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Localized modes in finite and phase-inhomogeneous Josephson tunnel junctions
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We have investigated the spectrum of localized modes in both finite and phase inhomogeneous long one-
dimensional Josephson junctions in the presence of an external magnetic field. For finite junctions these
excitations correspond to evanescent waves localized near the edges. Both the frequency and the characteristic
decay lengths depend on the magnetic field. In particular, a different behavior is expected for the Meissner state
and the mixed state in which wholesale penetration of Josephson vortices occurs. The related problem of the
spectrum of modes localized near phase inhomogeneities occurring well inside a long junction has been also
tackled. This problem is relevant to the case in which Abrikosov vortices penetrate the electrodes and become
pinned near the junction plane.

I. INTRODUCTION

sin (X
Aol = 2P, 2
There have been numerous studidsof the electrody- A3
namics of Josephson junctions with various geometries, such
as those with infinite, semi-infinite, and finite widths, with a 92| COSPo(X)~
view to studying the collective modes in these systems. This A== —leixy )= ——F—eixy,). (3
problem is of great importance vis a vis its implications on Co It A

the behavior of the current voltage characteristic. Recently, ) ] }

considerable interest has developed in phase inhomogeneous | '€Se equations alongside the appropriate boundary con-
junctions®~2% Hence we discuss here the case of a long Joditions required by the presence of an externally applied
sephson tunnel junction with phase inhomogeneity, and ednagnetic field, determine the collective modes of the junc-
tablish the existence and the physical properties of small anfion: In Sec. Il we review the case of an infinite junction and
plitude localized modes analogous to the surface <fitest set the stage for the description of the modes of semi-infinite
occur in the semi-infinite junctions. In order to describe ourSyStéms. The latter are explicitly discussed in Sec. Ill where

results we found it necessary to reexamine and carefully dis-
cuss the physics for the case of infinite and semi-infinite
junctions. The static phase solutions, the spectrum of small A z
oscillations and the associated decay lengths of the wave
functions are presented in both the Meissner and the mixed
states.

We consider a long Josephson junction consisting of two Y,
superconducting electrodes of semi-infinite cross section
with a thin dielectric interface of thicknesklying in the xy
plane. The geometry of the situation is depicted in Fig. 1. {>
The fundamental equation for the phase dynamits'fs o

Iy

1 Pe(x,y,t)  sine(xy,t)
Ap(xy,t)—— =
e(X,y,t) 2 e "2

@

where co=c+/d/el, is the velocity of the Swihart waves
and as usual ;= \/ﬁC2/87TejC| is the Josephson penetration
depth. Herd, which is the thickness of the region containing
the magnetic fields, is given dy=2\, +d, where\ is the
London penetration depth. I . FIG. 1. Schematic of a semi-infinite Josephson junction in
To study the dynamics of small phase oscillations it is_, . . : . N

. ; which the interface with vacuum is thgz plane atx=0. The
c_o_nvenlen_t to express the Josephson phase in terms_ of t@?stem is assumed to extend to infinity along the positiesis. A
Emte static componenipg(x) plus a~small perturbation magnetic field is applied along thg direction and even in the
¢1(x,y,t). The substitutionp= @o(X) + @1(X,y,t), leads to  Meissner state will modify the Josephson phase near the interface.
the following equations for the static phase and the ampliin the mixed state a periodic structure of Josephson vortices will be
tude of the small oscillations: present forx=0.
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the approach of Ref. 4 is extended to extract and characteriz 0 2
the behavior of the decay lengths with the magnetic field. In

Sec. IV, we consider the problem of a phase impurity in a®
long Josephson junction. The final section presents a com
parison of the different geometries and a physical discussior’
of the results.

1 Meissner state

II. COLLECTIVE MODES IN INFINITE JOSEPHSON
JUNCTIONS

Mixed state

The long wavelength spectrum for the small phase oscil-*
lations in a long Josephson tunnel junction was obtained by ;
Kulik.2*8 Kulik's results were generalized for all wave- |
lengths by Lebwohl and Stephfeand subsequently by Fetter !
and Stephen. 1 oq, 2 3 4 5

The Meissner state solution of EER) is simply ¢q(X)
=0, while the corresponding solution for the mixed state is FIG. 2. Collective spectrum for an infinite junction. Here the

