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Based on the exact cluster diagonalization and recent Quantum Monte Carlo simulations we analyze dy-
namic properties of small polarons and bipolarons formed by short-ri&astein and long-rangéFrohlich)
electron-phonon interactions. We show that the exact results agree well with canonical Holstein theory for a
cluster and with Lang-Firsov theory for a lattice. Lang-Firsov theory of a single polaron and)opeftlr-
bation expansion for a multipolaron system are practically exact in a wide range of the adiabatic pasdmeter
and the electron-phonon couplingor a long-range interactioriBi)polarons exist in the itinerant Bloch states
at temperatures below the characteristic phonon frequency no matter which values the parameters of the system
take. We show that recent claims by several authors with regards to a breakdown of Holstein-Lang-Firsov
theory of a small polaron and the “impossibility” of bipolaronic superconductivity are the result of an
erroneous interpretation of the electronic energy levels of the two-site Holstein model and a misunderstanding
of the electron-phonon interaction in ionic solids with polaronic carriers. A “phase” diagrarwin A space
is proposed to elucidate the BCS aff)polaronic domains. Bipolaron theory provides a parameter-free
expression for the superconducting critical temperature of layered cuprates. Crystallizatiobdfthlaronic
liquid is shown to be impossible in the range of the parameters typical for cuprates. The sthkdhFpolaron
has spectral features compatible with single-particle tunneling and photoemission in cuprates.

[. INTRODUCTION cussed in more detail to show that small polararsd bipo-
larong exist in the itinerani{Bloch) states at zero tempera-
The basic features of small polarons were well recognizedure no matter which values the parameters of the
a long time ago by Tjablikav Yamashita and Kurosava, translationally invariant electron-phonon system take. We
Sewell? Holstein? Lang and Firso?, Kudinov and Firso, ~ analyze the opposite claim?***elucidating the origin of
and others, and described in several review papers ariie controversy. Screening in a multipolaron system is dis-
textbooks! ™13 The main feature is the exponential reductioncussed to show that the long-range Iich interaction can-
of the bandwidth at intermediate and large values of theot be reduced to a short-range one, érigholarons exist in
electron-phonon coupling, resulting in a coherent small @ liquid state. The Fifdich interaction leads to relatively
polaron tunneling at low temperatures and a thermally actilight polarons with the atomic size of the wave function and
vated hopping at high temperatures. The polaronic banda large size of the phonon cloud. We suggest the-\
width decreases with increasing temperature. A crossoveiphase” diagram with polaronic and bipolaronic domains
from the polaronic Bloch states to incoherent hopping take@nd show that the effective mass (bi)polaronic carriers in
place at temperaturés=w/2 or even higher, where is the  cuprates fits well the values of their superconducting critical
characteristic phonon frequendy=c=kg=1. The numeri- temperature and the London penetration depth. The polaron
cal solution for several vibrating molecules coupled with onespectral features are shown to be compatible with the single-
or two electron¥ revealed an agreement of the numericalparticle tunneling and photoemission in cuprates.
bandwidth with the analytical Holstein results at laigboth
in the nonadiabaticp=t, and adiabaticw=<t, regimes(t is
the hopping integral For a multipolaron system aXLper-
turbation theory has been develop€dS, which allowed us The classical approach to the small-polaron problem is
to extend the BCS theory to the strong-coupling regime based on the canonical displacemérdang-Firsoy transfor-
>1 and predict the transition to a Bose liquid af 2harged mation of the electron-phonon Hamiltoniargllowing for
bipolarons in the crossover region of intermediate values ofhe summation of all diagrams including the vertex correc-
the BCS coupling constant.’® The renormalized phonon tions,
frequencies were obtaingdin agreement with the numeri-
cal results"* The theory has been applied to cupr&tés®
and more recently to manganit&sproviding a description H:E t(m—n) &, s’ciTCj+Z wqfi[ui(q)dg+H.c]
of many unusual properties of these materials ranging from i ' q.i
high-T. superconductivity in cuprates to colossal magnetore-
sistance(CMR) and ferromagnetism in doped manganites. +2 wq(dadq+ 1/2), (1)
At the same time a few objectiofis**have been raised with q
respect to the Holstein-Lang-Firsov theory of small polarons
and the bipolaron theory of superconductivity. with the bare hopping integra{m) and the matrix element
In this paper the polaron dynamics and damping are disef the electron-phonon interaction:

IIl. POLARON BAND
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1 ) 1
ui(q):\/ﬁ’y(q)elqm_ (2) E:_EpzI n|+§% Uijninj‘f'% wq(nq+1/2).

(10)
Herei=(m,s), j=(n,s’), ﬁi=c?ci, andc; ,d, are the elec-
tron (hole) and phonon operators, respectively, afis the
number of sites.

As long as\ > 1, the kinetic energy remains smaller than

with nj=0,1 andny=0,1,2,3. .. 0.
Hence, the Hamiltonian, Ed7), in zero order with re-
spect to the hopping describes localized polarons and inde-

the interaction energy and a self-consistent treatment of th endent phonons which are vibrations of ions relative to new

many-electron system strongly coupled with phonons is pOS_quilibrium positions depending on the polaron occupation
sible with the “1A” expansion techniqué@ This possibility numbers. The phonon frequencies remain unchanged in this

stems from the fact, known for a long time, that there is a limit. The middle of the electronic band falls by the po-
. P - ' MNaronic level shiftE, as a result of a potential well created by

exact solution for a single electron in the strong-coupllng,[he lattice deformaption'

limit A—o. Following Lang and Firsov,one can apply the '

canonical transformatioe® to diagonalize the Hamiltonian. 1

The diagonalization is exact f{fm)=0 (or A=): Ep=m§ |’y(q)|2wq. (11

H=e%He ™, (3) First, we limit our discussion to a single-polaron problem
where with no polaron-polaron interaction. The effects of the inter-
action (including also the direct Coulomb repulsjosuch as
the bipolaron formation and screening are discussed in the

S=; Aifui(q)dg—H.c]. (4)  final sections of this paper.
’ With the finite hopping term polarons tunnel in a narrow
The electron operator transforms as band owing to the degeneracy of the zero-order Hamiltonian
with respect to the site position of a single polaron in a
= _ B _ B regular lattice. To see it one can apply perturbation theory
Ci=Ci exp( zq: Ui(Q)dq—H.c. ®) using 1k as a small parameter with=E/zt (z is the co-
ordination lattice number anicthe nearest-neighbor hopping
and the phonon one as integra). The proper(Bloch) set of N degenerate zero-order
eigenstates of the lowest-energy levelE,) of the unper-
aq:dq+2i AU (q). (6) turbed Hamiltonian is
1
It follows from Eg. (6) that the Lang-Firsov canonical trans- |k,0)= —> ¢l exp(ik-m)|0), (12)
formation shifts ions to new equilibrium positions. In a more N

general sense it changes the boson vacuum. As a result, where|0) is the vacuum. By applying textbook perturbation

theory, one readily calculates the lowest-energy levels of the
A=Y, a’ijCiTCj_ Epz A+, wq(dadq—'— 1/2) polaron in a crystal. Up to second order in the hopping inte-
i [ q gral, the result is

