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Ginzburg-Landau calculations for a superconducting cylinder in a magnetic field
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Self-consistent solutions of the Ginzburg-Landau system of nonlinear equations, which describe the behav-
ior of the order parametet and the magnetic-field distributid® in a long superconducting cylinder of finite
radiusR in external magnetic fielt, provided that, there are no vortices inside the superconductor, are studied
by using numerical method. The lower and upper critical fields of the cylind,andH'3, are found as
functions of the radiu®R, temperaturel, and parametek of the Ginzburg-Landau theory. For type-l super-
conductors one had(9=H); for type-Il superconductors one hey<H'Y . In small fieldsH<H{J the
superconductor is in stable Meissner phagith ¢/~1 andB~0). It is found, that for type-Il superconductors
the state withy~ 1 is unstable in the fieldsi>H(9, and the superconductor passes to a new stable state. In
this state the external field begins to penetrate freely into a superconductor in a form of a finite width ring,
which is situated near the surface of the cylinder, where the order parameter is strongly supfitessed
rim-suppressed stateThe field HE‘P differs from the lower critical fieldH.;, at which the field begins to
penetrate into the bulk superconductor in a form of vortices. When theHiatdincreased further, this ring
layer (or, the rim widens, while the order parameter remaines finige#£Q) only near the center of the
cylinder. In the fieldH =Hf§) the order parameter finally vanishes everywhere and the metal passes into the
normal state. FoR>\ the fieldH!Y coincides with the upper critical field,, at which the mixed vortex
state terminates. The intervals Bf T, and x, where the rim-suppressed state can exist, are found.

. INTRODUCTION Bo=B(0)<H. WhenH is increased further, the rim layer
. ] ] ‘widens, the valuey, gradually diminishes, and the field
_ Th_e behavior of small size _superconductors ina r_nagnetlg(r)_”_l everywhere. AH= H(coz) the final transition to the
I_leld(;I in the scppejzs of the n(zjr_lllge_ar system of theb(ls_lnz_burg-normm state takes place, withr)=0 andB(r)=H.
andau equations,was studied in numerous publications o upper critical fieIdH=H(cg) (for R>\, where \
(see, for instance, Refs. 2 and. Recently, much of the =&, & is the coherence lengtitoincides with the field
attention was devoted also to the finite-size superconductorﬁ‘(v); B 2 . .

. : : . o =He=do/(27wE?), which marks the endpoint of the
of different geometriessee, for instance, the theoretical ¢ ed state of a bulk superconduciThis is natural. be-
paperé). The main attention in these papers was paid to thd"™X Uik sup uctor.This i ural, .

. . . cause bhoth these fields correspond to the normal state, with
case, when the magnetic vortex, carrymg, flux quanta, is 0. The | itical fieldH =H(© for R\
rested in the center of superconducting cylindleerem=0, ¢—0. The ower Cr' Ica 'e, Sl (eyen 0(5) )
1,2, ..., do=hcl2e is the flux quanturn Some of the re- d0€S not_l coincide  with  the field Hey'=He
sults, obtained in Ref. 4, were used to explain some anoma?Hc‘(\/E) (Inx+0.08) (the field H,; marks the begin-
lies in the behavior of small size superconductors, placed ifing Of vortex penefration into massive type-Il
the magnetic field, which were detected receftipn the superconductdr). This is also natural, because we consider
present paper the vortex-free Meissner state-Q) is stud- vortex-free stateri=0), when vortices are forbidden. The

ied in more detail, as compared to Ref. 4. fieldsH'9 andH'9 are found below as functions af Rand
The main result of the present investigation is, that for al. If x>1/1/2, one haH{Y>H(Y; if x=1/2, both fields

superconducting cylinder of finite radi®placed in an ex- coincide:HY=H(9: if xk<1/y2, there exists a single criti-

