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Coherent rotation of magnetization in three dimensions: A geometrical approach

André Thiaville
CNRS–UniversitéParis-Sud, Laboratoire de Physique des Solides, 91405 Orsay, France

~Received 20 September 1999!

We propose a geometrical method to explore the problem of coherent magnetization rotation, for an arbitrary
anisotropy and in three dimensions. This method is a nontrivial generalization of the astroid construction which
is well known in two dimensions. Specific features to the three-dimensional~3D! problem are highlighted. In
order to establish a connection with the thermal and quantum theories of magnetization relaxation, the local
curvatures of the potential are also evaluated geometrically. As an application of the method to a real 3D
problem, the determination of the effective anisotropy constants from 3D switching field measurements is
discussed and first results shown.
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I. INTRODUCTION

Coherent rotation~hereafter CR! of magnetization is one
of the basic processes by which a ferromagnetic body
sponds to a field. The other competing processes are dom
wall propagation and domain nucleation. Depending on
sample size and shape, its intrinsic magnetic properties,
the time dependence of the applied field, one of the proce
may dominate. Schematically, CR is to be expected at v
small sample sizes~the single domain limit, where domai
walls cannot fit in the sample! and at high fields in sample
with low coercivity. In the CR regime, the sample magne
zation is uniform, its static orientation~unit vectormW ) being
the solution of

minumW u51@KVHW ~mW ![KG~mW !2MsmW •HW #, ~1!

whereK is an effective anisotropy constant,G the function
describing the angular dependence of the anisotropy,Ms the
saturation magnetization density, andHW the applied field.
Comparing Eq.~1! with the usual micromagnetic energ
functional, one sees that the exchange and demagnet
energy terms have disappeared. Exchange energy is zer
cause of the assumption of a uniformmW . The demagnetizing
term has the same form as that of an ellipsoid when
sample is uniformly magnetized,1 and can therefore be in
cluded into the effective anisotropy as a second degree p
nomial. More generally, the effective anisotropy is the s
of contributions from crystalline bulk anisotropy~any de-
gree!, surface anisotropy and magnetostatic energy.

Despite its simplicity, the problem~1! conceals a wide
variety of magnetic behaviors and does not allow for an a
lytic solution in the general case. The first systematic stu
of CR was performed by Stoner and Wohlfarth,2 in the sim-
plest case whereG is uniaxial and of second degree. The
derived the ubiquitous easy axis and hard axis hyster
loops, and tabulated those for any angle between field
easy axis. In the Stoner-Wohlfarth problem, the plane
fined by the easy axis and the field contains also the~static!
magnetization, so that it reduces to a two-dimensional~2D!
problem. That paper therefore had a great impact on the
magnetic thin-films research that developed later, as
magnetization in soft thin films is confined to the film pla
by a demagnetizing field much larger than the anisotro
PRB 610163-1829/2000/61~18!/12221~12!/$15.00
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field ~see Ref. 3 for a review!. The problem that comes nex
to attention, namely that of a cubic anisotropy~fourth degree
at least!, is 3D and not amenable to the same solution le
as the preceeding one. The parameter space is now tw

mensional~the polar and azimuthal angles ofmW ), and the
number of metastable states near zero field increases to
8, depending on the sign ofK. Moreover, as shown numeri
cally by Johnson,4 in case of a magnetization jump the fin
state is manyfold. The guess that it should be the low
energy state is already disproved in 2D.5 In order to find the
final state, the dynamic equation has to be solved, and
easy to conceive that parameters such as the field sweep
will greatly affect the outcome of the calculation. Thusstatic
hysteresis loops in 3D are ill defined in principle, and the
problem is richer than the 2D one.

An alternative approach to numerics, namely geome
was proposed by J. Slonczewski6 and became known as th
astroid method. In essence, it considers instead of the m
netization directionmW the field HW as the main variable. As
the potentialKG(mW )2MsHW •mW is linear in field, the extre-
mum condition inmW is satisfied, for a fixedmW , along straight
lines in the field space. Slonczewski worked out the
uniaxial second degree case, but the method treats any
problem alike~see Ref. 7 for one example, and Ref. 5 for
general formulation of the 2D case!. The geometrical method
introduces a curve in the field plane, called the critical cu
~a square astroid in the original paper! to which the straight
lines are tangent, these lines being parallel tomW . The critical
curve is additionally the locus of fields at which a magne
zation jump occurs. The stable solutions lie on one half
the straight lines, that starts at the critical curve and exte
in the direction ofmW . The traditional use of the astroid is t
visualize the switching fields and to constructmW from HW
graphically. In a previous paper5 an extensive study of the
general case in 2D was performed, in which it was moreo
shown that the energy of the system could be calculated g
metrically. It is one purpose of this paper to treat the gene
case of an arbitraryG(mW ) in three dimensions, trying to
parallel the work in 2D as much as possible. It will be show
that the critical curve is replaced by one critical surface,
locus of fields at which a jump of magnetization occurs, p
a second surface. The straight lines directed alongmW are
12 221 ©2000 The American Physical Society
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12 222 PRB 61ANDRÉ THIAVILLE
tangent to both surfaces, and on each surface they are tan
to a set of special curves covering the surface which
introduce. Energy can again be calculated with these cur

The motivation for this work is multiple. The main fiel
of application of the CR model is magnetic nanoparticl
For a long period of time, only macroscopic measureme
were possible on such samples, so that the exact behavi
each particle was diluted by averaging over the distributi
of particle shape, size and orientation. Nevertheless, th
macroscopic measurements showed that even nanopar
were sometimes more complex than single domain.8,9 At na-
nometer sizes, the atoms at surface are in comparable n
ber to those in the interior, so that surface magnetism eff
become as important as bulk ones. It was found that the
of particle magnetic order~ferromagnetic, ferrimagnetic,8

antiferromagnetic10! and the chemical state of the surfa
~e.g., carbon passivated, oxidized! are key parameters con
trolling the magnetic properties of the nanoparticles. As
result, a global understanding of the magnetic propertie
nanoparticles has not yet been reached. One can hope
measurements on isolated particles will help to clear up
situation. In order to be able to interpret such data, the v
peculiarities of each measured particle have to be take
account, among which its effective anisotropy. We belie
that a geometrical method can be of great value in deve
ing some feeling about the behavior of a given particle
various situations, in the case of CR which is the simpl
approximation. As an example, experimental 3D switch
fields surfaces measured on isolated nanoparticles wil
fitted by surfaces generated using the geometrical proced
in order to find out their effective anisotropy. Even in cas
where CR is thought not to be an adequate model, it is n
essary to know what the detailed predictions of CR are
order to disprove them.

