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Coherent rotation of magnetization in three dimensions: A geometrical approach
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We propose a geometrical method to explore the problem of coherent magnetization rotation, for an arbitrary
anisotropy and in three dimensions. This method is a nontrivial generalization of the astroid construction which
is well known in two dimensions. Specific features to the three-dimensi8alproblem are highlighted. In
order to establish a connection with the thermal and quantum theories of magnetization relaxation, the local
curvatures of the potential are also evaluated geometrically. As an application of the method to a real 3D
problem, the determination of the effective anisotropy constants from 3D switching field measurements is
discussed and first results shown.

I. INTRODUCTION field (see Ref. 3 for a review The problem that comes next
to attention, namely that of a cubic anisotrajgurth degree
Coherent rotatiorthereafter CRR of magnetization is one at leas}, is 3D and not amenable to the same solution level
of the basic processes by which a ferromagnetic body reas the preceeding one. The parameter space is now two di-
sponds to afi(_ald. The other _competing_ processes are domaiﬁiensional(the polar and azimuthal angles 5f) and the
wall propagation and doma!” r?uc.leatlon. Dgpendmg.on e\ imber of metastable states near zero field increases to 6 or
sample size and shape, its intrinsic magnetic properties, a depending on the sign &. Moreover, as shown numeri-
the tir(;]e d_ep?ndgnﬁe of ';_he ﬁppg%d _fietld,k;)ne of thte zroct:ess%%"y by Johnso#,in case of a magnetiéation jump the final
may dominate. Schematically, is to be expected at ver . ;
stII sample sizefthe singleydomain limit, wh%re domain State is manyfold. The guess tha.‘t g should be f[he lowest
walls cannot fit in the sampleand at high fields in samples ]?nelrg¥ ?tat?hls glready dlspro':_/ed Ihn “in (:)rder tlo f'dnd thde it
with low coercivity. In the CR regime, the sample magneti- Inal state, the dynamic equation has to be solved, and it 1S
o _ _ . : i - i easy to conceive that parameters such as the field sweep rate
zation is _umform, its static orientatiofunit vectorm) being will greatly affect the outcome of the calculation. Thatatic
the solution of hysteresis loops in 3D are ill defined in principle, and the 3D
. - - - problem is richer than the 2D one.
Min g =2[KVi(mM)=KG(m)—Msm-H], (1) An alternative approach to numerics, namely geometry,
whereK is an effective anisotropy constai®, the function ~Was proposed by J. Slonczewskind became known as the
describing the angular dependence of the anisotrbpythe ~ astroid method. In essence, it considers instead of the mag-

saturation magnetiza’[ion density, ah-?d the app“ed field. netization directionﬁ the field Fi as the main variable. As
Comparing Eq.(1) with the usual micromagnetic energy the potentialk G(m)—MgH-m is linear in field, the extre-
functional, one sees that the exchange and demagnetizingum condition inm is satisfied, for a fixedn, along straight
energy terms have disappeared. Exchange energy is zero higres in the field space. Slonczewski worked out the 2D
cause of the assumption of a uniform The demagnetizing uniaxial second degree case, but the method treats any 2D
term has the same form as that of an ellipsoid when theroblem alike(see Ref. 7 for one example, and Ref. 5 for a
sample is uniformly magnetizédand can therefore be in- general formulation of the 2D cas&@he geometrical method
cluded into the effective anisotropy as a second degree polyntroduces a curve in the field plane, called the critical curve
nomial. More generally, the effective anisotropy is the sum(a square astroid in the original papéo which the straight

of contributions from crystalline bulk anisotropgny de-  jines are tangent, these lines being parallehtdThe critical

gres, surface anisotropy and magnetostatic energy. curve is additionally the locus of fields at which a magneti-
Despite its simplicity, the problenil) conceals a wide zation jump occurs. The stable solutions lie on one half of

variety of magnetic behaviors and does not allow for an anathe straight lines, that starts at the critical curve and extends

lytic solution in the general case. The first systematic stud¥ the directi . The traditi | f1h troid is t
of CR was performed by Stoner and Wohlfaftim the sim- n the direction ofm. The traditional use ot the astroid 1S 1o

plest case wher& is uniaxial and of second degree. They
derived the ubiquitous easy axis and hard axis hysteres

loops, and tabulated those for any angle between field an eneral case in 2D was performed, in which it was moreover
easy axis. In the Stoner-Wohlfarth problem, the plane deShown that the energy of the system could be calculated geo-

fined by the easy axis and the field contains also(#etio metrically. It is one puerse of this paper to treat the general
magnetization, so that it reduces to a two-dimensi¢gB)  case of an arbitranG(m) in three dimensions, trying to
prob|em_ That paper therefore had a great impact on the Soﬁara”6| the work in 2D as much as pOSSible. It will be shown
magnetic thin-films research that developed later, as théhat the critical curve is replaced by one critical surface, the
magnetization in soft thin films is confined to the film plane locus of fields at which a jump of magnetization occurs, plus
by a demagnetizing field much larger than the anisotropya second surface. The straight lines directed alongre

visualize the switching fields and to construot from H
graphically. In a previous papean extensive study of the
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tangent to both surfaces, and on each surface they are tangent 1+a?2 1
to a set of special curves covering the surface which we 7o=4m o« vHe
introduce. Energy can again be calculated with these curves. YK
The motivation for this work is multiple. The main field 2\/T1c2 1
of application of the CR model is magnetic nanoparticles. X > ARORE (4
For a long period of time, only macroscopic measurements —c1—Cp+(C1—cp)?—4cscy/a? efeh

were possible on such samples, so that the exact behavior %f
each particle was diluted by averaging over the distributiond
of particle shape, size and orientation. Nevertheless, these

the so-called intermediate to high damping case, and

macroscopic measurements showed that even nanoparticles e 4_77 1 1 k_T 5)
were sometimes more complex than single dorfidiAt na- " a yHg cPcD Eg

nometer sizes, the atoms at surface are in comparable num-

ber to those in the interior, so that surface magnetism effect® the low damping case. In these expressiansandc, are

become as important as bulk ones. It was found that thFi tyP@e two eigenvalues of the second-order formvigi(m) at

of particle magnetic ordefferromagnetic, ferrimagnetfc, i i (1)

antiferromagneti®) and the chemical state of the surface bﬁgr'er top (saddle point, thus;1>0,c2<Q), and cy ”and
c;~’ those values at the metastable positibnth positive.