+

N[ =

gj vijhifl; () (k,01 2 &iclcilk’,ng)|?
E(k)=—Ep+e— > :
where kg > q@qMNq

(13

with [k’,ng) the exited states of the unperturbed Hamiltonian
(8)  with one electron and at least one real phonon. The second

erm in Eqgs.(13), which is linear with respect to the bare

fazgglggrgﬁgzw hopping integral depending on the phonohoppingt, determines the small polaron band dispersion as

oij=t(m—n) s exp( Eq‘, [ui(q)—uj(q)]dq—H.c.)

1 - —g?(m) _ik.
vi= =N 2 Y@Fogcofa-(m-n] @ a2 tmye M expt—ikem), a9

is the the attractive interaction of polarons owing to the Ioc:aIWIth the band-narrowing factaat zero temperatuye

lattice deformation. 1
In a strong-coupling limih— <0, one can neglect the hop- g?(m)= WE |v(a@)|?[1—cogq-m)]. (15)

ping term of the transformed Hamiltonian. The rest has ana- 4

Iyticall;idetermined eigenstates and eigenvalues. The eigerrhe third term in Eq(13), quadratic int, yields a negative

states|N)=|n; .ng) are classified with the polaram, s and  k-independentcorrection to the polaron level shift of the

phononn, occupation numbers, and the energy levels are order of 1k2. The origin of this correction, which is much
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n perature owing to the simultaneous emission and absorption

I — B of phonons, Fig. 2. These incoherent events tend to destroy
the coherent polaron tunneling within the band. The corre-

sponding scattering rate is given by the Fermi golden rule as

<k+ g—q’,ng—1ng

1
'Ep ;:27T<2

m a,9’
FIG. 1. “Back-forth” virtual transitions of the polaron without .t 2
any transfer of the lattice deformation from the siteto the neigh- +1 IE] 01,iCi Cj| Ki\Ng.Ngr || S(€x— €xrg-q') ) -
boring siten. These transitions shift the middle of the polaron band, '
but they do not produce any real charge delocalization. (19

larger than the first order incontribution(containing a small Expandingd;; operators in the powers of the phonon cre-
exponen), is understood from Fig. 1. The polaron localized ation and annihilation operators, one estimates the matrix
in the potential well of the deptk, on the sitem hops onto  element of the two-phonon scattering as

a neighboring siten with no deformation around and comes

back. As any second order correction, this transition shifts

the energy down by an amoum—tZ/Ep. It has little to do ‘ (k+g—q’,ng— 1,nq,+1|‘z &iyl-cfrcjlk,nq Ngr)
with the polaron effective mass and the polaron tunneling bl

mobility because the lattice deformation arounddoes not 1

follow the electron. The electron hops “back and forth” ~NW)/§\/n—q~/nq/+l. (19

many times(about egz) “waiting” for a sufficient lattice
deformation to appear around the siteOnly after it “cre-
ates” the deformation around the electron tunnels onto the
next site together with the deformation.

Substituting this estimate into E(L8) and using the defini-
tion of the density of states in the polaron band,

1 1
ll. DAMPING OF THE POLARON BAND No(£)= N; 8é— &)= 5=, (20)

The polaron band is exponentially narrow, E@G.4).
Hence one can raise a question concerning its existence ghe obtains
real solids. At zero temperature the perturbation term of the
transformed Hamiltonian conserves momentum because all

off-diagonal matrix elements vanish, }zwygnw(1+ n,), (21)
.
with the momentum-independen{q) = y, and the phonon

<k,0 2 a’i’jCiTCj
B distribution function n,=[exp@/T)—1]"1. The polaron
if k#k’. The absorption or emission of a single high- pand is well defined if
frequency phonon is forbidden by energy conservation be-
cause the polaron half-bandwidih< w. Hence there is no 1
damping of the polaron band &t=0 no matter how strong —<w, (22
the interactioln and how small the adiabatic ratio/t are. T
However, the polaron bandwidth depends on temperature. . = - )
For high temperature§> w/2 the band shrinks exponen- Which is satisfied for a wide temperature range
tially with increasing temperature?3

k’,0> =0, (16)

w

2E,T T<—3 (23
w:ztexp< - w’; ) (17 In o

On the other hand, the scattering of polarons within theifelow about half of the characteristic phonon frequency for

narrow band becomes more important with increasing temthe relevant values of5. The incoherent thermally activated
hopping dominates in the polaron motion at higher tempera-

tures where the polaronic states cannot be classified by their
momenta.

IV. TWO-SITE HOLSTEIN MODEL: EXACT VERSUS

/ ANALYTICAL SOLUTION
k k+g-q’

The major polaronic features described above have been

FIG. 2. Two-phonon incoherent scattering responsible for aknown for a long time starting from the pioneering works by
damping of polaron Bloch states at finite temperatures. Tjablikov,! Holstein? and Lang and Firso(F).> During the
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FIG. 3. Exact(cluster diagonalization“bandwidths” of the
two-site Holstein model compared with the analytical nonadiabatic
Eq. (14), and adiabatic, Eq24), bandwidths.

attention as relevant to highs and other oxidesfor recent

publications, see Refs. 13 and 26—38 and references there
The efforts were mainly directed towards extension of th
theory to the intermediate region of the couplihgy 1, and

the adiabatic ratia/t~ 1, and a study of the polaron-polaron
correlations. It has been sho®r®that the expansion param-
eter is actually 1/2\2, so the analytical perturbation theory

has a wider region of applicability than one can expect usinqion functions wi

simple physical arguments. However, it is not clear how fas
the expansion converges. While the ground-state ener

size and adiabatic ratio.