In cases where CR applies, the particle magnetization
laxation in temperature and at zero temperature is ye
largely open field~see Ref. 11 for a review of the variou
models!, to which the geometrical method can contribute.
the thermal regime, the early models of Ne´el and Brown
predict an exponential relaxation, in the case of uniaxial
isotropy. The relaxation time is written as

t5t0 exp~EB /kT!, ~2!

whereEB denotes the barrier in energy that has to be ov
come in order to exit from the metastable state. The prefa
t0 is still the subject of much debate. Ne´el derived an ex-
pression from the magnetoelastic interactions. Brown in
duced the Fokker-Planck approach in the problem~i.e., con-
sidered a continuous distribution of orientations! and derived
from the Landau-Lifshitz-Gilbert~LLG! equation the evolu-
tion of this distribution. The prefactor found with some a
proximations is typically expressed as

t054p
11a2

a

1

gHK
f ~H !, ~3!

wherea is the Gilbert damping parameter,g the gyromag-
netic ratio,HK the anisotropy field, andf (H) a geometrical
factor that diverges algebraically at the jump field. The g
eralization of Eq.~3! to less symmetric cases has been
subject of much recent work. The most general express
are12,13
ent
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t054p
11a2

a

1

gHK

3
2A2c1c2

2c12c21A~c12c2!224c1c2 /a2

1

Ac1
(1)c2

(1)
~4!

in the so-called intermediate to high damping case, and

t05
4p

a

1

gHK

1

Ac1
(1)c2

(1)

kT

EB
~5!

in the low damping case. In these expressions,c1 andc2 are
the two eigenvalues of the second-order form ofVHW (mW ) at
barrier top ~saddle point, thusc1.0,c2,0), and c1

(1) and
c2

(1) those values at the metastable position~both positive!.
The geometrical factorf (H) in Eq. ~3! is thus related to the
curvature of the potentialVHW (mW ). In the quantum regime, an
exponential relaxation by tunneling is also expected, wit
characteristic time given by~see Ref. 14, for example!

t215C0A S

2p\
v t exp

2S

\
. ~6!

In this expression,S is the action evaluated with the so-calle
instanton solution of the classical equations of motion~here
LLG, without damping!, v t the precession frequency of tha
solution andC0 a numerical factor. As a rule of thumb, th
action S is of the order ofEB /vb (EB is the barrier height
considered before,vb the oscillation frequency in the meta
stable potential well!, and v t'vb . Explicit formulas were
derived in a large number of cases,15,14 including hexagonal
and cubic symmetry with the field within special planes. B
no general expression like Eqs.~4! or ~5! existed up to now.
Using the general estimates mentioned above shows how
that the evaluations of the barrier height and the curvatur
VHW (mW ) are again required in order to predict the tunneli
rate. The same quantities also enter the expression of
oscillation rate in the macroscopic quantum cohere
regime.14 Therefore we see that the essential quantities g
erning the magnetization dynamics are the potential’s cur
tures and the energy barrier. Note also that the ferromagn
resonance frequency is directly calculated from the curva
of the potential. It will be shown here how the geometric
approach allows for their determination, and the geometr
significance they have.

The paper is organized as follows. Section II gives t
main results of the geometrical solution for an arbitra
G(mW ). The underlying mathematics is exposed more
depth in the Appendix. Problems having a revolution sy
metry are examined in Sec. III. The differences with the
solution, due to the additional degree of freedom, are d
cussed. Section IV studies in detail the biaxial caseG5mx

2

1Amy
2 , which constitutes the first nontrivial extension of th

2D square astroid. Examples of application of the method
experimental data obtained on isolated nanoparticles~mea-
surements by E. Bonet-Orozco and W. Wernsdorfer
L.L.N. Grenoble! are shown in Sec. V. Anisotropy function
are extracted from switching field measurements. The d
culties of the procedure are discussed.
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II. GEOMETRICAL SOLUTION

A. The two critical surfaces

The starting point is the potential

VHW ~mW !5G~mW !22hW •mW , ~7!

wherehW is the normalized fieldHW /HK ~the anisotropy field
HK is defined as 2K/Ms). The unit vectormW is described by
the polar angleu relative to some axisOz, and the azimutha
anglef. An orthonormal direct basis is formed by the thr
vectorsmW , eW u5]mW /]u andeWf5(1/sinu)]mW /]f. VHW has to be
stationary inmW , thus

Gu22hW •eW u50,

Gf22 sinuhW •eWf50 ~8!

(Gu stands for]G/]u, etc.!. In the field plane, Eq.~8! is that
of a straight line, which can be described with a parametel
as

hW 5
1

2
GueW u1

1

2sinu
GfeWf1lmW . ~9!

Stable solutions haveVHW locally minimum atmW . The second
derivatives of the potential read

Vuu5Guu12hW •mW 5Guu12l,

Vuf5Guf22 cosuhW •eWf5 sinu
]

]uS Gf

sinu D ,

Vff5Gff12sinuhW •~sinumW 1 cosueW u!

5Gff1 sinu cosuGu12l sin2 u. ~10!

The stability requires that both eigenvalues of this matrix
positive, thus that their sumVuu1Vff and their product
VuuVff2(Vuf)2 are positive. The sum is linear inl with a
positive coefficient, the product is quadratic with positivel2

coefficient. The two zeros of the product are real and
pressed as

l65
1

4 F2S Gff

sin2u
1

cosu

sinu
Gu1GuuD

6AS Gff

sin2 u
1

cosu

sinu
Gu2GuuD 2

14F ]

]uS Gf

sinu D G2G .

~11!

Therefore the half line~9! described byl>l1 is the locus
of the fields for which the magnetizationmW is stable. Atl
5l1 one eigenvalue falls to 0, and the magnetization vec
can escape from the potential well. Betweenl1 andl2 one
eigenvalue is positive and one negative: the potential is
cally of saddle shape. Saddle points also deserve cons
ation because, as described in the introduction, they in
ence the magnetization dynamics. Belowl2 both
eigenvalues are negative and the potential is at a maxim
Settingl5l1 or l5l2 in Eq. ~9! generates two surfaces
parametrized byu andf, which we denote byS1 andS2 .
S1 is the locus of the fields at which the magnetization u
e

-

r

-
er-
-

m.