(e.g.., carbon passiyated, oxidiz)mte key parameters con- i, geometrical factof(H) in Eq. (3) is thus related to the
trolling the magnetic properties of the nanoparticles. As a

result, a global understanding of the magnetic properties ofUrvature of the potentialy;(m). In the quantum regime, an
nanoparticles has not yet been reached. One can hope t ponent!al_rellaxathn by tunneling is also expected, with a
measurements on isolated particles will help to clear up th&haracteristic time given bisee Ref. 14, for example
situation. In order to be able to interpret such data, the very
peculiarities of each measured particle have to be taken in ~leC /i
account, among which its effective anisotropy. We believe °N2xmh
that a geometrical method can be of great value in develop- o ) ]
ing some feeling about the behavior of a given particle inln this expressionSis the action evaluate_d with the so-called
various situations, in the case of CR which is the simplestnstanton solution of the classical equations of motibere
approximation. As an example, experimental 3D switching-LG, without damping, w the precession frequency of that
fields surfaces measured on isolated nanoparticles will bgolution andCq a numerical factor. As a rule of thumb, the
fitted by surfaces generated using the geometrical proceduraction Sis of the order ofEg/wy, (Eg is the barrier height
in order to find out their effective anisotropy. Even in casesconsidered beforay,, the oscillation frequency in the meta-
where CR is thought not to be an adequate model, it is necstable potential wel] and v~ wy,. Explicit formulas were
essary to know what the detailed predictions of CR are irderived in a large number of casés,*including hexagonal
order to disprove them. and cubic symmetry with the field within special planes. But
In cases where CR applies, the particle magnetization re0 general expression like Edg) or (5) existed up to now.
laxation in temperature and at zero temperature is yet &sing the general estimates mentioned above shows however
largely open field(see Ref. 11 for a review of the various that the evaluations of the barrier height and the curvature of
model3, to which the geometrical method can contribute. InV;(m) are again required in order to predict the tunneling
the thermal regime, the early models of élleand Brown rate. The same quantities also enter the expression of the
predict an exponential relaxation, in the case of uniaxial anescillation rate in the macroscopic quantum coherence
isotropy. The relaxation time is written as regime!* Therefore we see that the essential quantities gov-
erning the magnetization dynamics are the potential’s curva-
7= 1o eX{(Eg/KT), @ tures and the energy barrier. Note also that the ferromagnetic
whereEg denotes the barrier in energy that has to be overresonance frequency is directly calculated from the curvature
come in order to exit from the metastable state. The prefactaof the potential. It will be shown here how the geometrical
7o is still the subject of much debate.” dlederived an ex- approach allows for their determination, and the geometrical
pression from the magnetoelastic interactions. Brown introsignificance they have.
duced the Fokker-Planck approach in the problem, con- The paper is organized as follows. Section Il gives the
sidered a continuous distribution of orientatipaad derived main results of the geometrical solution for an arbitrary

f-rom the LandaU-LlfSh|tZ'G||ber(LLG) equation-the evolu- G(rﬁ) The under|ying mathematics is exposed more in
tion of this distribution. The prefactor found with some ap- depth in the Appendix' Problems having a revolution sym-

-S
W eXp—. (6)

proximations is typically expressed as metry are examined in Sec. lll. The differences with the 2D
2 solution, due to the additional degree of freedom, are dis-
1+ o 1 . . . . . . 2
To=41 Tf(H)’ (3)  cussed. Section IV studies in detail the biaxial c@em;
YHk +Am§, which constitutes the first nontrivial extension of the

where « is the Gilbert damping parametey,the gyromag- 2D square astroid. Examples of application of the method to
netic ratio,Hy the anisotropy field, anfl(H) a geometrical experimental data obtained on isolated nanopartiglesa-
factor that diverges algebraically at the jump field. The gensurements by E. Bonet-Orozco and W. Wernsdorfer at
eralization of Eq.(3) to less symmetric cases has been theL.L.N. Grenoblg are shown in Sec. V. Anisotropy functions
subject of much recent work. The most general expressionare extracted from switching field measurements. The diffi-
are” 13 culties of the procedure are discussed.
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II. GEOMETRICAL SOLUTION () (b)
A. The two critical surfaces

The starting point is the potential

Vi(m)=G(m)—2h-m, 7)
whereh is the normalized fieldi/Hy (the anisotropy field
H, is defined as R/My). The unit vectom is described by z
the polar angle relative to some axi®z, and the azimuthal S+ A Sy
angle¢. An orthonormal direct basis is formed by the three Eal
vectorsm, e,=dm/ a6 ande,= (1/sin6)am/de. Vy; has to be
stationary inm, thus
G,—2h-€,=0,
G,—2singh-e,=0 (8)
(G, stands fordG/ a6, etc). In the field plane, E@8) is that
of a straight line, which can be described with a parameter S S
as ) )
.1 . 1 R - o -
h= §G9e9+2+6¢e¢+ Am. 9 FIG. 1. Perspective view of the two critical surfacgs andS_
sing in the two simple cases of a biaxial symme@y=m+0.5m; (a)
Stable solutions havé,; locally minimum atm. The second and a cubic symmetrys=mzmi+mim;+m;m; (b). The cubic
derivatives of the potential read box has sides of length 2. Various paftslled “bells” hereaftey
of the S, surfaces have been stained differently. The focal curves
Vo=Gppt 2h-m= Gygt 2\, that cover the surfaces and cusp lifegere the surface is folded
are also drawn. With the biaxial symmettg), both surfaces are
B - - d( Gy built out of two halves glued along the ellipse. The focal curves on
Viy=Gyg—2 costh-e,=sinf—g| =7, S, start from the “handle cusps” and end on the elliptical cusp. In
the cubic caséb), S, consists in 6 gramophonelike bells, each bell
Vs=Gyopt 2sinoh- (sin om+ coseé(,) being four leaved and starting from one poittiere are also tiny
surface parts close to t{@11} directions. The bells have 4100
=Gyt sindcosoGy+ 2\ sir? 6. (10 orientation and correspond to the easy directions of a positive cubic

éanisotropy. Conversel\§_ consists in eight tripods with thigl11}
orientations, like the easy directions for a negative cubic anisotropy.
This last surface was colored so as to display its various pieces.