ternal magnetic fielH, two characteristic fields exigtf «  cal field, H®. For R>\ the field HY—H,
>1/2): the lower,H=H{, and the upperd=H) [the = g,/(2m\2\¢, whereH, is the superconductor thermody-
upper index(0) denotes the vortex-free state, with=0]. If ~ namic critical field>® Some other characteristics of the sys-
the external field is smalH<H=HJ, theny(r)~1 ev-  tem are found as well: the magnetic momémt, magnetiza-
erywhere, the internal magnetic fiell is also small(this  tion) of the cylinder, its free energy, the order parameter and
corresponds to the Meissner state, with almost total expulmagnetic field values on the cylinder axis, the mean field
sion of the external field from the superconductor intgrior value in the speciment, the width of the magnetization curve
WhenH increases and reaches the vakie H9), a sharp talil, etc.(Note that the numeric algorithm, used in the present
reconstruction of the order parameter occurs: its value on thpaper to obtain self-consistent solutions of the nonlinear sys-
axis, ¢, continues to be very close to unity, but the functiontem of the Ginzburg-Landau equations, does not allow us to
¥ (r) suffers strong suppression in a ring-shaped layer, situstudy the unstable “supercooled” and ‘“superheated”
ated near the outer surface of the cylinddrs may be re- state$~8 which are characteristic for type-l superconductors
ferred to as a rim-suppressed sjaféhe magnetic field inside with «<1/\2 and require different methods of investiga-
this layer is equal to the external fiett] while at the center tion.)
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The paper is organized as follows. In Sec. Il, the basic r
equations of the problem are written, and the method of find- ® = f Bds= %AC”: do(U+m), U=U(p), p=1+.
ing the self-consistent solution of the nonlinear system of '
equations is briefly described. Section Il contains the resultThus, the potentialU(p), in the normalization adopted
of numerical calculations. In Sec. IV, the discussion andabove, is related to the flusb(p) by a simple formulag
comparison with the previous publications on this problem=®/¢$,=U.

are given. Because the magnetic flux through the vanishing contour
is zero, and the fiel®|,_g=H, the following boundary con-
[l. THE SETTING OF THE PROBLEM ditions correspond to Ed2):
Consider the long superconducting cylinder of radRis du
the external magnetic field, which is parallel to the cylin- U[,-0=0, L (5)
der element. The basic system of the Ginzburg-Landau P=py
equat|0n§ is of the form wherep;=RIN, h=H/H, , H,= ¢o/(27\2).
. Ao W b As to the Eq.(3), we shall take the usual boundary con-
rotrotA=—ijs, _jszv(z_ov@_A), dition on the external surfaéedz,b/dp|p:p1=0. The order
c c T

parameter at the center is maxinidl m=0), thus, the fol-
lowing boundary conditions correspond to E§):

de

2 1

b+ ?( y—¢?)=0, (1)

Plp-0=0, —
p= dp

2
V22— | VO— —A
bo
where A is the vector potential of the magnetic fiel@® (
=rotA), js is the current density inside the superconductor, _ o _
\ is the field penetration deptlg, is the correlation length, The magnetic momerfor, magnetizationof the cylinder,
\= k¢. The order parameter, in a general case, is written agelated to the unity volume, is
¥ =ye'® wherey is the modulus an® is the phase of the

=0. (6)

p=py

order parameter. From the single valuednes¥othe con- M: lf B—H dv:Bav_H , )
dition follows V V) 47 4
1 1
iVGdI:ZWm, Bavzvf B(r)dv=g®y,

where the contou€ embraces the vortex axis) is an inte- whereB,, is the field mean value inside the superconductor,
ger (the topological invariant which shows how many vor- &,=®(R), S==R? In normalization (4), denoting b
tices are present inside the contdurWe consider the case =B, /H,, h=H/H,, M,=M/H, , one finds from Eq(7):
m=0 and sei® =0, so the functionV'= ¢ is real.

In the cylidrical system of coordinatese,z, with the z — — 2
axis directed along the cylinder elemdmthen the vector- 4mM\=b—h, b= ;’ful’ (8)
potential has only one compone#t=e,A(r)], these equa-
tions may be written in the dimensionless form
U;=U(py), Plzx-

dUu 1du
——————¢?U=0, 2 . . . .
dp® p dp The difference of the Gibbs free energies of the system in
) ) superconducting and normal state¥s=G,—G,, can be
d¢y 1dy s U° expressed through the magnetic monfent:
T2t -tk (=) - — ¢=0. 3
dp® pdp p 1
Here, instead of the dimensioned potentalfield B and AG=]-'50—EMH, 9
current j, the dimensionless quantitidd(p), b(p), and
j(p) are introduced: 2 dy\2
f=ﬂj 4 2yP+ 2—) do,
S U g b 1du g ) |V A ) |
27\ p’ 27\ pdp’ where F, corresponds to the superconductor condensation
energy(see, also, Ref.)9Using Eq.(4), one finds from Eq.
o Coo LU T (9) the normalized expression
iP=is /) g-nz=—¥"—, p=y.
p 2
. . . . Hem 8mM\
[The field B in Eq. (4) is normalized byH,, b=B/H,; Ag=AG oy V =go—7h, (10