-

dergoes a jump towards another stable orientation. This
face, as it generalizes the critical curve of the 2D problem
called the critical surface.S2 is another surface, unnecessa
at first sight~of course, upon changingG to 2G, S1 andS2

would exchange roles!. The interest ofS2 will become ap-
parent later. Figure 1 displays these surfaces in several
symmetry cases. The higher the degree ofG the more com-
plex they become. The surfaceS1 of the cubic case@Fig.
1~b!# bears some resemblance with the drawing of the tw
phase boundaries and critical curves for the sa
anisotropy.16 The zooms near the@111# axis also have the
same topology~not shown here!. This should be no surprise
as phase theory in magnetism also considers uniform m
netizations. The two-phase boundaries~fields where two so-
lutions have the same energy! are the symmetry planes of th
‘‘leaves’’ of S1 , with $110% orientations. The curves tha
end the two-phase regions mark the onset of the one solu
regime, and are identical to the end cusps that will be int
duced below. Note that phase theory drawings do not p
vide a construction of the magnetization.

The tangential planes to the surfacesS6 are now consid-
ered. The partial derivatives ofhW are

FIG. 1. Perspective view of the two critical surfacesS1 andS2

in the two simple cases of a biaxial symmetryG5mx
210.5my

2 ~a!
and a cubic symmetryG5mx

2my
21my

2mz
21mz

2mx
2 ~b!. The cubic

box has sides of length 2. Various parts~called ‘‘bells’’ hereafter!
of the S1 surfaces have been stained differently. The focal cur
that cover the surfaces and cusp lines~where the surface is folded!
are also drawn. With the biaxial symmetry~a!, both surfaces are
built out of two halves glued along the ellipse. The focal curves
S1 start from the ‘‘handle cusps’’ and end on the elliptical cusp.
the cubic case~b!, S1 consists in 6 gramophonelike bells, each b
being four leaved and starting from one point~there are also tiny
surface parts close to the$111% directions!. The bells have a$100%
orientation and correspond to the easy directions of a positive c
anisotropy. Conversely,S2 consists in eight tripods with the$111%
orientations, like the easy directions for a negative cubic anisotro
This last surface was colored so as to display its various piece
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]hW

]u
5

1

2
~Guu12l!eW u1

1

2

]

]uS Gf

sinu DeWf1S ]l

]u
2

1

2
GuDmW ,

]hW

]f
5

1

2
sinu

]

]u S Gf

sinu DeW u1
1

2sinu
~Gff1sinu cosuGu

12l sin2u!eWf1S ]l

]f
2

1

2
GfDmW . ~12!

The normal to the surface is directed along the vector pr
uct ]hW /]u`]hW /]f. As theeW u andeWf components in Eq.~12!
are proportional to the second derivatives ofV @Eq. ~10!#,
one recognizes that themW component of the normal is jus
zero atl5l6 . This means that the straight line~9! touches
S1 andS2 tangentially. Moreover, the respective tangent
planes to both surfaces are orthogonal. This provides
construction of the solution to the problem~1!, once the sur-
facesS6 are drawn. Given the pointH representing the field
(OHW 5hW ), one has to find a straight line going throughH and
tangent toS1 and S2 ~there will be a discrete number o
such lines, as they are the intersection of two cones of a
H). Stability is guaranteed if, starting fromH and traveling
along the line, one is first tangent toS1 and then toS2 . The
searched magnetization directionmW is that of this line, ori-
ented fromS1 towardsH. This procedure solves the proble
~1! in principle. It will be difficult to use with complex sur
faces, so that another procedure is described now.

In the Appendix, the surfacesS1 and S2 are shown to
possess another property. They are the focal surfaces~loci of
the centers of curvature! of a set of parallel surfaces: th
constant energy surfaces inHW space. This leads to the con
sideration of a special family of curves onS6 , called the
focal curves, which correspond to the lines of curvature
the constant energy surfaces. The focal curves cover the
facesS6 , so that each point is crossed by just one of th
curves ~except for special points!. The local tangent to a
focal curve ismW , therefore providing an orientation of th
focal curves. This orientation of the tangent allows to so
the mW problem with one surface only. If one considersS1 ,
on which the focal curves are drawn, it suffices in order
solve Eq.~1! to find the point~s! on S1 where the oriented
half tangent to the focal curve crossesH. In Fig. 1 the focal
curves have been drawn. These curves in effect split the
problem into a collection of nonplanar 2D problems.

B. Energy geometrical calculation

With the aid of the focal curves, the energy of a config
ration (mW ,hW ) is easily computed. Indeed, as shown in t
Appendix, the energy along a focal curve~on S1 or on S2)
satisfies

dE522ds, ~13!

whereE is VHW (mW ) ~note that bothhW andmW vary along a focal
curve! ands is the oriented curvilinear abscissa on the fo
curve. Therefore, for a magnetization at an extremum~not
only in stable equilibrium! and specializing toS1 , one can
write

E522~s11l2l1!1Cst, ~14!
-

l
ne

ex

f
ur-
e

e

o

D

-

l

with the notations1 for the curvilinear abscissa on the foc
curve drawn onS1 . The constant is an energy origin, whic
depends also on the origin of lengths along the focal cur
When many focal curves start from a special point~see Fig.
1 for examples!, this point can serve as a common origin
length for these curves. Otherwise, the Appendix shows
a second set of curves is drawn onS6 : the constant energy
curves. These curves are everywhere orthogonal to the f
curves, and provide a mean to compare energies along
ferent focal curves.

It is now possible to compute the various quantities
quired in the calculation of the magnetization dynamics. T
second order Taylor coefficients ofVHW are easily found first.
For a small variation ofmW around an extremum one writes

dmW 5dueW u1 sinudfeWf5dueW u1dveWf . ~15!

The variation ofVHW is of second order and reads

dV5
1

2
~du!2Vuu1dudfVuf1

1

2
~df!2Vff

5
1

2 F ~Guu12l!du212
]

]u S Gf

sinu Ddudv

1S Gff

sin2u
1

cosu

sinu
Gu12l D dv2G . ~16!

