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Incoherent Zener tunneling and its application to molecular magnets
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We generalize the Landau-Zener theory of coherent tunneling transitions by taking thermal relaxation into
account. The evaluation of a generalized master equation containing a dynamic tunneling rate that includes the
interaction between the relevant system and its environment leads to an incoherent Zener transition probability
with an exponent that is twice as large as the one of the coherent Zener probability in the-li@itWe apply
our results to molecular clusters, in particular to recent measurements of the tunneling transition of sgins in Fe
crystals performed by Wernsdorfer and Sesg®tiience284, 133(1999].

The adiabatic transition in a two-level systéfm),|m’)}  and Fig. 3. In addition, we restrict the evolution of our sys-
with energy level crossing is described by the Landau-Zenetem to timest that are much longer than the decoherence
transition probability time 7q=1/ynn - In this case, tunneling transitions between

pairs of degenerate excited states are incoherent. This tunnel-
ing is only observable if the temperaturés kept well below
, (1) the activation energy of the potential barrier. Accordingly,
we are interested only in timessthat are larger than the
relaxation times of the excited states. Thus, we can apply our
formalism presented in Ref. 22, which treats incoherent tun-

where )~ is the energy of the stal m’)), . o " :
and Er:r:"(fé“ gi\feng by the cou%ng betweeq:nghéLe >s)tates.ne“n9 between pairwise degenerate states within a single

Equation(1) is obtained directly from the Schinger equa- spin system, the decoherence of which is due to the interac-
tion with the Hamiltoniah tion with its environment. We showed in Ref. 22 that one can

reduce the generalized master equation comprising off-
E /2 diagonal elements of the density matpixto a complete mas-
Em mm’ }

2
mm’

7E

Peor=1—exp

d
2h a(sm—sm,)

H= (2)  ter equation that consists only of the diagonal elements, i.e.,

Emm//2 Em’

If the total HamiltonianH,,, comprisingH forms a potential m’
barrier—as we shall assume from now OBqy, corre- pn=—Wipnt 2 Wanpn+ IR (o = pm), (3

sponds to the tunnel splitting energy.., to the coherent nEmm

Zener tunneling probability, and the eigenstatestofare \yhere

delocalized as long as,,— &,/ <Eqw . As there is a large

amount of potential barriers in physical systems, @&¢.has 2

become an important tool for studying tunneling ™ (1) = E Ymm @
transitions?~> It must be noted that all quantum systems to m 2 g2 ()+h2y2

which the Zener modeélis applicable can be described by
pure states and theitoherenttime evolution. It is the aim of
the present work to generalize the Zener theory in the sen
that we take also théncoherentevolution of mixed states
into accoun{see also Refs. 2 and 6—10 for a comparjstm
order to provide a clear description of our generally valid
theory, we give the derivation of the incoherent Zener tun
neling probabilityP;,. (see Fig. 1in the framework of spin
tunneling in molecular magnets, which has become a highly
attractive research field in the past few years since severe
experiments revealed mesoscopically observable quantur
phenomena in molecular clusters, such as;Mitetate
(Mny,) (Refs. 11-15and Fg-triazacyclononane (g’
In particular, we will show that our theory presented in this
work is in good agreement with recent measurement3; Qf
as a function of the external transversal field for various PincleSm) =0_—~7
temperatures in &% m)

We proceed now from the assumption that the range over FIG. 1. Energy level crossing diagram for incoherent Zener

Wh'Ch 8<mm’(t)f8m_8m’ IS Swfpt’ defined by t.he bound- ransitions. Dotted lines: transitions due to interaction with environ-
aries e s==Mindeqy} and e :=max{eny}, IS much  ment, leading to a linewidthy,,, . Variables are explained in the
larger thark,,,,y and the decoherence rdie,,,s (See below text.

is the incoherent tunneling rate frojm) to |m’), which, in
Sontrast to Ref. 22, is assumed now to be time dependent
(see below for range of validifyln Egs.(3) and(4) we have
made use of the abbreviationg,,, = (Wqy,+W,)/2 and
Wp=2 Wy, WhereW,,,, denotes the approximately time-
independent transition rate frorm) to |n), which can be

) )

1 = Pc(eqmm)
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FIG. 2. Tunnel splitting energg,y . The open circles cor- ~ Assuming linear time dependen(c)e, iepm(D)=anpt, in
respond to the statdsn), i=1,... N, the solid circles « tdm),  the transition regiod,and with |e,’ |>% y,w we obtain

mm’
Im"), and the lines to the matrix elements, - from Eq. (6)
obtained via Fermi's golden rufé.For straightforward cal- 2E§,_S ag® to
culation of E,,y it is useful to note that our generalized p=exp — ﬁa_surcta 7ive 7St B 7tdt Lin
tunnel splitting formul& s '
E2 t
Vin,m N~ 1 Vi m ~ex —b—f dat’' T’ 7
Emm =2 2 - H - VmN,m’ ﬁas_s -t " "
my, . my Em™ €myi=1 Em™ E€m
m;#m,m’ where we have sdiy= —t. In the low-temperature limif