2

q

given by reduced frequenc§)?= w? w>—k? is plotted vs the square of the
reduced wave vectar along thex axis. The continuous upper curve

[ po(X)— X corresponds to the Meissner state. The gapped lower curve corre-

3'”( ) = Sn(; ; 7) : (4)  sponds to the mixed state for an external magnetic field correspond-

ing to y=2"%2, where the parametey is defined in the text.

wheresn is a Jacobian elliptic function with the quantity

as its modulu$®? In view of the periodic properties of the This spectrum is depicted in Fig. @pper curvé where the

functionsn, this solution describes a line of Josephson vorreduced frequenc)?= w?/ w35—k? is plotted againsg?.

tices with lattice spacing given ky=2yK(y)\; along thex As the field penetrates the junctigire., the mixed staje

axis. HereK(y) is the complete elliptic integral of first the situation is far more complex as, for the present geom-

kind.?? Here v introduces a suitable parametrization for theetry, the field takes the form of a periodic one dimensional

induction and is related to the externally applied fieldia  |attice of Josephson vortices. While Kulikmited his analy-

the relation H/H,;=4E(y)/my, where H;=¢o/4m\;\,  sis to a small wave vector expansion of 8, Lebwohl and

with ¢ the quantum of flux, is a characteristic field scale of Stephef established for this case the exact solution for the

the junction. In particulary—0 corresponds to the infinite phase amplitude in the form

field limit (a—0), while the limit y—1 corresponds to the

bulk lower critical field value of Hg=4H,/@ _ igx

=2¢o/m>\ N5, as the vortex separatiandiverges. #1(X) =Ug(x)E, (19
The next step is to make the following substitution into

the equation for the small oscillations: where theu,(x) are here suitable Bloch functions, and full

advantage is taken of the double periodicity of the elliptic
functions?®?? Here q is the dimensionless wave vector re-

- — iky—iwt
100y, 1) = @100, ® scaled by the Josephson penetration depth.
which leads to In this case the spectrum is comprised of two bands sepa-
rated by the only gap located gf,= = w/a= £ w/2yK(vy).
d?  ? ) COS@q(X) The lower band can be described in terms of Josephson vor-
PR P1(X)= T%(X)- (6)  tex oscillations, while the upper one can be seen to corre-
0 J spond to plasma modes.
At this point it is convenient to recast Eq&) and (6) in The lower branclithe vortex oscillationsis described by

dimensionless form. Witlx/ ;—x, andkx ;—k, we obtain @ Bloch function given by

Ao(X)=sin@o(x) (7) [ X i 7TXq }
+ T
d 329K 2K
an 10 = 4 (717)( (y) , 11
2 2 -
L k| p=coseeax),  (®) A[ZVK(” '

h h introduced the J h | ¢ where the d;'s are elliptic theta functions andr
where we have introduced the Josephson plasma requenc:yiK,/K(y)’ with K'=K (') and y’ = y1— 2. The Bloch

w3= Col)\J . f . A X A
) . , . unction depends om parametrically via the variablg,,
It is clear that in the case of no field penetratiae., the which is determined via the relation

Meissner statepy(x) vanishes everywhere and the spectrum
of the collective modes is simply given by
E(y)

1
w?=w3(1+Kk2+q?). 9) q:;[E(Xq'V'VXq(l—@
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whereE(xq,7v") is the incomplete Jacobi elliptic integral of
the second kind®#?As x,, varies between 0 arid’, g varies
between 0 andj,,.

The dispersion relation corresponding to this lower
branch is found to be given by

2 y'? 2 ,
Y

w?=c} . (13)

In the same way, the plasma oscillations have a Bloch 4|

function given by

i

ﬁ“[z;tzy) TRy X))
Ug(X) = e , (19
194{274((7/) 4
where now, forq=q,,
1 , E(y)
q_Qm_; _E(XqJ’ )+Xq(l_m)
+dn(xq,7’)8n(xq,7’) 15
cn(xq.v') ’

where the
appear’
The corresponding dispersion is given by

remaining Jacobian elliptic functions now

1 dn®(xq.v")

¥ c?(xq.7")

(16)

w?= CS{ K%+
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FIG. 3. The spatial variation of the static phase in the Meissner
regime for a surface localized modk=0.5).

whereH,=H/H,, andH, was defined below Edq4). Fur-
thermore, since we seek evanescent wave solutions, we also
have ¢4()=0.

