose, let us first write down
full equation of motion of the hole operator in the Heise
berg representation:2 i ] tcis(t)5@Ht2J ,cis(t)#, based on
the exact t-J model, either in the decomposition~1.3! or
simply in the originalc-operator representation, as follows

@Ht ,cis#5
t

2
~11ni

h! (
l 5NN( i )

cls

1t (
l 5NN( i )

~clssSi
z1cl 2sSi

2s! ~2.25!

and

@HJ ,cis#5
J

4
cis (

l 5NN( i )
~12nl

h!

2
J

2 (
l 5NN( i )

~cissSl
z1ci 2sSl

2s!. ~2.26!

Note that the above equations hold in the restricted Hilb
space under the no-double-occupancy constraint:(scis

† cis

<1.
There are many papers in literature dealing with thet-J

model in the c-operator representation, in which the n
double occupancy( iscis

† cis<1 is disregarded. As a conse
quence, there is only a conventionalscatteringbetween the
quasiparticle and spin fluctuations as suggested by E
~2.25! and ~2.26!. This leads to a typical spin-fluctuatio
theory, which usually remains a Fermi-liquid theory wi
well-defined coherent quasiparticle excitations near



th
i

in
y
t

in
g

-

th
er

nd
a
e
nt

e
ex

e

rt
a

es
di

n
in
e

o-
lon
by

o

e of
e

are
-

e

on-

n-

o
der

o-

tate

PRB 61 12 335NATURE OF SPIN-CHARGE SEPARATION IN THEt-J MODEL
Fermi surface in contrast to theZ50 conclusion obtained
here. The problem with the spin-fluctuation theory is that
crucial role of the no-double-occupancy constraint hidden
Eqs.~2.25! and~2.26! has been completely ignored which,
combination with the RVB spin pairing, is actually the ke
reason resulting in a spin-charge separation state in
present effective theory of thet-J model. In such a backdrop
of the holon-spinon sea, the scattering terms in Eqs.~2.25!
and ~2.26! will actually produce a virtual ‘‘decaying’’ pro-
cess which is fundamentally different from the usual sp
fluctuation scattering in shaping the single-electron propa
tor.

By using the decomposition~1.3! and the mean-field or
der parameterDs defined in Eq.~2.10!, the high-order spin-
fluctuation-scattering terms on the RHS of Eqs.~2.25! and
~2.26! can be ‘‘reduced’’ to the same order of linearcis , and
we find

2 i ] tcis~ t !'
t

2
~11d! (

l 5NN( i )
cls1J~12d!cis

2
1

4
tB0 (

l 5NN( i )
ei Q̂ lshl

†bise2 isAil
h

1
3

8
JDs (

l 5NN( i )
ei Q̂ ishi

†bl 2s
† eisAil

h
1•••,

~2.27!

where B0 is the modified~but not an independent! order
parameter for the hopping term introduced in Ref. 20. In
following we will discuss some unique quasiparticle prop
ties based on this equation.

So in the spin-charge separation~mean-field! background,
the leading order effect of the ‘‘scattering’’ terms correspo
to the decay of the quasiparticle: The terms in the second
third lines of Eq.~2.27! clearly indicate the tendency for th
quasiparticle to break up into holon and spinon constitue
This is in contrast to the conventionalscatteringsbetween
the quasiparticle and spin fluctuations, as Eqs.~2.25! and
~2.26! would have suggested. Generally, the quasiparticl
expected to have an intrinsic broad spectral function
tended over the whole energy range

Equasiparticle.Eholon1Espinon ~2.28!

because of the decomposition process. But the presenc
the phase factorei Q̂ in these ‘‘decaying’’ terms of Eq.~2.27!
prevents a real decay of the quasiparticle since such a vo
field would cost a logarithmically divergent energy as h
been discussed before. Thus, even in the case of Eq.~2.28!,
the decaying of a quasiparticle remains only a virtual proc
which is an another way to understand the confinement
cussed in Sec. II C.

Without the ‘‘decaying’’ terms, the equation of motio
~2.27! would become closed with an eigenspectrum
momentum-energy space~besides a constant which can b
absorbed into the chemical potential!:

ek522te f f~coskx1cosky!, ~2.29!

with
e
n

he

-
a-

e
-

nd

s.

is
-

of

ex
s

s
s-

te f f5
t

2
~11d!. ~2.30!