The stability requires that both eigenvalues of this matrix ar
positive, thus that their su¥,,+V,, and their product
Vf,f,v(b(,,—(vb,(ﬁ)2 are positive. The sum is linear i with a
positive coefficient, the product is quadratic with positive
coefficient. The two zeros of the product are real and exdergoes a jump towards another stable orientation. This sur-
pressed as face, as it generalizes the critical curve of the 2D problem, is
called the critical surfaceS_ is another surface, unnecessary
at first sight(of course, upon changinr@to — G, S, andS_
would exchange rolesThe interest ofS_ will become ap-
parent later. Figure 1 displays these surfaces in several high
2| symmetry cases. The higher the degreé&ahe more com-

G cosé
PP +

1
)\+:Z - _G0+Ggg)

sirfg  siné
Gy  COSH ’ | Gy
“Vlgmras " sngCo Co| T4 0l Sng plex they become. The surfa of the cubic caséFig.
1(b)] bears some resemblance with the drawing of the two-
(11 phase boundaries and critical curves for the same

Therefore the half ling9) described byn=\ | is the locus anisotropy'® The zooms near thEl11] axis also have the

of the fields for which the magnetizatian is stable. At\  Same topologynot shown here This should be no surprise,
=\ one eigenvalue falls to 0, and the magnetization vectofS pPhase theory in magnetism also considers uniform mag-
can escape from the potential well. Between and\ _ one netizations. The two-phase boundariéslds where two so-
eigenvalue is positive and one negative: the potential is lolutions have the same enejgyre the symmetry planes of the
cally of saddle shape. Saddle points also deserve considefeaves” of S, , with {110 orientations. The curves that
ation because, as described in the introduction, they influend the two-phase regions mark the onset of the one solution
ence the magnetization dynamics. Below_ both regime, and are identical to the end cusps that will be intro-
eigenvalues are negative and the potential is at a maximungluced below. Note that phase theory drawings do not pro-
Settingh =\, or A\=\_ in Eq. (9) generates two surfaces, Vide a construction of the magnetization.

parametrized by and ¢, which we denote by, andS_ . The tangential planes to the surfacs are now consid-

S, is the locus of the fields at which the magnetization un-ered. The partial derivatives of are
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oh 1 . 10[G,)- o 1 ) with the notations.. for the curvilinear abscissa on the focal
0 E(GWL 2\)egt 3 ﬁ(ﬁ) e,t (% - EG") m, curve drawn or, . The constant is an energy origin, which
depends also on the origin of lengths along the focal curve.
ho1 91 G When many focal_curvgs start from a special pggge I_:ig.
= sin 9_(._‘15 e,+ ———(G,,+5siN6cosoG, 1 for exampley this point can serve as a common origin of
dp 27 df\sing 2sind length for these curves. Otherwise, the Appendix shows that
) N1 A a second set of curves is drawn 8n: the constant energy
+ 2N sinza)e¢+ - —G¢) m. (12 curves. These curves are everywhere orthogonal to the focal
i$ 2 curves, and provide a mean to compare energies along dif-

The normal to the surface is directed along the vector prodferent focal curves.

uctah/a6/\ohlap. As thee, andéd, components in Eq12) It is_now pOSSib|e_ to compute the yari_ous quanti_ties re-
are proportional to the second derivatives\ofEq. (10)], ~ duired in the calculation of t.he magnetization dynamlc_s. The
one recognizes that tha component of the normal is just second order Taylor cogfflments ¥f; are easily found first.
zero at\=\ . . This means that the straight lii@) touches For a small variation ofn around an extremum one writes
S, andS_ tangentially. Moreover, the respective tangential - - . - - -
planes to both surfaces are orthogonal. This provides one dm=doe,+ singdde,=due,+dve,. (19
construction of the solution to the problgid), once the sur-  The variation ofV,; is of second order and reads
facesS.. are drawn. Given the poirtd representing the field 1 1

(OH=h), one has to find a straight line going througrand dV=2(d6)AV 5yt dOAPV gyt = (d )2V,
tangent toS, and S_ (there will be a discrete number of 2 2
such lines, as they are the intersection of two cones of apex
H). Stability is guaranteed if, starting froM and traveling

LG, 2ndues 22 —G¢)dd
(Hﬁ+ )\)U+£Sin9 u v

along the line, one is first tangent& and then t&&_ . The 2
searched magnetization directiomis that of this line, ori- G cos
ented fromS, towardsH. This procedure solves the problem A aated 2\ | do?
; O ( IS C —— +——G,+2\ |dv?|. (16)
(1) in principle. It will be difficult to use with complex sur- sirfg sind

faces, so that another procedure is described now.
In the Appendix, the surfaceS, andS_ are shown to
possess another property. They are the focal surfdgoeisof

A simple calculation, comparing with Sec. Il A shows that
the symmetric matrix involved has eigenvalues\2(\ ;)
and 2(\—\_). The eigenvectors are, as shown in the Ap-

the centers of curvatuyeof a set of parallel surfaces: the . . . . N . .
¢ i This lead h pendix, the differential variations @h obtained by displace-
constant energy surfaces i space. This leads to the con- o 510ng the two focal curves on the two focal surfaces.

sideration of a special family of curves @., called the The eigenvalues are the coefficienﬁ_é) andc(zi) of Egs. (4)

focal curves, which correspond to the lines of curvature Ofand (5). They are as expected positive for a stable equilib-
the constant energy surfaces. The focal curves cover the su

= . it SAL>AL . [ i-
facesS.., so that each point is crossed by just one of thes fium wherex A >\ . Geometrically, the Taylor coeff

curves (except for special points The local tangent to a Cients are JUST(tWI.C ¢ the distance o to S, and S, .
focal curve ism, therefore providing an orientation of the counted on the oriented tangent. Therefore, from a drawing
focal curves THis orientatiopn of thegtangent allows to solveonly’ the steepness of the local potential well in Whml$|_ts
- ’ ) ) can be appreciated. As an example the ferromagnetic reso-
them problem with one surface only. If one consid&s,  pance frequency, which corresponds to small oscillations
on which the focal curves are drawn, it suffices in order toaround equilibrium according to the magnetization dynami-

solve Eq.(1) to find the points) on S, where the oriented 5| equation, is readily found in the case of zero damping to
half tangent to the focal curve crosddsin Fig. 1 the focal g

curves have been drawn. These curves in effect split the 3D

; ) 2 2
problem into a collection of nonplanar 2D problems. ® :V(,(,VM, B V-gqs =) (A=A
YHk/  4sirfg  12sin6
B. Energy geometrical calculation
— D))
With the aid of the focal curves, the energy of a configu- =cyic /4. (17)

ration (m,h) is easily computed. Indeed, as shown in theThis frequencyunder the names angular frequency and pre-
Appendix, the energy along a focal cur@ S, or onS_) cession frequengyenters the relaxation time expressions in
satisfies the thermdf® and quanturtf regimes. For the magnetization
relaxation theoriegthermal or quantum the Taylor coeffi-
dE=—2do, (13 cients and barrier height have to be evaluated close to the
whereE is V;i(m) (note that botth andm vary along a focal JUMP point. A detailed analysis by local geometry, along the
curve ande is the oriented curvilinear abscissa on the focallin€s of Darboux;” of the configuration of the critical surface
curve. Therefore, for a magnetization at an extremor ~ 2nd the focal curves has been used to show that when

only in stable equilibriuthand specializing t&. , one can cOmes close t&,, only the focal curve “below”H matters
write (i.e., the curve going through the orthogonal projectiorof

onS,). So that it is possible to perform the energy calcula-
E=—2(oc,+N—\,)+CS, (14 tions like in 2D° Figure 2 draws the focal curve and the
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FIG. 2. Local configuration of focal curves and field point close
to switching(at Hy). The drawing is in three dimensions. A local
surface analysis shows that the focal curve in the sam@ane as
H bears the tangents through(from the pointsA; andA,), so that

the calculation of the curvatures and barriers can be performed in

that planeH is on the stable half tangent through, but on the
saddle-points part of the tangent throuljh The focal curves ori-
entation is indicated by arrows.