) —0 the excited states are not populated anymore and thus

can be represented by the graphs shown in Figv 2. lt:th igt\;\llgﬁqhaggfgi;t; ;f i';gevfif;ﬁsri]zts ?;i-z;hﬁ; r?trle Vé(ei?hted
denote off-diagonal matrix elements of the total Hamiltonian y m’ ' d y, B@:

simplifies to
7_(tot'
First we solve Eq(3) in the unbiased case — correspond- 7E2 TE2
ing to n=0 (see below—where the ground statefs), Apzexp{ — S'_S] = p{ — $] . (8
|—s) and the excited statgsn), |—m), me[[s]—s+1,s hag® files -s(0)]

—1] of our spin system with spis are pairwise degenerate.
In addition, we assume that the excited states are already

their stationary state, i.ep,=0 Vm#s,—s. This implies

where the second expression is more general and can also be
Bbtained directly from Eq(4) by reducing

thate (1) in Eq. (4) must be changed within a time that is ¥s,—s—0 E2_md(t)
much smaller(adiabatic approximationor much greater 2AT S —— Ei,sq-ré(asl_s): : .9
(sudden approximatiorthan the relaxation times of the ex- les,-5(0)]
_(:lted states, which are of the_z order ofAl{. Proceeding as \ye note that the exponent in E@) differs by a factor of 2
in Ref. 22(Sec. VA we obtain from Eq(3) from the Zener exponent in E@l). This is not surprising
. sincely is the relaxation rate ok p, where bottpg andp
1— PinCEAp(t)=exp{ _J dt’ Ftot(t/))’ (6) are changed in time by the same amount, ao'dan_ escape
to rate like in the cases of coherent Zener transition and

where we have defined the quantityp(t)=pe—p_q, decay, where only the population of the inital state is

which satisfies the initial conditionp(t=to)=1, and thus Canged in time. Note that Eq8) implies Pip.=1 for
Pinc(t=t0)=0. In distinction to Eq.(1), we call Py, the |25,-5(0)| —0 (adiabatic limi) and Pirc=0 for |5 _(0)]
incoherent Zener transition probability. The total time- — (Sudden limii. _ .
dependent relaxation rate is given Byy=2[TJS+Ty], Instead of the linear time dependencg = a5 t, one
where the thermal ratBy,, which determines the incoherent €a@n consider oscillations of the formy _ =asinwt. Ne-
relaxation via the excited states, is evaluated by means &lectingl’y, in Eq. (7) in the limit T—0 we get

relaxation diagram$? such as shown in Fig. 3. For example,

2
if we allow only for thermal transitic_)ns wit_mmzl, we ApZAp(to)eX[{ _ ES’Sarcta+ Y tan wt) ]
obtainl" = fs_1ofs_ g0 - -ofg5(0). This continued fraction hon hys—s
is recursively defined by (10
where we have sey=/a?+#72yZ_.. Integratingl’,.; from
to=— 72w to t= /2w we obtainAp= eXp{—TrEi_slfLwn}.
s — )= — — — — — — — s+ 2) In comparison to Eq(8) we get here the extra factay,
which provides an experimentally exploitable dependence on
e — — — — — — _ e g1 ¥s.—s, Provided thaa<# vy, _s.

If we apply a bias to our system in such a way that our
states are tuned to other resonan¢ese Fig. 4, e.g., n
|9} — — — — — — — [—=) =1,2, ... (see below, the total relaxation rate is changed to
bias__ —s+1 bia:
FIG. 3. Unbiased i{=0) relaxation diagram of a spin system Ciot 72/[.1/(I‘S +TR)+1IW_g _¢iq], where the ap-
with spin S and symmetric anisotropy barrigi,= —AS?. The ~ Proximation comes from the fact that there can be other non-

solid lines correspond to thermal transitions witme[1,25],  Vvanishing t.hermal ratves,nb?g’Sith initial_ state|n), n#-s
double arrows indicating that there is more than one incoming rate; 1, and final statg—s). I'y* determines the relaxation

and the dashed lines represent tunneling transitions. through the states that have higher energy tfsan
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18) | —8)
s —2)@4 — — — — — — — [—s+3)
s — 1)@= — — — — — = — |—s + 2)
|10) [—10}
)@= = = = == == ==+ 1) FIG. 6. Unbiased 1if=0) relaxation diagram for ke Solid

