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Quasiparticle properties are explored in an effective theory of-thenodel which includes two important
components: spin-charge separation and unrenormalizable phase shift. We show that the phase shift effect
indeed causes the system to be a non-Fermi liquid as conjectured by Anderson on general grounds. But this
phase shift also drastically changes a conventional perception of quasiparticles in a spin-charge separation
state: an injected hole will remastabledue to the confinement of spinon and holon by the phase shift field
despite the background is a spinon-holon sea. @re®nfinemeranly happens in theero-dopindimit where
a bare hole will lose its integrity and decay into holon and spinon elementary excitations. The Fermi-surface
structure is completely different in these two cases, from a large band-structure-like one to four Fermi points
in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in
between, where the “gaplike” effect is amplified further by a microscopic phase separation at low temperature.
Unique properties of the single-electron propagator in both normal and superconducting states are studied by
using the equation of motion method. We also comment on some influential ideas proposed in the literature
related to the Mott-Hubbard insulator and offer a unified view based on the present consistent theory.

[. INTRODUCTION later referred to as théeconfinemenin order to distinguish
it from the narrow meaning of thepin-charge separation
High-T. cuprates are regarded by many as essentially about elementary excitations. We will see later that these two
doped Mott-Hubbard insulatdrAt half-filling such an insu- are generallynot the same thing.
lator is a pure antiferromagnet with only the spin degrees of The second idea, the so-called “unrenormalizable phase
freedom not being frozen at low energy. And a metallicshift,”** may be described as follows. In the presence of an
phase with gapless charge degrees of freedom emerge aftgpper Hubbard band, adding a hole to the lower Hubbard
holes are added to the filled lower Hubbard band. To charband could change the whole Hilbert space due to the on-site
acterize the doped Mott-Hubbard insulator in the metallicCoulomb interaction: Thentire spectrum of momenturk’s
regime, two important ideas were originally introduced bymay be shifted through the phase shift effect. It leads to the
Anderson: spin-charge separafiand the unrenormalizable orthogonality of a bare doped hole state with its true ground
phase shift effect* The first one is about elementary exci- state such that the quasiparticle wei@ht0, the key crite-
tations of such a system and the second one is responsible foon for a non-Fermi liquid. In general, it implies
its non-Fermi-liquid behavior. 6.
The spin-charge separation idea may be generally stated Cio=6i,& 12
as the existence of two independent elementary excitationg,pere e, is related to elementary excitation fields, e.g.,

charge-neutral spinon and spinless holon, which carry SpiﬂTfiU in a spin-charge separation framework. Such an ex-

1/2 and charger e, respectively. It can be easily visualized Iression means that in order for a bare hole creat
in a short-range resonating-valence-bdRy/B) staté and b e pio

has b idel q inol in i ft become low-lying elementary excitations, many-body
as become a widely used terminology in literature, ofter,p,,qq shif®; must take place in the background. In momen-
with an additional meaning attached to it. For example,

. . . ) . um space, it is easy to see how such a phase shift changes
spin-charge separation may be mathematically realized in thﬁz] b y P g

. e Hilbert space by shiftingk values. Note thate,,
so-called slave-particle representafiaf the t-J model, :Ek’hlrfk-%—k’a wherek andk’ belong to thesameset of

g — ° 7

Cig= h'Tfi(r’ (11)

where the no-double-occupancy constraint, reflecting the
Hubbard gap in its extreme limit, is handled by an equality

hihi+=,f! fi,=1 which commutes with the Hamiltonian. (a)
Here one sees the close relation of the spin-charge separation 6
and the constraint condition through the counting of the w

guantum numbers. But the spin-charge separation also ac-

quires anew meaning here: If those hoIorhK) and spinon

(f;,) fields indeed describe elementary excitations, the hole ()

(electron is no longer a stable object and must decay into a

holon-spinon pair once being injected into the system as FIG. 1. Schematical illustration of the quasiparticle deconfine-
shown by Fig. 1a). This instability of a quasiparticle will be ment(a) and confinementb) due to the phase shift field.

0163-1829/2000/618)/1232814)/$15.00 PRB 61 12 328 ©2000 The American Physical Society



PRB 61 NATURE OF SPIN-CHARGE SEPARATION IN THE-J MODEL 12 329

quantized valuegfor example, in a two-dimensiondPD)  The phase shift field in 2D is related to a nonlocal vortexlike
square sample with sizex L, the momentum is quantized at gperator bye ®io=(— o)igi®s ° [the sign (o) keeps
Ke=(2m/L)n under the periodic boundary condition with track of the Marshall sign just for conveniedowith the
a=X, y andn= integef. But because of a nontrivid;,  yorticity given by

Cks and e, generally may no longer be described by the

same set ok’s or in the same Hilbert space, which thus string b h
constitutes an essential basis for a possible non-Fermi liquid. Fdr VO, = 772; 20:4 anj,—1=onp|,
The 1D Hubbard model serves as a marvelous example in (1.4)

favor of the decompositiofil.2) over Eq.(1.1). The quanti-
tative value of the phase shift was actually determined byvhereI' is an arbitrary closed loop without passing any lat-
Anderson and Rér using the Bethe-ansatz solutfoim the tice site except the siteand the summation on the right-hand
large U limit, and Z was shown to decay at large sample sizeside (RHS) of Eq. (1.4) runs over lattice sites within the
with a finite exponent. An independent path-integralloop I'. Herenf, andn}' are spinon and holon number op-
approach without using the Bethe ansatz also reaches thé&rators, respectively.
same conclusion which supports E.2) as thecorrectde- Such a vortexlike phase shift originates from the fact that
composition oftrue holon and spinon. a doped hole moving on an AF spin background will always
Another important property of the Mott-Hubbard insula- pick up sequentiat- and — signs, (+1)x(—1)X(—-1)X
tor, which is well known but has not been fully appreciated,- - -, first identified in Ref. 18. These signs come from the
is the bosonizationof the electrons at half-filling. Namely, Marshall signs hidden in the AF background which are
the fermionic nature of the electrons completely disappearsscrambled by the hopping of the doped hole on its path,
and is replaced by &osonicone. This is one of the most determined by simply counting the index of each spin
peculiar features of the Mott-Hubbard insulator due to theexchanged with the hole during its hoppitfgThe signifi-
strong on-site Coulomb interaction. In fact, under the no-cance of such a phase string is that it representsstie
double-occupancy constraint, tihel model reduces to the source to generate phase frustrations in thle model (at
Heisenberg model in this limit. Its ground state for dimjte  finite doping, the only additional signs coming from the fer-
bipartite lattice is singlet according to Marshlnd the  mionic statistics of doped holes in the original slave-fermion
wave function is real and satisfiesravial Marshall sign rule  representation are also countedl iNamely, the ground-state
as opposed to a much complicated “sign problem” associwave function would become real and there should be no
ated with the fermionic statistics in a conventional fermionic*sign problem” only if such a phase string effect is absent
system. This bosonization is the reason behind a very sudlike in the zero-doping cageThe phase shift field in Eq.
cessful bosonic RVB description of the antiferromagnet: The(1.3) precisely keeps track of such a phase string effestd
variational bosonic RVB wave functions can produce strik-therefore can be considered to be a general consequence of
ingly accurate ground-state enetyy? as well as an elemen- thet-J model.
tary excitation spectrum over the whole Brillouin zo%eA The decomposition(1.3) definesa unique spin-charge
mean-field bosonic RVB approatfhiknown as Schwinger- separation theory where the relation between the physical
boson mean-field theol@8BMFT), provides a fairly accurate electron operator and the internal elementary excitations, ho-
and mathematically useful framework for both zero- andlon and spinon, is explicitly given. The thermodynamic prop-
finite-temperature spin-spin correlations. erties will be obtained in terms of the energy spectra of holon
Starting from either the slave-bos8ror slave-fermiof®  and spinon fields, while the physically observable quantities
representation, a 2D version of the decompositib2) has  will be determined based on E@l.3) where the singular
been previously constructed such that the electron bosonizghase shift field with vorticities is to play a very essential
tion can be naturally realized at half-filling to restore therole in contrast to the conventional spin-charge separation
correct antiferromagnetiéAF) correlations. In the 1D case, theories in the slave-particle decompositions of Eql).
this decomposition also recovers the aforementioned spinon- Note that the total vorticity of Eq(1.4) is always equal to
holon decoupling and reproduces the correct Luttinger-liquic2 X integer due to the no-double-occupancy constraint such
behavior'® Even in the two-leg ladder system where holonsthat the phase shift facteg'®i- be single valued. Such a
and spinons are recombined together to form quasiparticleshase shift field will play different roles in different chan-
Ec?]'thc‘ia strong rung Ca}l'fl@.a man)?b_od)(/j phase Slhif_t field in nels. For example, in the spin channel one Hgs
is decomposition still exists at finite doping, playing a non-_, + i _i[@string_ gstring -
trivial role. Such a decomposition fornEn) c%npbg ggenerally_ bl bi (1)1 1 where the total vorticity
written as . _
) - jﬁdr-V(@itr'“G—@)?””g):iquZ n'. (1.5
Cio.:hi-rbia.ei(ai‘f. (13) r tel
o . It obviously vanishes a6—0 (& is the doping concentra-
It may be prop?rly called dosonizatiorformulation as the  jo) 5o that the aforementioned bosonization is naturally
holon operatoh;, and spinon operatds;, are bothbosonic  regjized. And at finite doping, the vorticity shown in Eq.
fields h$re. TheyT still satisfy the no-double-occupancy conqy 5) reflects the recovered fermionic effect and is respon-
strainthy'h; + 2 ,bj,bi,=1. Thefermionicnature ofc;, iSt0  sible for a doping-dependent incommensurate momentum
be represented through the phase shift fi@lg which re-  structuré® in the dynamic spin susceptibility function which
places the description of Fermi-surface patched Fermi-  provides a unique reconciliation of neutron scattering and
surface fluctuations in the usual bosonization langdd8e. NMR measurements in the cuprates. On the other hand, in
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the singletpairing channel, the phase shift field appearing innon-Fermi-liquid state. In Sec. 1l C, we demonstrate how the
the local pairing operator will contribute to a vorticity phase shift field causes the confinement of the holon and
spinon within a quasiparticle except in the zero-doping limit.
b In Sec. IID, we study the single-electron propagator in both
2 anj,— 1], normal and superconducting states based on an equation-of-
“ (1.6 motion approach. We then discuss an underdoped case as a
' crossover regime from a Fermi-point structure in the one-