A simple calculation, comparing with Sec. II A shows th
the symmetric matrix involved has eigenvalues 2(l2l1)
and 2(l2l2). The eigenvectors are, as shown in the A
pendix, the differential variations ofmW obtained by displace-
ments along the two focal curves on the two focal surfac
The eigenvalues are the coefficientsc1

( i ) andc2
( i ) of Eqs.~4!

and ~5!. They are as expected positive for a stable equi
rium wherel.l1.l2 . Geometrically, the Taylor coeffi-
cients are just~twice! the distance ofH to S1 and S2 ,
counted on the oriented tangent. Therefore, from a draw
only, the steepness of the local potential well in whichmW sits
can be appreciated. As an example the ferromagnetic r
nance frequencyv, which corresponds to small oscillation
around equilibrium according to the magnetization dynam
cal equation, is readily found in the case of zero damping
be

S v

gHK
D 2

5
VuuVff

4 sin2u
2S Vuf

2sinu D 2

5~l2l1!~l2l2!

5c1
(1)c2

(1)/4. ~17!

This frequency~under the names angular frequency and p
cession frequency! enters the relaxation time expressions
the thermal12 and quantum14 regimes. For the magnetizatio
relaxation theories~thermal or quantum!, the Taylor coeffi-
cients and barrier height have to be evaluated close to
jump point. A detailed analysis by local geometry, along t
lines of Darboux,17 of the configuration of the critical surfac
and the focal curves has been used to show that wheH
comes close toS1 , only the focal curve ‘‘below’’H matters
~i.e., the curve going through the orthogonal projection ofH
on S1). So that it is possible to perform the energy calcu
tions like in 2D.5 Figure 2 draws the focal curve and th
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point H that is moving towards the jump pointH0 . R denotes
the radius of curvature of the focal curve atH0 and hn the
height of pointH above the critical surface. To leading ord
one finds

~l2l1!uA1
52~l2l1!uA0

5A2Rhn. ~18!

Therefore close to the jump one hasc252c2
(1) and, if S2 is

far from H ~i.e., l2l2@ul2l1u), c15c1
(1) so that Eq.~4!

can be simplified to

t054p
a

gHK

1

c1
(1)

52p
a

gHK

1

A2Rhn

. ~19!

The other quantity of interest which is the energy barrier
by the same calculation~the barrierEB in Sec. I isKvDE,
with v the particle volume!,

DE5VHW ~mW 0!2VHW ~mW 1!

52~A1H1HA02A1A0
& !

5
8A2

3AR
~hn!3/2 to leading order. ~20!

The power 3/2 conforms to the general predictions
Victora.18 The formulas~19! and ~20! show that the local
magnetization dynamics near a jump point is governed
two factors only: the radius of curvatureR of the focal curve
on S1 , at the jump point, and the altitudehn above that
critical surface. In 2D, the curvature radiusR could be ex-
pressed by a simple formula, but in 3D this becomes too l
because of the partial derivatives ofl1 , so the formula will
not be given.

To summarize, the geometrical solution provides:
• the critical surfaceS1 at which magnetization jump

occur, explicitly from the expression of the anisotrop
whereas a numerical calculation of the switching field for
orientations would be very demanding;

• two ways to construct the magnetization from the fie
graphically;

• the energy of a configuration expressed as a sum
lengths, hence the energy barriers etc.;

• the Taylor coefficients of the potential, as lengths.

FIG. 2. Local configuration of focal curves and field point clo
to switching~at H0). The drawing is in three dimensions. A loc
surface analysis shows that the focal curve in the samexz plane as
H bears the tangents throughH ~from the pointsA1 andA0), so that
the calculation of the curvatures and barriers can be performe
that plane.H is on the stable half tangent throughA1, but on the
saddle-points part of the tangent throughA0. The focal curves ori-
entation is indicated by arrows.
,

f

y

g

,
l

,

of

III. SPECIAL CASE OF REVOLUTION SYMMETRY

At first sight, the static solution of a revolution proble
should be the 2D solution, as by symmetrymW andHW have to
belong to the same plane. Nevertheless, Stoner
Wohlfarth2 in the biaxial case of second degree showed t
mW may rotate out of the plane in certain circumstances.
are now in a position to discuss that point quite genera
with the geometrical method.

The revolution axis being chosen as the polar axis for
angles definition,G becomes independent onf. The critical
surfaces are described by

l65
1

4 F2S cosu

sinu
Gu1GuuD6Ucosu

sinu
Gu2GuuUG . ~21!

In the region where (cosu/sinu)Gu2Guu.0, the solutions
read

l152
1

2
Guu ,

hW 15
1

2
GueW u2

1

2
GuumW , ~22!

for S1 , and

l252
1

2

cosu

sinu
Gu ,

hW 25
1

2 sinu
GuzW, ~23!

for S2 . Equation~22! is identical to the general solution o
the 2D case.5 The surfaceS2 is here restricted to the axis o
S1 . In the opposite case,S1 reduces to the axis, which
means that the critical surface of a revolution problem m
differ from the surface generated by rotation of the 2D cr
cal curve. This result is easily understood. The quantity t
has to be positive in order to reproduce the 2D result
comparing to Eq.~22!, sinu ~positive as 0,u,p) times the
radial component ofhW 1 . If the 2D solution predicts that this
component is negative~i.e., of sign opposite to that ofmW ),
then ap rotation of mW around the axis will leaveG un-
changed but increase the dot productmW •hW , hence reduce the
energy. Such a rotation was not allowed in 2D. Figure
draws the different critical curves for an anisotropy functi
G5 sin2u cos2u ~it can be obtained as sin2 u2 sin4 u: a strong
negative uniaxial anisotropy constant of fourth degree!. This
case belongs to region VIII of the classification proposed
Ref. 7. In that paper, the hysteresis loops for various val
of the two uniaxial anisotropy constants were calculated c
rectly, but their analysis by a strict 2D formalism gave som
times different results. The 3D solution when specialized
the revolution symmetry allows for a correct treatment. F
ure 4 explains how it is possible to treat revolution symme
on a 2D drawing. It is helpful to keep on the drawing the p
of the 2D critical curve that has been transferred toS2 , in
order to define the tangents. There are now two sorts
magnetization jumps, namely the 2D one when the fi
point crosses the critical curve while meeting the tange
point, and another one (p rotation! if the field point meets

in
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the axial section of the critical curve. This new method
more general and precise than the considerations of Ref

Under revolution symmetry, the focal curves are read
found to be the constantf and constantu curves, those a
constantf corresponding to the 2D critical curve exactl
Therefore these focal curves may travel overS1 and then
overS2 . As this does not affect the energy geometrical c
culation, the 3D expression of the barrier height~20! is fully
consistent with the 2D result5 when the latter applies. Th
cusp equation~see Sec. A 3! for the constantf curves is
found immediately to be (Guu1G)u50, which is also iden-
tical to the definition of the cusp points in 2D.5