Generally the ‘‘decaying’’ terms do not contribute to a c
herentk-dependent correction due to the nature of the ho
and spinon excitations as well as the ‘‘smearing’’ caused
ei Q̂ in Eq. ~2.27!. But in the ground state, which is als
superconducting, the ‘‘decaying’’ terms in Eq.~2.27! do pro-
duce a coherent contribution due to the composite natur
the quasiparticle which will modify the solution of th
equation-of-motion.

1. Ground state: A superconducting state

In the mean-field ground state, the bosonic holons
Bose condensed witĥhi

†&5h0;Ad and the superconduct
ing order parameterDSCÞ0 ~see Sec. II A!. The decomposi-
tion ~1.3! then implies that the electronc operator may be
rewritten in two parts:

cis5h0ais1cis8 , ~2.31!

where ais[bisei Q̂ is and cis8 5(:hi
† :)bisei Q̂ is with :hi

† :
[hi

†2h0. Correspondingly, a coherent term will emerg
from the ‘‘decaying’’ terms in Eq.~2.27! which is linear in
a†:

J-scattering term in Eq.~2.27!

→ 3

8
J (

l 5NN( i )
S D i l

SC

h0
2 D sh0al 2s

† 1high order.

~2.32!

In obtaining the RHS of the above expression, the superc
ducting order parameter defined in Eq.~2.11! is used.

Note that thet-scattering term in Eq.~2.27! gives rise to a
term }h0ais which can be absorbed by the chemical pote
tial m added to the equation. Then one finds

2 i ] tais.te f f (
l 5NN( i )

als1mais

1
3

8
J (

l 5NN( i )
S D i l

SC

h0
2 D sal 2s

† 1high order,

~2.33!

where the connection betweena andc8 has been assumed t
be in high order and thus is neglected in the leading or
approximation to get a closed form in lineara and a†. Fi-
nally, introducing the Bogoliubov transformation in the m
mentum space

aks5ukgks2svkg2k2s
† , ~2.34!

we find that Eq.~2.33! can be reduced to

2 i ] tgks
† 5Ekgks

† , ~2.35!

wheregks
† represents the creation operator of an eigens

of quasiparticle excitations with the energy spectrum

Ek5A~ek2m!21uDku2. ~2.36!
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HereDk is defined by

Dk5
3

4
J(

q
GqS Dk¿q

SC

h0
2 D , ~2.37!

with Gq5cosqx1cosqy . Like in BCS theory,uk
25@11(ek

2m)/Ek#/2 andvk
25@12(ek2m)/Ek#/2.

The large ‘‘Fermi surface’’ is defined byek5m and Dk
then represents the energy gap opened at the Fermi sur
Note thatDk changes sign as

Dk¿Q52Dk , ~2.38!

with Q5(6p,6p), by notingGq1Q52Gq in Eq. ~2.37!. It
means thatDk has opposite signs atk5(6p,0) and (0,
6p) , indicating ad-wave symmetry near the Fermi surfac
In fact, since the pairing order parameterDk

SC is
d-wave-like,20 Dk should be alwaysd-wave-like with node
lines kx56ky according to Eq.~2.37!.

Comparing to the conventional BCS theory with t
d-wave order parameter, there are several distinct feature
the present case. First of all, besides thed-wave quasiparticle
spectrum illustrated in Fig. 4 by the ‘‘V’’ shape lines alon
the Fermi surface, there exists a discrete spinon excita
level at Es;dJ ~horizontal line in Fig. 4! which leads to
Eg52Es;41 meV ~if J;100 meV) magnetic peak atd
;0.14 as reviewed in Sec. II A. This latter spin collecti
mode is independentof the quasiparticle excitations at th
mean-field level.

Second, even though the superconductingorder param-
eterDk

SC and theenergy gapDk in the quasiparticle spectrum
have the same symmetry, both ared-wave-like, and they can
not be simply identified as the same quantity as in B
theory. For example, whileDk

SC apparently scales with th
doping concentrationd (h0}Ad) and vanishes atd→0, the
gapDk defined in Eq.~2.37! is not, and can beextrapolated
to a finite value in the zero-doping limit whereTc50. It
means

2Dk~T50!