frequently the normalization byH.,=«H,/\2 is used,

whereH ., is the thermodynamical critical fieftf] 2 (o 1 /dy\?
The magnetic flux, confined inside the contour of the ra- 90:—2J' pdp[(//4—21//2+ —2(—) }

diusr, is p1Jo «“\dp
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Expressiong8)—(10) will be used later in Sec. Ill. order parameter value at the surfagediminishes here by a
We remind the reader, that the field penetration depth jump [Fig. 1(f)]. Whenh is increased furthehy>h{?, the
and the coherence lengif=\/x depend on temperature. magnetization~47M, , diminishes gradually, and finally it

Thus, the expressions above depend implicitly on temperazgnishes ah= hQ . As can be seen from Figs(d) and Xd),

ture, and, formally, are valid for arbitrary values of . — .
(Though, the Ginzgurg—Landau equations tf{emselves are a&?r h= h(cg) one hgs simultaneously=0 andb=h, which
plicable only in the limitT—T..2319 eans the transition to normal state. _ o
It is appropriate here to make a comment on the iteration 1he presence of two superconducting stafsh<<hg;
procedure we used to obtain the self-consistent solution ond athly<h<h() can be seen on all the curves, depicted
the system of equation&)—(6). First, some trial function in Fig. 1. In the field intervah®<h<h(9 the supercon-
¥(p) was chosen, and the solution f0(p) was found from  ducting state gradually degenerates witincreasing, and it
Eg. (2), with account of conditiong5). Then, the function  vanishes finally ah!y via second-order phase transitic

U(p) was introduced into Eq3), which was solved taking > 1/,2). If « diminishes, the interval between the fields,
into account thg boundary conditiori6). Further, Eq.(2) he=h©®—h©® diminishes also, and fot=1/y2 this in-
was solved again, and all the procedure was repeated, unPervaI vanishesAh,=0. For k<1/\2 there exists a single
the functionsy/(p) andU(p) ceased to change. In every step .. . () .' .

of our iteration procedure, instead of the two-sided boundarzirg';:i?sltﬁgg:rc pﬁgsv(vahtlﬁ:ahngi\t(iaoiuperconduct|V|ty is destroyed
\(l:iﬂghsoggtlgotgsgezgj t(ﬁza gz)(lautri]g(\;; stgf trlli %r;el:nscl)(:gd Figure 2 illustrates the behavior of the solutiopsandb
detaily. In this mannefin accordance with the Cauchy theo- Orf Eqs.(2),_(3)} as funct_|02ns Ohf the coordinatp=R/\, gor
rem), for every value ofH we found the unique final func- L'fefeigﬁ?le; F;s)\o_f 'tsr{eKe_te.rr;ral?’grlnjji/aslllgs'c(olr)rﬁsfi'n(z;o
tions ¢(p) andU(p), which constitute a real self-consistent &' Varues of Xt e T -4
solution. Evidently, the solution, found in this way, is stable,h_ 1'6837’(3.) h=1.6838;(4) h—'2, (5) h._3'9' .AS can be
because it is not sensitive to small perturbations, introduce§€€n from Figs. @ and 2b), with the field h increasing

during iterations. However, some other solutions may exisfom h=1 (the curvel) to h=1.6837(the curve), Fhe, C?rder
(for instance, representing states with magnetic quanturff@rameter at the surfacey=y(p,), gradually diminishes

numbersm>0, or states without central symmetryvhich  LS€€ also Fig. ()], and the fielcb(p,) gradually increases,
may have smaller Gibbs free energy, than in the state h_owever, the valug(0)~0 cha_mges |n5|gn|f|_cantly._ This re-
=0. That would mean that the state with=0 may pass to gime corresponds to the Me_lssner screening, with exte_rnal
a different statgwith m>0), and in this sense it would be field expulsion from the specimen. In passing from the field
metastable. The accompanying physical changes in the sy8=1.6837(the curve2) to h=1.6838(the curve3) the sharp

