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Ginzburg-Landau calculations for a superconducting cylinder in a magnetic field

G. F. Zharkov, V. G. Zharkov, and A. Yu. Zvetkov
P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia

~Received 8 September 1999!

Self-consistent solutions of the Ginzburg-Landau system of nonlinear equations, which describe the behav-
ior of the order parameterc and the magnetic-field distributionB in a long superconducting cylinder of finite
radiusR in external magnetic fieldH, provided that, there are no vortices inside the superconductor, are studied
by using numerical method. The lower and upper critical fields of the cylinder,Hc1

(0) andHc2
(0) , are found as

functions of the radiusR, temperatureT, and parameterk of the Ginzburg-Landau theory. For type-I super-
conductors one hasHc1

(0)5Hc2
(0) ; for type-II superconductors one hasHc1

(0),Hc2
(0) . In small fieldsH,Hc1

(0) the
superconductor is in stable Meissner phase~with c;1 andB;0). It is found, that for type-II superconductors
the state withc;1 is unstable in the fieldsH.Hc1

(0) , and the superconductor passes to a new stable state. In
this state the external field begins to penetrate freely into a superconductor in a form of a finite width ring,
which is situated near the surface of the cylinder, where the order parameter is strongly suppressed~the
rim-suppressed state!. The field Hc1

(0) differs from the lower critical fieldHc1 , at which the field begins to
penetrate into the bulk superconductor in a form of vortices. When the fieldH is increased further, this ring
layer ~or, the rim! widens, while the order parameter remaines finite (cÞ0) only near the center of the
cylinder. In the fieldH5Hc2

(0) the order parameter finally vanishes everywhere and the metal passes into the
normal state. ForR@l the fieldHc2

(0) coincides with the upper critical fieldHc2, at which the mixed vortex
state terminates. The intervals ofR, T, andk, where the rim-suppressed state can exist, are found.
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I. INTRODUCTION

The behavior of small size superconductors in a magn
field, in the scope of the nonlinear system of the Ginzbu
Landau equations,1 was studied in numerous publication
~see, for instance, Refs. 2 and 3!. Recently, much of the
attention was devoted also to the finite-size superconduc
of different geometries~see, for instance, the theoretic
papers4!. The main attention in these papers was paid to
case, when the magnetic vortex, carryingmf0 flux quanta, is
rested in the center of superconducting cylinder~herem50,
1, 2, . . . , f05hc/2e is the flux quantum!. Some of the re-
sults, obtained in Ref. 4, were used to explain some ano
lies in the behavior of small size superconductors, place
the magnetic field, which were detected recently.5 In the
present paper the vortex-free Meissner state (m50) is stud-
ied in more detail, as compared to Ref. 4.

The main result of the present investigation is, that fo
superconducting cylinder of finite radiusR placed in an ex-
ternal magnetic fieldH, two characteristic fields exist~if k
.1/A2): the lower,H5Hc1

(0) , and the upper,H5Hc2
(0) @the

upper index~0! denotes the vortex-free state, withm50]. If
the external field is small,H,H5Hc1

(0) , thenc(r )'1 ev-
erywhere, the internal magnetic fieldB is also small~this
corresponds to the Meissner state, with almost total ex
sion of the external field from the superconductor interio!.
When H increases and reaches the valueH5Hc1

(0) , a sharp
reconstruction of the order parameter occurs: its value on
axis,c0 continues to be very close to unity, but the functi
c(r ) suffers strong suppression in a ring-shaped layer, s
ated near the outer surface of the cylinder~this may be re-
ferred to as a rim-suppressed state!. The magnetic field inside
this layer is equal to the external fieldH, while at the center
PRB 610163-1829/2000/61~18!/12293~9!/$15.00
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B0[B(0),H. When H is increased further, the rim laye
widens, the valuec0 gradually diminishes, and the fiel
B(r )→H everywhere. AtH5Hc2

(0) the final transition to the
normal state takes place, withc(r )[0 andB(r )[H.