IV. BIAXIAL ANISOTROPY OF SECOND DEGREE

This is the simplest anisotropy that is of 3D nature. Mo
over, for nanoparticles made out of materials, like iron
nickel, with a low quality factor~the ratio of anisotropy to
magnetostatic energy!, a small deviation from a spherica
shape leads to a dominant shape anisotropy. The shap
isotropy of a body of arbitrary form is precisely biaxial o

FIG. 3. The three sorts of critical curves in a revolution pro
lem, here with cubic symmetryG5 sin2u cos2u: the usual 2D criti-
cal curve~a!, the section of the 3DS1 surface~b! and the section of
the 3D S2 surface~c!. One sees that some parts of the 2D cur
have been transferred toS2 , and thatS1 reduces to the axis in
these regions of magnetization angle. The orientation of the
curve and of the 3D focal curves is shown by arrows.
2.
y

l-

-
r

an-

second degree. Thus this case is an important one. The
step will be to know how the addition of small higher degr
terms modifies the critical surfaces.

By diagonalization, the anisotropy function can be e
pressed as

G~mW !5mx
21Amy

2 , with 0,A,1. ~24!

The easy axis isOz; Ox is the hard axis andOy the inter-
mediate axis. The general shape ofS1 and S2 is shown in
Fig. 1~a!, as we shall see that these surfaces very much
semble each other whateverA. In particular,S2 is of the
same family asS1 , as it is theS1 surface of2G(mW )5mz

2

1(12A)my
2 . Straightforward calculations provide the fo

lowing precise description ofS1 . Cut by thexOy ~hard!
plane, the surface reduces to a cusp line which is an ell
of semiaxes having lengths 1 (x direction! and A (y direc-
tion!. This elliptic cusp line replaces the hard axis cusps
the 2D astroid. The section by theyOz ~easy! plane is built
out of four focal curves drawing a square astroid of sizeA.
This was expected from the 2D solution. The third section
thexOzplane contains cusp lines and focal curves. The c
lines are arcs of ellipse, of semiaxesA and 12A in thez and
x directions, respectively. They stand in place of the e
axis cusps in the 2D uniaxial case of second degree.
focal curve is an arc of astroid of size 1. Figure 5 superpo
thesexOz sections for various values ofA. The point where
the cusp and focal lines meet tangentially is an umbilic. T
surface has four umbilics where the ‘‘handle’’ cusps ofS1

and S2 join each other. The focal curves start from th
handle cusp and end at the full ellipse cusp, with that ori
tation. The orientation of the focal curves onS2 is the op-
posite of that drawn on the rotatedS1 surface with paramete
12A.

Considering thez.0 part of S1 only, one sees that the
oriented half tangents cover the whole half space loca
below the upper part ofS1 , extended by thexOy plane
outside the ellipse cusp. Therefore the field pointsH that are

-

D

FIG. 4. How to treat a 3D revolution problem with a modifie
2D curve, in the same case as Fig. 3. The part of the 2D curve
belongs toS2 has been drawn dashed. The half tangents from
part are stable only after having crossed the revolution axis. A n
type of jump~in fact, ap rotation around the axis! occurs when the
field point crosses the part of the critical curve that lies on the a

This jump leaves the component ofMW alongHW unchanged. Jumps
are illustrated for a field point moving along a straight line, fromA
to E. One jump ~new type! occurs atB in the revolution case,
whereas two jumps~conventional type! are predicted atC andD in
the 2D case.
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located in the exterior ofS1 have exactly one stable solutio
for mW , whereas those in the interior have two. The surfaceS1

is, as said before, the locus of the field points where a m
netization jump occurs. But, as in 2D, not every crossing
S1 does give rise to a jump. In this simple case, the rule
easy to derive from the geometrical arrangement of the st
half tangents. Starting from outsideS1 where only one mag-
netization exists, upon entering insideS1 the upper or the
lower half of the surface will bear the relevant focal curve
Namely, if S1 is entered from the upper half, the lower pa
of the surface will carry the focal curves that provide t
tangents. Therefore a jump willonly occur when the field
point leavesS1 through this lower half, for only by this way
will a metastable minimum of the potential happen to dis
pear. This rule is akin to the one often quoted for the
square astroid~jump upon exit of the astroid only!, although
it is more general. At a jump, whenH touches the surface, i
also meets the focal curve from which the tangent w
drawn. The details of the magnetization rotation for any fi
trajectory can be figured out with little~geometrical! thought.
But if exact values are required, numerical calculations
mandatory. The geometrical solution is still of some he
however, because instead of a tedious minimization pro
dure working in all cases one can simply scan inu and f
looking for a half tangent that will touchH ~a zero seeking
procedure!.

If hysteresis cycles are measured for all orientations
side a given plane~like the traditional micro-SQUID~super-
conducting quantum interference device! measurements19,20!,
the plot of the measured jump fields within that plane w
reproduce a cut ofS1 by the plane. The magnetization ju
before the jump point is given by the tangent to the fo
curve at this point. It does not in general belong to the fi
plane considered as was the case in 2D. The shape o
curve obtained is also different, it is no longer only com
posed of arcs of the same concavity joining at cusp poin5

In this biaxial case, 2D drawings can be used when
field belongs to the three mirror planes that are left as s
metry elements in Eq.~24!. Figure 6 draws these three cut
The cut ofS2 is also shown~dashed!, because it helps draw

FIG. 5. The sections of a biaxial anisotropyS1 surface in the
plane that contains the easy~z! and hard~x! axes, for values of the
parameterA between 0.1~lower curve! and 0.9. All sections are
contained inside an astroid of size 1 and share one part with it.
handle cusp is an arc of ellipse tangent to that astroid. AtA51 the
problem is of revolution and the 2D astroid is recovered. AtA50
~negative uniaxial anisotropy! S1 reduces to the axis.
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ing the tangents when the cut ofS1 is a cusp. Notice that in
the hard plane cut the magnetization is forced to leave
plane whenH is insideS1 , no stable solution can be con
structed otherwise~refer to Sec. II!.