Tc
→` ~2.39!

at d→0, whereas the BCS theory predicts a constant;4.28
(d-wave case31!. The result ~2.39! is consistent with the
ARPES measurements.32

Third, the quasiparticle gains a ‘‘coherent’’ parth0a
which should behave similarly to the conventional quasip
ticle in BCS theory as it does not further decay atEk,Es

FIG. 4. Low-lying excitations in the superconducting phase: T
‘‘V’’ shape quasiparticle spectrum and the discrete spinon energ
Es .
ce.

.

in

n

S

r-

~see Fig. 4!. In this sense, the quasiparticle partially resto
its coherence in the superconducting state. Such a cohe
part will disappear as a result of vanishing superfluid dens
According to Eq.~2.31! one may rewrite the single-particl
propagator as

Ge.h0
2Ga1Ge8 , ~2.40!

whereGa denotes the propagator ofa particles with omitting
the crossing term betweena andc8 which is assumed negli
gible. Thenh0

2Ga emerges as the ‘‘coherent’’ part of th
Green’s function in superconducting state against the ‘‘n
mal’’ part Ge8 :

h0
2Ga~k,v!;h0

2S uk
2

v2Ek
1

vk
2

v1Ek
D . ~2.41!

Correspondingly, the total spectral function as the imagin
part of Ge in our theory can be written as

Ae~k,v!5h0
2Aa~k,v!1Ae8~k,v!. ~2.42!

So at h0→0, even thoughDk does not scale withh0, the
superconducting coherent parth0

2Aa vanishes altogether
with Ae reduced to the normal partAe8 at T.Tc .

Finally, in the present case,Ae8(k,v) as a normal part has
nothing to do with the procedure that leads to the spectr
~2.36! with a d-wave gap, which is different from the slave
boson approach where the fermionic spinons are all pa
up such that even the part of the spectral function co
sponding toAe8 should also look like in ad-wave pairing
state. Due to the sum rule*(dv/2p)Ae(k,v)51, the ‘‘nor-
mal’’ part Ae8(k) is expected to be sort of suppressed by
emergence of the ‘‘coherent’’h0

2Aa part, but since the latte
is in order ofd, Ae8 should be still dominant away from th
Fermi surface at small doping. It implies that even in sup
conducting state, a normal-state dispersion represente
the peak ofAe8 may still be present as a ‘‘hump’’ in the tota
spectral functionAe . Recent ARPES experiments have i
deed indicated33 the existence of a ‘‘hump’’ in the spectra
function which clearly exhibits normal-state dispersion in t
Fermi-surface portions near the areas of (6p,0) and (0,
6p) where thed-wave gap is maximum.

2. Normal state

In the normal state, without any coherent contribution,
scattering terms in Eq.~2.27! only give rise to the virtual
process for a quasiparticle to decay into the holon-spin
pairs. Based on Eq.~2.27!, the propagator can be determine
according to the following standard equation of motion f
the single-particle Green’s functionGe( i , j ;t):

] tGe~ i , j ;t !5u~ t !^@Ht2J ,cis~ t !#cj s
† ~0!&

2u~2t !^cj s
† ~0!@Ht2J ,cis~ t !#&2 id~ t !d i , j .

~2.43!

If we simply neglect the scattering terms in zero-order a
proximation, a closed form forGe can be obtained in
momentum-energy space:

e
at
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Ge~k,v!;
1

v2~ek2m!
. ~2.44!

Here the quasiparticle spectrumek @defined in Eq.~2.29!#
is essentially the same as the originalband-structurespec-
trum except for a factor of 2/(11d)'2 enhancement in ef
fective mass. It is noted that in thet-J model if the hopping
term described by the tight-binding model is replaced b
more realistic band-structure model, like introducing t
next-nearest-neighbor hopping terms, the above conclu
about the factor-of-2 enhancement of the effective mass
holds, in good agreement with ARPES experiments.34 Here
the reason for the mass enhancement is quite simple: At
step of hopping, the probability is roughly one-half for a ho
not to change the surrounding singlet spin configurati
which in turn reduces the ‘‘bandwidth’’ of the quasipartic
by a factor of 2.