The upper critical fieldH5Hc2
(0) ~for R@l, where l

5kj, j is the coherence length! coincides with the field
Hc2

(v)[Hc25f0 /(2pj2), which marks the endpoint of the
mixed state of a bulk superconductor.2,3 This is natural, be-
cause both these fields correspond to the normal state,
c→0. The lower critical fieldH5Hc1

(0) ~even for R@l)
does not coincide with the field Hc1

(v)5Hc1

[Hc•(A2 )21(ln k10.08) ~the field Hc1 marks the begin-
ning of vortex penetration into massive type-
superconductor2,3!. This is also natural, because we consid
vortex-free state (m50), when vortices are forbidden. Th
fieldsHc1

(0) andHc2
(0) are found below as functions ofk, R and

T. If k.1/A2, one hasHc2
(0).Hc1

(0) ; if k51/A2, both fields
coincide:Hc1

(0)5Hc2
(0) ; if k,1/A2, there exists a single criti

cal field, Hc
(0) . For R@l the field Hc1

(0)→Hc

[f0 /(2pA2lj, whereHc is the superconductor thermody
namic critical field.2,3 Some other characteristics of the sy
tem are found as well: the magnetic moment~or, magnetiza-
tion! of the cylinder, its free energy, the order parameter a
magnetic field values on the cylinder axis, the mean fi
value in the speciment, the width of the magnetization cu
tail, etc.~Note that the numeric algorithm, used in the pres
paper to obtain self-consistent solutions of the nonlinear s
tem of the Ginzburg-Landau equations, does not allow u
study the unstable ‘‘supercooled’’ and ‘‘superheate
states,6–8 which are characteristic for type-I superconducto
with k,1/A2 and require different methods of investig
tion.!
12 293 ©2000 The American Physical Society
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The paper is organized as follows. In Sec. II, the ba
equations of the problem are written, and the method of fi
ing the self-consistent solution of the nonlinear system
equations is briefly described. Section III contains the res
of numerical calculations. In Sec. IV, the discussion a
comparison with the previous publications on this probl
are given.

II. THE SETTING OF THE PROBLEM

Consider the long superconducting cylinder of radiusR in
the external magnetic fieldH, which is parallel to the cylin-
der element. The basic system of the Ginzburg-Lan
equations1 is of the form

rot rotA5
4p

c
j s ,

4p

c
j s5

c2

l2 S f0

2p
¹Q2AD ,

¹2c2S ¹Q2
2p

f0
AD 2

c1
1

j2 ~c2c3!50, ~1!

where A is the vector potential of the magnetic field (B
5rotA), j s is the current density inside the superconduct
l is the field penetration depth,j is the correlation length
l5kj. The order parameter, in a general case, is written
C5ceiQ, wherec is the modulus andQ is the phase of the
order parameter. From the single valuedness ofC the con-
dition follows

R
C
¹Qdl52pm,

where the contourC embraces the vortex axis,m is an inte-
ger ~the topological invariant!, which shows how many vor
tices are present inside the contourR. We consider the cas
m50 and setQ50, so the functionC5c is real.

In the cylidrical system of coordinatesr ,w,z, with the z
axis directed along the cylinder element@when the vector-
potential has only one component,A5ewA(r )], these equa-
tions may be written in the dimensionless form

d2U

dr2 2
1

r

dU

dr
2c2U50, ~2!

d2c

dr2 1
1

r

dc

dr
1k2~c2c3!2

U2

r2 c50. ~3!

Here, instead of the dimensioned potentialA, field B and
current j s , the dimensionless quantitiesU(r), b(r), and
j (r) are introduced:

A5
f0

2pl

U

r
, B5

f0

2pl2 b, b5
1

r

dU

dr
, ~4!

j ~r!5 j sY cf0

8p2l3 52c2
U

r
, r5

r

l
.

@The field B in Eq. ~4! is normalized byHl , b5B/Hl ;
frequently the normalization byHcm5kHl /A2 is used,
whereHcm is the thermodynamical critical field.4,5#

The magnetic flux, confined inside the contour of the
dius r, is
c
-
f
ts
d

u

r,

s

-

F5E Bds5 R
r
Adl5f0~U1m!, U5U~r!, r5

r

l
.

Thus, the potentialU(r), in the normalization adopted
above, is related to the fluxF(r) by a simple formulaf
[F/f05U.

Because the magnetic flux through the vanishing cont
is zero, and the fieldBur 5R5H, the following boundary con-
ditions correspond to Eq.~2!:

Uur5050,
dU

dr U
r5r1

5h, ~5!

wherer15R/l, h5H/Hl , Hl5f0 /(2pl2).
As to the Eq.~3!, we shall take the usual boundary co

dition on the external surface:1 dc/drur5r1
50. The order

parameter at the center is maximal~if m50), thus, the fol-
lowing boundary conditions correspond to Eq.~3!:

cur5050,
dc

drU
r5r1

50. ~6!

