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Localized modes in finite and phase-inhomogeneous Josephson tunnel junctions

A. K. Setty and Gabriele F. Giuliani
Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396

~Received 16 February 1999!

We have investigated the spectrum of localized modes in both finite and phase inhomogeneous long one-
dimensional Josephson junctions in the presence of an external magnetic field. For finite junctions these
excitations correspond to evanescent waves localized near the edges. Both the frequency and the characteristic
decay lengths depend on the magnetic field. In particular, a different behavior is expected for the Meissner state
and the mixed state in which wholesale penetration of Josephson vortices occurs. The related problem of the
spectrum of modes localized near phase inhomogeneities occurring well inside a long junction has been also
tackled. This problem is relevant to the case in which Abrikosov vortices penetrate the electrodes and become
pinned near the junction plane.
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I. INTRODUCTION

There have been numerous studies1–4 of the electrody-
namics of Josephson junctions with various geometries, s
as those with infinite, semi-infinite, and finite widths, with
view to studying the collective modes in these systems. T
problem is of great importance vis a vis its implications
the behavior of the current voltage characteristic. Recen
considerable interest has developed in phase inhomogen
junctions.5–15 Hence we discuss here the case of a long
sephson tunnel junction with phase inhomogeneity, and
tablish the existence and the physical properties of small
plitude localized modes analogous to the surface states16 that
occur in the semi-infinite junctions. In order to describe o
results we found it necessary to reexamine and carefully
cuss the physics for the case of infinite and semi-infin
junctions. The static phase solutions, the spectrum of sm
oscillations and the associated decay lengths of the w
functions are presented in both the Meissner and the m
states.

We consider a long Josephson junction consisting of
superconducting electrodes of semi-infinite cross sec
with a thin dielectric interface of thicknessd lying in the xy
plane. The geometry of the situation is depicted in Fig.
The fundamental equation for the phase dynamics is17,18

Dw~x,y,t !2
1

c0
2

]2w~x,y,t !

]2t2
5

sinw~x,y,t !

lJ
2

, ~1!

where c05cAd/e l , is the velocity of the Swihart waves19

and as usuallJ5A\c2/8pe jcl is the Josephson penetratio
depth. Herel, which is the thickness of the region containin
the magnetic fields, is given byl 52lL1d, wherelL is the
London penetration depth.

To study the dynamics of small phase oscillations it
convenient to express the Josephson phase in terms o
finite static componentw0(x) plus a small perturbation
w̃1(x,y,t). The substitutionw5w0(x)1w̃1(x,y,t), leads to
the following equations for the static phase and the am
tude of the small oscillations:
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Dw0~x!5
sinw0~x!

lJ
2

, ~2!

FD2
1

c0
2

]2

]t2G w̃1~x,y,t !5
cosw0~x!

lJ
2

w̃1~x,y,t !. ~3!

These equations alongside the appropriate boundary
ditions required by the presence of an externally appl
magnetic field, determine the collective modes of the ju
tion. In Sec. II we review the case of an infinite junction a
set the stage for the description of the modes of semi-infi
systems. The latter are explicitly discussed in Sec. III wh

FIG. 1. Schematic of a semi-infinite Josephson junction
which the interface with vacuum is they,z plane atx50. The
system is assumed to extend to infinity along the positivex axis. A
magnetic field is applied along they direction and even in the
Meissner state will modify the Josephson phase near the interf
In the mixed state a periodic structure of Josephson vortices wil
present forx>0.
12 285 ©2000 The American Physical Society
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the approach of Ref. 4 is extended to extract and characte
the behavior of the decay lengths with the magnetic field
Sec. IV, we consider the problem of a phase impurity in
long Josephson junction. The final section presents a c
parison of the different geometries and a physical discus
of the results.