The expression~2.44! shows a ‘‘quasiparticle’’ peak a
ek2m and defines a large ‘‘Fermi surface’’ as an equ
energy contour atek5m. Here m is determined such that
2 i2(kGe(k,t520)5Ne .35 So the ‘‘Fermi-surface’’ struc-
ture should look similar to that of a noninteracting ban
structure fermion system as long as the virtual decaying p
cess in Eq.~2.27! does not fundamentally alter it.@As
mentioned before, we do not expect such ‘‘decaying’’ ter
to significantly modify thek dependence ofek since, for
example, the spinon no longer has a well-defined spectru
momentum space~see Sec. II A! and, in particular, the vortex
phase ei Q̂ in Eq. ~2.27! will further ‘‘smear out’’ the
k-dependent correction, if any, from Eq.~2.27!.#

So far we have not discussed the finite lifetime effect o
quasiparticle due to the ‘‘decaying’’ terms in Eq.~2.27!.
Even though the true breakup of a quasiparticle is preven
by the phase shift field as discussed before, the virtual
caying process should remain a very strong effect since
phase shift field only costs a logarithmically divergent e
ergy at a large length scale. The corresponding confinem
force is rather weak and the virtual decaying process sho
become predominant locally to cause an intrinsic broad
ture in the spectral function at high energy. Such a bro
structure reflecting the decomposition in the one-hole c
has been previously discussed in Ref. 22. At finite dopi
how the ‘‘decaying’’ effect shapes the broadening of t
quasiparticle peak will be a subject to be investigated e
where.

3. Destruction of Fermi surface: Deconfinement of spinon and
holon

The existence of a large Fermi surface, coinciding w
the noninteractingband-structure one, can be attributed
the integrity of the quasiparticle due to the confinement
spinon and holon. But as pointed out in Sec. II C, such
confinement will disappear in the zero-doping limit. Th
Fermi surface structure will then be drastically changed.

In this limit, the single-electron propagator may be e
pressed in the followingdecompositionform

Ge' iG f•Gb , ~2.45!

where
a
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-

Gf~ i , j ;t !52 i ^Tthi
†~ t !~eiF i

b(t)/2e2 iF j
b(0)/2!hj~0!&

~2.46!

and

Gb~ i , j ;t !52 i ~2s! i 2 j^Ttbis~ t !

3~e2 isF i
h(t)/2eisF j

h(0)/2!bj s
† ~0!&, ~2.47!

without the multivalue problem becauseF i
h in Eq. ~2.3! van-

ishes andeiF i
b/2 becomes well defined as discussed in S

II C. At d→0, Hs in Eq. ~2.7! reduces to the SBMFT Hamil
tonian with Ah50 and Gb becomes the conventiona
Schwinger-boson propagator. Such a deconfinement ca
also seen from the equation of motion~2.27! by noting that

ei Q̂ is→eiF i
b/2 can be absorbed byhi

† , while Ail
h 50, so that

the scattering term becomes a pure decaying process fo
quasiparticle without any confining force. Due to such a tr
decaying, Eq.~2.27! actually describes in real time the firs
step towards dissolution for the quasiparticle. In particu
the large Fermi-surface structure originating from thebare
hopping term in Eq.~2.27! will no longer appear in the de
composition form of the electron propagator~2.45!, where
the residual Fermi surface~points! will solely come from the

oscillating part of the phase shift fieldeiF i
b/2 in Gf .

The single-electron propagator for the one-hole case
been discussed in detail in Ref. 22. Here the large Fe
surface is gone except for fourFermi pointsat k05(6p/2,
6p/2) with the remaining in part looking like they are a
‘‘gapped.’’ In fact, in the convolution form of Eq.~2.45! the
‘‘quasiparticle’’ peak~edge! is essentially determined by th
spinon spectrum Ek

s52.32JA12sk
2 with sk5(sinkx

1sinky)/2 in SBMFT through the spinon propagatorGb ,
since the holon propagatorGf is incoherent.22 The intrinsic
broad feature of the spectral function found in Ref. 22 is d
to the convolution law of Eq.~2.45! and is a direct indication
of the composite nature of the quasiparticle, which is a
consistent with the ARPES results23 as well as the earlier
theoretical discussion in Ref. 36.