tem, in principle, may be observed experimentally, but thischange of the regime happens: the field at the suripe)
topic requires special investigatidsee, also, the discussion '€mMmains practically the same, however, the field at the center

in Sec. IV below. The results of our calculations are pre- ©f @ superconductoh(0), suffers a jump, i.e., the Meissner
sented below. regime is violated. In addition, near the superconductor sur-

face, a ring layer forms, into which the external field pen-
etrates freely, without screeniririg. 2(b)]. The order pa-
rameter in this layer is suppressiglg. 2(@)], but it remains
finite near the cylinder axis. The superconducting screening
The functionsU(p) and ¢(p), found by the procedure current in this layer is absefFig. 2(f), curve4].
described above, were used to calculate the quantiBes When the fieldh is increased further, the outer ring layer
(10), and other characteristics of the system. (or, the rim gradually widens, with the order parameter re-
In Fig. 1 we present, as functions bf the values ofa)  maining finite only near the cylinder axig=ig. 2(a), the
the magnetic moment;-47M, ; (b) the difference of free curve5]. [Note, however, that the order parameter in the ring
energiesAg; (c) the magnetic field on the cylinder axisy; layer, /(p), is not exactly zero, but only exponentially small.
(d) the order parameter on the axig); (€) the mean value of Thus, strictly speaking, this layer is not a normal métat.
the magnetic field inside the cylinddr, (f) the order param- h—h{?=4.0063 the superconductivity finally vanishes via
eter at the surfacej(p,) (all the curves correspond to the second-order phase transition to normal state-0, b—h
casep;=R/\=5 with k=0.5; 1; 1.5; 2. everywherg. . .
First of all, consider Fig. &), where two branches of Itis expedient to clarify the mathematical reason why the
magnetization—47M, (h) are seen(these branches are Solutions suffer transformation and pass from one branch to

shown by solid lines The initial linear part of the first another. One can verify that t-h(} the second derivative
branch(at smallh) corresponds to the Meissner effétte ~ #"(p) strongly increases in vicinity op=p; [see, in par-
field is expelled from the superconductor inteyiovhenh  ticular, Fig. 2e), the curve2]. This is accompanied by a
increases, the magnetization begins to deviate from the lineduick rise of the first derivativey’(p) [see Fig. Zc), the
law (simultaneously, the order parameter at the cylinder surcurve 2]. At h>h'Q the derivativeyy’ becomes positive at
face,y; = (p,), gradually diminishes, and the external field the pointp=p; (df’|p:pl>0), S0 now it is impossible to
partly penetrates into the specimeiThis Meissner branch satisfy the second of the boundary conditidfs In result,
ends up with an abrupt fall of the magnetization curvéat the solutiony(p) transforms and passes from a branch, rep-
= hfﬂ) (shown by the vertical broken linewith the system resented by the curves 2, to the branch, represented by the
passing to the second brancsolid line ath>h£‘i)). The  curves3, 4 Simultaneously, the fielth(p) displays the flat

Ill. THE NUMERICAL RESULTS
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FIG. 1. (8 The magnetic momergbr, magnetizatiohof the specimen;-47M, , as a function oh=H/H, . The lower critical fieldh;,
corresponds to the jump in magnetization curve. The upper criticaltiglas found from the conditiogiy<<1x 10~°. (b) The free energy
difference,Ag Eq. (10), as a function oh. (c) The magnetic field on the cylinder axig as a function oh. (d) The value of the order
parameter on the cylinder axig as a function oh. (e) The mean value of the field in the specimbr; B, /H, Eq.(7), as a function of
h. (f) The value of the order parameter at the cylinder surfggeas a function oh. All the curves are calculated fgr,=R/\=5; the
numerals at the curves are the values of the parameter

ring layer[see Fig. 20)], with no screening current flowing corresponds to the cagg=3, k=2.