II. COLLECTIVE MODES IN INFINITE JOSEPHSON
JUNCTIONS

The long wavelength spectrum for the small phase os
lations in a long Josephson tunnel junction was obtained
Kulik.1,18 Kulik’s results were generalized for all wave
lengths by Lebwohl and Stephen2 and subsequently by Fette
and Stephen.3

The Meissner state solution of Eq.~2! is simply w0(x)
50, while the corresponding solution for the mixed state
given by

sinS w0~x!2p

2 D5snS x

g
,g D , ~4!

wheresn is a Jacobian elliptic function with the quantityg
as its modulus.20,21 In view of the periodic properties of th
function sn, this solution describes a line of Josephson v
tices with lattice spacing given bya52gK(g)lJ along thex
axis. HereK(g) is the complete elliptic integral of firs
kind.22 Hereg introduces a suitable parametrization for t
induction and is related to the externally applied fieldH via
the relation H/H154E(g)/pg, where H15f0/4plJlL ,
with f0 the quantum of flux, is a characteristic field scale
the junction. In particularg→0 corresponds to the infinite
field limit (a→0), while the limit g→1 corresponds to the
bulk lower critical field value of Hc154H1 /p
52f0 /p2l llJ , as the vortex separationa diverges.

The next step is to make the following substitution in
the equation for the small oscillations:

w̃1~x,y,t !5w1~x!eiky2 ivt, ~5!

which leads to

F d2

dx2
1

v2

c0
2

2k2Gw1~x!5
cosw0~x!

lJ
2

w1~x!. ~6!

At this point it is convenient to recast Eqs.~2! and ~6! in
dimensionless form. Withx/lJ→x, andklJ→k, we obtain

Dw0~x!5sinw0~x! ~7!

and

F d2

dx2
1

v2

vJ
2

2k2Gw1~x!5cosw0~x!w1~x!, ~8!

where we have introduced the Josephson plasma frequ
vJ5c0 /lJ .

It is clear that in the case of no field penetration~i.e., the
Meissner state! w0(x) vanishes everywhere and the spectru
of the collective modes is simply given by

v25vJ
2~11k21q2!. ~9!
ize
n
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This spectrum is depicted in Fig. 2~upper curve! where the
reduced frequencyV25v2/vJ

22k2 is plotted againstq2.
As the field penetrates the junction~i.e., the mixed state!

the situation is far more complex as, for the present geo
etry, the field takes the form of a periodic one dimensio
lattice of Josephson vortices. While Kulik1 limited his analy-
sis to a small wave vector expansion of Eq.~8!, Lebwohl and
Stephen2 established for this case the exact solution for
phase amplitude in the form

w1~x!5uq~x!eiqx, ~10!

where theuq(x) are here suitable Bloch functions, and fu
advantage is taken of the double periodicity of the ellip
functions.20,22 Here q is the dimensionless wave vector r
scaled by the Josephson penetration depth.

In this case the spectrum is comprised of two bands se
rated by the only gap located atqm56p/a56p/2gK(g).
The lower band can be described in terms of Josephson
tex oscillations, while the upper one can be seen to co
spond to plasma modes.

The lower branch~the vortex oscillations! is described by
a Bloch function given by

uq~x!5

q3F px

2gK~g!
1

ipxq

2K~g!
UtG

q4F px

2gK~g!
UtG , ~11!

where the q i ’s are elliptic theta functions andt
5 iK 8/K(g), with K85K(g8) andg85A12g2. The Bloch
function depends onq parametrically via the variablexq ,
which is determined via the relation

q5
1

g FE~xq ,g8!2xqS 12
E~g!

K~g! D G , ~12!

FIG. 2. Collective spectrum for an infinite junction. Here th
reduced frequencyV25v2/vJ

22k2 is plotted vs the square of th
reduced wave vectorq along thex axis. The continuous upper curv
corresponds to the Meissner state. The gapped lower curve c
sponds to the mixed state for an external magnetic field corresp
ing to g5221/2, where the parameterg is defined in the text.
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PRB 61 12 287LOCALIZED MODES IN FINITE AND PHASE- . . .
whereE(xq ,g8) is the incomplete Jacobi elliptic integral o
the second kind.20,22As xq varies between 0 andK8, q varies
between 0 andqm .