The most reliable results for the intermediate region hav
been obtained with the exact numerical diagonalization o
vibrating cluster®4412° and quantum Monte Carlo
simulations*?*"43Numerical diagonalization of the two-site
one-electron Holstein model in the adiabati¢t<<1 and in
the nonadiabaticw/t>1 regimes shows that perturbation
theory is almost exact in the nonadiabatic regifoe all
valuesof the coupling constant, Fig(&. There is no agree-

ment in the adiabatic region, where the first-order perturbakinetic polaron energy

tion expressioroverestimateshe polaron mass by a few or-

A. S. ALEXANDROV

: o Rnd Kudino?® d
(about—E,) is not very sensitive to the parameters, the ef-

fective mass and bandwidth strongly depend on the polaroB
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familiar double-well potentidlin the adiabatic limit. The
tunneling probability is extremely sensitive to the shape of
this potential. The splitting of levels for the two-site cluster
is well described by the Holstein quasiclassical formula gen-
eralized for the intermediate coupling in Ref. 14:

(16Epw)
AE=|—"—
a

where §?=g?(8—{In[2\(1+B)]//4\?). This generalization
takes into account the phonon frequency renormalizgfion
=o/w=(1—1/4?)2 (Ref. 17 and the anharmonic correc-
tions of the order of %2 to the turning points. While the
small Holstein polaron is only a few times heavier than the
bare (unrenormalizegelectron in a wide range of coupling
for a moderate adiabatic ratio/t~1, Fig. 3a), it becomes
quite heavy in the adiabatic regime and for the strong cou-
pling, Fig. 3b). Thus the numerical results confirm all major
polaronic features well understood by Holsfeamd others
both in the nonadiabatic and adiabatic regimes.

However, analyzing the same numerical problem, de
Mello and Ranningef! have recently arrived at the opposite
conclusion that “the LF approach, which is generally be-
lieved to become exact in the limit of antiadiabaticity and an
electron-phonon coupling going to infinity, actually diverges
(the) most from the exact results precisely in this fimi. .”
These authors have not provided any physical explanation
for their disagreement with all earlier results starting from
the pioneering work by Holstein and including the kinetic
theory of strongly coupled electron-phonon systéritshas
become clear that the conclusion of Ref. 21 is an artifact of
an erroneous identification of the polaron kinetic enéffy/.
de Mello and Ranning&t subsequently claimed that their

12

BEAY 21+ B)] Pe T, (29

efinition of the polaron kinetic energy should be attributed
.to Holstein rather than to themselves and that their interpre-

E?ation of the dynamic correlation functions of the Holstein

model remains valid. We disagree with these claims.

Holsteirf distinguished perfectly well the nonadiabatic
and adiabatic small polarons as well as the tunneling prob-
ability and the corrections to the ground-state energy due to
the “back-forth” virtual transitions. The polaronic correla-
ere well established later on in the frame-
tvork of the theory of optical conductivityRecently, Firsov
eveloped an analytical approach to the two-
site model by the use of the expansion technique, which
rovides the electronic and vibronic terms as well as the
wave functions and all correlation functions in any order of

owers oft. They have found the exponential reduction fac-
or in all orders of the ¥ perturbation expansion, in agree-
ment with the canonical result, E¢L4). On the other hand,
the corrections to the atomic level were found to be as small
as 1h? rather than exponential.

The fundamental error of Ref. 21 originates from a failure
to apply properly perturbation theory and to notice the dif-
ferent origins of two terms in Eq13). As a measure of the
the authors of Ref. 21 take the cor-
relation function

ders of magnitude. A much lower effective mass of the
adiabatic small polaron in the intermediate-coupling region
compared with that estimated by the first-order perturbation
theory is revealed in Fig.(B). A poor convergence of the where c,, are annihilation operators on the “left” and
perturbation expansion is explained by the appearance of tHaight” molecule (site). Up to second order ity one obtains

ter=(—t(cica+cicy)), (25)
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function of \ for different values of the adiabatic ratio/t. It ap-
proaches%(1+ 1/\) for large\, in agreement with Holstein-Lang-
Firsov theory, Eqs(27).

FIG. 4. The ratio of the perturbatively calculated correlatar
including the second-order term-(L/\2) to the exact onéRef. 46,
tef, for different values of the adiabatic ratio't. The lowest curve
represents an incorrect result of Ref. 21 with missing second-order

term. 1 At 1
n(k=0) 5 1+ex;{ w”+2)\, (27)
At t
ter=tLr=—texg ——]— 1, (26) 1 At 1
nk=m)== 1—ex;{——) - . (28
2 o 2\

with N=2E,/t. Only the first exponential term in E¢26)
corresponds to the polaron kinetic energy, while the secondhe function A[n(0)— 1/2]=2\[1/2—n()], numerically
describes the corrections to the middle of the “band” owingcalculated by Kabanoff,is shown in Fig. 5. It goes to unity
to the virtual transitions to the neighboring site as describe@t a large\ for any value of adiabaticityo/t in agreement
in Sec. Il. Comparing the analytical expression, E26),  with Egs.(27) and(28). It should be pointed out that a de-
with the numerically calculatetly, one confirm® that the  viation from 1 in Fig. 5 is due to the exponential term in Eq.
Holstein-Lang-Firsov approach is asymptotically exact, con{27), so that 2[n(0)—1/2]— 1=\ exp(—At/w). This expo-
trary to Ref. 21. The ratio of this correlation function to the nent is smaller in the adiabatic case<t) than in the nona-
exact one is unity in the large-limit, Fig. 4, in both the diabatic one >t) for a fixed value of\, which explains
nonadiabatic and adiabatic regimes. The theory of Ref. 2Why in Fig. 5 the results in the adiabatic regime converge
does not recognize that the main contributiontdp comes  more rapidly to 1 than the results for larggt. Hence the
from thek-independensecond-order lowering of the polaron electronic occupation numbers for the ground state of the
level. The numerically calculated value i was compared two-site model are in excellent quantitative agreement with
with the first exponentially small term in Eq26) alone, Holstein-Lang-Firsov theory contrary to the conclusion of
ignoring the dominating second teriee the lower curve in Ref. 21. We also notice that the temperature dependence of
Fig. 4). Actually, t does notrepresent the polaron kinetic t.; should not be identified with that of the mobility because
energy at all. It includes a large contribution from the virtualty; has little to do with the tunneling under the deformation
“back-forth” transitions to the neighboring site, Fig. 1, barrier and with the polaron kinetics.
which have nothing to do with any real charge delocaliza- Reference 21 also concluded that “the dynamical behav-
tion. The misinterpretation of this term led to an incorrectior of the polaronic charge carriers alternate between self-
interpretation of the dynamic properties of polardnand  trapped polarons and almost free-carrier behavior, and, in
bipolarong? including their correlation functions and damp- general effects of dynamical delocalization of the electron
ing. cannot be obtained by perturbative expansions in terms of
In particular, it was claimet that “the exact result for 1/\ around the LF-approximated oscillator wave function,
the occupation number(k)z(clc@ differs from that of the even in the extreme antiadiabatic limit.” On the contrary,
LF approach qualitatively, and the dynamical coherence obur Fourier analysfé of the numerically calculated time-
the polaron increases with increasing tempemtur. so dependent correlation function for the charge fluctuations
they expect for an infinite lattice a mobility which increases x,,, and molecular deformationg,, revealed a Fourier com-
with increasing temperature, while the opposite behavior igponent corresponding to coherent polaron tunneling. Its fre-
found in the classical works on that issue and being based quencyr agrees well with that predicted by Holstein theory,
on the LF 1\ perturbative approach.” In arriving at these v=2t exp(—At/w). The frequency is found in botk,, and
conclusions the authors did not take into accountcbrrec-  xyy correlation functions as expected for the tunneling of the
tions to the occupation numbers. Bycludingthe first-order  electron accompanied by lattice deformation. The Fourier
correction, we obtain for the two-site model components ofy,, have a well-defined maximum in the
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high-frequency region. The maximum corresponds to twice n
the polaronic level shift as it should be for the spectral func- O O O O
tion of small polarons?