V. APPLICATION TO EXPERIMENTAL RESULTS

Although the emphasis of this paper is rather laid on
method itself, it has been felt useful to show some pract

e

FIG. 6. The three principal cuts of theS1 ~full curves! andS2

~dashed curves! surfaces for a biaxial anisotropy withA50.3 @refer
to Fig. 1~a! for a perspective view of the surface#. The construction
of the magnetization direction for some field points is shown~the
stable half tangent is drawn in full, the part betweenS1 and S2

dashed!. When the focal curves lie in the cut plane, their orientati
is shown~use themmmsymmetry of the surface to have the orie
tations of all focal curves!. The planes are the easyyOz ~a!, inter-
mediatexOz ~b!, and the hardxOy planes~c!. In ~a!, the cut ofS2

is a cusp, not a focal line, so that the tangent fromH to S2 is not
tangent to the cut ofS2 . The same occurs in~b! and~c! for theS1

cut.
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applications of the geometrical objects and tools introdu
here.

In the field of nanoparticles, one of the great progress
occurred in the last ten years is the development of te
niques allowing particles to be measured individually. Ima
ing techniques are magnetic force microscopy21 and trans-
mission electron microscopy.22 Another one, which is more
rapid, consists in measuring the flux from the particle ins
a micro-SQUID.23 This last technique has produced a wea
of hysteresis cycles and switching field angular plots fr
various nanoparticles or nanowires. As the SQUID can o
reproductively work with a small flux, the usual measu
ment procedure consists in applying fields in the SQU
plane and measuring switching fields versus in plane or
tation~see examples in Refs. 19 and 20!. As shown by Bonet
experimentally,24 field paths more complex than a straig
line through the origin are required if all switching fields a
desired~cf. also Ref. 5 for the 2D discussion of that poin
and Sec. A 3 for a 3D general discussion!. A clever indirect
procedure was also developed by Bonet.24 When a jump can-
not be directly measured~because the flux jump is too sma
or the necessary field too large for the SQUID to opera!,
one can see whether the jump has occurred or not by su
quently testing for a jump at a more convenient point t
belongs to the same ‘‘part’’ of the focal surface. In Sec. A
the 3D discussion of such a procedure is proposed, and
‘‘parts’’ precisely defined.

Using this indirect technique, 3D switching field surfac
have been measured for the first time on individu
nanoparticles.25 The next step is naturally to investigate th
magnetization dynamics of these particles, in both ther
and athermal~quantum! regimes. As explained in the Intro
duction, the determination of the exact anisotropy function
a necessary ingredient for a precise comparison betw
theories and experiment. For that purpose, the identifica
of the exact anisotropy from the switching field surface is
attractive possibility. Therefore the two available experime
tal 3D switching field surfaces~on a Co particle19 and a
BaFeO particle20! have been processed, trying to determ
their effective anisotropy function.

A. Recovery of the anisotropy function from the critical
surface

In 2D, it has been possible to solve the mathemat
problem completely and show how the functionG(mW ) could
be directly found from the critical curve, once the curve
validated as a critical curve~not any astroid-shaped curve
a critical curve5!. The situation is not as well advanced
3D, as the answer to the following questions is not kno
mathematically.

~i! Is S1 sufficient~without S2 , without the focal curves!
to determineG?

~ii ! What are the necessary and sufficient conditions o
surface for being the first critical surface of an anisotro
function?

Let us suppose nevertheless here that the surface has
fully measured, and look for calculated surfaces that
semble it. A first procedure considers the data obtained
one single cut of the 3D surface. For a set of anisotro
parameters and cut orientation, a walk in the (u,f) rectangle
d
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under the constrainthz850 (z8 denoting the normal to the
cut plane, note the cut goes through the origin! calculates a
cut. After normalization to the curve length and orientati
by some special feature~the maximum radius of the curv
for example!, the square of the distance between experim
tal and calculated points at the same curvilinear absciss
added to build an error. The weight of each experimen
point is proportional to its contribution to the curve lengt
This error is minimized with respect to the parameters b
gradient procedure. It became rapidly clear that one cut is
at all sufficient to determine a whole surface. For examp
Fig. 7 shows two fits of equivalent quality of the cut of th
surface of the Co particle by the SQUID plane. Both fi
were obtained with biaxial second degree and uniaxial fou
degree terms. The corresponding 3D surfaces are extrem
different, as are also the determined parameters. Thus a
able procedure has to consider the whole surface. Ano
disadvantage of the first procedure is that, when some p
are lacking in the experimental curve, the curve length
comes another unknown.

The parameters of the second procedure are those des
ing the anisotropy function and the three Euler angles
counting for the relative orientations of the experimental a
calculated surfaces. The surface size is found as the solu
of a 1D least squares problem. Considering the simple sh
of the measured surfaces, in case the calculated surface
more than one point in one direction, error is computed w
the closest point~note the surface scaling is computed fro
the unique points only!. This time, the weight of the experi
mental points is taken in proportion of their contribution
the area on the orientation sphere. The surface is calcul
as a family of planar cuts that share an axis, as the sur
was measured that way and as this allows reusing part o
first procedure. The difficulties of gradient minimizatio
arise from the nonsmoothness of the error as function of
parameters. Both surfaces are indeed known on a finite n
ber of points~about 360 for the experimental, and 2000 f
the calculated!, and small steps in the error as one integer
the calculation changes by one unit are difficult to avo
completely. The minimization algorithm can become trapp
at such artificial minima, and needs often restarting.

The results for the BaFeO particle are presented in R
25. This surface can be described as uniaxial with some
formation. A good reproduction of the surface was obtain
with the inclusion of an hexagonal crystalline term of degr
4 plus 6. Here, the results obtained with the Co nanopart
of Ref. 19 will be described in detail.