The Meissner state solution of E() which corresponds
to the minimum energy is given bigee Fig. 3

|

where C(h)=cosh *1/h, and we have introduced the field
scaleh=H/Hs=Hy/2. Here Hy is the superheating field,
representing the maximum external field value for which the
above Meissner state solution can be still made to satisfy Eq.
(18) thereby establishing a metastable situatidgpis readily

1

coshix+C(h)] (20)

@o(X)=—2 arcsir{

The complete spectrum in the mixed state is shown in Fig. Zound to be given here byk2, and is therefore larger than

for y=1/2.
An expansion irg nearq,, leads to an expression for the

gap:

= 17
which is seen to be independent of the magnetic field and t
coincide with that of the Meissner state spectr(ra., the
Josephson plasma frequepcit is significant for what fol-
lows that asy tends to unity, the position of the gap shifts in
the Q2 vs g2 plane and evolves into the Meissner gapyat
=1, the vortex oscillations branch disappearing.

[0l — 2
Wyortex wplasm;q:qm @3,

Ill. SURFACE LOCALIZED MODES IN JOSEPHSON
JUNCTIONS

We consider next a semi-infinite Josephson junction with

a surface in the/,z plane atx=0. In this instance we solve
Egs.(7) and(8), subject to the boundary conditions

deo
- =Hp (18
dX x=0,L
and
d
% -0, (19
X x=0,L

the bulk lower critical fieldH ., =4H,/7m=1.2MH,.
In the mixed state the static value of the phase is given by
a simple generalization of E¢4), i.e.,

sin( )=sn
0
where ¢q(0) is determined from the conditiofl8). As it

turns out, the solution with the lowest energy corresponds in
this case to the value

X

@o(X) = ¢o(0)

5 (21)

1 H}
¢o(0)=—2 arcco 7— s (22

It is useful to rewrite Eq(21) as follows:

®o(X) X=A(7y)
s —sn( 5 , (23
where we have defined
T @o(0)
A =K|5—— ,7},

representing the virtual location of the maximum of the mag-

netic field closest to the junction edge. In this expression

K(¢,v) is the incomplete elliptic integral of the first kind.
Equation(7) in the form of a Schrdinger-like equation
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7 @1(X)

T+2 QD]_(X):O. (24)

X—A
e+ yzcn2<—y( v ,y)

Heree = y?/2(w?/ w5—k?—1). The last equation can be re-

written as a Lamequatior°

P @1(X) (X—A(Y)) w?
— =292 ——— | + 9% K*F— — -1 X),
2 Y " Y p: e1(
(25
with solution
X—A
H T—,B
pr(X)=——p —r—e” A, (26)
o
Y

provided the conditions

cn’dn’g 1
s’B  smB

w2
yz( k2——2—1), (27
and

N=—Z"%B.y) (28

whereZ(B,v)=E(B,y) — BLE(y)/K(y)], is the Jacobi Zeta
function, are satisfied.
In Eq. (26) we have introduced the decay lengtlin units
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FIG. 4. The reduced frequen€y? as a function of the magnetic
field for a semi-infinite junction in the mixe¢heavy ling and
Meissner(thin line) states. The dashed curves delimit the gap in the
spectrum of the infinite system. The bulk critical fietd; and the
superheating fieltHg are indicated. The notation is the same as in
Fig. 2.

1
0% =5 5[2-y%(1+h%)

+ vy (1—h?)2+4h%(1—y*h?)]. (33

Clearly Q3 andQ? correspond to unstable solutions, so that
we are left WithQi as the only acceptable result.

of \,. This important length scale characterizes the spatial W€ note at this point that the frequency corresponding to

dependence of the phase evanescent waves.