The two-site model does not allow for a self-consistent

analysis of the polaron damping, conductivity, or photoemis- X P S X
sion. They strongly depend on the phonon dispersion and t
relaxation which are beyond the two-site quantum mechani- m

cal problem. Within this model one can easily mistake vir-

tual “back-forth” transitions, Fig. 1, for real charge fluctua- T ) ) i ,

tions. In Ref. 22 this mistake led to the conclusion that “the®" the chainx interacting with all ions of another chaid (Ref.
. . . . . . .~ 43).

residual interaction with the lattice deformations surrounding

(bi)polarons leads to a dynamical dephasing between the To calculatey one can introduce a one-dimensional lattice

charge carriers and the local lattice deformations surroundingnodel with a long-range Coulomb interaction between the

them and hence destroys any itinerant quasiparticle fezelectron and ions, Fig. & The electron in a Wannier state

tures.” As we have discussed in Sec. lll, there is no dampingn a sitem of the infinite chain(X) interacts with the vibra-

(or dephasingof small (bi)polarons at low temperatures no tions ofall ions of another chaifO) polarized in the direc-

matter what the parameters of the system are. Other indepetion perpendicular to the chains. The corresponding force is

dent variational and cluster diagonalization stutfi€écon-  given by

firmed that “by the use of the Holstein approximation and

FIG. 6. One-dimensional model of the small Rlich polaron

K

the canonical Lang-Firsov approach with appropriate correc- f(m—n)=——5——p. (32)
tions, one obtains an excellent estimate of the coherent band- (Im=n[*+1)
width in both adiabatic and non-adiabatic regimes.” The distance along the chaifra—n| is measured in units of
the lattice constard; the interchain distance is also Here
V. SMALL HOLSTEIN POLARON AND “SMALL and further on we taka=1. For this long-range interaction
FROHLICH POLARON" one obtainsEpz 127K2/(2M wz), 92: 049K2/(ZM a)g), and

92=0.3£plw. The effective mass renormalization is much
The analytical IX expansion allows us to analyze both a smaller than in the dispersionless Holstein model, roughly as
small Holstein polarofSHP with a short-range interaction mgqpc(m¥,p) Y2

and a lighter small polaron with a long-range Rlioh inter- Not only does the small polaron mass strongly depend on
action, i.e., mobile small Frdich polaron(SFP.*"**To il-  the radius of the electron-phonon interaction, but also the
lustrate this point we express the electron-phonon interactiorange of applicability of the analytical Lang-Firsov theory.
in terms of real displacements, as™ While in the case of a short-rangeolstein interaction this

approach is applied only b=t and \>1, the theory ap-
pears almost exact in a substantially wider region of param-
Hepn=— > f(m—n)&f;. (290 eters for the Frblich interaction. The polaron mass in a wide
! region of the adiabatic parameter and coupling has been re-
Here gnzzq(ZNqu)—lxzequq_n)dc‘;JrH.C. is a cently calculate®® with the continuous-time path-integral
normal  coordinate at site n, and f(m—n) guantum Monte Carlo(QMC) algorithm, developed by
=N‘lzqy(q)(ng’)mexr{iq-(n—m)] is the force be- Kornilovich.>® This method is free from any systematic

i the elect t sitm and th | di finite-size, finite-time-step, and finite-temperature errors and
ween the electron at sita and the normal coordinat; . allows for anexact(in the QMC sensecalculation of the

In general, there is no simple relation between the poy g nd-state energy and the effective mass of the lattice po-
laronic shiftE, and the exponeng“ of the mass enhance- |50n for any electron-phonon interaction.

ment. This relation depends on the form of the electron- At |arge X (>1.5) we found the SFP to be much lighter
phonon interaction. Indeed, for dispersionless phon@Rps than the SHP, while the large Hrich polaron(i.e., at\
=w, one obtains <1) is heavierthan the large Holstein polaron with the same
binding energy, Fig. 7. The mass ratigt/ms is a non-
_ 1 2 monotonic function ofA. The effective mass of smadind
Ep=spoz 2 f(m), (30 g e _ _
©°m large Frdnlich polarons,mgp(\), is well fitted by a single
_ exponent, which i2%"® for w=t and e'* for w=0.%,
while which is not the case for the Holstein polar@ee Sec. IV.
The exponents are remarkably close to those obtained with
92:2|\/|1 2D () - fFm)f(m+a)], (31 the Lang-Firsov transformatiorg®’® fand_el-sa‘, respec-
®”'m tively. Hence, in the case of the Hiich interaction, the
) ) ) _transformation is perfectly accurate even in the adiabatic re-
wherea is the Iattlgze vector. The effective mass renormallza—gime wlt<1 for any coupling strength.
tion is m*/m=e%, wherem is the bare band mass and  Another interesting point is that the size of the SFP and
1/m* = 9?E(k)/dk* with k—0. If the interaction is local, the length over which the distortion spreads diféerent In
f(m) =« o (Holstein mode), theng?= Ep/w. In general, the extreme strong-coupling limit, the Lang-Firsov transfor-
one hasg“=yE,/o with a numerical coefficienty=1  mation is exact, and the polaron is entirely localized on one
=3 ,f(m)f(m+a)/3,f?(n) less than unity’ HereM is the  sitem. Hence the size of its wave function is the atomic size.
ion mass. On the other hand, the ion displacements, proportional to the
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1.0 VI. POLARON-POLARON INTERACTION AND
F -+ Holstein, m=1.0t SCREENING
%1 = Fronlich, w=1.0t Polarons interact not only with phonons, but also with
067 (M), o=1.0t each other. The range of the deformation surroundfrgh-
€ o4 i lich) polarons is quite largéSec. Vj, so the polaron defor-
T mation fields overlap at finite density. Hence one can worry
02| about the effect of the overlap on their stabififyActually,
i the long-range polaron-polaron interaction has been dis-
0.0 e cussed in our original papéf$”-1°and books3 Taking into
0.0 1.0 2.0 3.0 account both the long-range attraction of polarons owing to