which decides th@hase coherencef Cooper pairs. Accord- hole case with the holon-spinon deconfinement to a large
ing to Eq.(1.6), besides a trivial Z flux quantum per site Fermi surface in the confinement case. Finally, Sec. Il is
each spinon a{lso carries a fictitious Y27 flux tube. To, devoted to discussing some of the most influential ideas pro-

achieve the phase coherence or superconducting conden%sed_ in the literature related to thell\_/lott-l_-|ubbard insulator
tion, 1 and | spinons have to bpaired off to remove the and highT cuprates and offers a unified view based on the
vorticities associated with individual spinons in E@.6, Present consistent theory.

which then connect&?! T to a characteristic spinon energy

scale, in consistency with the experimental result of cuprate  |I. PROPERTIES OF A QUASIPARTICLE IN THE
superconductors and resolving the issue Whyis too high SPIN-CHARGE SEPARATION STATE

in usual RVB theories.

The purpose of the present work is to explore the conse-
qguences of the bosonization decompositidrg) in 2D qua- The decomposition(1.3) determines an effective spin-
siparticle channel. First of all, we show that the phase shiftcharge separation theory of thel model in which spinon
field indeed causes the quasiparticle weighto vanish. and holon fields constitute the elementary particles. Before
Namely, this spin-charge separation stata 2D non-Fermi  proceeding to the discussion of the quasiparticle properties in
liquid, a fact almost trivial in such a particular formulation. next subsections, we first briefly review some basic features
A surprising “by-product” of this phase shift field is that it of this theory based on Refs. 15 and 20.
also plays a role otonfinement forcéo “glue” spinon and In the operator formalism, the phase shift fieff!"9
holon constituents together inside a quasiparticle, as illussatisfying Eq.(1.4) can be explicitly written down in a spe-
trated in Fig. 1b). In other words, a hole injected into this cific gauge as follows®
system generally doesot break up into spinon-holon el-
ementary particles, even though the background is a spinon- . i
holon sea. Such a quasiparticle may be regarded as a spinon- OrnI= E[d)ib— odM, (2.3
holon bound state or more properlycallective mode but
will generally remainincoherentdue to the same phase shift
field.

Due to the confinement, an equation-of-motion descrip-
tion of the quasiparticle excitation is constructed, in which b_ ) b _
the dominagt “scgttering” process is described as the “vir- q> 1#i 6'(|)< 2 o 1) @3
tual” decay of the quasiparticle into holon-spinon compos-
ite. In the superconducting phase, the composite nature of tHRnd
quasiparticle predicts a unique non-BCS structure for the
single-electron Green’s function which is consistent with the

§£ dr-V(05""9+ @5 = £ 27>
r lel’

A. Effective spin-charge separation theory

where

h_ h
experimental measurements. In particular, we find the resto- b= < oi(Hny'. 2.3
ration of the quasiparticle coherence with regard to the inco-
herence in the normal state. Here 6,(1) is defined as an angle

A true deconfinement or instability of the quasiparticle
only happens in the zero-doping limit where an injected hole
indeed can decay into a holon and spinon pair, which

pro.v|d.e§ a consistent explanation of angle-resolved photo—With 2.=x+iy; representing the complex coordinate of a
emission spectroscopfARPES measurements. The con- lattice sitei

trast of a large band-structure-like Fermi surface in the con- 2D, an effective Hamiltonian based on the decomposi-

finement phase to the four Fermi points in the deconfinemeny | (1.3 after a generalized mean-field decoupihip the
phase at the zero-doping limit may provide a unique explay_; mo.del can be written down:

nation for the ARPES experimental measurements in cuprate
superconductors. In the weakly doped regime, a “partial”
deconfinement of the quasiparticle between full-blown de-
confinement and confinement will be reflected in the single- I
electron Green’s function which may explain the “spin-gap” where the holon Hamiltonian

ei(l):|m|n(zi_2|), (24)

Hers=Hp+Hs, (2.5

phenomenoR?
The remainder of the paper is organized as follows. In _ Al .
Sec. II, we first briefly review the effective spin-charge sepa- Hi th(% (€7hihj+H.c. 2.6

ration theory based on the decompositi@rB). Then in Sec.
[I B, we show that the phase shift field leads2e0, i.e., a and the spinon Hamiltonian
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with t,~t, Js~J. In the second term dfig, J5 ~ 6t+0 only 3 oL : :
for i andj on the same sublattice sites, which originates from = 1o} 0 01 0z 4
H, where a phase shift occdfsin the spinon mean-field ~ ; )
wave function and results in the same-sublattice hopping of * & Y
spinons. The lattice gauge fields; andAj} in the specific N |
gauge choice of Eq42.2) and(2.3) are given by E
8=0
i1 b s_ 40 e v
Ai=5 2 [6()=6,(]| 2 onp,—1|=A - ¢} —— e
2157 4 % 05 1 15
(2.9
o [J]
and
1 FIG. 2. Dynamical spin susceptibility at the AF vector,¢r) in
h_ = _ h the uniform phase fo6=0 and 0.143, respectively. The inset: the
AiJ ) |;j L6i(1) aj(l)]n' ) (2.9 doping dependence of the characteristic spin “resonancelike” en-

ergy Eq=2E, (E denotes the corresponding spinon engrgy
In generaI,Aﬁ andAﬂ can be regarded as “mutual” Chern-