Note that the Fermi pointsk0 coming from Gf at low

energy is due to the phase shift fieldeiF i
b/2 appearing in it. In

Ref. 22, this is shown in the slave-fermion formulatio
which is related to the present formulation through a unit

transformation15 with hi
†eiF i

b/2 being replaced by a new ho
lon operatorf i

† . And the f holon will then pick up a phase

string factor (21)Nc
↓

(Nc
↓ denotes the total number of↓ spins

exchanged with the holon during its propagation along
pathc connecting sitesi and j ) at low energy which can be
written as

~21!Nc
↓
[e6 ipNc

↓
5eik0•(r i2r j )e6 idNc

↓
, ~2.48!

wheredNc
↓5Nc

↓2^Nc
↓&, and^nl↓

b &51/2 is used. On the othe
hand, in the equal-time (t;02) limit, the singular oscillating
part of eiK s(c) in Eq. ~2.24! will also contribute to a large
‘‘remnant Fermi surface’’ in the momentum distributio
function n(k) which can be regarded as a precursor of
large Fermi surface in the confining phase at finite dopi
and is also consistent with the ARPES experiment as
cussed in Ref. 22.
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The above one-hole picture may have an important im
cation for the so-called pseudo-gap phenomenon24 in the un-
derdoped region of the high-Tc cuprates. Even though th
confinement will set in once the density of holes becom
finite, the ‘‘confining force’’ should remainweak at small
doping, and one expects the virtual ‘‘decaying’’ process
Eq. ~2.27! to contribute significantly at weak doping t
bridge the continuum evolution between the Fermi-po
structure in the zero-doping limit to a full large Fermi su
face at larger doping. Recall that in the one-hole case de
ing into spinon-holon composite happens aroundk0 at zero
energy transfer, while it costshigher energy near (p,0) and
(0,p), which should not be changed much at weak dopi
In the confinement regime, the quasiparticle peak in the e
tron spectral function defines a quasiparticle spectrum an
large Fermi surface as discussed before. Then due to
virtual ‘‘decaying’’ process in the equation of motion~2.27!
@as shown in Fig. 1~b!#, the spectral function will become
much broadened with its weight shifted toward higher e
ergy like a gap opening near those portions of the Fe
surface far away fromk0, particularly around four corner
(6p,0) and (0,6p). With the increase of doping concen
tration and reduction of the decaying effect, the suppres
quasiparticle peak can be gradually recovered starting f
the inner parts of the Fermi surface towards four corne
(6p,0) and (0,6p). Eventually, a coherent Landau quas
particle may be even restored in the so-called overdoped
gime, when the bosonic RVB ordering collapses such t
the spin-charge separation disappears.

Furthermore, at small doping~underdoping!, something
more dramatic can happen in the model described by E
~2.6! and~2.7!. In Ref. 20, a microscopic type ofphase sepa-
ration has been found in this regime which is characteriz
by the Bose condensation of bosonic spinon field. Si
spinons are presumably condensed inhole-dilute regions,20

the propagator will then exhibit features looking like in a
evenweakerdoping concentration or more ‘‘gap’’ like tha
in a uniform case, below a characteristic temperatureT*
which determines this microscopic phase separation. Th
fore, the ‘‘spin-gap’’ phenomenon related to the ARPE
experiments24 in the underdoped cuprates may be underst
as a ‘‘partial’’ deconfinement of holon and spinon who
effect is ‘‘amplified’’ through a microscopic phase sepa
tion in this weakly doped regime. As discussed in Ref.
T* also characterizes other ‘‘spin-gap’’ properties in ma
netic and transport channels in this underdoping regime.

III. CONCLUSION AND DISCUSSION: A UNIFIED VIEW

In this paper, we have studied the quasiparticle proper
of doped holes based on an effective spin-charge separ
theory of thet-J model. The most unique result is that
quasiparticle remains stable as an independent excitation
spite the existence of holon and spinon elementary exc
tions. The underlying physics is that in order for a dop
hole to evolve into elementary excitations described b
holon and spinon, the whole system has to adjust itself g
bally which would take infinite time under a local perturb
tion. Such an adjustment is characterized by a vortex
phase shift as shown in Eq.~1.3!. As a consequence of th
phase shift effect, the holon and spinon constituents
i-
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found to be effectively confined which maintains the inte
rity of a quasiparticle except for the case in the zero-dop
limit. In particular, the quasiparticle weight is zero sin
there is no overlap between a doped hole state and the
ground state due to the symmetry difference introduced
the vortex phase shift. Such a quasiparticle is no longe
conventional Landau quasiparticle and is generally incoh
ent due to the virtual decaying process. Only in the sup
conducting state can the coherence be partially regained
the quasiparticle excitation.