The dispersion relation corresponding to this low
branch is found to be given by

v25c0
2Fk21

g82

g2
sn2~xq ,g8!G . ~13!

In the same way, the plasma oscillations have a Blo
function given by

uq~x!5

q4F px

2gK~g!
2

ip

2K~g!
~xq2K8!UtG

q4F px

2gK~g!
UtG , ~14!

where now, forq>qm

q2qm5
1

g F2E~xq ,g8!1xqS 12
E~g!

K~g! D
1

dn~xq ,g8!sn~xq ,g8!

cn~xq ,g8!
G , ~15!

where the remaining Jacobian elliptic functions no
appear.20

The corresponding dispersion is given by

v25c0
2Fk21

1

g2

dn2~xq ,g8!

cn2~xq ,g8!
G . ~16!

The complete spectrum in the mixed state is shown in Fig
for g51/A2.

An expansion inq nearqm leads to an expression for th
gap:

@vvortex
2 2vplasma

2 #q5qm
5vJ

2 , ~17!

which is seen to be independent of the magnetic field an
coincide with that of the Meissner state spectrum~i.e., the
Josephson plasma frequency!. It is significant for what fol-
lows that asg tends to unity, the position of the gap shifts
the V2 vs q2 plane and evolves into the Meissner gap ag
51, the vortex oscillations branch disappearing.

III. SURFACE LOCALIZED MODES IN JOSEPHSON
JUNCTIONS

We consider next a semi-infinite Josephson junction w
a surface in they,z plane atx50. In this instance we solve
Eqs.~7! and ~8!, subject to the boundary conditions

dw0

dx U
x50,L

5H0 ~18!

and

dw1

dx U
x50,L

50, ~19!
r

h

2

to

h

whereH05H/H1, andH1 was defined below Eq.~4!. Fur-
thermore, since we seek evanescent wave solutions, we
havew1(`)50.

The Meissner state solution of Eq.~7! which corresponds
to the minimum energy is given by~see Fig. 3!

w0~x!522 arcsinH 1

cosh@x1C~h!#J , ~20!

whereC(h)5cosh21 1/h, and we have introduced the fiel
scale h5H/Hs5H0/2. Here Hs is the superheating field
representing the maximum external field value for which
above Meissner state solution can be still made to satisfy
~18! thereby establishing a metastable situation.Hs is readily
found to be given here by 2H1 and is therefore larger tha
the bulk lower critical fieldHc154H1 /p.1.27H1.

In the mixed state the static value of the phase is given
a simple generalization of Eq.~4!, i.e.,

sinS w0~x!2w0~0!

2 D5sn
x

g
, ~21!

where w0(0) is determined from the condition~18!. As it
turns out, the solution with the lowest energy correspond
this case to the value

w0~0!522 arccosA 1

g22
H0

2

4
. ~22!

It is useful to rewrite Eq.~21! as follows:

cos
w0~x!

2
5snS x2A~g!

g D , ~23!

where we have defined

A~g!5gKFp2 2
w0~0!

2
,gG ,

representing the virtual location of the maximum of the ma
netic field closest to the junction edge. In this express
K(w,g) is the incomplete elliptic integral of the first kind.

Equation~7! in the form of a Schro¨dinger-like equation

FIG. 3. The spatial variation of the static phase in the Meiss
regime for a surface localized mode (h50.5).
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]2w1~x!

]x2 12F«1g2cn2S x2A~g!

g
,g D Gw1~x!50. ~24!

Here«5g2/2(v2/vJ
22k221). The last equation can be re

written as a Lame´ equation20

]2w1~x!