B. A cobalt nanoparticle

A first parameters guess can be made from an inspec
of the measured surface, with the previous knowledge of
usual critical surfaces. A program computingS1 for any
parameters, whose input was processed by a 3D display
ware ~Silicon Graphics IRIS ExplorerTM), was also of good
help. The experimental surface can be described as a rev
tion astroid that would have been squeezed to nearly
size along the easy axis, that axis being inclin
('20 deg) with respect to the normal to the hard pla
nearly circular cusp, and finally the easy axis point be
replaced by a short handle cusp. The hard plane cusp wa
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PRB 61 12 229COHERENT ROTATION OF MAGNETIZATION IN THREE . . .
measured~see Fig. 7!. From Sec. IV, biaxial anisotropy
alone cannot reproduce such a surface. If it were of revo
tion one should haveA51 and the height of the surfac
should be equal to its diameter. And, if one hadA51/2 to

FIG. 7. The distribution of the switching fields for a coba
nanoparticle~Ref. 19!, measured in the micro-SQUID plane, can
fitted alone rather equally well with quite distinct parameters~a!
and ~b!. Points come from experiment and lines from calculatio
The corresponding surfaces are shown by their upper half ab
that plane~c! and ~d!. The whole experimental surface is closer
~d!. The parameters areA50.971 and 0.645 for the biaxial term an
B50.544 and 1.321 for the uniaxial fourth degree term, resp
tively. The field scale in~a! and ~b! is in Tesla.
-

account for the height and the presence of the easy
handle cusp, then the hard axis cusp should be an ellips
aspect ratio 2. Higher-order terms have therefore to be
cluded. Cobalt is hexagonal in bulk form, so that the n
order term should be (mx

21my
2)2. But recent studies of cobal

nanoparticles26,27 indicate that the stable structure in reduc
dimensions is cubic~fcc!. The next order term should thus b
mx

2my
21my

2mz
21mz

2mx
2 . The anisotropy for cobalt in the fcc

phase was determined on thick epitaxial films28 to have a
negative constantK1, like nickel. The experimental dat
were fitted with either of these two terms added to a biax
one. Figure 8 shows 3 representative cuts separated byp/6
out of the 18 that constitute the surface. This surface fit w
performed in the hexagonal crystalline symmetry, with ter
of degree 4 and 6 retained. The agreement is quite good,
the easy axis cusp being not fully reproduced~note however
that this part is shown in each cut!. Under cubic symmetry, a
negative magnetocrystalline term was found as expected
the error was distinctly larger~rms values are 0.02 and 0.04
for a surface half diameter of 1!. The fit with the cubic sym-
metry produces large extra branches close to the easy
just like the revolution case when the degree 4 term is str
enough.7 This finding of a hexagonal symmetry may be su
prising, but it should be reminded that TEM examination
parent cobalt particles showed that not all were of
structure,27 and that only one such particle was measured
to now.

This first example, combined with that concerning
barium ferrite nanoparticle,25 shows that a complex aniso
ropy can indeed be recovered from switching field measu
ments. However, unambiguous anisotropy identification
quires looking carefully for all parts of the surface. On
possible such procedure is discussed in the Appendix.

VI. CONCLUSION AND OUTLOOK

We have shown in this paper that a geometrical appro
provides a general solution of the coherent magnetiza
rotation model in 3D. This solution allows for a global un
derstanding of the magnetization behavior~rotation and
jump! in field. Moreover, many of the physical quantities
interest have some geometrical signification. For precise
ues, numerical calculations are of course required. Howe
we have shown on one example how experimental switch

.
ve

-

FIG. 8. Results of the fit of the whole switching field surface
the same Co nanoparticle as in Fig. 7. Displayed are three cu
p/6 of each other, superposing data~points! and fit ~line!. The cuts
are rotated around the vertical axis of the figure. The fit is obtai
with hexagonal symmetry~crystalline terms given byB sin4u
1C sin6u).
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12 230 PRB 61ANDRÉ THIAVILLE
field surfaces can be fitted by the critical surfaces calcula
explicitly from the geometrical technique, in order to extra
effective anisotropy parameters that are vital to any mod
ing of individual nanoparticles.

The mathematical concepts that were used in the co
of this work establish a connection with the field of catast
phe theory, singularities and caustics. The caustics analo
profound. The magnetic constant energy surfaces, being
allel, correspond to the wavefronts of optics. The critic
surfaces play thus the same role as caustics. The ‘‘magn
caustics’’ have the peculiarity of being finite~the optical
ones often go to infinity! and of any symmetry.

Finally, all this work was limited to statics, with the ex
ception of the small magnetization vibrations of FMR. Ho
the geometrical method could treat the magnetization
namics under the classical Landau-Lifshitz-Gilbert equat
remains to be investigated.
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APPENDIX: UNDERLYING MATHEMATICS

1. Constant energy surfaces

It is worthwhile, for many points of view in fact, to con
sider the surfaces on whichE(HW ) @5VHW (mW ) wheremW is an
extremum# is constant. The differential ofE is dE522mW

•dhW as the variations ofmW disappear because of the extr
mum condition. Geometrically, this means that the norma
the constant energy surface ismW . In parametric form, the
surface is written as Eq.~9! in which l is equal tol(E)
5(G2E)/2. These surfaces are parallel, for ifmW is extre-
mum at a fieldhW ~energyE), then it is also extremum fo
fieldshW 1amW displaced along the surface normal by a leng
a ~energyE22a).

A well-known surface geometry theorem~see for example
Refs. 29, 30, and 17 about surface geometry! states that par-
allel surfaces have the same loci of curvature centers~the
focal surfaces!. To find them, we look for the two principa
curvatures at each point, through the determination of
lines of curvature~also called principal curves! on the sur-
face. The lines of curvature equation is

dNW

ds
52CntW, ~A1!

where NW is the surface normal,s the curvilinear abscissa
along the line of curvature,tW its tangent vector~unitary!, and
Cn51/r the normal curvature (r the radius of curvature!.
For the constant energy surfaces,NW 5mW and expressingtW
through the partial derivatives~12! results in the eigenvalue
problem

~Guu1G2E!
du

ds
1

]

]u S Gf

sinu D sinu
df

ds
522r

du

ds
,

d
t
l-

se
-
is

ar-
l
tic

-
n

.
J.
-

o

e

]

]u S Gf

sinu Ddu

ds
1S Gff

sin2 u
1

cosu

sinu
Gu1G2ED sinu

df

ds

522r sinu
df

ds
. ~A2!

The eigenvalues are, from Eqs.~10! and ~11!, r65l6

2(G2E)/25l62l(E). The associated centers of curv
ture C6 are then simplyOC6

W 5hW 1r6NW 5hW 6 , wherehW 6 is
given by Eq. ~9! with l5l6 . Thus we find that all the
constant energy surfaces have the same focal surface~as
expected!, and that these focal surfaces are just the criti
surfacesS6 . The matrix of the eigenvalues problem~A2!

being symmetric, the two tangent vectorstW1 and tW2 are
orthogonal~a general feature of the lines of curvature!.