The corresponding expression for the frequency is o

tained from Eq(27) and is given by

dn?g
02=—7p.
Y
Utilizing the boundary condition of Eq19) yields an equa-
tion for the paramete8. After lengthy manipulations involv-
ing Eq. (28) we arrive at the expression

(29

A
cn dn{ B+ —

E+A
Y

— vy snbGsn—sn —|=0.
7 Y Y
sn

B+ 5
(30

By making use of the transformation properties of the

Jacobian elliptic functions, it is possible to rewrite Eg0)
as a cubic equatiéi
[(1-u?)(1—2u?)(1-t3)(1-¥?t?)]
=t [1+y2(1-u?-13) ]2 (31)
whereu?=1/y%—h?, andt=sng= \/1/y?°— Q2. The roots of
this equation are as follows:

_ 1 hz_hrznin
Y2 h2—p2

max

whereh,,=v1— v?/y andh,,= 1/, and

2

0 , (32

the Meissner state can simply be determined from the gen-

peral expression fof22 [Eq. (33)] in the limit of y—1. Ac-

cordingly

1

Qieissner=5[ 1~ N+ (1-h?)7+4h*(1-h%)]. (34)

The frequencies in the Meissner and mixed states have
been plotted in Fig. 4 as a function of the applied magnetic
field. Here the expressiom(y) =2E(y)/ vy for the infinite
system is used.

In order to set the stage for the discussion contained in the
next section it is important to study here the behavior of the
decay length. From Ed28) we can write

1

_zfarcsin(\lfdnzﬁ/)’)mdd)

N Jo

E(y) farcsin(v’l—dnzﬁly) do (35)

- 0 J1— sk’

K(y)
where, in turn, the appropriate expression @w(3,y) in
the Meissner or the mixed state, is obtained respectively
from Eq. (34) and (33) (taken with the plus signvia Eq.
(29).

The decay lengths in the mixed and Meissner states are
plotted against the reduced frequency in Figs. 5 and 6. The
corresponding decay lengths are always real and seen to lie
within the gap of the spectrum for the infinite system. Hence
in the circumstances that we have here discussed, the disper-
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FIG. 5. Localized modes decay length vs the reduced frequency FIG. 7. The spatial variation of the static phase in the Meissner
Q2 (heavy ling for the semi-infinite system in the mixed state. The regime for a phase inhomogeneous junctign=(r).
localized modes are seen to always lie in the gap of the infinite

system spectrum. The indicated point corresponds toH;. The  \yhere the vicinal Abrikosov vortex is located x and the
associated decay length and frequency are the same as for the cary, ing is taken to be proportional to the first derivative of
responding point on the plot af; vs Q2 for the Meissner state. The the delta function and to have a strengIHZ‘“
dashed curves delimit the gap in the spectrum of the infinite system. The static phase in the Meissner state to the left and the
Th tation is th in Fig. 2. . .. - L .

€ notation 1s the same as in g right of the the position of the inhomogeneity is given by

sion of phase surface waves do not enter the infinite syster(ﬁ'ee Fig. 7.
continuum and therefore are well defined for all magnetic

fields.
ields ’ (37)

eo(X)==*4 arctaré ei(xfxo)tang

IV. PHASE-IMPURITY LOCALIZED MODES IN LONG
JOSEPHSON JUNCTIONS an expression that represents the localized phase distortion
. . o . associated with the vicinal Abrikosov vorték.

. We can picture a phase impurity in a long Josephson junc- In view of the fact that the spectrum for both the Meissner
tlon by Imagining the.lt an A_brlkog,o.v.vortex p?fa"?' to the and the mixed state can be obtained from the general expres-

axis is pinned in the immediate vicinity of the junction plane.siOn appropriate to the latter, we focus next on the mixed

This vicinal Abrikosov vortex modifies the properties of the state. In this case the genera] static solution is given by

junction. A suitable model for the description of this situa-
tion is provided by the following modified equation for the . .
static phase . (%(X)-cpo(xo)) B (X_Xo)
sin 5 =sn ,

(39

d?eo(x)
- = + "(X— + . . .
dx? SiNo(X) + 0" (X=Xo), (36 where ¢, (X) is the static phase to the right and left of the

position of the inhomogeneity. Because of the phase discon-
A tinuity introduced by the coupling with the impurity this

10 equation becomes

2 4 (39

0.4

|

|

|

|

|

|

|

|

: At this point, by proceeding as in the case discussed in the
| previous section, we then obtain
{

1

|

!