pointH that is moving towards the jump poihly. R denotes
the radius of curvature of the focal curvetdg andh, the
height of pointH above the critical surface. To leading order
one finds

A=N)|a, =~ (N=N ) |a,= V2R, (18
Therefore close to the jump one has= —0(21) and, ifS_ is

far fromH (i.e., \—A_>|A—\.]), c;=c{ so that Eq(4)
can be simplified to

P « 1 (19
m— I —
YHk c(l) yYHk 2Rh,

The other quantity of interest which is the energy barrier isfor S_.

by the same calculatiofthe barrierEg in Sec. | isKvAE,
with v the particle volumg

AE=V{i(mg) — Vi(my)

=2(AH+HAG—AAg)

82
“3\R

——(h,)®¥? to leading order. (20)
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Ill. SPECIAL CASE OF REVOLUTION SYMMETRY

At first sight, the static solution of a revolution problem
should be the 2D solution, as by symmetnyandH have to
belong to the same plane. Nevertheless, Stoner and
Wohlfartf in the biaxial case of second degree showed that
m may rotate out of the plane in certain circumstances. We
are now in a position to discuss that point quite generally
with the geometrical method.

The revolution axis being chosen as the polar axis for the
angles definitions becomes independent @h The critical
surfaces are described by

1 cos
- Gf}ﬁ — InaGﬁ Gf)ﬁ

In the region where (co8sin§)G,—G,y,>0, the solutions
read

cosé

N+ W (21

1
)\+ EGﬁﬁi
- 1 .01 -
h+:§Ggeg_§Gggm, (22)
for S, , and
B 1 cosé
- 2sing
ﬁ—=4L—G* 23
"~ 2sing ¢ 23

Equation(22) is identical to the general solution of
the 2D cas&.The surfaceS_ is here restricted to the axis of
S, . In the opposite cases, reduces to the axis, which
means that the critical surface of a revolution problem may
differ from the surface generated by rotation of the 2D criti-
cal curve. This result is easily understood. The quantity that
has to be positive in order to reproduce the 2D result is,
comparing to Eq(22), sind (positive as 6< #<r) times the

radial component ofi, . If the 2D solution predicts that this
component is negativé.e., of sign opposite to that crﬁ),

The power 3/2 conforms to the general predictions ofthen am rotation of m around the axis will leaves un-

Victora*® The formulas(19) and (20) show that the local

changed but increase the dot prodoeth, hence reduce the

magnetization dynamics near a jump point is governed bynergy. Such a rotation was not allowed in 2D. Figure 3

two factors only: the radius of curvatuReof the focal curve
on S, , at the jump point, and the altitude, above that
critical surface. In 2D, the curvature radigscould be ex-

draws the different critical curves for an anisotropy function
G = sirf@cogd (it can be obtained as gid— sin' ¢: a strong
negative uniaxial anisotropy constant of fourth degréis

pressed by a simple formula, but in 3D this becomes too longase belongs to region VIII of the classification proposed in

because of the partial derivatives)of , so the formula will
not be given.

To summarize, the geometrical solution provides:

« the critical surfaceS, at which magnetization jumps

Ref. 7. In that paper, the hysteresis loops for various values
of the two uniaxial anisotropy constants were calculated cor-
rectly, but their analysis by a strict 2D formalism gave some-
times different results. The 3D solution when specialized to

occur, explicitly from the expression of the anisotropy, the revolution symmetry allows for a correct treatment. Fig-
whereas a numerical calculation of the switching field for allure 4 explains how it is possible to treat revolution symmetry

orientations would be very demanding;

e two ways to construct the magnetization from the field,

graphically;

on a 2D drawing. It is helpful to keep on the drawing the part
of the 2D critical curve that has been transferredsto, in
order to define the tangents. There are now two sorts of

 the energy of a configuration expressed as a sum afhagnetization jumps, namely the 2D one when the field

lengths, hence the energy barriers etc.;
« the Taylor coefficients of the potential, as lengths.

point crosses the critical curve while meeting the tangency
point, and another onen( rotation if the field point meets
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#

7%

B
V

FIG. 4. How to treat a 3D revolution problem with a modified
2D curve, in the same case as Fig. 3. The part of the 2D curve that
belongs toS_ has been drawn dashed. The half tangents from that
part are stable only after having crossed the revolution axis. A new
type of jump(in fact, a7 rotation around the axi:ccurs when the
field point crosses the part of the critical curve that lies on the axis.
This jump leaves the component F alongﬁ unchanged. Jumps
are illustrated for a field point moving along a straight line, frdm
to E. One jump(new type occurs atB in the revolution case,
whereas two jumpgconventional typeare predicted a€ andD in
the 2D case.

second degree. Thus this case is an important one. The next
step will be to know how the addition of small higher degree
terms modifies the critical surfaces.

By diagonalization, the anisotropy function can be ex-
pressed as

G(m)=mZ+An, with 0<A<1. (24)