The physical origin of the ‘‘unrenormalizable phas
shift’’ is based on the fact that a hole moving on an antif
romagnetic spin background will always pick up the pha
string composed of a product of1 and 2 signs which de-
pend on the spins exchanged with the hole during
propagation.18 Such a phase string is nonrepairable at lo
energy and is the only source to generate phase frustra
in the t-J model. The phase shift field in Eq.~1.3! precisely
keeps track of such a phase string effect15 and therefore ac-
curately describes the phase problem in thet-J model even at
the mean-field level discussed in Sec. II A.

Probably the best way to summarize the present work i
compare the present self-consistent spin-charge separ
theory with some fundamental concepts and ideas propo
over years in the literature related to the doped Mo
Hubbard insulator.

RVB pairing.The present theory can be regarded asone
of the RVB theories,1,37,4 where the spin RVB pairing is the
driving force behind everything from spin-charge separat
to superconductivity. The key justification forthis RVB
theory is that it naturally recovers thebosonicRVB descrip-
tion at half-filling, which represents11,12 the most accurate
description of the antiferromagnet for both short-range a
long-range AF correlations. In the metallic state at finite do
ing, the RVB orderDs defined in Eq.~2.10! reflects a partial
‘‘fermionization’’ from the original pure bosonic RVB pair
ing due to the gauge fieldAi j

h determined by doped holes
But it is still physically different from afull fermionic RVB
description.1,6,37 In contrast to the fermionic RVB order pa
rameter,Ds here serves as a ‘‘super’’ order parameter ch
acterizes aunified phase covering the antiferromagnetic i
sulating and metallic phases, and normal a
superconducting states altogether.20

Spin-charge separation.In our theory, elementary excita
tions are described by charge-neutral spinon and spinless
lon fields, and the ground state may be viewed as a spin
holon sea. Different from slave-particle decompositio
spinons and holons here are allbosonic in nature and the
conventional gauge symmetry is broken by the RVB ord
ing. But these spinons and holons in 2D still couple to ea
other through the mutual Chern-Simons-like gauge inter
tions which are crucial toTc , anomalous transport and mag
netic properties. The Bose condensation of holons co
sponds to the superconducting state, while the B
condensation of spinons in theinsulating phasegives rise to
an AF long-range order. The spinon Bose condensation
persist into the metallic regime, leading to a pseudog
phase with microscopic phase separation which can coe
with superconductivity.20

Bosonization.The electronc operator expressed in term
of bosonic spinons and holons in Eq.~1.3! naturally realizes
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a special form of bosonization. A 2D bosonization descr
tion has been regarded by many4,17,38–40as the long-sough
technique to replace the perturbative many-body theory
dealing with a non-Fermi liquid. The 2D bosonizatio
scheme has been usually studied, as an analog to the suc
ful 1D version,41 in momentum space where Fermi surfa
patches have to be assumed first.4,17,38–40 In the present
scheme, which is also applicable to 1D, the Fermi surf
satisfying the Luttinger volume and the so-called Ferm
surface fluctuations are presumably allgeneratedby the
phase shift field in Eq.~1.3!, which guarantees the fermioni
nature of the electron. Note that the vortex structure involv
in the phase shift field in the 2D case is the main distinct
from the Q function in conventional bosonizatio
proposals.40

Non-Fermi liquid. As a consequence of the phase sh
field, representing the Fermi surface ‘‘fluctuations,’’ th
ground state is a non-Fermi liquid with vanishing spect
weightZ, consistent with the argument made by Anderso3,4

based on a ‘‘scattering’’ phase shift description. In 1D bo
methods are equivalent as the phase shift value in the l
can be determined quantitatively based on the exact Be
ansatz solution. But in 2D, the phase shift fieldQ is

string ,
which is obtained by keeping track of the nonrepaira
phase string effect induced by the traveling holon, provide
unique many-body version with vorticities, and our mod
shows how aconcrete2D non-Fermi liquid system can b
realized.