]x2 5F2g2sn2S x2A~g!

g D1g2S k22
v2

vJ
2

21D Gw1~x!,

~25!

with solution

w1~x!5

HFx2A

g
2b G

QFx2A

g G e2 (x2A)/gl, ~26!

provided the conditions

cn2bdn2b

sn2b
2

1

sn2b
5g2S k22

v2

vJ
2

21D , ~27!

and

l52Z21~b,g! ~28!

whereZ(b,g)5E(b,g)2b@E(g)/K(g)#, is the Jacobi Zeta
function, are satisfied.

In Eq. ~26! we have introduced the decay lengthl in units
of lJ . This important length scale characterizes the spa
dependence of the phase evanescent waves.

The corresponding expression for the frequency is
tained from Eq.~27! and is given by

V25
dn2b

g2 . ~29!

Utilizing the boundary condition of Eq.~19! yields an equa-
tion for the parameterb. After lengthy manipulations involv-
ing Eq. ~28! we arrive at the expression

cnS b1
A

g DdnS b1
A

g D
snS b1

A

g D 2g2snbsn
A

g
snS b1

A

g D50.

~30!

By making use of the transformation properties of t
Jacobian elliptic functions, it is possible to rewrite Eq.~30!
as a cubic equation23

@~12u2!~12g2u2!~12t2!~12g2t2!#

5u2t2@11g2~12u22t2!#2, ~31!

whereu251/g22h2, andt5snb5A1/g22V2. The roots of
this equation are as follows:

V0
25

1

g2

h22hmin
2

h22hmax
2

, ~32!

wherehmin5A12g2/g andhmax51/g, and
al

-

V6
2 5

1

2g2 @22g2~11h2!

6gAg2~12h2!214h2~12g2h2!#. ~33!

ClearlyV0
2 andV2

2 correspond to unstable solutions, so th
we are left withV1

2 as the only acceptable result.
We note at this point that the frequency corresponding

the Meissner state can simply be determined from the g
eral expression forV1

2 @Eq. ~33!# in the limit of g→1. Ac-
cordingly

VMeissner
2 5

1

2
@12h21A~12h2!214h2~12h2!#. ~34!

The frequencies in the Meissner and mixed states h
been plotted in Fig. 4 as a function of the applied magne
field. Here the expressionh(g)52E(g)/pg for the infinite
system is used.

In order to set the stage for the discussion contained in
next section it is important to study here the behavior of
decay length. From Eq.~28! we can write

1

l
5E

0

arcsin(A12dn2b/g)A12g2 sin2f df

2
E~g!

K~g!
E

0

arcsin(A12dn2b/g) df

A12g2 sin2f
, ~35!

where, in turn, the appropriate expression fordn2(b,g) in
the Meissner or the mixed state, is obtained respectiv
from Eq. ~34! and ~33! ~taken with the plus sign! via Eq.
~29!.

The decay lengths in the mixed and Meissner states
plotted against the reduced frequency in Figs. 5 and 6.
corresponding decay lengths are always real and seen t
within the gap of the spectrum for the infinite system. Hen
in the circumstances that we have here discussed, the dis

FIG. 4. The reduced frequencyV2 as a function of the magnetic
field for a semi-infinite junction in the mixed~heavy line! and
Meissner~thin line! states. The dashed curves delimit the gap in
spectrum of the infinite system. The bulk critical fieldHc1 and the
superheating fieldHs are indicated. The notation is the same as
Fig. 2.
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PRB 61 12 289LOCALIZED MODES IN FINITE AND PHASE- . . .
sion of phase surface waves do not enter the infinite sys
continuum and therefore are well defined for all magne
fields.

IV. PHASE-IMPURITY LOCALIZED MODES IN LONG
JOSEPHSON JUNCTIONS

We can picture a phase impurity in a long Josephson ju
tion by imagining that an Abrikosov vortex parallel to they
axis is pinned in the immediate vicinity of the junction plan
This vicinal Abrikosov vortex modifies the properties of th
junction. A suitable model for the description of this situ
tion is provided by the following modified equation for th
static phase

d2w0~x!

dx2 5sinw0~x!1cd8~x2x0!, ~36!