The easy axis i©z, Ox is the hard axis an@y the inter-
mediate axis. The general shapeXf andS_ is shown in
FIG. 3. The three sorts of critical curves in a revolution prob- Fig. 1(a), as we shall see that these surfaces very much re-

lem, here with cubic symmetr§= sinff coge: the usual 2D criti- semble each other whatevér In particular,S_ is of the
cal curve(a), the section of the 3[3, surface(b) and the section of same family asS. , as it is theS. surface of— G(n3) =m?2
+ + Nz

the 3D S_ surface(c). One sees that some parts of the 2D curve . 3 . . .
have been transferred ®_, and thatS, reduces to the axis in +(1 A)mY' Straightforward calculations provide the fol-

these regions of magnetization angle. The orientation of the 200WiNg precise description 08, . Cut by thexOy (hard
curve and of the 3D focal curves is shown by arrows. plane, the surface reduces to a cusp line which is an ellipse

of semiaxes having lengths X (direction and A (y direc-

the axial section of the critical curve. This new method istion). This elliptic cusp line replaces the hard axis cusps of
more general and precise than the considerations of Ref. 2the 2D astroid. The section by thy®z (easy plane is built
Under revolution symmetry, the focal curves are readilyout of four focal curves drawing a square astroid of size
found to be the constant and constan® curves, those at This was expected f.rom the 2-D solution. The third section by
constante corresponding to the 2D critical curve exactly. thexOzplane contains cusp lines and focal curves. The cusp
Therefore these focal curves may travel o®r and then lines are arcs of ellipse, of semiaxgsnd 1-A in thezand
overS. . As this does not affect the energy geometrical calX directions, respectively. They stand in place of the easy
culation, the 3D expression of the barrier hei¢®f) is fully ~ a@xiS cusps in the 2D uniaxial case of second degree. The
consistent with the 2D restiltvhen the latter applies. The focal curve is an arc of astroid of size 1. Figure 5 superposes
cusp equatior(see Sec. ABfor the constantp curves is thesexOz sections for various values & The point where

found immediately to be®,,+ G),= 0, which is also iden- the cusp and focal lines meet tangentially is an umbilic. The
tical to the definition of the cusp points in 2D. surface has four umbilics where the “handle” cuspsSyf

and S_ join each other. The focal curves start from the
handle cusp and end at the full ellipse cusp, with that orien-
tation. The orientation of the focal curves & is the op-
This is the simplest anisotropy that is of 3D nature. More-posite of that drawn on the rotat&d surface with parameter
over, for nanoparticles made out of materials, like iron orl—A.
nickel, with a low quality factor(the ratio of anisotropy to Considering thez>0 part of S, only, one sees that the
magnetostatic ener@lya small deviation from a spherical oriented half tangents cover the whole half space located
shape leads to a dominant shape anisotropy. The shape delow the upper part 08, , extended by the«Oy plane
isotropy of a body of arbitrary form is precisely biaxial of outside the ellipse cusp. Therefore the field polithat are

IV. BIAXIAL ANISOTROPY OF SECOND DEGREE
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FIG. 5. The sections of a biaxial anisotrofy surface in the . I
plane that contains the ea&y and hard(x) axes, for values of the et
parameterA between 0.1(lower curvg and 0.9. All sections are .
contained inside an astroid of size 1 and share one part with it. The (b) 3
handle cusp is an arc of ellipse tangent to that astroidAAtl the r

problem is of revolution and the 2D astroid is recovered AAtO
(negative uniaxial anisotropys, reduces to the axis.

located in the exterior db, have exactly one stable solution

for m, whereas those in the interior have two. The surface

is, as said before, the locus of the field points where a mag-
netization jump occurs. But, as in 2D, not every crossing of
S, does give rise to a jump. In this simple case, the rule is
easy to derive from the geometrical arrangement of the stable
half tangents. Starting from outsid& where only one mag- H
netization exists, upon entering insid& the upper or the
lower half of the surface will bear the relevant focal curves.
Namely, if S, is entered from the upper half, the lower part
of the surface will carry the focal curves that provide the
tangents. Therefore a jump widinly occur when the field
point leavesS, through this lower half, for only by this way
will a metastable minimum of the potential happen to disap-
pear. This rule is akin to the one often quoted for the 2D
square astroidjump upon exit of the astroid onlyalthough

it is more general. At a jump, whed touches the surface, it
also meets the.focal curve from WhiCh th'e tangent WaS |G, 6. The three principal cuts of ti&, (full curves andS_
drawn. The details of the magnetization rotation for any field yashed curvgssurfaces for a biaxial anisotropy with=0.3[refer
trajectory can be figured out with littigeometricalthought. 15 Fig. 1(a) for a perspective view of the surfac@he construction
But if exact values are required, numerical calculations argf the magnetization direction for some field points is shaine
mandatory. The geometrical solution is still of some helpstable half tangent is drawn in full, the part betwe®n and S_
however, because instead of a tedious minimization procedasheyl When the focal curves lie in the cut plane, their orientation
dure working in all cases one can simply scandimnd ¢ is shown(use themmmsymmetry of the surface to have the orien-
looking for a half tangent that will touchl (a zero seeking tations of all focal curves The planes are the eagyz (a), inter-
procedure mediatexOz (b), and the har&Oy planes(c). In (a), the cut ofS_

If hysteresis cycles are measured for all orientations inis a cusp, not a focal line, so that the tangent fidnto S_ is not
side a given plandike the traditional micro-SQUIQsuper-  tangent to the cut d®_ . The same occurs ifb) and(c) for the S..
conducting quantum interference deviceeasurement$?9,  cut.
the plot of the measured jump fields within that plane will

reproduce a cut 0§, by the plane. The magnetization just jng the tangents when the cut 8f is a cusp. Notice that in
before the jump point is given by the tangent to the focakne hard plane cut the magnetization is forced to leave the

curve at this point. It does not in general belong to the fieldyjane whenH is inside S, , no stable solution can be con-
plane considered as was the case in 2D. The shape of thgcted otherwisérefer to Sec. ).

curve obtained is also different, it is no longer only com-
posed of arcs of the same concavity joining at cusp pdints.
In this biaxial case, 2D drawings can be used when the
field belongs to the three mirror planes that are left as sym-
metry elements in Eq24). Figure 6 draws these three cuts.  Although the emphasis of this paper is rather laid on the
The cut ofS_ is also showr(dashed, because it helps draw- method itself, it has been felt useful to show some practical