A their lattice deformationand the direct Coulomb repulsion,
FIG. 7. The ratio of the band mass to the polaron mass as he residual long-range interaction has been found to be
function of the coupling constant. Polarons become lighter withrather weak and repulsive. The Fourier component of the
increasing radius of the electron-phonon interaction, as shown withesidual polaron-polaron interaction(q), comprising the
triangles. direct Coulomb repulsion and the attraction mediated by
phonons, is given by

2
displacement forcd (m—n), spread over a large distance. v(q)= 4”2 _|7(q)|2wq_ (33

Their amplitude at a sit@ falls with the distance as |t €q
—n|? in our one-dimensional model. The polaron cldud.,
lattice distortion can be more extended than the polaron
itself (see, also, Refs. 2, 50, and)4Buch a polaron tunnels
with a larger probability than the nondispersive Holstein po- 5 1 -1

laron due to a smallerelative lattice distortion around two ()20 = ame’(e , € ) ’ (34)
neighboring sites. It can be equally called a “large discrete q

strong-coupling Frolich” polaron, if the lattice distortion is . o .
included in the definition of its size. On the other hand, his-Where e and €, are the high-frequency and static dielectric
torically one referes to a “small” polaron, as a quasiparticleConstamts of the host lonic msulatlor. .Hence, at large dis-
well described by the 4/ expansion technique. With this tances the polaron-polaron interaction is repulsive:

In the long-wave limit <), the Frdlich interaction
dominates in the attractive part, so we have

definition polarons on a lattice are small for any value of the 5
long-range electron-phonon interaction. vi :e—. (35)
The model, Eq(32), contains only one phonon mode po- I €lm—n|

larized along thes axis, so that the& component of the field
from ac-polarized dipole falls off with distance asr#/ An
isotropic Frohlich interaction might be longer ranged than
ours, giving rise to a t# law. Consequently, it should yield
evenlighter polaron mass. This is confirmed numericatly
as shown in Fig. Z for the one-dimensional model W,'th thethe canonical random phase approximation to calculate the
force f(m)=«/(m°+1). The fact that the Lang-Firsov ielectric response function of polarons:

transformation is perfectly accurate for the long-range inter-
action in a wide region of the parameters allows us to gen- T
eralize this result. Including all phonon polarizations in a e(q,Q)=1—Zv(q)E QH#
three-dimensional lattice, we obtaim&s~(m%,p)?, with et g
the constanty=3,y(q)[1—cos@-m)]/Z4¥*(q). Calcu-

Optical phonons nearly nullify the bare Coulomb repulsion
in ionic solids ifeg> 1, which is normally the case in oxides.
Hence there is no effect of the overlapping deformations on
the small polaron stability.

In the absence of bipolarorisee beloy, one can apply

(36)

; ) o ) This expression describes the response of small polarons to a
lating the constant with the Fntich matrix elemen{y(d)  perturbation of a frequencf <w, when phonons in the po-
~1/q], we find y=0.57 in the cubic lattice ang=0.44,  |5r0nic cloud are not excited. In the static limit at large dis-
y=0.255 in the cuprate lattice for the apex and in-plan€ances(or g— 0), we obtain the usual Debye screening with
oxygen hole, respectively, in fair agreement with the numeri-, ather small Debye radius owing to a heavy mass. Actually,

cal result. _ _ for a temperature larger than the polaronic half-bandwidth,
_ A lighter mass of the SFP compared with the nondisperyne can expand the polaron distribution function as
sive SHP is a generic feature of any dispersive electron-

phonon interaction. As an example, a short-range interaction n (2—n)e
with dispersive acoustic phonops(q) ~ 1/g*2 w,~q] also = _( _ —"> (37)
leads to a lighter polaron in the strong-coupling regime com- 2 2T

pared with the nondispersive SHP. Actually, Holstein . h 1 the densitv of pol

pointed out in his original paper that the dispersion is a vitalWlt n the density of polarons, to get
ingredient of the theory. If one takes into account the inter- 5

molecular interaction in the Holstein moffébne can get e(q,0=1+ As (39)
much lighter polarons in this model as wéi* 9 q?’
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t/warge
\ \y\,\, polarons
oY AN O,\,\
/ / 30 |
FIG. 8. Electron-phonon vertefdark circle screened by the
Coulomb interactiondashed ling 20 mobile small bipolarons
where gs=[27e’n(2—n)/Tey]Y2 However, already for a ?n?glille
finite but rather low-frequenc§l=w the polaron response 1.0 polarons
becomes dynamic,
2 | | l
wp(q)
€(q,Q)=1— QZ (39 0.5 1.0 15

with the temperature-dependent polaron plasma frequency FIG. 9. “t/w-\ phase” diagram with a small-bipolardBose-
Einstein condensatigrdomain, a large-polaro(BCS) domain, and

) a region of unbound small polarons o6, y=0.4, and Coulomb
wp(Q):ZU(Q); Nk(€x+q~ €k, (40 pseudopotentigl=0.5.

proportional to the inverse temperatureTat w. rather than the Cooper pairs. We can estimate the character-
Considering the e|ectr0n-phonon interaction in a mu|’[ipo-i$tiC parametera andt/w of the bipolaronic instability. The

laron system, one has to take into account the dynamic progEharacteristic attractive potential 16=zt(\ —u), whereu
erties of the response function. One can befié%ethat the is the dimensionless Coulomb pseudopotential. A bound

long-range Frblich interaction becomes short rangdol-  state of two polarons appears®if
stein due to screening. This is not true. Replacing the bare 9
electron-phonon interactiony(q) by a screened one V= _ (42)
vs{d,®) as shown in Fig. 8, we obtain 8m*
¥(q) Substituting the polaron mass* = exp(y\zt/w)/2t, we find
’YSC(qvw): E(q,(l)) . (41) 2

t -1
;2(')/2)\) In . (43

r

In the long-wave limit the response of polarons at the optical 4z(N—p)
phonon frequency is dynamic, because quv (v is the char-  The corresponding “phase” diagram is shown in Fig. 9. Bi-
acteristic group velocity of polaropsAlso, their(renormal-  polarons are formed about &t u+ 7%/4z in the nonadia-
ized plasma frequencw,(q) is lower than the optical pho- patic and intermediate regiméw=1. In the case of the
non frequency due to the large static dielectric constantFrohlich interaction, there is no sharp transition between
enhanced effective mass, and relatively low density of posmall and large polarons as one can see in Fig. 7. However,
larons. Therefore, the singular behavior¥fq) ~1/q is un-  due to the fact that the Lang-Firsov transformation is practi-
affected by the screening. The optical phonon frequency recally exact in the whole region of coupling for the nonadia-
mains almost unchanged as w&lPolarons are slow enough hatic and intermediate regintep tot/w=2), the carriers are
and cannotscreen the high-frequency crystal field oscilla- small polaronsndependenof the value of\ in this regime.
tions. As a result, the interaction with the high-frequency|t means that the radius of their wave function is about
optical phonons in ionic polaron solids remains long rangeatomic size and they tunnel together with the entire phonon
Chakravertyet al****failed to understand that the mobility cloud no matter how “thin” the cloud is. Our estimates are
of carriers determines the Screening rather than their nUmbe]l'u||y confirmed by the numerical simulations of ionic perov-