FIG. 5. Localized modes decay length vs the reduced freque
V2 ~heavy line! for the semi-infinite system in the mixed state. T
localized modes are seen to always lie in the gap of the infi
system spectrum. The indicated point corresponds toH5Hc1. The
associated decay length and frequency are the same as for the
responding point on the plot oflJ vs V2 for the Meissner state. The
dashed curves delimit the gap in the spectrum of the infinite sys
The notation is the same as in Fig. 2.

FIG. 6. Localized modes decay length vs the reduced freque
V2 for a semi-infinite junction in the Meissner state. The notation
the same as in Fig. 2.
m
c

c-

.

where the vicinal Abrikosov vortex is located atx0 and the
coupling is taken to be proportional to the first derivative
the delta function and to have a strengthc.12–14

The static phase in the Meissner state to the left and
right of the the position of the inhomogeneity is given b
~see Fig. 7!:

w0~x!564 arctanS e7(x2x0)tan
c

8 D , ~37!

an expression that represents the localized phase disto
associated with the vicinal Abrikosov vortex.24

In view of the fact that the spectrum for both the Meissn
and the mixed state can be obtained from the general exp
sion appropriate to the latter, we focus next on the mix
state. In this case the general static solution is given by

sinS w0
6~x!2w0

6~x0
6!

2 D 5snS x2x0

g D , ~38!

wherew0
6(x) is the static phase to the right and left of th

position of the inhomogeneity. Because of the phase disc
tinuity introduced by the coupling with the impurity thi
equation becomes

sinS w0
6~x!

2
6

c

4 D 5snS x2x0

g D . ~39!

At this point, by proceeding as in the case discussed in
previous section, we then obtain

cos
w0~x!

2
5snS x2x06B~g!

g D , ~40!

whereB(g)5gK(p/22c/4,g).
The amplitude of the corresponding small oscillations

found to satisfy the equation

cy

e

or-

.

cy
s

FIG. 7. The spatial variation of the static phase in the Meiss
regime for a phase inhomogeneous junction (c5p).



s-
e-
ha

u-

12 290 PRB 61A. K. SETTY AND GABRIELE F. GIULIANI
]2w1~x!

]x2 5H 2g2sn2S x2x06
B~g!

g D
1g2S k22

v2

vJ
2

21D J w1~x!, ~41!

with solutions given by

w1
6~x!5

HF ~x2x06B!

g
2b6G

QF ~x2x06B!

g G e7~x2x06B!/gl. ~42!

At this point, the only unknown quantity in this expre
sion is b6 , which we now determine by imposing the r
quirement that magnetic field be continuous across the p
discontinuity. This condition is expressed by the relation

d

dx
~w01w̃1!U

x5x
0
1

5
d

dx
~w01w̃1!U

x5x
0
2

. ~43!

By means of Eq.~40! we have

dw0

dx U
x

0
6

52A12g2 cos2w0S x0
6

2 D 52A12g2 cos2
c

4
,

~44!

which implies continuity ofdw1 /dx at x0. This, in view of
Eq. ~42!, leads to the condition
s
iv

in
ta

n

th

th
ts
fre

th
ld

l

se

R~g!5
H@2b11B~g!/g#

H@2b22B~g!/g#
5

F11G121/l

F21G211/l
, ~45!

where

F65FE~2b6!6g2snb6sn
B~g!

g
snS 2b66

B~g!

g D G
~46!

and

G65F cnS 2b66
B~g!

g DdnS 2b66
B~g!

g D
snS 2b66

B~g!

g D 1b6

E~g!

K~g!G .

~47!

To ensure thatw1 decays on both sides of the discontin
ity, it is necessary to chooseb252b1 which results in a
condition onb1 totally equivalent to Eq.~30!. This leads in
turn to a cubic equation identical to that of Eq.~31!, where
now u25sn2@B(g)/g#5cos2(c/4). By direct inspection the
roots of this polynomial are in this case found to be

V0
252

tan2~c/4!

g2
~48!

and
V6
2 5

12g21g2 cos2~c/4!6A~g221!212~g21g4! cos2~c/4!23g4cos4~c/4!