Quasiparticle: Spinon-holon confinement.In conventional
spin-charge separation theories based on slave-par
schemes, a quasiparticle does not exist at all: It alw
breaks up and decays into spinon-holon elementary ex
tions. This deconfinement has been widely perceived a
logical consequence of the spin-charge separation in the
erature. But in the present paper, we have shown that
phase shift field actuallyconfinesthe spinon-holon constitu
ents~at least at finite doping!, which means that the integrit
of a quasiparticle is still preserved even in a spin-cha
separation state. It may be considered as a U(1) versio
quark confinement, but with a twist: the stable quasipart
as a collective mode is generally not acoherentelementary
excitation since during its propagation the phase shift fi
also induces a nonlocal phase string on its path. In o
words, the quasiparticle here is not a Landau quasipar
anymore. The confinement and nonrepairable phase s
effect both reflect the fermionic nature of the quasipartic
namely, thefermionicquasiparticle cannot simply decay in
a bosonic spinon and holon, and the phase string eff
comes from sequential signs due to theexchangebetween
the propagating quasiparticle and the spinon-ho
background—the latter after all is composed of fermio
electrons in the original representation.

The issue of the possible confinement of spinon and ho
was already raised by Laughlin42 along a different line of
reasoning. He has also discussed numerical and experim
evidence that the spinons and holons may be seen, m
sensibly, in high-energy spectroscopy like the way qua
are seen in particle physics. In recent SU~2! gauge theory,43

an attraction between spinons and holons to form a bo
state due to gauge fluctuations is also assumed in orde
explain the ARPES data. But in the present work the ess
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tial point is that the holons and spinons are not confined
the ground state but are only bound in quasiparticles a
kind of incoherent~many-body! excitations which have no
overlap with elementary holon and spinon excitations
guaranteed by symmetry. These incoherent quasiparticle
citations should not have any significant contribution to t
thermodynamic properties~at least aboveTc). At short dis-
tance and high energy, the composite nature of a quasip
cle will become dominant which may well explain the bro
intrinsic structure in the spectral function observed in t
ARPES experiments. The composite structure of the qu
particle can even show up at low energy when one navig
through different circumstances like the superconduct
condensation, underdoping regime, etc., with some uni
features different from the behavior expected from Land
quasiparticles.

Fractional statistics.Laughlin44 made a compelling argu
ment right after the proposal of spin-charge separation
the holon and spinon should carry fractional statistics,
making an analogy of the spin liquid state with a fraction
quantum Hall state. Even though the absence of the ti
reversal symmetry-breaking evidence in experiments d
not support the original version of fractional statisti
~anyon! theories,44,45 the essential characterization of fra
tional statistics for the singlet spin liquid state is, surpr
ingly, present in our theory in the form of the phase stri
effect as discussed in Ref. 15. But no explicit time-rever
symmetry is broken in this description.20

A fractional statistics may sound strange as we have b
talking about ‘‘bosonization’’ throughout the paper. But
pointed out in Ref. 15, if the phase shift fieldQ is

string is to be
‘‘absorbed’’ by the bosonic spinon and holon fields, then t
expression~1.3! can be regarded as a slave-semion deco
position with the new ‘‘spinon’’ and ‘‘holon’’ fields being
‘‘bosonic’’ among themselves but satisfying amutual frac-
tional statistics between the spin and charge degrees of
dom. The origin of mutual statistics can be traced back to
nonrepairable phase string effect induced by a hole in
antiferromagnetic spin background. At finite doping, the
der parameterDs in Eq. ~2.10! actually describes the RVB
pairing of spinons withmutual statisticswhich reduces to the
bosonic RVB only in the half-filling limit. Furthermore, in
the bosonic representation of Eqs.~2.6! and ~2.7! the lattice
Chern-Simons fieldsAi j

f andAi j
h precisely keep track of mu

tual statistics,15 which are crucial to various peculiar prope
ties exhibited in the model.