Simons lattice gauge fields as, for examp’lg,is determined  susceptibility function at the AF vectorn( ) is illustrated
by the density distribution of holons but only seen byin Fig. 2. Note thatEy in Fig. 2 is twice as large as the

spinons. corresponding spinon enerdy. The doping dependence of
The above effective theory is based on a RVB pairingEy is shown in the inset. Finally, the superconducting order
order parameté? parameter A$°=(3 ,0¢;,c;_,) has a finite value(for
nearest-neighboringandj) in the ground staté’
. h
AS= e oAb b _,), 2.1 . .
; < 10 Dj (r> ( Q AﬁC:As(_1)|<hi‘rel(<bib+<l>}))/2hj1“>¢0’ (2_11)

which in the zero-doping limitd— 0 reduces to the well- due to the Bose condensation of holons as well as the pairing
known bosonic RVB order parame{%asA{} =0. AndH.  of spinons which leads ta°#0 and the vortex-antivortex
recovers the Schwinger-boson mean-field Hamiltotfiaii  confinement ine!(®7*®))/2, Thus the ground state is always
the Heisenberg model. So this theory can well describe Aksuperconducting condensed with a pairing symmetryl-of
correlations at half-filling. At finite doping, the “mutual” \ave-like2°
Chern-Simons gauge fields; and Af; will play important Besides the above uniform ground state, possible nonuni-
roles in shaping superconductivity, magnetic, and transpofiorm solutions characterized by the coexistence of the Bose
properties, and some very interesting similarities with cu-condensations of holons and spinons have been also dis-
prate superconductors have been discussed based on thigssed in Ref. 20 where the spinon spectrum has only a
model?° In contrast to the slave-fermion appro&ch s re- pseudogap. In any case, the ground state can be regarded as
mains the only order parameter at finite doping, controllinga spinon-holon sea, and low-lying elementary excitations are
the short-range spin-spin correlations a&S-Sj)= described in terms of spinons and holons. What we are
—1/2/A%|? for nearest-neighboring andj. It is noted that mainly interested in this paper is to answer the question how
due to the presence of the RVB pairi®.10, the conven- a hole(electron as a composite of spinon and holon behaves
tional gauge fluctuatiod&?’ are suppressed as the gauge in-in this spin-charge separation state. This is one of the most
varianceh?bi0=[h?e‘oi][bioe*"’i] is apparently broken by fundamental questions not only because it can be directly
A3. Here spinons no longer contribute to transport and aréested in an ARPES measurement, but also because it will
really charge-neutral particles. make a crucial distinction between a conventional Fermi lig-
In the ground state of the uniform-phase solutigtef.  uid and a non-Fermi liquid. Let us begin with the question: if
20), A{j and Aihj both become simplifiedA!; simply de-  this spin-charge separation state is a non-Fermi liquid.
scribes arr flux per pIaquetteZDAifj ~—2n¢jj=— 7 since
A is suppressed due to the spinon pairing in the ground B. Non-Fermi liquid with Z=0

state;Afl describes a uniform flugA], =78 due to the The definition of the quasiparticle weigHi, at momen-
Bose condensation of holons. Self-consistent, [Eq.  tumk is given byZ,= (¥ s(Ng— 1)|ci,| ¥ 5(Ne))|?, and it
(2.6)] determines a Bose-condensed ground state of holonaeasures the overlap of a bare hole state at momektum
where ther flux produced byﬂxifj merely enlarges the effec- created byc,,, in the ground state di electrons, with the
tive mass near the band edge $)2. On the other hand?i} ground state ofN.—1 electrons. For a Fermi-liquid state,
in Hq [Eq. (2.7)] leads to a “resonancelike” energy structure One always ha¥, #0 at the Fermi momenturk;. If Z

in the spinon spectrum and the corresponding dynamic spir0 for any k, then the system is a non-Fermi liquid by
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definition. In the following we will show that the bare hole ¢ﬂ
statecy,| ¥ g(Ne)) acquires an “angular’ momentum due to

the vorticities ine®i- in the decompositiofil.3). Due to such

a distinct symmetry, it is always orthogonal to the ground

state| ¥ 5(Ng— 1)), leading toZ=0. Cs
One can construct a “rotational” operation by making a
transformation
0,(1)—6,(1)+ ¢. (2.12 Ch

It corresponds to a simple change of reference axis for the g 3. Schematical illustration of the case when a quasiparticle
angle funCUOm'(l) def'ned n Eq(24) Itis eaSy to see that decays into Spinon and holon constituents.

the Hamiltoniang2.6) and(2.7) are invariant since the gauge
fields, in which ¢;(1) appears, are obviously not changed: C. Quasiparticle: Spinon-holon confinement

AT AMT Both the ground stat as well as single- . . —
i g &) g The difference in symmetry between a quasiparticle and a

valuedh; andb;, fields are apparently independent f holon-spinon pair implies that the former cannot simply de-

But a bare hole'state will change under the transformatlor(1:ay into the latter even though they share the same quantum
(2.12 as follows:

numbers of charge and spin. In this section, we demonstrate
that generally the holon and spinon constituents wilcbe-

Ciol W) —€ i X ¢y W) (213 finedby the phase shift field within a quasiparticle although
. o o ez h the background is a spinon-holon sea.
due to the phase shift facta®ic with P7=S"—oN"2 Intuitively such a confinement is easy to understand: If

—(N—1-0)/2 which remains an integer for a bipartite lat- the holon and spinon constituents inside a quasiparticle could
tice (S* andN™ denote total spin and hole numbers, respeCmove away independently by themselves, as schematically

}'r:lgly’daﬁd N 'Sn t?ﬁriﬁtt;g? ;'Z)EI Ih'r‘; 'nr:]plr'ﬁsr;hﬁ]tci“|r\]1t,r‘3> Pt shown in Fig. 3, the vortex phase shift fi@tfio left behind
v ee h'i?] ?:ar(r)'es nc?nea gula omentu contrast 1o,y ould cost a logarithmicallgivergentenergy as to be shown
c) whi ! ) below. But a quasiparticle state,| ¥ ¢) as a local excitation

It is probably more transparent to see the origin of theshould only cost a finite energy relative to the ground-state
angular momentum if one rewrites, for example,

energy. Such a discrepancy can be reconciled only if the
i holon and spinon constituents no longer behave as free el-
eiGiL:H (Zi_ZIT)lIZH (z* _Zﬁ)m ementary excitation;: They have to absorb the effect of the
I#i I#i vortexlike phase shift and by doing so make themselves
bound together. A
<11 (z—z) Y1 (zF—z)Y?xF;, (2.14 Let us considef¥'y=e'®is| ¥ ;) and compute the energy
171 171 cost for the vortexlike phase shift:

wherez,; , z;,, andz, denote the complex coordinatesof

| spinons, and holons, respectively. ARg=11,..{|z—z]| is (W' Het W) =(Vg|Herd Vo). (2.17)

a constant(which is obtained by using the no-double- ] o

occupancy constraintlt is important to note that despite the We first focus on the CO”rE”bUt'O” from the holon patt,
fractional (“semion”) exponents of 1/2 in E¢2.14), it can [Eq. (2.6)]. I?eflne Ee=(¥g|HnVs). One has
be directly verified that the phase shift fietil remains  —tn(¥g|h/he”im| W )=E"4N for any nearest-neighbor
single valuedunder the no-double-occupancy constraint.link (Im) due to the translational symmetry. Then a straight-
Generally the vortex field2.14) introduces an extra angular forward manipulation leads to

momentum which can be easily identified as

ED
h , n_gh___6C — (1) — 6
e N7 o1y (VIHIY)—Eg=—og o {1-cotai() - 6(m))2)
(2.18
Herel is always an integer. Then one has ) ) ) “ o
Notice that if the (m) link (say, along the direction is far
(W5 (Ng—1)| ;| P o(Ne)) =0 (219 away from the sitei, then one has|6;(1)— 6;(m)]
—a|sing|/r wherer denotes the distance between the center
due to theorthogonal conditior?® as1+#0 [S?=0(1), N"  of the link and the sité and 6 is the azimuth angle. Then it
=O(N) at finite doping for c;,|¥s). By extending the is easy to see that the summation over those links on the
same argument, one can quickly see that the bare hole sta®HS of Eq.(2.18 will contribute asfr dr d 8 sirfa/ir’<InR
Cio| P c(Ng)) has no overlap not only with? ;(N.—1)) but (R denotes the sample sjzeNamely, the vortexlike phase
also with all the elementary excitations composed of simpleshift will cost a logarithmically diverged energy if it is left
holons and spinons with=0. Soc;, is more like a creation alone. It should be noted that the same conclusion still holds
operator of a “collective” mode whose quantum numbés  if one replacedd ;; by the exact-J model in the represen-
different from a simple spinon-holon pair. tation of Eq.(1.3) (Ref. 15.