4

1

2.79 ‘///‘
2 polX)  [X—xp B(y))
o2 cos 5 =sn 5 , (40)

0.2 0.4 0.6 0.8 0.87

FIG. 6. Localized modes decay length vs the reduced frequencwhereB(y) = yK(7/2—4l4,y).
Q2 for a semi-infinite junction in the Meissner state. The notationis  The amplitude of the corresponding small oscillations are
the same as in Fig. 2. found to satisfy the equation
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92 B H - B.+B(y)/y] F.+G,.—1i
9100 _ | 5 22| x—xg ) R(y) =i — S L
ax y [-B-—Bn/y] F_+G_+1/
2 where
w
+97 k2——2—1)]<p1(x), (4D
@ B(y) B(y)
with solutions given by [E( B=)xy'snB.sn v ( Bt
(46)
(X—Xo=B)
y TP . B and
=+ — +(X—Xg=* v
@7 (X) (X—%oB) e 0 . (42
_— B(y) B(y
Y cn —,Bit—y dn —ﬂti—y E(y)
At this point, the only unknown quantity in this expres- G.= B(y + B K(y)
sion is 8., which we now determine by imposing the re- sn( — B iT)
guirement that magnetic field be continuous across the phase (47)
discontinuity. This condition is expressed by the relation
d _ _ To ensure thaip,; decays on both sides of the discontinu-
ax (Poten) ax(Poten) (43 ity it is necessary to choos@é_=— 3, which results in a
X=xXg X=Xy condition ong, totally equivalent to Eq(30). This leads in
turn to a cubic equation identical to that of E§1), where
By means of Eq(40) we have now u?=sn?[B(y)/y]=cos(y/4). By direct inspection the
- roots of this polynomial are in this case found to be
deg Xo ) v
i 1—y?coeq S |=— V17 co§z,
Xl ,  tarf(yl4)
(44 T (48)
which implies continuity ofde, /dx at Xy. This, in view of
Eq. (42), leads to the condition and

1— Y2+ y? coZ(l4) = (v*— 1)+ 2(y?+ y*) coS(yl4)— 3y*cos (yl4)

2 _
0= 5

(49

2y

Clearly bothQ2 andQ? correspond to unstable solutions within the gap of the spectrum of the infinite syst&hiara-
and must be dlscarded Hence the correct frequency is givemetric plots of theQ? versus the magnetic field for the
by QZ mixed and Meissner states for this situation are shown in Fig.

As in the semi-infinite case, the frequency corresponding for two particular values of.
to the Meissner state is obtained from that for the mixed state Also in this case the behavior of the characteristic decay
by settingy=1. This results in the expression length\ can be determined. The result is plotted in Figs. 9

and 10 for the same values ¢fas in Fig. 8.
Z) + 4 cog Z Z

l/,) —3coé

which is independent of the magnetic field and depends only We have shown that in the presence of phase impurities
on the magnitude of the discontinuity of the phasat the  Tamm-like collective modes of the Josephson phase can ex-
position of the inhomogeneity, i.e., on the strength of theist in long Josephson tunneling junctions. These modes cor-
impurity potential(see the discussion of Sec).\Examining  respond to an oscillation of the Josephson vortex structure
this expression, it can be seen that as the coupling strefhgth that becomes localized in the junction in the immediate prox-
varies between 0 and72 the frequency decreases from its imity of the impurity. In the Meissner state this structure is
maximum (corresponding to the Josephson plasma fredescribed by Eq(37), while, in the mixed state, the appro-
qguency to zero. priate expression is given by E(B9).

It can be shown quite generally that, irrespective of the The corresponding dispersion relations are shown in Fig.
coupllng strength and the magnitude of the magnetic field3. These curves must be compared with the dispersion rela-
Q2 nie— 1=<0210mo \mem,te, indicating that, as one would tions for infinite and semi-infinite junctions of Figs. 2 and 4.
expect, the frequenmes of the localized states always li@he modes of the infinite junction form a characteristic con-

1
=3 cos , (50

V. DISCUSSION AND CONCLUSIONS
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FIG. 8. The reduced frequen€y? as a function of the magnetic

' ) | S . ’ FIG. 10. Localized modes decay length vs the reduced fre-
field for the phase inhomogeneous junction in the mixed and Me'SS(Juencyﬂz for the inhomogeneous system in the mixed state for a

ner states. For purposes of illustration, we have presented the plob%ase discontinuity of /2. The curve is always seen to lie within

for the values (heavy ling and 3r/2 for the phase discontinuity 56 delimiting the gap in the infinite spectrum. The notation is the
. The dashed curves delimit the gap in the spectrum of the infinite ;o a5 in Fig. 2.

system. The notation is the same as in Fig. 2.