2. Focal surfaces and curves

When the field pointH moves on a constant energy su
face along a line of curvature, the corresponding cente
curvature moves on the corresponding focal surface, alon
curve called the focal curve. For each point onS6 there
exists one and only one focal curve that crosses it. Thi
because the system~A2! defines the sametW whateverE,
except at special points where the system is degene
These points are called umbilics~see for example Refs. 29
30, and 17!: the two surfaces touch at these points, and s
eral or infinitely many focal curves and cusps can meet th
The surfacesS6 are therefore covered by the focal curv
~‘‘foliated’’ in the vocabulary of Ref. 30!. The tangent to the
focal curve is found by following its associated line of cu
vature~hence the notations6):

dhW 6

ds6
5

dhW

ds6
1r6

dmW

ds6
1

dr6

ds6
mW 5

dr6

ds6
mW ~A3!

@the last equality results from the line of curvature definiti
~A1!#. The tangent is thus directed alongmW and we can
choose this direction to orient the focal curve.

To obtain the tangent plane to the focal surface,hW 6 is
derived with respect to a displacement along the other line
curvature, resulting in

dhW 6

ds7
5~12r6 /r7! tW71

dr6

ds7
mW . ~A4!

The tangent vector to the line of curvature is thus the norm
to its associated focal surface. AstW1 and tW2 are orthogonal,
so are the tangent planes toS1 andS2 .

Is the focal curve a special curve on the focal surfac
The equation of the lines of curvature, interpreted onS6

wheremW is the tangent vector to the focal curve andtW6 the
surface normal, means that the focal curve is a geod
curve of its focal surface~see, e.g., Refs. 29, 30, and 17 f
the definition!. This does not characterize the focal curv
fully, however, as a geodesic curve can be constructed w
any tangent through a surface point.

Let us denote bys6 the oriented curvilinear abscissa o
the focal curves. By definition, one has from Eq.~A3!
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ds6

ds6
5

dr6

ds6
. ~A5!

As the energy on a point on the focal surface is related to
of the constant energy surface byE(C6)5E22r6 , the en-
ergy variation along the focal curves is directly that of t
oriented curvilinear abscissa

dE522ds6 . ~A6!

This last relation~A6! forms the basis of the energy ge
metrical calculation in three dimensions.

The orthogonal trajectories of the focal curves, on th
focal surface, are also of interest. OnS6 , tW6 is the surface
normal, mW the tangent to the focal plane and therefore
tangent to the orthogonal curve istW7 . So that, from Sec. A 1
the energy variation along this normal trajectory is zero a
the orthogonal trajectories of the focal curves are cons
energy curves. Note finally that, from Eq.~A4!, these or-
thogonal trajectories are not obtained by a mere displa
ment of the point on the constant energy surface along
other line of curvature.

3. Cusps on the focal surfaces

The oriented curvilinear abscissa changes orientatio
the points satisfying

dr6

ds6
5

du

ds6

]

]u
~l62G/2!1

df

ds6

]

]f
~l62G/2!50, ~A7!

where the derivatives with respect tos6 are provided by the
solutions of Eq.~A2!. This assumes that nothing occurs
the line of curvature, i.e., that the point considered is not
umbilic. Eq. ~A7! defines cusp lines through a relation b
tweenu andf. These lines are very visible on the drawin
of the focal surfaces~see Fig. 1! where they generalize th
cusp points of the 2D critical curve. They are called ‘‘ribs
in Ref. 30. But on the constant energy surfaces th
‘‘ridges’’ 30 counterparts are not apparent.

The drawings of Fig. 1 make it clear that the critical su
facesS1 can be thought of as made of parts that are glu
tangentially along certain cusps. Each part consists of
cusp~or three cusps30! from which focal lines start, and on
or several cusps on which they end. From their shape in
biaxial case, one may call these parts of focal surf
‘‘bells’’ ~the cubic case where the handle cusp reduces
point is a very high symmetry one!. The stable half tangent
out of one bell reach once every point of a domain which
the inside of the bell extended by the half tangents emana
from the end cusp~s!. As long as a field point stays inside th
domain of a given bell, the jumps of magnetization sh
occur only when that point crosses the bell surface. Each
corresponds to a family of magnetizations, where one can
continuously from one to another direction. A bell th
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means one phase of the magnetic phase theory,16 i.e.,
roughly one magnetization state~but not necessarily obtaine
in zero field!. Thinking of the critical surface in terms o
bells has the advantage of simplifying the geometrical r
soning greatly. The two bells of the biaxial surface we
already considered in Sec. IV. The cubicS1 surface likewise
consists of six fourfold symmetrical bells where the starti
cusp is an umbilic of high symmetry~there are additionally
eight small threefold symmetrical bells on the$111% orienta-
tions!.

The decomposition of the surface into bells also allows
understand how the whole surface could be measured, e
with a SQUID and despite the very small magnetizati
jumps at the hard axis cusps. For each bell, one need
have one point of its surface that gives rise to a measur
jump ~call it the test point!. For the micro-SQUID technique
the test point has to belong to the SQUID plane. Additio
ally, one point inside the bell~called center point!, reached
by coming from the bell domain at infinity, has to be foun
in order to reset the magnetization after a jump. One poss
measurement procedure is to increase field from the ce
point in all directions up to the bell. Whether one h
reached the bell or not can be tested by going back to
center and testing for a jump at the test point~provided the
journey back to the test point is contained inside the dom
of the new bell after the jump!. This justifies the indirect
measurement procedure of Ref. 24. For the bells that do
cross the SQUID plane, or with non measurable jumps in
plane, or which intersect, more indirect procedures have
be designed. It appears thus that the knowledge of what c
cal surfaces should look like is necessary to guide the exp
mentalist in devising the measurement procedure, like
Ref. 24.

We have been naturally led to a separation of the c
lines into two sorts, namely those from which the focal lin
depart and those where they end. In the 2D case,24 Bonet
called the second sort the ‘‘choice’’ lines, for whether t
critical surface is entered from above or below such lines
will get different magnetizations at the same point. It is cle
from the above discussion that a general description
classification of the cusp lines in relation with our proble
would be very useful~the classification by Porteous30 could
well be just that!. But this is beyond the scope of this pape

More generally, one should note that the arrangemen
the cusp lines is one topic of catastrophe theory. The
symmetry case~called generic by the mathematicians! has
been studied long ago. Recently also,31 symmetrical cases
have been investigated. This related work is not a m
mathematical curiosity, for it provides general rules conce
ing the architecture of the cusp lines, which are the backb
of the focal surfaces and play a key role in the magnetiza
rotation processes as just seen. For example, the way
which a cusp line may transform under changes ofG are
mathematically fixed by Catastrophe theory.
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