Another important point is the possibility of the Wigner skite latticed® which established the existence of stalsie
crystallization of the(bi)polaronic liquid'® Because the re- tersite bipolarons in doped cuprates.
sidual long-range repulsion is relatively weak, the relevant |n contrast with BCS theory, the bipolaron theory allows
dimensionless parametey=m*e?/ eo(4mn/3)*is not very 45510 “integrate out” the interaction and expreds via
large in doped cuprates. Wigner crystallization appearshe static response functions. In the framework of BCS
aroundr =100 or larger, which corresponds to the atomictheory (largely independent of the nature of couplinthe
density of polaronsp<10"°, with ;=30 andm*=5m,. critical temperature is fairly well approximated by McMill-
This estimate tells us that the carriers in superconductingn’s formula(see Ref. 5§

cuprates are in a liquid state.
w F{ 1.041+X\)

T - H
c N—u¥(1+0.620)

=_——ex
VII. BIPOLARON CONDENSATION AND 1.45
SUPERCONDUCTING T IN CUPRATES

(44)

which works well for simple metals and their alloys. There
The Frdnlich interaction together with a short-range de-are no general restrictions on the BCS valueTgfif the
formation potential can easily overcome the Coulomb repuldielectric function formalism is properly appli€dAllen and
sion at a distance about the lattice constant. Tleeingto a  Dynes® found that in the strong-coupling limik>1 the
narrow bangl polarons form real space small bipolarons critical temperature might be as high Bs= wA %27, Nev-
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ertheless, applying this kind of theory to high-cuprates is been recently calculated and compared with the
problematic. Since the bare electron bands are narrow, strorgxperimen®*° Substituting the spectrum, EG5), into the
correlations are important, giving rise to a doped Mott insu-density sum rule,

lator. As a result, the Coulomb pseudopotential arate ill

defined and polaronic effects are important as in many doped i _q1-1_

semiconductor$® Taking the “magic” numbersx=0.5, k,i:z<><,y) [eXp(Ei/Te) = 1] =ne, (46
u*=0.14 and the experimental Debye temperatuse
=400K one obtaing =2 K with Eq. (44)—clearly too low
to explain the highT.. One could hardly expect that the 3.31(ng/2)%3

Coulomb pseudopotential is lower than 0.1 because the T.= (mmymg) 73 (47)
Tolmachev-Morel-Anderson logarithm cannot be large in v

narrow bands. In fac* is of the order of the bare Coulomb where the coefficientis almost unity in a wide range of the
repulsion,u* = u~1. Hence, an estimate & in cuprates ~anisotropyt, /T.,>® and m.=1/2]t, |d?. This expression is
within BCS theory appears to be an exercise in calculatingather ambiguous so far because the effective mass tensor as
w* rather thanT, itself. Nor can one increask without  well as the bipolaron densitypg is unknown and doping
accounting for a polaron collapse of the band and bipolarolependent. Fortunately, one can express the band-structure
formation. As discussed above, this appears.at0.5 for  parameters through the in-planl&eab=[mxmzyl87-rngez(mX
uncorrelated polarons, Fig. 9, and even for a smaller value of m,)]"? and out-of-plane\.=[ m./16mnge?]"/2 penetra-

the bare electron-phonon coupling in strongly correlatedion depth. The bipolaron density is expressed through the
models?®2° Of course, one can argifethat a renormalized in-plane Hall constanust above the transitioras*’

value of the couplingh ~\/(1—2\) appears in Eq(44),

one readily obtaing . as

1 4m,m,,

rather than a bark because of the familiar Migdal's soften- Ry=s— —— . (48)
ing of the phonon spectrum. That leaves some space for high 2eng (my+my)

T, in the region of the applicability of the Eliashberg theory as a result, one obtains

(i.e., A\=<0.5 where nonadiabati¢vertex corrections may

play a role®®®! The final answer rests with experiment, eRy |13

which has already shown a non-Fermi-liquid normal and a Tfl.GA(m) ; (49

non-BCS superconducting state of doped cuprétes, for
example, Ref. 18 As has been experimentally establisfiéd, with T, measured in kelvingR, in cm?®, and\ in cm. Hence
there is a strong coupling of carriers withaxis-polarized our theory yields a parameter-free expression, which unam-
optical phonons in higf-, cuprates ¢=75meV, which is  biguously tells us how close cuprates are to the Bose-
aboutt/2 in YBa,Cu;0g., ). Due to a lowc-axis conductivity ~ Einstein condensation regime. This expression has been
and a high phonon frequency, this coupling is not screenedompared with the experimentg} of more than 30 different
representing a long-range Tlich interaction withh=15%  cuprates, for which both,, and\ . are measured along with
which provides mobile smalbi)polarons?’ Ry .>® The theoreticalT, coincides with the experimental
In the framework of bipolaron theory, the critical tem- one within the experimental error bar for the penetration
perature is determined by the bipolaron energy spectruntepth(about=10%) no matter what the doping level is. A
Quite generally, the bipolaron energy spectrum is a degenefew examples are LaSr,CuO, [N,p=2000A, X\
ate doublet due to twgx andy) oxygen orbitals elongated =25400A, R,=0.8x10 3(1/Ccn?)], T&P=36.2K, and
along the Cu@planes®’ The energy band minima are found our theoretical value, Eq(49), is T,=38K; YBaCu0O,
at the Brillouin zone boundar§*, 0) and (0, =) rather  [\,,=1400A, A\,=12600A, R,=1.2x10"3(1/Ccn?)],
than at thd’ point owing to the opposite sign of tigpo and  TP®=92.5K, and the theoretical value iF.,=111K;
ppm oxygen hopping integrals. Near these points the effecYBa,Cu;0554 [Nap=1771A, A.=15570A, Ry=1.9
tive mass approximation is applied with the following result x 10-3(1/C cn)], T®P=83.7 K, and the theoretical value is
for the x andy bipolaron band$’ T.=83K.
One can argue that cuprates belong to a two-dimensional
22 522 (2D) XY universality class with the quterlitz—Thoulegs _criti—
Exy=2 o B o 11 cogk,d)] (45 ~ Cal temperaturd; due to a large anisotroff{~°® If this is
2m, 2m + 2 the case, then one could not discriminate the Cooper pairs
with respect to bipolarons. The Kosterlitz-Thouless tempera-
ture, expressed through the in-plane penetration depfh, is