for all 0sH<Hj (it is exactly a half quantum at the super-
tinuum in which a gap equal in magnitude to the JosephsoReating field. As the field is increased, the restoring force
plasma frequency is presefih terms of the reduced fre- keeping the “partial-vortex” localized at the surface re-
quency, this gap is equal to unityin Fig. 8 the location of duces, causing a softening of the corresponding small oscil-
the edges of such a continuum for the mixed state is markeghtions frequency. Whei reaches the lower critical field
by dashed lines: it is readily found that the upper edge is ir4_, (h=0.64 in Fig. 4, vortex penetration occurs and the
our notation given byy 2, while the lower one is given by system in general enters the mixed state. However, as shown
y~?—1. In the Meissner state a gap is present up to then Ref. 4, there exists a “superheating field” and the possi-
plasma frequency threshold from where the continuum exijlity of realizing a metastable Meissner state for fields in the
tends then to infinity. We have found that, as in the case of gange H,;<H<H,. For fields greater tham,, the fre-
semi-infinite junction, the frequency of the localized modesquency corresponding to the Meissner state continues to de-
never enters this continuum so that the modes are well desrease until it finally vanishes at the superheating field. At
fined for all values of the external magnetic field. this point a vortex can nucleate at the surface and, in the

Our results imply the following physical scenario as aabsence of a constraining force, is able to enter the bulk of
function of the magnitude of the externally applied magneticthe junction. This leads eventually to the formation of the
field. A semi-infinite junction is in the Meissner state for low mixed state®
fields whereupon a “partial” Josephson vortex exists at the The results for a phase-inhomogeneous long Josephson
surface, its integrated flux being less than one flux quanturunction show similar behavior in that the localized modes

persist for all magnetic fields and for all strengths of cou-

A pling to the vicinal Abrikosov vortexi.e., for all magnitudes
of the phase discontinuityy). Also in this instance the
trapped flux is less than a flux quantum and is proportional to
#.2* Unlike in the semi-infinite case, the frequency corre-
sponding to the Meissner state in this instance is independent
of the magnetic field. This is because, for a long junction
with a phase-inhomogeneity far removed from the edges,
there is no sensitivity in the Meissner regime to the applied
field. Furthermore, in the Meissner state the frequency of the
localized mode always lies below the Josephson plasma
threshold.

The Tamm-like modes discussed in this article are char-
acterized by a localizatiofor decay length\. In the case of
229 ———~ " a semi-infinite junction, this quantity is divergent at small

: n P . . . oF applied fields(see Fig. 6 appropriate to the Meissner state
0.81 indicating that the mode extends throughout the system.

FIG. 9. Localized modes decay length vs the reduced frequenc§lecreases rapidly as the field is increased and is of the order
Q2 for the inhomogeneous system in the mixed state for a phasef the Josephson penetration depth at the lower critical field
discontinuity of 7. The curve is always seen to lie within the H¢;. Continuing into the superheating regime, the decay
dashed lines which delimit the gap in the infinite spectrum. Thelength decreases to exactly at the superheating field.
notation is the same as in Fig. 2. At the lower critical field, the decay lengths in the mixed and

201

15

10
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Meissner states coincide and are given\oy2.79\ ;. The junctions that the presence of inhomogeneities and the asso-
transition to the mixed regime is accompanied by a reversatiated current profile in Josephson junctions has been experi-
in the trend as\ now begins to increase and diverges for mentally studied by Scheuermann and coworfeusing a
large magnetic fields. This behavior is depicted in Fig. 5 forlaser scanning technique.
the semi-infinite junction, and in Figs. 9 and 10 for the phase The problem explicitly treated in the present paper con-
inhomogeneous junction. In the latter case, the decay lengthgerns isolated phase impurities. The effect of a finite density
are plotted against the reduced frequency for two represensf phase impurities on the small amplitude spectrum of a
tative values of the phase discontinuity. Josephson junction is also of considerable interest and has
A natural way to attempt a detection of the type of col- hoen addressed elsewhéfe.
lective modes discussed in the_present paper is represgntedWe conclude by noting that in the presence of phase im-
by the study of the-V characteristic where the small oscil- s the standard description of the lower critical field is

:c?)tr'ﬁ]n o??gggﬁ;?m?suk\j,\,g?k?ﬂﬁge;;g rr]gznt')fs; Iitr?t%gTég th o longer applicable, as the closest impurity to the junction
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