V. APPLICATION TO EXPERIMENTAL RESULTS
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applications of the geometrical objects and tools introducedinder the constraintt,,=0 (z’' denoting the normal to the
here. cut plane, note the cut goes through the onigialculates a
In the field of nanoparticles, one of the great progress thatut. After normalization to the curve length and orientation
occurred in the last ten years is the development of techby some special featurghe maximum radius of the curve
nigues allowing particles to be measured individually. Imag-for example, the square of the distance between experimen-
ing techniques are magnetic force microscdpgnd trans- tal and calculated points at the same curvilinear abscissa is
mission electron microscop¥.Another one, which is more added to build an error. The weight of each experimental
rapid, consists in measuring the flux from the particle insidepoint is proportional to its contribution to the curve length.
a micro-SQUID?® This last technique has produced a wealthThis error is minimized with respect to the parameters by a
of hysteresis cycles and switching field angular plots fromgradient procedure. It became rapidly clear that one cut is not
various nanopatrticles or nanowires. As the SQUID can onhat all sufficient to determine a whole surface. For example,
reproductively work with a small flux, the usual measure-Fig. 7 shows two fits of equivalent quality of the cut of the
ment procedure consists in applying fields in the SQUIDsurface of the Co particle by the SQUID plane. Both fits
plane and measuring switching fields versus in plane orienwere obtained with biaxial second degree and uniaxial fourth
tation (see examples in Refs. 19 and)28s shown by Bonet degree terms. The corresponding 3D surfaces are extremely
experimentally’* field paths more complex than a straight different, as are also the determined parameters. Thus a vi-
line through the origin are required if all switching fields are able procedure has to consider the whole surface. Another
desired(cf. also Ref. 5 for the 2D discussion of that point, disadvantage of the first procedure is that, when some parts
and Sec. A3 for a 3D general discusgioA clever indirect  are lacking in the experimental curve, the curve length be-
procedure was also developed by Boffatvhen a jump can- comes another unknown.
not be directly measure@ecause the flux jump is too small ~ The parameters of the second procedure are those describ-
or the necessary field too large for the SQUID to operate ing the anisotropy function and the three Euler angles ac-
one can see whether the jump has occurred or not by subseeunting for the relative orientations of the experimental and
quently testing for a jump at a more convenient point thatcalculated surfaces. The surface size is found as the solution
belongs to the same “part” of the focal surface. In Sec. A 3,0f a 1D least squares problem. Considering the simple shape
the 3D discussion of such a procedure is proposed, and thef the measured surfaces, in case the calculated surface has
“parts” precisely defined. more than one point in one direction, error is computed with
Using this indirect technique, 3D switching field surfacesthe closest pointnote the surface scaling is computed from
have been measured for the first time on individualthe unique points only This time, the weight of the experi-
nanoparticle$® The next step is naturally to investigate the mental points is taken in proportion of their contribution to
magnetization dynamics of these particles, in both thermathe area on the orientation sphere. The surface is calculated
and athermalquantum regimes. As explained in the Intro- as a family of planar cuts that share an axis, as the surface
duction, the determination of the exact anisotropy function isvas measured that way and as this allows reusing part of the
a necessary ingredient for a precise comparison betwesdfirst procedure. The difficulties of gradient minimization
theories and experiment. For that purpose, the identificatioarise from the nonsmoothness of the error as function of the
of the exact anisotropy from the switching field surface is arparameters. Both surfaces are indeed known on a finite num-
attractive possibility. Therefore the two available experimen-ber of points(about 360 for the experimental, and 2000 for
tal 3D switching field surfaceson a Co particl® and a the calculate] and small steps in the error as one integer in
BaFeO particl&®) have been processed, trying to determinethe calculation changes by one unit are difficult to avoid
their effective anisotropy function. completely. The minimization algorithm can become trapped
at such artificial minima, and needs often restarting.
The results for the BaFeO particle are presented in Ref.
A. Recovery of the anisotropy function from the critical 25. This surface can be described as uniaxial with some de-
surface formation. A good reproduction of the surface was obtained

In 2D, it has been possible to solve the mathematicaWith the inclusion of an hexagonal crystalline term of degree

problem completely and show how the functi@tﬁrﬁ) could 4 plus 6. Here, the results obtained with the Co nanoparticle
be directly found from the critical curve, once the curve is©f Ref. 19 will be described in detail.

validated as a critical curveiot any astroid-shaped curve is

a critical curvé). The situation is not as well advanced in

3D, as the answer to the following questions is not known B. A cobalt nanoparticle

mathematically. A first parameters guess can be made from an inspection
(i) Is S, sufficient(without S_, without the focal curves  of the measured surface, with the previous knowledge of the
to determineG? usual critical surfaces. A program computigy for any

(i) What are the necessary and sufficient conditions on @arameters, whose input was processed by a 3D display soft-
surface for being the first critical surface of an anisotropyware (Silicon Graphics IRIS Exploré!), was also of good
function? help. The experimental surface can be described as a revolu-

Let us suppose nevertheless here that the surface has bd@n astroid that would have been squeezed to nearly half
fully measured, and look for calculated surfaces that resize along the easy axis, that axis being inclined
semble it. A first procedure considers the data obtained of=20 deg) with respect to the normal to the hard plane
one single cut of the 3D surface. For a set of anisotropynearly circular cusp, and finally the easy axis point being
parameters and cut orientation, a walk in tl#le) rectangle replaced by a short handle cusp. The hard plane cusp was not
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(b) FIG. 8. Results of the fit of the whole switching field surface of
“.‘/\'\-\‘ the same Co nanoparticle as in Fig. 7. Displayed are three cuts at
ot . /6 of each other, superposing d intg and fit(line). The cuts
e ~ m perposing ddgmints and fit line). The cuts.
0 —= e are rotated around the vertical axis of the figure. The fit is obtained
."'\-.}_‘ '_‘..«"‘/' with hexagonal symmetry(crystalline terms given byB sirté
e, \/af +Csinf).
_0'2—0.4 02 0 02 0.4 account for the height and the presence of the easy axis

handle cusp, then the hard axis cusp should be an ellipse of
aspect ratio 2. Higher-order terms have therefore to be in-
cluded. Cobalt is hexagonal in bulk form, so that the next
order term should benf2+ m2)2. But recent studies of cobalt
nanoparticle®?’ indicate that the stable structure in reduced
dimensions is cubi¢fcc). The next order term should thus be
mZm;+m;mZ+mZmz . The anisotropy for cobalt in the fcc
phase was determined on thick epitaxial fiffhto have a
negative constankK,, like nickel. The experimental data
were fitted with either of these two terms added to a biaxial
one. Figure 8 shows 3 representative cuts separated/®y

out of the 18 that constitute the surface. This surface fit was
performed in the hexagonal crystalline symmetry, with terms
of degree 4 and 6 retained. The agreement is quite good, only
the easy axis cusp being not fully reprodudadte however

that this part is shown in each gutnder cubic symmetry, a
negative magnetocrystalline term was found as expected, but
(d) the error was distinctly larggrms values are 0.02 and 0.04,
for a surface half diameter of)1The fit with the cubic sym-
metry produces large extra branches close to the easy axis,
just like the revolution case when the degree 4 term is strong
enough’ This finding of a hexagonal symmetry may be sur-
prising, but it should be reminded that TEM examination of
parent cobalt particles showed that not all were of fcc

structure?” and that only one such particle was measured up
to now.