PRB 61 NATURE OF SPIN-CHARGE SEPARATION IN THE-J MODEL 12 333

Hence the vortexlike phase shift field has to be absorbetie bound to the total phase shift fields together to eliminate
by the holon and spinon fields in order to keep the quasiparthe divergent energy while maintaining single-valuedness.
ticle energy finite. In the following, let us illustrate how this There is another way to see this. Note thgy  (mj)
will happen. We first use the vortex phas®? in Eq. (2.)  — Om,,,(Ms) describes the angle between the nearest-
as an example. Let us write down the following identity:  neighboring links ts_;,ms) and (Ms. ;,Ms); it can have an

uncertainty by+ 27 Xinteger, and it is easy to see that the
ex;{ i Eq).b) - exp{ i E(I)b) phase string factorsk"n ande~1X"€9 in Egs.(2.19 and
2 21 (2.27) are not well defined by themselves as they are multi-
(219  valued except ab=0. On the other hand, if one chooses
Ch=Cs=cC in Fig. 3, the mathematical ambiguity is elimi-

exp i, Af>exp[iKb(ch)]
Ch

in which nated in the total phase string field,
by — ch
E AfEE AInSmS_*_lv (22@ KU.(C)—K (C) oK (C)
Ch S kc
wheremy=i, m;, ... m, =j are sequential lattice sites on 2321 [ Om - 1(Ms) = O 11(Ms) ]
Ch =

an arbitrary pathc, connectingi and j. And K®(cy)
E%.Eswmsil(ms)—Gwsﬂ(r‘r?s)](Eofan?nsu—l) which is a X% S anb—1-onl |, (223
stringlike field only involving spinons on the path,. By @
contrast, the line summatian, A" is contributed by spinons  since by using the no-double-occupancy constraint, one can
from the whole system nonlocally. Note that, according toshow that %(Eaanlﬁnsa—l—an&)= —(1+o)2+ ‘T”Fnsa
Hp [Eg. (2.6)], holons see the gauge fiehf in the Hamil-  which is an integer such thatk+() remains single valued.
tonian, and if a holon moves from sitéo j via the same path Physically, it is becausefarmionicquasiparticle may not
Cph, it should acquire a phase factor expEchAf) which can  decay into twabosonicholon and spinon elementary excita-
exactly compensate the similar phase in Ej19. In other  tions in 2D. The only exception is in theero-dopinglimit.
words, if the vortex phase factel®""2is bound to a holon to e ‘rjave _p0|_n:t,ed out in the Introduction that at half-filling

: =it iabp . the “fermionic” nature of the electrons essentially disap-
form a new composite objett =h;e'™ ', then there willbe  hears and is replaced by a “bosonic” one due to the no-
no more vortex effect as it moves on the pathshown in  gouble-occupancy constraint. Then it is not surprising that in
Fig. 3, except for a phase string fighd'(c,) left on its path,  the one-hole doped case which is adjacent to the half-filling,

and the new object should cost only a finite energy. the deconfinement of holon-spinon can happen as a result of
Similarly, for the vortex field ¢ o/2)®j in Eq.(2.1) one  the electron “bosonization.” Indeed, in the zero-doping limit
can rewrite ! defined in the gaugé2.3) vanishes Without @', the
: h s = b -
original reason for inseparabte '“®i” ande'®i-2in €'®iv is

no longer present: In this case, the phase shift faf

reduces te*1'2 which itself becomes well defined, and can
Xexp{ i gq)h ) solely accompany the holon during the propagation. As for

exp( —i%cbih):

exp( —ioc> Ah) exd —ioK"(cy)]

27 (2.2 the spinon partH; in Eq. (2.7) reduces to the well-known
SBMFT Hamiltonian withA"=0 and the corresponding line
leading to the multivalue ambiguity, the quasiparticle will
> A= Al (2.22  break into a spinon and a composite of holon-vortex phase
Cs S
. . . . .._ane-hole problem can be found in Sec. IID 3.
where the line summation runs over a sequential lattice sites S . .
How a quasiparticle behaves in a spinon-holon sea as a
And then- we .can similarly see that the S.F;'(Ir)]é/)zn. constituent Olh the next subsection. In the following we will make several
the quasiparticle also has to be bound1o inorderto  remarks on some implications of the confinement before
vortex structure, and the new composite will only leave aqyasiparticle generally remains an incoherent excitation in
phase string behind given bK"(c)=322d6m_ (Ms)  contrast to the coherent spinons and holons and we assume
However, there is one problem in the above argumenpa@mic and dynamic properties. In the equal-time litwiO",
= b -
about the absorption of the vortex phase fac&fs’?> and the single-electron propagator can be expressed as
) — i i—j
two phase factors are not single valued except in the zero- Ge(i.J:07)=i(=0) <
doping limit. In fact, only the total phase factet®i- is al-
: T
hjex;{ —|§ Af)hi

in which summation= A" is also absent in the propagator. Without

sMsr1 ! which can propagate independently. More discussions of the
on an arbitrary patles connecting andj” shown in Fig. 3. §ingle entity at finite doping will be the subject of discussion
compensate the logarithmically divergent energy cost by thesncluding the present subsection. First of all, we note that a
— 0ms+1(ms)]n[}1$. that it will not contribute significantly to either thermody-

. h
e'7®i”2 py the holon and spinon constituents. Namely, these + Ny h
b, expl i 2 A"|b;,

ways well defined and single valued as mentioned before. It

X

e‘Ko<°>> . (2.29

thus means that both holon and spinon constituents have to
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At finite t, temporal components have to be added to the linergy if being left alone unscreened. Therefore, one has to
summations® A" and=_Af, as well as in the phase string treat a quasiparticle as andependentollective excitation
field K,(c) above. Even though mathematically the path in this spin-charge separation system.
can be chosen arbitrarily in E€R.24), a natural choice is for Involving infinite-bodyholons and spinons, a quasiparti-
c to coincide with the real path of the quasiparticle such thatle cannot be simply described by the mean-field theory of
the line summations can be precisely compensated by thadividual holon and spinon. The previously discussed con-
phases picked up by the holon and spinon constituents dsmement is one example of thaonperturbative conse-
mentioned above. In this case, all the singular phase effecfuences caused by the infinite-body phase shift field. But
will be tracked bye'*+(®) which is nothing but the previously such a confinement of the holon and spinon inside a quasi-
identified phase string effet} where it has been shown that particle will enable us to approach this problem from a dif-
the phase string effect is nonrepairable and represents tlierent angle.
dominant phase interference at low energy. Physically, it re- Here it may be instructive to recall how a low-lying col-
flects thefermionicexchange relation between the quasipar-lective mode is determined in the BCS theory. In BCS mean-
ticle under consideration and those electrons in the backfield theory, quasiparticle excitations are well defined with
ground. Such a phase string field accompanying then energy gap. But quasiparticle excitations do not exhaust
propagation of the quasiparticle is a many-body operator irall the low-lying excitations, and there exists a collective
terms of elementary holon and spinon fields. Even in the onenode in the absence of long-range Coulomb interaction,
hole case, such a phase string effect results in the incohewhich may be also regarded as a “bound” state of a quasi-
ency of the quasiparticle as has been discussed in Ref. 22particle pair due to theesidualattractive interaction. A cor-
One may also see how a Fermi-surface structure is generect way”® to handle this “bound” state is to use ttell
ated from the phase shift,, in some limits. For example, in BCS Hamiltonian to first write down the equation of motion
the 1D case{whereAi*}'fzolf’), since one may always define for @ quasiparticle pair anthenapply the BCS mean-field
0, (M) — 6, .(m)==m, the phase string factor treatment to !lne_anze t_he equation to produce the gaples_s
eiKsU(C) in SE (224 can be written as spectrum, which is equwalent_ to the random phase approxi-
o q- e mation (RPA) scheme? Including the long-range Coulomb
(— o)~ lel7kiliX)el ki (i) which produces the 1D Fermi interactiof® will turn this collective mode into the well-
surface ak¢=* w(1— 8)/2 (heredk{ denotes Fermi-surface known plasma mode.
fluctuations with({ 5k{’) =0 which is crucial to the Luttinger- Similarly we can establish an equation-of-motion descrip-

liquid behaviot®). In the 2D one-hole casé);, also leads to  tion of the quasiparticle as a “collective mode,” which
a “remnant” Fermi-surface structure in the equal-time limit moves on the background of the mean-field spin-charge
while it gives rise to four Fermi pointk, at low energyas separatior_1 state. Fo_r this purpose, let us first_ write down the
discussed in Ref. 22. At finite doping, the doping-dependentull equation of motion of the hole operator in the Heisen-
incommensurate peaks in the dynamic spin susceptibilitP€rg representation:idc;,(t)=[H.-;.Ci,(t)], based on
function has been also related to such a phase shiftfietd.  the exact £J model, either in the decompositiof1.3) or
general, the Luttinger-volume theorem may even be undeSimply in the originalc-operator representation, as follows:
stood based or'X+(® as it involves the counting of the
background electron numbers. Nevertheless, fnecise
Fermi-surface topology will not be solely determined by the
phase shift field in 2D and one must take into account of the
dynamic effect. it E
Finally, a stable but incoherent quasiparticle excitation in 1=NN(i)
which a pair of holon and spinon are confined means that a
photoemission experiment, in which such a quasiparticle exand
citation can be created through “knocking out” an electron
by a photon, does not directly probe ftin¢rinsic information

t
[Ht,Cia]:z(l'i‘nP) 2 Cis
1=NNG)