wherek, , are taken relativé+ 7, 0) [or (0, )] points,d is

the interplane distance, artd is the interplane bipolaron 0.od

hopping integral. The bipolaron is about 4 times heavier than Tkr= 16 202 (50
the SFP. Two different bands are not mixed because the ab

nearest-neighbor hopping integrals betweeandy p orbit- It appears significantlyabout twice higher than the experi-

als are zero. While each of them is not invariant under crystamental value in most cases. Also, many cuprates do not share

symmetry, the degenerate doublet represents an irreducibtiee critical behavior of the BCS superfluids or the universal

representation. Under a/2 rotation thex band transforms (3D) x-y properties of neutral superfluids likéHe "8 but

into y and vice versa. exhibit the critical behavior of charged bosons. These obser-
The condensation temperature of these bipolarons hastions favor the 3D Bose-Einstein condensation of charged
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bosons as the mechanism of high rather than any low- feature of the normal state incompatible with bipolarons.
dimensional phase-fluctuation scenario. The fascinating exvost (but not al) of these measurements produced a large
perimental results by FranéR, Zhao etal,’” and Zhao Fermi surface. This should evolve with doping as—(4) in
et al,”* who measured the oxygen isotope effect on the criti-a clear contradiction with low-frequency kinetics and ther-
cal temperatur@andthe carrier mass in many oxides, lead to modynamics, which show an evolution proportionakix is
the conclusion that charged bosons are bipolarons. the number of holes introduced by dopin&ecently, it has
The size of the intersite bipolaron has been well estabbeen established, however, that there is a normal state gap in
lished in numerical studies by Catlost al3! This bipolaron ~ARPES and superconducting-insulating-norni&IN) tun-
occupies a volume, which is 5 times smaller than the uninheling, existing well aboveT, irrespective of the doping
cell volume in YBaCu,O,. There is about one bipolaron per level.”*~"® The “Fermi surface” showed missing segments.
unit (chemical cell, which includes 13 ions. As a result, A plausible explanation is that there are two liquids in the
there is no overcrowding problem, and hole carriers can beuprates, the normal Fermi liquid and the charged Bose lig-
treated as charged bosons. Nevertheless, the boson-bosoniiid, as suggested by several independent experifieffts
teraction might lead to self-energy effects and to some renorithis mixture was theoretically discussed a while &go
malization of the effective mass tensor. It is important that The single-particle spectral function of a bipolaronic sys-
Eq. (49) does not contain the mass and, hence, is not affecte@m has been recently derivéd® It describes the spectral
by the interaction. The theoretical value of thle bipolaron  features of tunneling and photoemission in cuprates, in par-
mass,=(10—20)m, [i.e., about (3—-5m, for a polaron, Fig. ticular, the temperature-independent gap and the anomalous
7], fits well the experimental values of,,. The careful gap/T, ratio, injection and emission asymmetry both in mag-
exploration of the discrete nondispersive Holstein-Hubbarditude and shape, zero-bias conductance at zero temperature,
model by La Magna and Pucéiand more recently by the spectral shape inside and outside the gap region, tem-
Bonca, Katrasnik, and Trugm&nshowed that due to ex- perature and doping dependence and dip-hump structure of
change and nonadiabaticity effects an intersite bipolaroithe tunneling conductance, and photoemission. In the follow-
with a relatively small effective mass is stable and mobile ing we briefly analyze some essential SHP and SFP spectral
even in this model, which is generally unfavorable for tun-features.
neling. Bipolarons pin the chemical potential inside the charge
It becomes clear that bipolaron theory describes remarkiransfer gap, half the bipolaron binding energy above the
ably well the experimental critical temperature and the Lon-oxygen band edge. This binding energy as well as the
don penetration depth of superconducting cuprates with neinglet-triplet bipolaron exchange energy is thought to be the
parameters to fit contrary to conclusions by Chakravertyorigin of the normal-state pseudogaps, as first proposed by us
et al,?* which originate in the use of an incorrect bipolaron in Ref. 83. In overdoped samples the bipolaron and polaron
energy spectrunt? In particular, Ref. 24 used oumonadia- bands might overlap because the bipolaron binding energy
batic expression for the mass of the on-site bipolaron withbecomes small, so the chemical potential might enter the
adiabatic parameters. As we have shown in Sec. IV, thi®xygen band, as mentioned above. The strong coupling with
results in an overestimation of the mass by a few orders dfiigh-frequency phonons, experimentally established for
magnitude, Fig. ®). They also used our expression for the many oxides, leads to the high-energy spectral features of a
intersite bipolaron hopping by leaving out the numerical co-single-particle(oxygen hole spectral function in an energy
efficient y which lowers the(bi)polaron mass by abodvo  window about twice the Franck-Conddjpolaronig level
orders of magnitude as discussed in Sec. V. Their conclusioshift, 2E,~0.5-1 eV, and to the band-narrowing effect. All
that the Holstein model represents well the electron-phonomajor features of the polaronic spectral function can be de-
interaction in ionic polaronic solids is disputed. Thellich  rived by applying the Lang-Firsov canonical transformation,
interaction cannot be reduced to a short-range one in thEq.(4). With this transformation the hole Matsubara Green’s
multipolaron system(Sec. V). As we have shown above, function (GF) is expressed as a convolution of the coherent
(bi)polarons exist in the Bloch states at low temperaturespolaron GF and the multiphonon correlation function
and the bipolaronic liquid cannot be crystallized at any rel-o(m,(,),*°
evant level of doping. The correct phase diagram of elec-
trons, coupled with phonongee Ref. 15 and Fig.)9in- T
cludes the BCS ground state in the weak-coupling regime Q(k,wn)=ﬁ >
and highT, bipolaronic superconductor for the strong cou- wpr Mk’
pling contrary to the diagram by Chakraveffywhere
(bi)polarons are completely localized.