This first example, combined with that concerning a
barium ferrite nanoparticl®, shows that a complex anisot-
ropy can indeed be recovered from switching field measure-
ments. However, unambiguous anisotropy identification re-

FIG. 7. The distribution of the switching fields for a cobalt quires |00king Carefu”y for all parts of the surface. One

nanoparticldRef. 19, measured in the micro-SQUID plane, can be possible such procedure is discussed in the Appendix.
fitted alone rather equally well with quite distinct parameteis

and (b). Points come from experiment and lines from calculation.
The corresponding surfaces are shown by their upper half above VI. CONCLUSION AND OUTLOOK

that plane(c) and (d). The whole experimental surface is closer to . . .
(d). The parameters are=0.971 and 0.645 for the biaxial term and W€ have shown in this paper that a geometrical approach

B=0.544 and 1.321 for the uniaxial fourth degree term, respecProvides a general solution of the coherent magnetization
tively. The field scale in@ and (b) is in Tesla. rotation model in 3D. This solution allows for a global un-
derstanding of the magnetization behavigotation and
measured(see Fig. 7. From Sec. IV, biaxial anisotropy jump) in field. Moreover, many of the physical quantities of
alone cannot reproduce such a surface. If it were of revoluinterest have some geometrical signification. For precise val-
tion one should havéA=1 and the height of the surface ues, numerical calculations are of course required. However,
should be equal to its diameter. And, if one haae-1/2 to  we have shown on one example how experimental switching
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field_s_urfaces can be fitted. by the cr!tical ;urfaces calculated 5 / 5 \ds G cosé  do
¢ $é
explicitly from the geometrical technique, in order to extract 20\ snelas _ + .—GGH+G— E | sin ed—
effective anisotropy parameters that are vital to any model- do\singjds |sirt g SIn S
ing of individual nanopatrticles. deb
The mathematical concepts that were used in the course =—2psing—. (A2)
of this work establish a connection with the field of catastro- ds

phe theory, singularities and caustics. The caustics analogy he eigenvalues are, from Eqg§l0) and (11), p+=A\-
profound. The magnetic constant energy surfaces, being par (G—E)/2=\. —\(E). The associated centers of curva-
allel, correspond to the wavefronts of optics. The criticaly e . are then simphOC. =h+p.N=h. , whereh.. is
surfaces play thus the same role as caustics. The “magnet}jven by Eq.(9) with A=\ . Thus we find that all the
caustics” have the peculiarity of being finitéhe optical  constant energy surfaces have the same focal surfases
ones often go to infinityand of any symmetry. expecteg] and that these focal surfaces are just the critical

Fi_naIIy, all this work wasllimi_ted t_o sta_ltics, with the ex- surfacesS. . The matrix of the eigenvalues problefa2)
ception of the small magnetization vibrations of FMR. How being syr{]metric the two tangent vectdrs and i_ are

the geometrical method could treat the magnetization dybrtho onal(a general feature of the lines of curvature
namics under the classical Landau-Lifshitz-Gilbert equation 9 9

remains to be investigated.
2. Focal surfaces and curves
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ments and encouragements. because the systerfA2) defines the samé whateverE,
except at special points where the system is degenerate.
These points are called umbili¢see for example Refs. 29,
30, and 17: the two surfaces touch at these points, and sev-
1. Constant energy surfaces eral or infinitely many focal curves and cusps can meet there.
It is worthwhile, for many points of view in fact, to con- The.surfac.essi are therefore covered by the focal curves

] ' Sl - 2 (“foliated” in the vocabulary of Ref. 3D The tangent to the
sider the surfaces on whida(H) [=Vy(m) wheremis an  foca) curve is found by following its associated line of cur-
extremunj is constant. The differential dE is dE=—2m  vature(hence the notatios..):

-dh as the variations ofn disappear because of the extre-
mum condition. Geometrically, this means that the normal to dh. dh dn  dp. -

APPENDIX: UNDERLYING MATHEMATICS

do- -
the constant energy surface ns. In parametric form, the K:K"'P:K"'Km: dl;_:m (A3)
surface is written as Eq9) in which \ is equal to\(E) - - - - -
=(G—E)/2. These surfaces are parallel, fornif is extre- [the last equality results from the line of curvature definition
mum at a fieldh (energyE), then it is also extremum for (A1)]. The tangent is thus directed alomy and we can
fields h+am displaced along the surface normal by a lengthchoose this direction to orient the focal curve.
a (energyE—2a). To obtain the tangent plane to the focal surfaﬁ@, is

A well-known surface geometry theore(see for example derived with respect to a displacement along the other line of

Refs. 29, 30, and 17 about surface geomedtgites that par- curvature, resulting in
allel surfaces have the same loci of curvature cenftrs

focal surfaces To find them, we look for the two principal -
X o dh. . dps .

curvatures at each point, through the determination of the — —=(1—-pilo Nt +—m. (A4)

. . . d ( P+ p+) + d

lines of curvaturg(also called principal curveén the sur- S+ S+

face. The lines of curvature equation is The tangent vector to the line of curvature is thus the normal
dN ~ to its associated focal surface. i\s andt_ are orthogonal,
e —Cpt, (A1) so are the tangent planes$q andS_ .

. B . Is the focal curve a special curve on the focal surface?
where N is the surface normals the curvilinear abscissa The equation of the lines of curvature, interpreted $n

along the line of curvature, its tangent vectofunitary), and  wherem is the tangent vector to the focal curve aind the

Cn=1/p the normal curvatureg( the radius of curvatuje  surface normal, means that the focal curve is a geodesic

For the constant energy surfacéé=m and expressing  curve of its focal surfacésee, e.g., Refs. 29, 30, and 17 for

through the partial derivatived2) results in the eigenvalue the definition). This does not characterize the focal curves

problem fully, however, as a geodesic curve can be constructed with
any tangent through a surface point.

do 4 (&) - d¢g % Let us denote byr.. the oriented curvilinear abscissa on

(CootC=B) s+ 76\ sing the focal curves. By definition, one has from E43)
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do. dp. means one phase of the magnetic phase th&oie.,
T (A5)  roughly one magnetization stafieut not necessarily obtained
ds. ds. . . L . .

in zero field. Thinking of the critical surface in terms of
As the energy on a point on the focal surface is related to thatells has the advantage of simplifying the geometrical rea-
of the constant energy surface BYC.)=E—2p. , the en- soning greatly. The two bells of the biaxial surface were
ergy variation along the focal curves is directly that of thealready considered in Sec. IV. The cull¢ surface likewise

oriented curvilinear abscissa consists of six fourfold symmetrical bells where the starting
cusp is an umbilic of high symmetrfghere are additionally
dE=—2do- . (A6) eight small threefold symmetrical bells on thel1} orienta-
This last relation(A6) forms the basis of the energy geo- tions. - '
metrical calculation in three dimensions. The decomposition of the surface into bells also allows to