The magnetic moment~or, magnetization! of the cylinder,
related to the unity volume, is

M

V
5

1

VE B2H

4p
dv5

Bav2H

4p
, ~7!

Bav5
1

VE B~r !dv5
1

S
F1 ,

whereBav is the field mean value inside the superconduct
F15F(R), S5pR2. In normalization ~4!, denoting b̄
5Bav /Hl , h5H/Hl , Ml5M /Hl , one finds from Eq.~7!:

4pMl5b̄2h, b̄5
2

r1
2 U1 , ~8!

U15U~r1!, r15
R

l
.

The difference of the Gibbs free energies of the system
superconducting and normal states,dG5Gs2Gn , can be
expressed through the magnetic moment:6

DG5Fs02
1

2
MH, ~9!

Fs05
Hcm

2

8p E Fc422c21j2S dc

dr D 2Gdv,

whereFs0 corresponds to the superconductor condensa
energy~see, also, Ref. 9!. Using Eq.~4!, one finds from Eq.
~9! the normalized expression

Dg5DGY S Hcm
2

8p
VD 5g02

8pMl

k2 h, ~10!

g05
2

r1
2E

0

r1
rdrFc422c21

1

k2 S dc

dr D 2G .
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Expressions~8!–~10! will be used later in Sec. III.
We remind the reader, that the field penetration deptl

and the coherence lengthj5l/k depend on temperature
Thus, the expressions above depend implicitly on temp
ture, and, formally, are valid for arbitrary values ofT.
~Though, the Ginzburg–Landau equations themselves are
plicable only in the limitT→Tc.

2,3,10!
It is appropriate here to make a comment on the itera

procedure we used to obtain the self-consistent solution
the system of equations~2!–~6!. First, some trial function
c(r) was chosen, and the solution forU(r) was found from
Eq. ~2!, with account of conditions~5!. Then, the function
U(r) was introduced into Eq.~3!, which was solved taking
into account the boundary conditions~6!. Further, Eq.~2!
was solved again, and all the procedure was repeated,
the functionsc(r) andU(r) ceased to change. In every ste
of our iteration procedure, instead of the two-sided bound
value conditions~5! and ~6!, we have used the one-side
Cauchy data to specify the solutions~see Ref. 11 for more
details!. In this manner~in accordance with the Cauchy the
rem!, for every value ofH we found the unique final func
tions c(r) andU(r), which constitute a real self-consiste
solution. Evidently, the solution, found in this way, is stab
because it is not sensitive to small perturbations, introdu
during iterations. However, some other solutions may e
~for instance, representing states with magnetic quan
numbersm.0, or states without central symmetry!, which
may have smaller Gibbs free energy, than in the statem
50. That would mean that the state withm50 may pass to
a different state~with m.0), and in this sense it would b
metastable. The accompanying physical changes in the
tem, in principle, may be observed experimentally, but t
topic requires special investigation~see, also, the discussio
in Sec. IV below!. The results of our calculations are pr
sented below.

III. THE NUMERICAL RESULTS

The functionsU(r) and c(r), found by the procedure
described above, were used to calculate the quantities~8!–
~10!, and other characteristics of the system.

In Fig. 1 we present, as functions ofh, the values of~a!
the magnetic moment,24pMl ; ~b! the difference of free
energiesDg; ~c! the magnetic field on the cylinder axis,b0;
~d! the order parameter on the axis,c0; ~e! the mean value of
the magnetic field inside the cylinder,b̄; ~f! the order param-
eter at the surface,c(r1) ~all the curves correspond to th
caser15R/l55 with k50.5; 1; 1.5; 2!.

First of all, consider Fig. 1(a), where two branches o
magnetization24pMl(h) are seen~these branches ar
shown by solid lines!. The initial linear part of the first
branch~at smallh) corresponds to the Meissner effect~the
field is expelled from the superconductor interior!. Whenh
increases, the magnetization begins to deviate from the lin
law ~simultaneously, the order parameter at the cylinder s
face,c15c(r1), gradually diminishes, and the external fie
partly penetrates into the specimen!. This Meissner branch
ends up with an abrupt fall of the magnetization curve ah
5hc1

(0) ~shown by the vertical broken line!, with the system
passing to the second branch~solid line at h.hc1

(0)). The
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order parameter value at the surfacec1 diminishes here by a
jump @Fig. 1~f!#. Whenh is increased further,h.hc1

(0) , the
magnetization,24pMl , diminishes gradually, and finally i
vanishes ath5hc2