(C|0.O'S|Z+ C|71r37 U) (225)

h

of coherent elementary excitations anymore, and the energy- [Ha.Cil= ZC“’| =%(i) (1=np)

momentum structure of the single-electron Green'’s function

is no longer a basis as fundamental and useful as in the case J . Y

of conventional Fermi-liquid metals to understand supercon- 2 I=%l(i) (CeoS+Ci-oS 7). (226

ductivity, spin dynamics, and transport properties in other

channels. Note that the above equations hold in the restricted Hilbert
space under the no-double-occupancy constrﬁr;}tfaci,,
<1.

D. Description of the quasiparticle: Equation-of-motion

There are many papers in literature dealing with the
method

model in the c-operator representation, in which the no
Now imagine a bare hole is injected into the ground statedouble occupancyiigcfgcigsl is disregarded. As a conse-
of N, electrons. By symmetry, such a state should be orguence, there is only a conventiorsatteringbetween the
thogonal to the ground state bf,— 1 electrons. Its dissolu- quasiparticle and spin fluctuations as suggested by Egs.
tion into a holon and a spinon is also prohibited by the sym<{2.25 and (2.26. This leads to a typical spin-fluctuation
metry introduced by the phase shift figlq. (1.3)] and the  theory, which usually remains a Fermi-liquid theory with
latter would otherwise cost a logarithmically divergent en-well-defined coherent quasiparticle excitations near the
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Fermi surface in contrast to thé=0 conclusion obtained t
here. The problem with the spin-fluctuation theory is that the teri=5(1+9). (2.30
crucial role of the no-double-occupancy constraint hidden in
Egs.(2.25 and(2.26 has been completely ignored which, in Generally the “decaying” terms do not contribute to a co-
combination with the RVB spin pairing, is actually the key herentk-dependent correction due to the nature of the holon
reason resulting in a spin-charge separation state in thand spinon excitations as well as the “smearing” caused by
present effective theory of trteJ model. In such a backdrop e'© in Eq. (2.27. But in the ground state, which is also
of the holon-spinon sea, the scattering terms in EB29  superconducting, the “decaying” terms in E&.27) do pro-
and (2.26 will actually produce a virtual “decaying” pro- duce a coherent contribution due to the composite nature of
cess which is fundamentally different from the usual spin-the quasiparticle which will modify the solution of the
fluctuation scattering in shaping the single-electron propagaequation-of-motion.
tor.

By using the decompositio(iL.3) and the mean-field or- 1. Ground state: A superconducting state
der parameteA® defined in Eq.(2.10, the high-order spin-
fluctuation-scattering terms on the RHS of E(®.25 and
(2.26 can be “reduced” to the same order of linegy., and
we find

In the mean-field ground state, the bosonic holons are
Bose condensed witth!)=h,~ /8 and the superconduct-
ing order parametekS¢+0 (see Sec. Il A The decomposi-
tion (1.3 then implies that the electron operator may be
rewritten in two parts:

_ t
—19Cio(t)~= 5 (1+ 5)|=%m cl,+JI(1-d)ci,

Ciy=hoai,+C,, (2.3)
—EtBO S eOuhlb, o oA where a;,=b;,e7 and ¢/ =(:hl:)b,,e% with :h':
47 =NNG) ' Eh;‘—ho. Correspondingly, a coherent term will emerge
3 from the “decaying” terms in Eq(2.27) which is linear in
+20as > @Ounfol g, o an
8 1=NN() 7
J-scattering term in Eq2.2
(2.27 g o2.27
3 AFC
where By, is the modifi_ed(but not an independe)n'order 2 ;‘2 hoar,UJrhigh order.
parameter for the hopping term introduced in Ref. 20. In the 8 " 1=NN(i) hg
following we will discuss some unique quasiparticle proper- 53
ties based on this equation. (2.32

So in the spin-charge separatigmean-field background, In obtaining the RHS of the above expression, the supercon-
the leading order effect of the “scattering” terms correspondducting order parameter defined in E§.11) is used.
to the decay of the quasiparticle: The terms in the second and Note that the-scattering term in Eq2.27) gives rise to a
third lines of Eq.(2.27) clearly indicate the tendency for the term «hga;, which can be absorbed by the chemical poten-
quasiparticle to break up into holon and spinon constituentsial . added to the equation. Then one finds
This is in contrast to the conventionatatteringsbetween
the quasiparticle and spin fluctuations, as E@25 and

(2.26 would have suggested. Generally, the quasiparticle is _'&ta“’:t‘”ﬂ:%(i) BT HBio
expected to have an intrinsic broad spectral function ex-
tended over the whole energy range 3

SC

Ai| + .

+5J —| oa,_,+ high order,
8 1=y | h3

Equasiparticl? Eholon+ Espinon (2-28)

" 2.3
because of the decomposition process. But the presence of (233
the phase factoe‘é in these “decaying” terms of E¢2.27) where the connection betwearandc’ has been assumed to

prevents a real decay of the quasiparticle since such a vortd)€ In high order and thus is neglected in the Ieaqring'order
field would cost a logarithmically divergent energy as has@Pproximation to get a closed form in linearanda’. Fi-
been discussed before. Thus, even in the case ofZE28), nally, introducing the Bogoliubov transformation in the mo-
the decaying of a quasiparticle remains only a virtual proces§1€Ntum space

which is an another way to understand the confinement dis- +

cussed in Sec. Il C. ko= UkYko ™ TVKY ko (2.34

Without the “decaying” terms, the equation of motion e find that Eq(2.33 can be reduced to
(2.27) would become closed with an eigenspectrum in

momentum-energy spadéesides a constant which can be —iatyEU:EkyEU, (2.35

absorbed into the chemical potential ‘ _ _
where vy, , represents the creation operator of an eigenstate

k= — 2tegr(COSky+ COSKy ), (2.29  of quasiparticle excitations with the energy spectrum

with Ek:\/(ek_ll/)2+|Ak|2' (236)
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(see Fig. 4 In this sense, the quasiparticle partially restores
its coherence in the superconducting state. Such a coherent
/ part will disappear as a result of vanishing superfluid density.
ES According to Eq.(2.31) one may rewrite the single-particle
propagator as

«— Eg Ge=h2G,+G., (2.40

0 whereG, denotes the propagator afparticles with omitting
the crossing term betweenandc’ which is assumed negli-
FIG. 4. Low-lying excitations in the superconducting phase: Thegible. Then hSGa emerges as the ‘“coherent” part of the
“V" shape quasiparticle spectrum and the discrete spinon energy aGreen’s function in superconducting state against the “nor-
Es. mal” part G :
ug v
+
w— Ek w+ Ek

HereA, is defined by

. (2.41

hgea(k,w)~hg<

ASC
"*q) , (2.37)

3
Ak:ZJé Fq( h2

5 Correspondingly, the total spectral function as the imaginary

_ o ) part of G in our theory can be written as
with I';=cosq,+cosq, . Like in BCS theory,ui=[1+ (e
— w)/E]/2 andvi=[1— (&~ p)/E]/2. Aok, ) = h2A,(k, ) + ALK, o). (2.42
The large “Fermi surface” is defined by,=x and A,
then represents the energy gap opened at the Fermi surfa&o athy,—0, even though\, does not scale witth,, the
Note thatA, changes sign as superconducting coherent pah2A, vanishes altogether,
B with A, reduced to the normal paft, at T>T..