Gauge theory.Based on the slave-boson decomposition
has been shown26,27 that the gauge coupling is the most im
portant low-energy interaction associated with spin-cha
deconfinement there. The anomalous linear-tempera
resistivity27 has become the hallmark for anomalous tra
port phenomenon based on the scattering between ch
carriers and gauge fluctuations. In the present theory,
holons are also subject to strong random flux fluctuations
terms of the effective holon Hamiltonian~2.7!, in a uniform
normal state where it leads14 to the linear-T resistivity in
consistency with the Monte Carlo numerical calculation46

Other anomalous transport properties related to the cupr
may be also systematically explained in such a simple ga
model based on some effective analytic treatment.14,47 In
contrast to the slave-boson gauge theory, however,
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spinon part does not participate in the transport phenome
due to the RVB condensation (DsÞ0) persisting over the
normal state, and besides the Chern-Simons gauge fi
Ai j

f ,h , the conventional gauge interaction between spin
and holons is suppressed because of it.

Furthermore, thep-flux phase48 and commensurate flu
phase49 in the mean-field slave-boson theory, and the rec
SU~2! gauge theory43 at small doping have a very close co
nection with the present approach: Afermionicspinon in the
presence ofp flux per plaquette is actually a precursor
become abosonicone at half-filling under the lattice an
no-double-occupancy constraint. In Ref. 14, how such a
tistics transmutation occurs has been discussed, and in
the bosonization decomposition~1.3! was first obtained there
based on the fermionic flux phase. In spite of the phys
proximity, however, the detailed mathematical structure
the gauge description50,51 for the fermionic flux phase and
the present bosonic spinon description are obviously ra
different.

Superconducting mechanism.Anderson1 originally con-
jectured that the superconducting condensation may o
once the RVB spin pairs in the insulating phase start to m
like Cooper pairs in the doped case. The superconduc
condensation in the present theory indeed follows suit.
there is an important subtlety here. Since the RVB par
order parameterDs covers the normal state as well, the
must be an another factor controlling the superconduc
transition: thephase coherence. Indeed, the vortex phaseFb

appearing in the superconducting order parameter~2.11! is
the key to ensure thephase coherenceat a relatively low
temperature compatible to a characteristicspinenergy.20,21In
other words, the phase coherence discussed by Emery
Kivelson52 is realized by thephase shift fieldin the present
theory which effectively resolves the issue whyTc is too
high in previous RVB theories.

Furthermore, the interlayer pair tunneling mechanism53

for superconductivity is also relevant to the present the
from a different angle. Recall that the quasiparticle does e
in the present theory but is alwaysincoherentjust like the
blocking of a coherent single-particle interlayer hopping co
jectured in Ref. 53. On the other hand, a pair of quasipa
et
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cles in the singlet channel can recover thecoherencydue to
the cancellation of the frustration caused by the phase st
effect. Thus, if one is to construct a phenomenological the
based on theelectron representation, the superconductivi
can be naturally viewed as due to anin-plane kinetic
mechanism.54

Phase string and Z2 gauge theory.As pointed out at the
beginning of this section, our whole theory is built on th
phase string effect identified in thet-J model. Namely, the
main phase frustration induced by doping is characterized
a sequence of signs)cs i j on a closed pathc wheres i j 5
61 denotes the index of spins exchanged with a hole a
link ( i j ) during its hopping. Thus, instead of working in th
vortex representation of Eq.~1.3! where the singular phas
string effect has been built into the wave functions with t
nonsingular part described by the Chern-Simons-like lat
gauge fields,15 one may also directly construct a 211 Z2
gauge theroy55 to deal with the singular phase string)cs i j .
A discreteZ2 gauge theory here seems the most natural
scription of the phase string effect as the sole phase frus
tion in the t-J model, in contrast to the conventional co
tinuum gauge field description.26,27

Finally, we emphasize the close connection between
antiferromagnetism and superconductivity as both occur
unified RVB background controlled byDs. The relation be-
tween the AF insulating phase and the superconduc
phase here is much more intrinsic than in conventional
proaches to thet-J model. Especially, the coexistence
holon and spinon Bose condensations in the underdo
regime20 makes a group theory description of such a pha
in the fashion of SO~5! theory,56 become possible but with
an important modification: Inhomogeneity must play a c
cial role here in the Bose-condensed holon and spinon fi
in order to describe this underdoped regime. A detailed
vestigation along this line will be pursued elsewhere.
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