(0) . As can be seen from Figs. 1~c! and 1~d!,

for h5hc2
(0) one has simultaneouslyc50 and b̄5h, which

means the transition to normal state.
The presence of two superconducting states~at h,hc1

(0)

and athc1
(0),h,hc2

(0)) can be seen on all the curves, depict
in Fig. 1. In the field intervalhc1

(0),h,hc2
(0) the supercon-

ducting state gradually degenerates withh increasing, and it
vanishes finally athc2

(0) via second-order phase transition~if
k.1/A2). If k diminishes, the interval between the field
Dhc5hc2

(0)2hc1
(0) , diminishes also, and fork51/A2 this in-

terval vanishes,Dhc50. For k,1/A2 there exists a single
critical field hc

(0) at which the superconductivity is destroye
via first-order phase transition.

Figure 2 illustrates the behavior of the solutionsc andb
of Eqs.~2!, ~3!, as functions of the coordinate,r5R/l, for
the caser15R/l55, k52. The curves1–5 correspond to
different values of the external fieldh5H/Hl : ~1! h51; ~2!
h51.6837;~3! h51.6838;~4! h52; ~5! h53.9. As can be
seen from Figs. 2~a! and 2~b!, with the field h increasing
from h51 ~the curve1! to h51.6837~the curve2!, the order
parameter at the surface,c15c(r1), gradually diminishes
@see also Fig. 1~f!!#, and the fieldb(r1) gradually increases
however, the valueb(0)'0 changes insignificantly. This re
gime corresponds to the Meissner screening, with exte
field expulsion from the specimen. In passing from the fie
h51.6837~the curve2! to h51.6838~the curve3! the sharp
change of the regime happens: the field at the surfaceb(r1)
remains practically the same, however, the field at the ce
of a superconductor,b(0), suffers a jump, i.e., the Meissne
regime is violated. In addition, near the superconductor s
face, a ring layer forms, into which the external field pe
etrates freely, without screening@Fig. 2~b!#. The order pa-
rameter in this layer is suppressed@Fig. 2~a!#, but it remains
finite near the cylinder axis. The superconducting screen
current in this layer is absent@Fig. 2~f!, curve4#.

When the fieldh is increased further, the outer ring laye
~or, the rim! gradually widens, with the order parameter r
maining finite only near the cylinder axis@Fig. 2~a!, the
curve5#. @Note, however, that the order parameter in the r
layer,c(r), is not exactly zero, but only exponentially sma
Thus, strictly speaking, this layer is not a normal metal.# At
h→hc2

(0)54.0063 the superconductivity finally vanishes v
second-order phase transition to normal state (c→0, b→h
everywhere!.

It is expedient to clarify the mathematical reason why t
solutions suffer transformation and pass from one branc
another. One can verify that ath→hc1

(0) the second derivative
c9(r) strongly increases in vicinity ofr5r1 @see, in par-
ticular, Fig. 2~e!, the curve2#. This is accompanied by a
quick rise of the first derivative,c8(r) @see Fig. 2~c!, the
curve 2#. At h.hc1

(0) the derivativec8 becomes positive a
the point r5r1 (c8ur5r1

.0), so now it is impossible to
satisfy the second of the boundary conditions~6!. In result,
the solutionc(r) transforms and passes from a branch, re
resented by the curves1, 2, to the branch, represented by th
curves3, 4. Simultaneously, the fieldb(r) displays the flat
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FIG. 1. ~a! The magnetic moment~or, magnetization! of the specimen,24pMl , as a function ofh5H/Hl . The lower critical fieldhc1

corresponds to the jump in magnetization curve. The upper critical fieldhc2 was found from the conditionc0,131025. ~b! The free energy
difference,Dg Eq. ~10!, as a function ofh. ~c! The magnetic field on the cylinder axisb0 as a function ofh. ~d! The value of the order

parameter on the cylinder axisc0 as a function ofh. ~e! The mean value of the field in the specimen,b̄5Bav /Hl Eq. ~7!, as a function of
h. ~f! The value of the order parameter at the cylinder surface,c1, as a function ofh. All the curves are calculated forr15R/l55; the
numerals at the curves are the values of the parameterk.
ut

ns
to
ith
ring layer @see Fig. 2~b!#, with no screening current flowing
inside, j (r)50 @see Fig. 2~b!, the curves3, 4#. In fact, the
existence of two branches of the magnetization,24pMl , is
a consequence of the nonlinearity of the system~2!–~6!.