A=~ Ak (2.39 Finally, in the present cas,(k,») as a normal part has
with Q= (=, = ), by notingl'y o=—T"4in Eq.(2.37. It nothing to do with the procedure that leads to the spectrum
means thatA, has opposite signs &=(=,0) and (0, (2.36 with a d-wave gap, which is different from the slave-

*+ ), indicating ad-wave symmetry near the Fermi surface. boson approach where the fermionic spinons are all paired
In fact, since the pairing order parametexfc is  up such that even the part of the spectral function corre-
d-wave-like?® A, should be alwaysi-wave-like with node sponding toA; should also look like in ad-wave pairing
lines k,= =k, according to Eq(2.37). state. Due to the sum rulg(dw/27)A%(k,w)=1, the “nor-
Comparing to the conventional BCS theory with themal” part A/(k) is expected to be sort of suppressed by the
d-wave order parameter, there are several distinct features imergence of the “coherentiA, part, but since the latter
the present case. First of all, besidesdheave quasiparticle s in order of 5, A, should be still dominant away from the
spectrum illustrated in Fig. 4 by the “V" shape lines along Fermj surface at small doping. It implies that even in super-
the Fermi surface, there exists a discrete spinon excitatioponducting state, a normal-state dispersion represented by
level at Eq~6J (hor!zontal line in Fig. 4 wh|ph leads t0  the peak ofA! may still be present as a “hump” in the total
Eg=2Es~41 meV (if J~100 meV) magnetic peak a  gpectral functionA,. Recent ARPES experiments have in-
~0.14 as reviewed in Sec. Il A. This latter spin collective geeq indicate¥f the existence of a “hump” in the spectral
mode isindependendf the quasiparticle excitations at the fynction which clearly exhibits normal-state dispersion in the

mean-field level. _ Fermi-surface portions near the areas df+,0) and (O,
Second, even though the superconductimder param- + ) where thed-wave gap is maximum.

eterAECand theenergy gap\ in the quasiparticle spectrum
have the same symmetry, both arevave-like, and they can- 2. Normal state
not be simply identified as the same quantity as in BCS

theory. For example, WhilafC apparently scales with the
doping concentratiod (hge8) and vanishes af—0, the
gapA, defined in Eq{(2.37) is not, and can bextrapolated
to a finite value in the zero-doping limit whefg.=0. It

In the normal state, without any coherent contribution, the
scattering terms in Eq2.27) only give rise to the virtual
process for a quasiparticle to decay into the holon-spinon
pairs. Based on Eq2.27), the propagator can be determined
according to the following standard equation of motion for

means the single-particle Green'’s functidBg(i,j;t):

. (239 3Geli,j;t) = 0(([Hi_y,Cin(t)]c],(0))
at §—0, whereas the BCS theory predicts a constant28 = 0(—1)(c],(O)[H_3,Cio (D) =i 8(1) & .
(d-wave cas®). The result(2.39 is consistent with the (2.43

ARPES measurements.

Third, the quasiparticle gains a ‘“coherent” pahnpa If we simply neglect the scattering terms in zero-order ap-
which should behave similarly to the conventional quasiparproximation, a closed form foiG. can be obtained in
ticle in BCS theory as it does not further decayEgt<E; ~ momentum-energy space:
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Gy(i,j;t) = —i(T{hi(t) (€ P 2e 12701 (0))

Ge(k, )~ > (2.44

—(&—p) (2.46
N o and
Here the quasiparticle spectrup [defined in Eq(2.29]
is essentially the same as the origitnd-structurespec- Gp(i,j;t)= —i(—U)i_j<Ttbia(t)
trum except for a factor of 2/( §)~2 enhancement in ef- o o
fective mass. It is noted that in the) model if the hopping X (e i 2glo®i 2 pT (0)), (2.47)

term described by the tight-binding model is replaced by a ) _

more realistic band-structure model, like introducing thewithout the multivalue problem becaudq' in Eq. (2.3 van-
next-nearest-neighbor hopping terms, the above conclusioghes ande'®i’?> becomes well defined as discussed in Sec.
about the factor-of-2 enhancement of the effective mass still C. At §—0, H in Eq. (2.7) reduces to the SBMFT Hamil-
holds, in good agreement with ARPES experiméfitdere  tonian with A"=0 and Gy, becomes the conventional
the reason for the mass enhancement is quite simple: At eagichwinger-boson propagator. Such a deconfinement can be
step of hopping, the probability is roughly one-half for a holealso seen from the equation of motih27 by noting that

not to change the surrounding singlet spin COﬂfIguratloneiG)i(,_)eid)iblz can be absorbed in’r, while AﬂzO, so that

which in turn reduces the “bandwidth” of the quasiparticle scattering term becomes a pure decaying process for the
by a factor of 2: . S guasiparticle without any confining force. Due to such a true

The express_|or(2.44) shovxs a _qua5|part,|,cle peak at decaying, Eq(2.27) actually describes in real time the first
e and defines a large Fer'ml surfaqe as an equal'step towards dissolution for the quasiparticle. In particular,
energy contour ag = p. I;;ere,u IS (fdetermmed su,(,:h that the large Fermi-surface structure originating from thege
—122,Ge(k,t=—0)=N,.™ So the "Fermi-surface” struc- ,,,5ing term in Eq(2.27) will no longer appear in the de-
ture should look similar to that of a noninteracting band'composition form of the electron propagat@.45, where

structure fermion system as long as the virtual decaying prog,q residual Fermi surfad@oints will solely come from the
cess in EQ.(2.27 does not fundamentally alter ifAs o e P
oscillating part of the phase shift field®i’e in G; .

mentioned before, we do not expect such “decaying” terms ;
to significantly modify thek dependence ot, since, for The single-electron propagator for the one-hole case has
example, the spinon no longer has a well-defined spectrum iReeN discussed in detail in Ref. 22. Here the_ Ia:ge Fermi
momentum spacésee Sec. Il Aand, in particular, the vortex Surface is gone except for foéermi pointsat ko= (* /2,

5 +7/2) with the remaining in part looking like they are all

i0 : “ 1
pk)hc?seed in Eq. (2.'27).fw'" fl;rther srznear out” the “gapped.” In fact, in the convolution form of Eq2.45 the
-dependent correctlon{ I any, from qu 7.)'] . “quasiparticle” peak(edge is essentially determined by the
So far we have not discussed the finite lifetime effect of a_ . s = . P
quasiparticle due to the “decaying” terms in E¢R.27). spinon spectrum Bj=2.32y1-sj . with — ,=(sink,
Even though the true breakup of a quasiparticle is preventeaL_S'nkV)/2 in SBMFT through t_he spinon Zpropa_gat_Grb_,
by the phase shift field as discussed before, the virtual d since the holon propagat@; is mcpherenf-. The Intrinsic
caying process should remain a very strong effect since th road feature Qf the spectral function found_ n Rgf. 221s due
phase shift field only costs a logarithmically divergent en-0 the convolutlion law of Eq2.45 and sa ghrect |n§jlca_t|on
ergy at a large length scale. The corresponding confinemeﬁ’[f th_e compasite nature of the guasiparticle, which IS also
force is rather weak and the virtual decaying process shoul on5|st_ent W_'th the_ ARPES restftsas well as the earlier
become predominant locally to cause an intrinsic broad feal eoretical discussion In R?f' 36. .
ture in the spectral function at high energy. Such a broad NOt€ that the Fermi pointk, coming from Gy at low
structure reflecting the decomposition in the one-hole casenergy is due to the phase shift fie®i’? appearing in it. In
has been previously discussed in Ref. 22. At finite dopingRef. 22, this is shown in the slave-fermion formulation
how the “decaying” effect shapes the broadening of thewhich is related to the present formulation through a unitary

guasiparticle peak will be a subject to be investigated elsetransformatiof® with hi’feiq’ib/Z being replaced by a new ho-
where. lon operatorf!. And thef holon will then pick up a phase

string factor (~ 1)Né (Né denotes the total number ¢fspins
exchanged with the holon during its propagation along the