2g2
. ~49!
e
ig.

cay
. 9

ties
ex-

cor-
ture
ox-
is
-

ig.
ela-
4.
n-
Clearly bothV0
2 andV2

2 correspond to unstable solution
and must be discarded. Hence the correct frequency is g
by V1

2 .
As in the semi-infinite case, the frequency correspond

to the Meissner state is obtained from that for the mixed s
by settingg51. This results in the expression

V25
1

2 Fcos2S c

4 D1A4 cos2S c

4 D23 cos4S c

4 D G , ~50!

which is independent of the magnetic field and depends o
on the magnitude of the discontinuity of the phasec at the
position of the inhomogeneity, i.e., on the strength of
impurity potential~see the discussion of Sec. V!. Examining
this expression, it can be seen that as the coupling strengc
varies between 0 and 2p, the frequency decreases from i
maximum ~corresponding to the Josephson plasma
quency! to zero.

It can be shown quite generally that, irrespective of
coupling strength and the magnitude of the magnetic fie
V infinite

2 21<V inhomog
2 <V infinite

2 , indicating that, as one would
expect, the frequencies of the localized states always
en

g
te

ly

e

-

e
,

ie

within the gap of the spectrum of the infinite system.16 Para-
metric plots of theV2 versus the magnetic field for th
mixed and Meissner states for this situation are shown in F
8 for two particular values ofc.

Also in this case the behavior of the characteristic de
lengthl can be determined. The result is plotted in Figs
and 10 for the same values ofc as in Fig. 8.

V. DISCUSSION AND CONCLUSIONS

We have shown that in the presence of phase impuri
Tamm-like collective modes of the Josephson phase can
ist in long Josephson tunneling junctions. These modes
respond to an oscillation of the Josephson vortex struc
that becomes localized in the junction in the immediate pr
imity of the impurity. In the Meissner state this structure
described by Eq.~37!, while, in the mixed state, the appro
priate expression is given by Eq.~39!.

The corresponding dispersion relations are shown in F
8. These curves must be compared with the dispersion r
tions for infinite and semi-infinite junctions of Figs. 2 and
The modes of the infinite junction form a characteristic co
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PRB 61 12 291LOCALIZED MODES IN FINITE AND PHASE- . . .
tinuum in which a gap equal in magnitude to the Joseph
plasma frequency is present~in terms of the reduced fre
quency, this gap is equal to unity!. In Fig. 8 the location of
the edges of such a continuum for the mixed state is mar
by dashed lines: it is readily found that the upper edge is
our notation given byg22, while the lower one is given by
g2221. In the Meissner state a gap is present up to
plasma frequency threshold from where the continuum
tends then to infinity. We have found that, as in the case
semi-infinite junction, the frequency of the localized mod
never enters this continuum so that the modes are well
fined for all values of the external magnetic field.

Our results imply the following physical scenario as
function of the magnitude of the externally applied magne
field. A semi-infinite junction is in the Meissner state for lo
fields whereupon a ‘‘partial’’ Josephson vortex exists at
surface, its integrated flux being less than one flux quan

FIG. 8. The reduced frequencyV2 as a function of the magneti
field for the phase inhomogeneous junction in the mixed and Me
ner states. For purposes of illustration, we have presented the
for the valuesp ~heavy line! and 3p/2 for the phase discontinuity
c. The dashed curves delimit the gap in the spectrum of the infi
system. The notation is the same as in Fig. 2.