The solutions behave analogously, if the parameterr1 is
increased,r15R/l.5. The solutions behavior at smallerr1
is illustrated in Fig. 3, which is analogous to Fig. 1, b
corresponds to the caser153, k52.
The dependencesc(r) and b(r) for R/l53, k52, are

shown in Figs. 4~a! and 4~b! for varioush ~the numerals at
the curves!. One can see that the process of the solutio
transformation and the system transfer from one branch
another proceeds now more smoothly, as compared w
Figs. 2~a! and 2~b!.
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FIG. 2. Depicted are, as a functions of the distance from the cylinder axis,r5r /l: ~a! the order parameter,c(r); ~b! the magnetic field,
b(r); ~c! the first derivative,c8; ~d! the potentialU ~or, the magnetic flux,f[F/f0); ~e! the second derivative,c9; ~f! the superconducting
current,j Eq. ~4!. All the curves are drawn forr15R/l55, k52. The numerals at the curves correspond to different values of the ext
field: ~1! h51; ~2! h51.6837;~3! h51.6838;~4! h52; ~5! h53.9.
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As can be seen from Figs. 1~a! and 2~a!, the type-I super-
conductors pass to normal state via first-order phase tra
tion ~if the radiusr1 is not too small!. Figure 5 illustrates the
behavior of the type-I superconductor~with k50.1) for r1
55, 7, 10, 20, 30~see numerals at the curves! at the critical
field valuesh5hc1

(0) , which preceed the jump to normal sta
@hc1

(0)50.0567 for r155; hc1
(0)50.0406 for r157; hc1

(0)

50.0286 for r1510; hc1
(0)50.0149 for r1520; hc1

(0)

50.0111 for r1530]. If the field h is increased by 1
31024, the functionc(r) vanishes by a jump~first-order
si-
phase transition to normal state!. ~However, in the cylinders
of very small radiuses,R/l,2, the order parameter vanishe
gradually, showing second-order phase transition.!

By comparing Figs. 1~a! and Fig. 3~a!, one can see tha
the magnetization jumps@represented in Fig. 1~a! by the bro-
ken vertical lines ath5hc1

(0)], are replaced~with r1 dimin-
ishing! by smooth dependences. In the case of smallr1
~when the abrupt jumps are not noticable!, one can define the
valuehc1 as a point of maximally quick fall of the magnet
zation curve@such a point is marked by an arrow in Fig. 3~a!;
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FIG. 3. The same, as in Fig. 1, but forr15R/l53. The lower critical field,hc1, was found as a point of maximal derivative of th
magnetization,dMl /dh @is shown by an arrow in~a!#. The upper critical field,hc2, was found from the conditionc0,131025.
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the valuehc2, as before, can be found from the conditio
c[0, b[h]. The dependenceshc1(r1 ,k), andhc2(r1 ,k),
determined in this manner, are presented in Figs. 6~a! and
6~c!.

As can be seen from Figs. 1~a! and 3~a!, the ‘‘tail’’ of
the magnetization,24pMl , lays within the field interval
Dh5hc22hc1. In Fig. 6~c! the width of the magnetization
tail Dh is depicted as a function ofr1 for different k.
For k<1/A2, the magnetization curve has no tail, so t
superconductor passes to the normal state via fi
 t-

order phase transition~by a jump!. ~However, as was
mentioned above, in the case of very small radiusesR
,2l and k!1, the transition to normal state is of secon
order.!

Note the universal character of the curves, depicted
Figs. 5 and 6. These curves differ only by the value ofk;
they describe superconductors with arbitrary values
parametersR, j0 , l0 , T, Tc @the dependence on these p
rameters are implicitly contained inHl , l, and r1 in the
normalization~4!#.
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FIG. 4. Shown are, as functions of the distance from the cylinder axis:~a! the order parameter,c(r); ~b! the magnetic field,b(r). All
the curves are depicted forr15R/l53, k52. The numerals at the curves are different values of the external field,h.
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IV. COMMENTS AND CONCLUSIONS

We would like to make some comments. The us
mechanism of the superconducting state destruction in
creasing magnetic fieldH is, that, after reaching the valu
H5Hc1, the localized quantum vortices are formed near
superconductor surface. Gradually, they are pushed into
bulk of superconductor, forming there the more and m
dense vortex lattice.2,3 When the field reaches the valueH
5Hc2, the vortex normal cores overlap, and the transition
normal state occurs.2,3