a(m,wn,—wn)ei(kfk’)'m

iwn,— fkr

(51)

where the multiphonon correlation functiorr(m,7)
=T3,e "7g(m,Q,) is found as

1

VIIl. COHERENT AND INCOHERENT SPECTRAL _ 2

o(m,7)=ex E fq(m,7)|. 52
WEIGHT AND POLARONIC ARPES (m,7) 2N 4 Y@ (m.7) (

A number of thermodynamic, magnetic and kinetic prop-Here
erties of cuprates have been understood in the framework of
the bipolaron theoryfor a review, see Refs. 13, 10, and)19 wq
On the other hand, the single-particle spectral function seen fq(m,7)=[cosq- m)COSquITI)—l]cothﬁ
by angle-resolved photoemission spectroscd\RPES
(Ref. 74 was interpreted by several authors as a Fermi-liquid +cogg-m)sinh(wg|7]),
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with m the lattice vector,w,==#T(2n+1), n=0,=1, low-frequency thermal lattice, spin, and random fluctuations.
+2....,andQ,=27Tn. The latter can be described as the “Gaussian white noise.”
In the case of dispersionless phonons and the short-rangs a result, one can quantitatively describe the experimental
(Holstein interaction with ag-independent matrix element ARPES in a few cuprate®¥.The approach is clearly compat-
[0g= o, |v(a)|?=2g?], one can readily calculate the Fou- ible with the doping evolution of thermodynamic and kinetic

rier component ofr(m, ) to obtairt® properties because holes introduced by doping into the oxy-
gen band are the only carriers in the theory. Moreover, the
yd “ g? bipolaron energy dispersion with the minima at the Brillouin

g(k,wy) = zone boundaries, Eq45), provides ad-wave symmetry of
the Bose-Einstein condensate in cupritess observed in

Ny 1-ng phase-sensitive experimenits.

fwn— &

x>

o o= o+l iw,—év—lo)’
(53 IX. CONCLUSIONS

The Green function of a polaronic carrier comprises two dif- Based on the well-establishec\Iperturbation theory, ex-
ferent contributions. The first coherektdependent term act cluster diagonalization, and quantum Monte Carlo calcu-
arises from the polaron band tunneling. The spectral weighf@tions, | conclude that small polarons and small bipolarons
of the coherent part is Strong{gxponentia”y Suppressed as are Itinerant qUaS|part|C|eS eX|St|r-|g.|n the Bloch states at
Z=exp(-gd, in agreement with cluster numerical temperatures below the characteristic phonon frequency for
studiest*3* and the effective mass is strongly enhancgd, —any strength of the electron-phonon courﬁ:;lslgr;%]é This result was
—ZE.—u (we include the polaronic level shift into the analytically established a long time age?***There are a
chemical potentialy). Here E(k) is the bardlocal density ~féw additional results which can help to resolve some con-
approximationLDA)] hole band dispersion in a rigid lattice. fusion in the polaron literature. _ _

The seconc-independent contribution describes the excita- (1) Numerically calculated correlation functions of the
tions accompanied by the emission and absorption ofWO-Site Holstein model agree perfectly well with the ana-
phonons. We believe that this term(E) is responsible lytical results based on the Lang-Firsov transformation and
for the asymmetric background in the optical conductivity /A perturbation expansiofBec. IV). _

and in the photoemission spectra of cuprates and manganites. (i) The long-range Fitalich interaction leads to relatively
lts spectral density spreads over a wide energy range ¢@ht small polarons with atomic size of the wave function
about twice the polaron level shiff,=g%w. On the con- and a large size of the phonon cloud in all dimensions. The
trary, the coherent term shows an angular dependence in tigdfective mass of this polaron is smaller by a few orders of

energy range of the order of the polaron bandwidiu 2 magnitude than the mass of the nondispersive Holstein
=7D, whereD=2zt is the bare(LDA) bandwidth. model in the strong-coupling region. At a weak coupling the

It is remarkable that for any finite-radius interaction with Frohlich polaron is heavier than the Holstein polaron with
a g-dependent matrix element tlwherentpart of the GF the same blr!dlng energy. These SFP featu_res have been re-
takes the same form as E@3), but with adifferentspectral cently found in Ref. 43. Here | have generalized these results
weight (2) and effective mass Z') renormalization for the isotropic three-dlmgn5|onal Frrech interaction un-
exponent$® Also, somek dependence of théncoherent derlying the fact that the first-order XLl/expansion is per-

background| ieo(k,E), appears if the matrix element of the f€Ctly accurate even in the adiabatic regimd<1 for any
electron-phonon interaction depends @ff Hence, in gen- coupling strength in the case of the Bligh interaction(Sec.
Y

eral, the polaron spectral function is given by )- L i
(iii) Screening in the multipolaron system has been ana-

AK,E)<ZS(E+ &)+ lincor( K, E), (54) lyzed to show that polaronannot screen the high-
frequency crystal field oscillations because they are slow

with the sameZ=exp(—E,/w) as in the case of the Holstein enough. As a result, the interaction with the high-frequency
polaron, but with the SFP bandwidth much less reduggd, optical phonons in ionic polaron solids remains long ranged
=Z'E(K)—u, whereZ’'=exp(-yE,/w). These SFP spec- (Sec. V).
tral features could explain the apparent discrepancy between (iv) At large distances théi)polaron<bi)polaron interac-
a small coherent spectral weight and a relatively moderatéon is shown to be repulsive and weak. Optical phonons
mass enhancememt* ~3m,—10m, (depending on doping  nearly nullify the bare Coulomb repulsion in ionic solids if
of carriers in oxides, as measured optically and thermodye,>1, which is normally the case in oxides. Hence there is
namically, respectivel§’ 8|t is important to emphasize that no effect of the overlapping deformations on the small po-
the small coherent weigtz in Eq. (53) does not affect the laron stability. If small bipolarons are formed, they cannot be
thermodynamic(or low-frequency response of polarons. crystallized in the range of parameters typical for cuprates
This response depends @ in the polaron kinetic energy, (Sec. VII).
2w=Z'D, as discussed in Sec. V. Compared with the Hol- (v) Small mobile bipolarons are formed at the moderate
stein polaron, the maximum of the infrared optical conduc-coupling constanh=0.5, almost independent of the adia-
tivity of the SFP is shifted to lower frequencies of the orderbatic ratio(Fig. 9).
Ep,a'lzin agreement with those optical experimefits, (vi) Bipolaron theory provides a parameter-free expres-
which distinguish between incoherent and Drude contribusion for T, describingT, of many cuprates without any
tions. The low-energy spectral function also depends on thétting parameters, as has been shown receffty Here |
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argue that the small Fndich polaron has the spectral prop-

A. S. ALEXANDROV

PRB 61

energy?! an incorrect interpretation of the dynamic correla-

erties compatible with the single-particle tunneling andtion functions of the Holstein modéh:?24°and a misusé-?®
ARPES measurements in cuprates. The important finding isf our expressions for the bipolaron effective mass.

that thecoherentpart of its Green’s function has a spectral
weightZ different from the bandwidth renormalization expo-

nentZ’ with Z'>Z. This SFP spectral feature can explain
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