_ _ o _pathc connecting sites andj) at low energy which can be
The existence of a large Fermi surface, coinciding withyritten as

the noninteractingband-structure one, can be attributed to

the integrity of the quasiparticle due to the confinement of (_1)Nizetini=eik0~(ri*rj)eri5Ni, (2.48

spinon and holon. But as pointed out in Sec. IIC, such a

confinement will disappear in the zero-doping limit. The wheresN.=N.—(N.), and(nlbl)zllz is used. On the other

Fermi surface structure will then be drastically changed. hand, in the equal-time-07) limit, the singular oscillating
In this limit, the single-electron propagator may be ex-part of €K+(©) in Eq. (2.24 will also contribute to a large

3. Destruction of Fermi surface: Deconfinement of spinon and
holon

pressed in the followinglecompositiorform “remnant Fermi surface” in the momentum distribution
function n(k) which can be regarded as a precursor of the
Ge~iGt- Gy, (2.45 large Fermi surface in the confining phase at finite doping,

and is also consistent with the ARPES experiment as dis-
where cussed in Ref. 22.
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The above one-hole picture may have an important implifound to be effectively confined which maintains the integ-
cation for the so-called pseudo-gap phenoméhaonthe un- ity of a quasiparticle except for the case in the zero-doping
derdoped region of the high; cuprates. Even though the limit. In particular, the quasiparticle weight is zero since
confinement will set in once the density of holes becomeshere is no overlap between a doped hole state and the true
finite, the “confining force” should remaimweakat small  ground state due to the symmetry difference introduced by
doping, and one expects the virtual “decaying” process inthe vortex phase shift. Such a quasiparticle is no longer a
Eq. (2.27 to contribute significantly at weak doping t0 conventional Landau quasiparticle and is generally incoher-
bridge the continuum evolution between the Fermi-pointent due to the virtual decaying process. Only in the super-
structure in the zero-doping limit to a full large Fermi sur- conducting state can the coherence be partially regained by
face at larger doping. Recall that in the one-hole case decaype quasiparticle excitation.
ing into spinon-holon composite happens arogdt zero The physical origin of the “unrenormalizable phase
energy transfer, while it costsigherenergy near#,0) and  shjft” is based on the fact that a hole moving on an antifer-
(0,m), which should not be changed much at weak dopingromagnetic spin background will always pick up the phase
In the confinement regime, the qUﬂSipartiCle peak in the EIGCstring Composed of a product af and — Signs which de-
tron spectral function defines a quasiparticle spectrum and Bend on the spins exchanged with the hole during its
large Fermi surface as discussed before. Then due to ”}ﬂopagatioriL.B Such a phase string is nonrepairable at low
virtual “decaying” process in the equation of motié®.27  energy and is the only source to generate phase frustrations
[as shown in Fig. )], the spectral function will become jn thet-J model. The phase shift field in E¢L.3) precisely
much broadened with its weight shifted toward higher eN+eeps track of such a phase string efféend therefore ac-
ergy like a gap opening near those portions of the Fermgyrately describes the phase problem inttdemodel even at
surface far away fronkg, particularly around four corners the mean-field level discussed in Sec. Il A.

(£m,0) and (O ). With the increase of doping concen-  propably the best way to summarize the present work is to
tration and reduction of the decaying effect, the suppressegompare the present self-consistent spin-charge separation

quasiparticle peak can be gradually recovered starting frorheory with some fundamental concepts and ideas proposed
the inner parts of the Fermi surface towards four cornersoyer years in the literature related to the doped Mott-

(x,0) and (0 7). Eventually, a coherent Landau quasi- Hybbard insulator.

particle may be even restored in the so-called overdoped re- RyB pairing. The present theory can be regardecbas
gime, when the bosonic RVB ordering collapses such thapf the RVB theories;*”*where the spin RVB pairing is the
the spin-charge separation disappears. driving force behind everything from spin-charge separation
Furthermore, at small dopinginderdoping something to superconductivity. The key justification fahis RVB

more dramatic can happen in the model described by Eqsheory is that it naturally recovers thmsonicRVB descrip-
(2.6) and(2.7). In Ref. 20, a microscopic type phase sepa- tjon at half-filling, which represents'? the most accurate
ration has been found in this regime which is characterizetjescription of the antiferromagnet for both short-range and
by the Bose condensation of bosonic spinon field. Sincgong-range AF correlations. In the metallic state at finite dop-
spinons are presumably condensechaie-diluteregions?®  ing, the RVB orderA® defined in Eq(2.10) reflects a partial
the propagator will then exhibit features looking like in an “fermionization” from the original pure bosonic RVB pair-
evenweakerdoping concentration or more “gap” like than jhg que to the gauge fieldf] determined by doped holes.
in a uniform case, below a characteristic temperaflife gy it is still physically different from &ull fermionic RVB
which determines this microscopic phase separation. Ther%‘escriptiorﬂﬁﬂln contrast to the fermionic RVB order pa-
fore, the “spin-gap” phenomenon related to the ARPES 3meterAS here serves as a “super” order parameter char-

experiment§'in the underdoped cuprates may be understoodcterizes ainified phase covering the antiferromagnetic in-
as a “partial” deconfinement of holon and spinon Whosesulating and metallic phases, and normal and

effect is “amplified” through a microscopic phase separa-gperconducting states altogethr.
tion in this weakly_ doped regime. As dlscussed_ in Ref. 20, Spin-charge separationn our theory, elementary excita-
T* also characterizes other “spin-gap” properties in mag-tions are described by charge-neutral spinon and spinless ho-
netic and transport channels in this underdoping regime. | fields, and the ground state may be viewed as a spinon-
holon sea. Different from slave-particle decompositions,
Ill. CONCLUSION AND DISCUSSION: A UNIFIED VIEW spinons_and holons here are %atbsonicin nature and the
conventional gauge symmetry is broken by the RVB order-
In this paper, we have studied the quasiparticle propertiegg. But these spinons and holons in 2D still couple to each
of doped holes based on an effective spin-charge separatiather through the mutual Chern-Simons-like gauge interac-
theory of thet-J model. The most unique result is that a tions which are crucial td@ ., anomalous transport and mag-
guasiparticle remains stable as an independent excitation daetic properties. The Bose condensation of holons corre-
spite the existence of holon and spinon elementary excitasponds to the superconducting state, while the Bose
tions. The underlying physics is that in order for a dopedcondensation of spinons in tlesulating phasegives rise to
hole to evolve into elementary excitations described by an AF long-range order. The spinon Bose condensation can
holon and spinon, the whole system has to adjust itself glopersist into the metallic regime, leading to a pseudogap
bally which would take infinite time under a local perturba- phase with microscopic phase separation which can coexist
tion. Such an adjustment is characterized by a vortexlikavith superconductivity?°
phase shift as shown in E@L.3). As a consequence of the BosonizationThe electronc operator expressed in terms
phase shift effect, the holon and spinon constituents aref bosonic spinons and holons in E4.3) naturally realizes
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a special form of bosonization. A 2D bosonization descrip-tial point is that the holons and spinons are not confined in
tion has been regarded by méar{*8-4%as the long-sought the ground state but are only bound in quasiparticles as a
technique to replace the perturbative many-body theory ikind of incoherent(many-body excitations which have no
dealing with a non-Fermi liquid. The 2D bosonization overlap with elementary holon and spinon excitations as
scheme has been usually studied, as an analog to the succegsaranteed by symmetry. These incoherent quasiparticle ex-
ful 1D version? in momentum space where Fermi surfacecitations should not have any significant contribution to the
patches have to be assumed first3¥-%°In the present thermodynamic propertie@t least abovd ). At short dis-
scheme, which is also applicable to 1D, the Fermi surfacéance and high energy, the composite nature of a quasiparti-
satisfying the Luttinger volume and the so-called Fermi-cle will become dominant which may well explain the broad
surface fluctuations are presumably gkneratedby the intrinsic structure in the spectral function observed in the
phase shift field in Eq(1.3), which guarantees the fermionic ARPES experiments. The composite structure of the quasi-
nature of the electron. Note that the vortex structure involvedarticle can even show up at low energy when one navigates
in the phase shift field in the 2D case is the main distinctiorthrough different circumstances like the superconducting
from the ® function in conventional bosonization condensation, underdoping regime, etc., with some unique
proposalg® features different from the behavior expected from Landau
Non-Fermi liquid. As a consequence of the phase shiftquasiparticles.
field, representing the Fermi surface “fluctuations,” the Fractional statisticsLaughlir* made a compelling argu-
ground state is a non-Fermi liquid with vanishing spectralment right after the proposal of spin-charge separation that
weightZ, consistent with the argument made by Andeféon the holon and spinon should carry fractional statistics, by
based on a “scattering” phase shift description. In 1D bothmaking an analogy of the spin liquid state with a fractional
methods are equivalent as the phase shift value in the lattguantum Hall state. Even though the absence of the time-
can be determined quantitatively based on the exact Bethéeversal symmetry-breaking evidence in experiments does
ansatz solution. But in 2D, the phase shift fi tring not support the original version of fractional statistics