The orthogonal trajectories of the focal curves, on theirunderstand how the whole surface could be measured, even
focal surface, are also of interest. Gn , t. is the surface W'th a SQUID and d_esplte the very small magnetization
- umps at the hard axis cusps. For each bell, one needs to
normal, m the tangent to the focal plane and therefore the,, e one point of its surface that gives rise to a measurable
tangent to the orthogonal curvetis . So that, from Sec. A1, jump (call it the test point For the micro-SQUID technique,
the energy variation along this normal trajectory is zero andhe test point has to belong to the SQUID plane. Addition-
the orthogonal trajectories of the focal curves are constarijly, one point inside the bellcalled center poinf reached
energy curves. Note finally that, from E¢A4), these or- by coming from the bell domain at infinity, has to be found
thogonal trajectories are not obtained by a mere displacen order to reset the magnetization after a jump. One possible
ment of the point on the constant energy surface along theheasurement procedure is to increase field from the center

other line of curvature. point in all directions up to the bell. Whether one has
reached the bell or not can be tested by going back to the
3. Cusps on the focal surfaces center and testing for a jump at the test pgjmtovided the

a’{?urney back to the test point is contained inside the domain
of the new bell after the jump This justifies the indirect
measurement procedure of Ref. 24. For the bells that do not
dp. do 4 d¢ o cross the SQUID plane, or with non measurable jumps in this
G5, ds. g9 Me TG G %(k:—G/Z)ZO, (A7) plane, or which intersect, more indirect procedures have to
- - - be designed. It appears thus that the knowledge of what criti-
where the derivatives with respectdo are provided by the cal surfaces should look like is necessary to guide the experi-
solutions of Eq.(A2). This assumes that nothing occurs onmentalist in devising the measurement procedure, like in
the line of curvature, i.e., that the point considered is not arRef. 24.
umbilic. Eq. (A7) defines cusp lines through a relation be- We have been naturally led to a separation of the cusp
tween# and ¢. These lines are very visible on the drawingslines into two sorts, namely those from which the focal lines
of the focal surfacegsee Fig. 1 where they generalize the depart and those where they end. In the 2D éAdgonet
cusp points of the 2D critical curve. They are called “ribs” called the second sort the “choice” lines, for whether the
in Ref. 30. But on the constant energy surfaces theicritical surface is entered from above or below such lines one
“ridges” *° counterparts are not apparent. will get different magnetizations at the same point. It is clear
The drawings of Fig. 1 make it clear that the critical sur-from the above discussion that a general description and
facesS, can be thought of as made of parts that are gluedlassification of the cusp lines in relation with our problem
tangentially along certain cusps. Each part consists of oneould be very usefulthe classification by Porteotfscould
cusp(or three cusp®) from which focal lines start, and one well be just that But this is beyond the scope of this paper.
or several cusps on which they end. From their shape in the More generally, one should note that the arrangement of
biaxial case, one may call these parts of focal surfacghe cusp lines is one topic of catastrophe theory. The no
“pbells” (the cubic case where the handle cusp reduces to symmetry casdcalled generic by the mathematiciartsas
point is a very high symmetry oheThe stable half tangents been studied long ago. Recently afécsymmetrical cases
out of one bell reach once every point of a domain which ishave been investigated. This related work is not a mere
the inside of the bell extended by the half tangents emanatingathematical curiosity, for it provides general rules concern-
from the end cugg). As long as a field point stays inside the ing the architecture of the cusp lines, which are the backbone
domain of a given bell, the jumps of magnetization shallof the focal surfaces and play a key role in the magnetization
occur only when that point crosses the bell surface. Each betbtation processes as just seen. For example, the ways in
corresponds to a family of magnetizations, where one can gahich a cusp line may transform under changesGofre
continuously from one to another direction. A bell thus mathematically fixed by Catastrophe theory.

The oriented curvilinear abscissa changes orientation
the points satisfying

1w. Brown, Jr. and A. Morrish, Phys. Re%05 1198(1957. SA. Thiaville, J. Magn. Magn. Materl82, 5 (1998.
2E. Stoner and E. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A%J. Slonczewskiunpublishegl
240, 599 (1948. ’C. Chang, J. Appl. Phy$9, 2431(1997).
3D. Smith, J. Appl. Phys29, 264 (1958. 8R. Kodama, A. Berkowitz, E. McNiff, Jr., and S. Foner, Phys.

4C. Johnson and W. Brown, Jr., J. Appl. Phgg, 2435(1961). Rev. Lett.77, 394 (1996.



12 232

9L. Del Biancoet al, J. Appl. Phys84, 2189(1998.

0R. Kodama, S. Makhlouf, and A. Berkowitz, Phys. Rev. L&8,
1393(1997).

11|, Geoghegan, W. Coffey, and B. Mulligan, Adv. Chem. Phys.
100, 475(1997.

2y, Coffey, Adv. Chem. Physl03 259 (1998.

Bw. Coffey et al, Phys. Rev. Lett80, 5655 (1998.

14G. Kim and D. Hwang, Phys. Rev. B5, 8918(1997.

15G. Kim, J. Appl. Phys84, 391 (1998.

18A. Hubert and R. ScHar, Magnetic DomaingSpringer, Berlin,
1998, Secs. 3.4.3-4.

YG. Darboux Theorie Generale des Surfaceén french (reprinted
by Chelsea, New York, 1972Vol. V, Chap. Il.

18R. Victora, Phys. Rev. Let63, 457 (1989.

%W, Wernsdorferet al, Phys. Rev. Lett78, 1791(1997.

20y, Wernsdorferet al, Phys. Rev. Lett79, 4014 (1997.

ANDRE THIAVILLE

PRB 61

2IM. Lederman, G. Gibson, and S. Schultz, J. Appl. PR 6961
(1993.

223, Majetich and Y. Jin, Scienc284, 470(1999.

2W. Wernsdorferet al, J. Magn. Magn. Mater145, 33 (1995.

24E . Bonet Orozceet al, IEEE Trans. Magn34, 979 (1998.

25g. Bonet, W. Wernsdorfer, B. Barbara, A. Bénd. Mailly, and
A. Thiaville, Phys. Rev. Lett83, 4188(1999.

260, Kitakamiet al, Jpn. J. Appl. Phys., Part 85, 1724(1996.

2IN. Demoncyet al, Eur. Phys. J. B, 147 (1998.

28T Suzukiet al, Appl. Phys. Lett64, 2736(1994).

293, Stoker Differential GeometryPure and Applied Mathematics

(Wiley Interscience, New York, 1969Vol. XX.

. Porteous, Geometric Differentiation(Cambridge University

Press, Cambridge, 1994

3IA. Joets, M. Monastyrsky, and R. Ribotta, Phys. Rev. L&it.
1547(1998.

30|