inside, j(p)=0 [see Fig. &), the curves3, 4]. In fact, the The dependenceg(p) andb(p) for RIN=3, k=2, are

existence of two branches of the magnetizatied, M, , is  shown in Figs. 4a) and 4b) for varioush (the numerals at

a consequence of the nonlinearity of the syst@m-(6). the curves One can see that the process of the solutions
The solutions behave analogously, if the parampteis  transformation and the system transfer from one branch to

increasedp,=R/\>5. The solutions behavior at smallef ~ another proceeds now more smoothly, as compared with

is illustrated in Fig. 3, which is analogous to Fig. 1, but Figs. 2a) and 2b).
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FIG. 2. Depicted are, as a functions of the distance from the cylinder@xis/\: (a) the order paramete(p); (b) the magnetic field,
b(p); (c) the first derivativey'; (d) the potentialJ (or, the magnetic fluxp=®/ ¢,); (e) the second derivative}”; (f) the superconducting
current,j Eq. (4). All the curves are drawn fgs, =R/A =5, k=2. The numerals at the curves correspond to different values of the external
field: (1) h=1; (2) h=1.6837;(3) h=1.6838;(4) h=2; (5) h=3.9.

As can be seen from Figs(a) and Za), the type-l super- phase transition to normal statéHowever, in the cylinders
conductors pass to normal state via first-order phase transof very small radiuses}/A <2, the order parameter vanishes
tion (if the radiusp, is not too small. Figure 5 illustrates the gradually, showing second-order phase transition.
behavior of the type-I superconduct@ith «=0.1) for p; By comparing Figs. (&) and Fig. 3a), one can see that
=5, 7, 10, 20, 30see numerals at the curyest the critical  the magnetization jumgsepresented in Fig.(&) by the bro-
field valuesh=h{y, which preceed the jump to normal state ken vertical lines ah=h(9], are replacedwith p, dimin-
[h{Y=0.0567 for p;=5; h{P=0.0406 for py=7; h{} ishing by smooth dependences. In the case of srpall
=0.0286 for p;=10; h{¥=0.0149 for p;=20; h{Y  (when the abrupt jumps are not noticablene can define the
=0.0111 for p;=30]. If the field h is increased by 1 valueh;; as a point of maximally quick fall of the magneti-
X104, the functiony(p) vanishes by a jumgfirst-order  zation curvgsuch a point is marked by an arrow in FigaB
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FIG. 3. The same, as in Fig. 1, but fpf=R/A=3. The lower critical fieldh.,, was found as a point of maximal derivative of the
magnetizationdM, /dh [is shown by an arrow irfa)]. The upper critical fieldh,,, was found from the conditiogrg<<1x10"°.

the valueh.,, as before, can be found from the conditionsorder phase transitiolby a jump. (However, as was
=0, b=h]. The dependencés.,(p1,«), andh.,(pq,«), mentioned above, in the case of very small radiuges,
determined in this manner, are presented in Figa) &nd <2\ and k<1, the transition to normal state is of second
6(c). order)

As can be seen from Figs(a) and 3a), the “tail” of Note the universal character of the curves, depicted in
the magnetization-47M, , lays within the field interval Figs. 5 and 6. These curves differ only by the valuexof
Ah=he—h¢y. In Fig. 6c) the width of the magnetization they describe superconductors with arbitrary values of
tail Ah is depicted as a function op, for different «. parametersRR, &,, \g, T, T, [the dependence on these pa-
For k<1/\2, the magnetization curve has no tail, so therameters are implicitly contained iH,, \, and p; in the
superconductor passes to the normal state via firstaormalization(4)].
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FIG. 4. Shown are, as functions of the distance from the cylinder &ishe order parameter;(p); (b) the magnetic fieldb(p). All
the curves are depicted fpr=R/\=3, k=2. The numerals at the curves are different values of the external liield,

IV. COMMENTS AND CONCLUSIONS Thus, in the finite dimension superconductors, there exist
two competitive mechanisms for the destruction of supercon-
We would like to make some comments. The usualductivity in the increasing magnetic field: by forming quan-
mechanism of the superconducting state destruction in intiZz€d vortices, or by forming a ring layer with the suppressed
creasing magnetic fiel#i is, that, after reaching the value Order parametefthe rim-suppressed statehe evidence of
H=H,,, the localized quantum vortices are formed near th the ring layer existence, possibly, may be found experimen-

i G’\[ally, by measuring the magnetization curve with the help of
superconductor surface. Gradually, they are pushed into t superconducting quantum interferometer, having a very