As was shown in the present paper, withH increasing, the
process of the magnetic field penetration into supercondu
can begin by forming a ring-shaped layer of finite widt
situated near the superconductor surface~a rim!. The order
parameter in this layer is strongly suppressed, with the fi
in the layer B(r )5H. This layer begins forming atH
5Hc1

(0) ~assuming no vortices inside the superconduct!.
With the field increasing,H.Hc1

(0) , the ring widens, and in
the fieldH5Hc2

(0)5Hc2 the superconductivity is totally sup
pressed and the transition to normal state occurs.
l
n-

e
he
e

o

or
,

ld

Thus, in the finite dimension superconductors, there e
two competitive mechanisms for the destruction of superc
ductivity in the increasing magnetic field: by forming qua
tized vortices, or by forming a ring layer with the suppress
order parameter~the rim-suppressed state!. The evidence of
the ring layer existence, possibly, may be found experim
tally, by measuring the magnetization curve with the help
a superconducting quantum interferometer, having a v
low threshold for registration of the onset of the magne
flux penetration into the superconductor. However, it is p
sible that the origination of the vortices in the bulk may st
before the superconductivity is destroyed by the formation
the ring layer. In that case, it would be more difficult to fin
the experimental evidence of its existence. In the pres
paper the main attention was devoted to a formal descrip
of the possible self-consistent solutions of the nonlinear s
tem of Ginzburg-Landau equations. The physical stability
the ring layer was not studied in detail, and no comparison
the Gibbs energies of the competitive states~with and with-
out vortices! is given. The corresponding tedious calcul
tions are in progress; the results, as well as a more deta
discussion of a possible connection with the experiment, w
be presented elsewhere.
FIG. 5. The dependences on the reduced coordinater/r1 of ~a! the order parameter,c; ~b! the magnetic fieldb. All the curves correspond
to k50.1. The numerals at the curves are the radiir1. The magnetic field is equal to the critical fieldh5hc1

(0) , at the point, preceding the
first-order jump to the normal state.~The values ofh5hc1

(0) for eachr1 are given in the text.!



12 300 PRB 61G. F. ZHARKOV, V. G. ZHARKOV, AND A. YU. ZVETKOV
FIG. 6. ~a! The lower critical field,hc1 /k, as a function ofr15R/l. ~b! The upper critical field,hc2 /k2, as a function ofr15R/l. The
numerals at the curves are the values of the parameterk. ~c! The width of the magnetization tail,Dh5hc22hc1, as a function ofr1

5R/l. The numerals at the curves are the values of the parameterk.
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In conclusion, we would like to elucidate, why in th
preceding theoretical papers on this problem there is no m
tion of the possible existence of the rim-suppressed state
principle, it was possible to arrive at such a conclusion i
mediately, after the Ginzburg-Landau theory w
formulated.1 However, as was mentioned above, the ri
layer is a consequence of the nonlinearity of Eqs.~2!–~6!. To
find the self-consistent solution of these equations, it is n
essary to carry out rather cumbersome calculations. In on
the papers on this subject, Fink and Presson@Ref. 4~a!# have
found the numerical solution of the system~2!–~6! ~written
in different notations!, using the analog computer, whic
lead to rather pure computation accuracy~about 2%!. They
have reported one particular solution@for the casem50,
R/l53, k51; see Fig. 3 in Ref. 4~a!#, from which one may
guess that the authors were unable to trace the solution
case of small order parameter values,c1, and thus, were
unable to find the corresponding critical fieldHc1

(0) .
In recent paper, Moshchalkov, Qiu, and Bruyndonc4

studied the behavior of the finite dimension superconduc
on the base of Eqs.~2!–~6!. They have found the temeratur
dependence of the cylinder magnetic moment~for m50) in
n-
In
-

c-
of

a

rs

one particular case@R5A3l(0), k55]. Their algorithm of
numerical calculations was not described, but they have
analyzed the dependenceM (H,T,k,R) in detail and have
not searched for the critical fieldHc1

(0) . One particular ex-
ample of the magnetization dependenceM (H) ~for m50)
may also be found in the paper of Deoet al.4 We do not
know of other papers where the behavior of the vortex-f
finite radius cylinder was studied on the base of se
consistent solution of the nonlinear system of Ginzbu
Landau equations~2!–~6!. Note also, in this connection, Re
12, where the case of a vortex-free semi-infinite slab, pla
in an external magnetic field of small magnitude,H!Hc ,
was considered within the perturbation approach, and so
evidence of a nonlinear behavior of the magnetization w
found.
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