FIG. 9. Localized modes decay length vs the reduced freque
V2 for the inhomogeneous system in the mixed state for a ph
discontinuity of p. The curve is always seen to lie within th
dashed lines which delimit the gap in the infinite spectrum. T
notation is the same as in Fig. 2.
n

d
n

e
-
a

s
e-

c

e
m

for all 0<H<Hs ~it is exactly a half quantum at the supe
heating field!. As the field is increased, the restoring for
keeping the ‘‘partial-vortex’’ localized at the surface r
duces, causing a softening of the corresponding small os
lations frequency. WhenH reaches the lower critical field
Hc1 (h50.64 in Fig. 4!, vortex penetration occurs and th
system in general enters the mixed state. However, as sh
in Ref. 4, there exists a ‘‘superheating field’’ and the pos
bility of realizing a metastable Meissner state for fields in t
range Hc1<H<Hs . For fields greater thanHc1, the fre-
quency corresponding to the Meissner state continues to
crease until it finally vanishes at the superheating field.
this point a vortex can nucleate at the surface and, in
absence of a constraining force, is able to enter the bulk
the junction. This leads eventually to the formation of t
mixed state.25

The results for a phase-inhomogeneous long Joseph
junction show similar behavior in that the localized mod
persist for all magnetic fields and for all strengths of co
pling to the vicinal Abrikosov vortex~i.e., for all magnitudes
of the phase discontinuityc). Also in this instance the
trapped flux is less than a flux quantum and is proportiona
c.24 Unlike in the semi-infinite case, the frequency corr
sponding to the Meissner state in this instance is indepen
of the magnetic field. This is because, for a long juncti
with a phase-inhomogeneity far removed from the edg
there is no sensitivity in the Meissner regime to the appl
field. Furthermore, in the Meissner state the frequency of
localized mode always lies below the Josephson plas
threshold.

The Tamm-like modes discussed in this article are ch
acterized by a localization~or decay! lengthl. In the case of
a semi-infinite junction, this quantity is divergent at sm
applied fields~see Fig. 6 appropriate to the Meissner sta!
indicating that the mode extends throughout the systeml
decreases rapidly as the field is increased and is of the o
of the Josephson penetration depth at the lower critical fi
Hc1. Continuing into the superheating regime, the dec
length decreases to exactlylJ at the superheating fieldHs .
At the lower critical field, the decay lengths in the mixed a
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FIG. 10. Localized modes decay length vs the reduced
quencyV2 for the inhomogeneous system in the mixed state fo
phase discontinuity of 3p/2. The curve is always seen to lie withi
those delimiting the gap in the infinite spectrum. The notation is
same as in Fig. 2.
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Meissner states coincide and are given byl.2.79lJ . The
transition to the mixed regime is accompanied by a reve
in the trend asl now begins to increase and diverges f
large magnetic fields. This behavior is depicted in Fig. 5
the semi-infinite junction, and in Figs. 9 and 10 for the pha
inhomogeneous junction. In the latter case, the decay len
are plotted against the reduced frequency for two repre
tative values of the phase discontinuity.

A natural way to attempt a detection of the type of c
lective modes discussed in the present paper is represe
by the study of theI -V characteristic where the small osc
lation spectrum could be expected to manifest itself in
form of resonances. Work in this area has been intense.26–31

To date, however, although much is known about large a
plitude oscillations~mostly associated with solitonlike vorte
motion!,32–34 unequivocal experimental evidence for th
small oscillations modes is lacking.35 It is also interesting to
mention in the context of phase-inhomogeneous Josep
s.
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junctions that the presence of inhomogeneities and the a
ciated current profile in Josephson junctions has been exp
mentally studied by Scheuermann and coworkers36 using a
laser scanning technique.

The problem explicitly treated in the present paper co
cerns isolated phase impurities. The effect of a finite den
of phase impurities15 on the small amplitude spectrum of
Josephson junction is also of considerable interest and
been addressed elsewhere.37

We conclude by noting that in the presence of phase
purities the standard description of the lower critical field
no longer applicable, as the closest impurity to the junct
edges will lead to an effective junction length. According
the phase diagram discussed in Ref. 4 must be revise
view of the fact that even in the limit of an infinitely lon
junction, the superheating field will not simply become t
Ferrel-Prange critical fieldf0/2plLlJ .38
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