which is obtained by keeping track of the nonrepairable(@anyon theories!*“® the essential characterization of frac-

phase string effect induced by the traveling holon, provides &0nal statistics for the singlet spin liquid state is, surpris-
unique many-body version with vorticities, and our modelingly, present in our theory in the form of the phase string
shows how aconcrete2D non-Fermi liquid system can be effect as discussed in Ref. 15. But no explicit time-reversal
realized. symmetry is broken in this descriptiéh.

Quasiparticle: Spinon-holon confinemeht.conventional A fractional statistics may sound strange as we have been
spin-charge separation theories based on slave-partictélking about “bosonization” throughout the paper. But as
schemes, a quasiparticle does not exist at all: It alwaygointed out in Ref. 15, if the phase shift fie®f," "% is to be
breaks up and decays into spinon-holon elementary excita:absorbed” by the bosonic spinon and holon fields, then the
tions. This deconfinement has been widely perceived as @xpression(1.3) can be regarded as a slave-semion decom-
logical consequence of the spin-charge separation in the liposition with the new “spinon” and “holon” fields being
erature. But in the present paper, we have shown that th&osonic” among themselves but satisfyingnautual frac-
phase shift field actuallgonfinesthe spinon-holon constitu- tional statistics between the spin and charge degrees of free-
ents(at least at finite dopingwhich means that the integrity dom. The origin of mutual statistics can be traced back to the
of a quasiparticle is still preserved even in a spin-chargéonrepairable phase string effect induced by a hole in the
separation state. It may be considered as a U(1) version @mtiferromagnetic spin background. At finite doping, the or-
quark confinement, but with a twist: the stable quasiparticleler parameteA® in Eq. (2.10 actually describes the RVB
as a collective mode is generally nocaherentelementary  pairing of spinons witlmutual statisticsvhich reduces to the
excitation since during its propagation the phase shift fieldosonic RVB only in the half-filling limit. Furthermore, in
also induces a nonlocal phase string on its path. In othethe bosonic representation of E¢®.6) and(2.7) the lattice
words, the quasiparticle here is not a Landau quasiparticl€hern-Simons fields\ifj andAﬂ precisely keep track of mu-
anymore. The confinement and nonrepairable phase strirtgal statistics® which are crucial to various peculiar proper-
effect both reflect the fermionic nature of the quasiparticleities exhibited in the model.
namely, thefermionicquasiparticle cannot simply decay into ~ Gauge theoryBased on the slave-boson decomposition, it
a bosonic spinon and holon, and the phase string effecthas been showf? that the gauge coupling is the most im-
comes from sequential signs due to #wechangebetween portant low-energy interaction associated with spin-charge
the propagating quasiparticle and the spinon-holordeconfinement there. The anomalous linear-temperature
background—the latter after all is composed of fermionicresistivity’’ has become the hallmark for anomalous trans-
electrons in the original representation. port phenomenon based on the scattering between charge

The issue of the possible confinement of spinon and holowcarriers and gauge fluctuations. In the present theory, the
was already raised by Laughffhalong a different line of holons are also subject to strong random flux fluctuations, in
reasoning. He has also discussed numerical and experimentatms of the effective holon Hamiltonig2.7), in a uniform
evidence that the spinons and holons may be seen, mor®rmal state where it leatfsto the linearT resistivity in
sensibly, in high-energy spectroscopy like the way quarksonsistency with the Monte Carlo numerical calculattdn.
are seen in particle physics. In recent(8Ugauge theory®  Other anomalous transport properties related to the cuprates
an attraction between spinons and holons to form a bounthay be also systematically explained in such a simple gauge
state due to gauge fluctuations is also assumed in order tnodel based on some effective analytic treatnt&ft.in
explain the ARPES data. But in the present work the essereontrast to the slave-boson gauge theory, however, the
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spinon part does not participate in the transport phenomenaoeies in the singlet channel can recover therencydue to
due to the RVB condensatiom\f+0) persisting over the the cancellation of the frustration caused by the phase string
normal state, and besides the Chern-Simons gauge fiel@fect. Thus, if one is to construct a phenomenological theory
Al", the conventional gauge interaction between spinon§ased on theslectronrepresentation, the superconductivity
and holons is suppressed because of it. can be naaurally viewed as due to an-plane kinetic
Furthermore, ther-flux phasé® and commensurate flux mechanisnt! _

phasé® in the mean-field slave-boson theory, and the recent Phase string and £gauge theoryAs pointed out at the
SU(2) gauge theord? at small doping have a very close con- eginning of this section, our whole theory is built on the
nection with the present approachférmionicspinon in the ~PNase string effect identified in titeJ model. Namely, the

. main phase frustration induced by doping is characterized by
presence ofr flux per plaquette is actually a precursor to

: o : a sequence of signd.oj; on a closed patit where o; =
become abosonicone at half-filling under the lattice and +1 denotes the index of spins exchanged with a hole at a

no-double-occupancy constraint. In Ref. 14, how such a stg: | - L . . o
tistics transmutation occurs has been discussed, and in fg [i.]k (i]) during its hopping. Thus, instead of working in the

the bosonization decompositi¢h.3) was first obtained there vo_rtex representation of I_Ecﬁ_l.3) where the smg_ular p_hase
based on the fermionic flux phase. In spite of the physica?mng effect has been .bu'lt into the wave fu_nctlons_ with the
proximity, however, the detailed mathematical structure oPO“S'”QfP'ﬁ(;éEa” descrlbetlj by d’ghe tcl: hern-St|mothrI|2IL<eZIatt|ce
the gauge descriptiGh®! for the fermionic flux phase and 92U9€ TI€lds, one may aiso directly construc 2

the present bosonic spinon description are obviously r::xthe-iam.ge theroy’ to deal with the singular phase striig o .
different. discreteZ, gauge theory here seems the most natural de-

Superconducting mechanismAndersort originally con- scription of the phase string effect as the sole phase frustra-

jectured that the superconducting condensation may occden in the t-J ;‘nc;(;i%l n 90%%? to the conventional con-
once the RVB spin pairs in the insulating phase start to mov&nuum gauge field descriptia.

like Cooper pairs in the doped case. The superconductin I_:inally, we e_mphasize the close C(_)n_nection between_the
condensation in the present theory indeed follows suit. Bugntlferromagnetlsm and superconductivity as both occur in a

o s :
there is an important subtlety here. Since the RVB parin nified RVB bac_kgrour_1d controlled by®. The relation be- .
order parameteA® covers the normal state as well, there ween the AF insulating phase and the superconducting

must be an another factor controlling the superconductin%hase here is much more intrinsic than in conventional ap-

transition: thephase coherencéndeed, the vortex phask® roaches to thé-J model. Especially, the coexistence of

appearing in the superconducting order paraméetl) is holpn %nd spinon Bose condensatiqn§ in the underdoped
the key to ensure thphase coherencat a relatively low regimé® makes a group theory description of such a phase,

temperature compatible to a characterispienergy?92t|n N the fashion of SC) _theory?ﬁ become possible but with
other words, the phase coherence discussed by Emery afifl important modlflcauon: Inhomageneity must plqy a cru-
Kivelsor?? is realized by thephase shift fieldn the present cial role here in the Bose-condensed holon and spinon fields

theory which effectively resolves the issue wily is too in order to describe this underdoped regime. A detailed in-
high in previous RVB theories vestigation along this line will be pursued elsewhere.
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