o . Sow threshold for registration of the onset of the magnetic
dense vortex lattict” When the field reaches the valitt  flux penetration into the superconductor. However, it is pos-
=H,,, the vortex normal cores overlap, and the transition tosible that the origination of the vortices in the bulk may start
normal state occurs® before the superconductivity is destroyed by the formation of
As was shown in the present paper, withncreasing, the the ring layer. In that case, it would be more difficult to find
process of the magnetic field penetration into superconductdhe experimental evidence of its existence. In the present
can begin by forming a ring-shaped layer of finite width, paper the main attention was devoted to a formal description
situated near the superconductor surfé@eim). The order  of the possible self-consistent solutions of the nonlinear sys-
parameter in this layer is strongly suppressed, with the fieldem of Ginzburg-Landau equations. The physical stability of
in the layer B(r)=H. This layer begins forming ati the riqg layer was not studied in dgt.ail, and no comparison of
—H© (assuming no vortices inside the supercondyctor e Gibbs energies of the competitive stateh and with-
With the field increasingH>H(c(i), the ring widens, and in out vortice$ is given. The corresponding tedious calcula-

, o tions are in progress; the results, as well as a more detailed
—HO— - ) o ) . . .
the fieldH=Hc;'=H,, .the superconductivity is totally sup discussion of a possible connection with the experiment, will
pressed and the transition to normal state occurs. be presented elsewhere.

1.00 2030 406,
v 10
0.99 b
’ 0.04
0.981
\
0.97/
p,=S 0.02
0.96 (a)
0.95 — ———  0.00 , = . ;
00 02 04 06 08 10 00 02 04 06 08 1.0
p/p, p/p,

FIG. 5. The dependences on the reduced coordpatgof (a) the order parametey; (b) the magnetic fieldb. All the curves correspond
to k=0.1. The numerals at the curves are the rpgiiThe magnetic field is equal to the critical fidid= h(c(i), at the point, preceding the
first-order jump to the normal stat€The values oh:hg‘i) for eachp, are given in the text.
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FIG. 6. (a) The lower critical fieldh,, /«, as a function op;=R/\. (b) The upper critical fieldh,, /«?, as a function op;=R/\. The
numerals at the curves are the values of the parametéc) The width of the magnetization tailhh=h.,—h.,, as a function ofp,
=R/\. The numerals at the curves are the values of the parameter

In conclusion, we would like to elucidate, why in the one particular casfR= 3\ (0), x=5]. Their algorithm of
preceding theoretical papers on this problem there is no memumerical calculations was not described, but they have not
tion of the possible existence of the rim-suppressed state. lanalyzed the dependend¢(H,T,«,R) in detail and have
principle, it was possible to arrive at such a conclusion im-not searched for the critical fieltl!J). One particular ex-
mediately, after the Ginzburg-Landau theory wasample of the magnetization dependerdéH) (for m=0)
formulated® However, as was mentioned above, the riNgmay also be found in the paper of Ded al* We do not
layer is a consequence of the nonlinearity of E@5-(6). To  know of other papers where the behavior of the vortex-free
find the self-consistent solution of these equations, it is necfinite radius cylinder was studied on the base of self-
essary to carry out rather cumbersome calculations. In one @onsistent solution of the nonlinear system of Ginzburg-
the papers on this subject, Fink and Preds®ef. 4a)] have | andau equationé&)—(6). Note also, in this connection, Ref.
found the numerical solution of the systé@)—(6) (written 12 where the case of a vortex-free semi-infinite slab, placed
in different notationy using the analog computer, which jn an external magnetic field of small magnitudés<H.,
lead to rather pure computation accurdepout 2%. They  was considered within the perturbation approach, and some
have reported one particular soluti¢for the casem=0,  evidence of a nonlinear behavior of the magnetization was
R/N=3, k=1, see Fig. 3 in Ref.@)], from which one may found.
guess that the authors were unable to trace the solution in a
case of small order parameter valugs, and thus, were
unable to find the corresponding critical fietf} .

In recent paper, Moshchalkov, Qiu, and Bruynddhcx  We are grateful to V. L. Ginzburg for the interest in this
studied the behavior of the finite dimension superconductorsvork and valuable discussions. This work was supported
on the base of Eq$2)—(6). They have found the temerature through the Grant RFFN 97-02-17545 and partly by the
dependence of the cylinder magnetic mom@ot m=0) in  Scientific Committee GNTI 96041.
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