(dashedl lines: thermal(tunneling transitions.
|—=)
. . , x 10 ! K. Besides theB, term introduced in Refs. 20 and
FIG. 4. Example of a biased relaxation diagram of a spin systenblt btain the desi d4 iod find that i -
with spinS, and asymmetric barrig(,+ H; for the resonance con- O obtain the desired period, we Tind tha Bl@_erm IS
dition n=1. The diagram is explained in Fig. 3 necessary to achieve the desired tunneling amplitude in Fig.
' o 5, while theBg term is responsible for the minimum B,
In the second part of this paper, we apply our theory to~1-4 T. The Zeeman couplingugS-H has been divided
recent experimenf®?! which measured quantum oscilla- INt0 @ longitudinal part{;=gugH.S, and a transversal part,
tions of the tunnel splittingE . (H,) in Fey as a function of ~Peing the second term in EQL1), whereH is the magnitude

an externally applied transversal magnetic fielld. In a co-  ©f the external magnetic fielt, and & and ¢ define the
herent spin-state path integral approach these quantum osciiPherical angles. According to E), Hry induces tunneling
lations and their associated spin parity effects can be vieweBetween pairwise degenera® eigenstategm), —s<m
as a result of interfering Berry phases carried by spin tunnel<S$: of Ha+Hz, with eigenvalues:,. The resonance con-

ing paths of opposite winding, which are modified in the dition fo'r sucﬂrgegenerames, .em=ep , leads to the resq-
presence of a fieldl, .* However, for a quantitative analy- nance fieldH;™ =nA/gug, n=m-+m’. As can be seen in
sis of the Fg dat#®?'the operator formalism presented here Fig. 5, our analytic formuld5) for the resulting tunnel split-

proves to be more useful than the path integral approach. ting Emmw(Hy) is in reasonable agreement with the exact
In accordance with earlier wotk??*we use a single- diagonalization ofH,+ H++Hz, which provides a good fit

spin HamiltonianH = H,+ Hr+ Hz+ Hs, that describes suf- - of the data in Ref. 20.
ficiently well the behavior of the giant spi®with s=10 of In order to account for thermal transitions between the

a Feg cluster. It turns out that our theory is in optimal agree-|m) states, we include the most general spin-phonon
ment with experiment&2Lif we choose the easy-axis Hamil- coupling which is allowed in leading order by tt2, sym-

tonian to beH,=—AS’, with anisotropy constan/kg ~ Metry of the Fg crystal?’ i.e.,
=0.275 K;" and the in-plane Hamiltonian to be 5 -
Hsp: 916xxS T 926yysy+ E(gsfxy{sx ,Sy}

+ 04645, SH+ 956yz{sy ,Sh+ gﬁwxy{sx 1Sy}
+g7wXZ{SXlSZ}+98wyZ{Sy’SZ})v (12)

X H si “leS, +e'¢S.
Hsind(e*S, +evs.), (D whereg;, i=1,...,8, are thespin-phonon coupling con-

with the anisotropy constant®,/ks=0.046 K!"?®B,/kg  stants, which we assume to be approximately equal,
=-6.0x10"° K, Bg/kg=2.0x10"8 K, and Bg/kg=2.0  gi=go.?> We knowf? that within the spin system the first-

4
1 1
Hr=5 2, Bon(SP"+S™) + —gus
2 n=1 2

E1p,-10 [107® K] SN

1 ‘.. ! Hy[T]
0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 0.4 0.8 1.2
FIG. 5. The tunnel splitting enerdy;o _1o(Hy) in Fes, exhibit- FIG. 7. Zener transition probabilitP;,.(H,) for temperatures

ing Berry phase oscillations, was calculated by exact diagonalizaf=0.7 K, 0.65 K, 0.6 K, 0.55 K, 0.5 K, 0.45 K, and 0.05 K. By
tion (solid line) and by using the approximate analytic formgf choosingB,= —6.9x 1075 K for this plot our fit agrees well with
(dashed ling The angles are9=90°, ¢=4°. The period is in  data(Ref. 21, except for the minima dt,~+0.2 T, which are too
excellent agreement with dat®efs. 20 and 2Lif we setg=1.9 narrow (see text Note thatP;,. is equal to P in Ref. 21. The
(Ref. 26. The tunnel splittings forH,=0 read E;p_10=9.0 tunnel splittings for this figure read;y _10=1.3x10"" K,
X107 8K, Eg _¢=6.5x10 ¢ K, andEg _g=2.1x10"* K. Eq,9=8.8X10 ® K, andEg _g=2.7x10 4K for H,=0.
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and second-order thermal transition rais,.;m, Wn+om
are the strongest ones, which are evaluated by Fermi
golden rule to ber(=1,2)

2
JoS=r (Smtr_'sm)3

Wine s m= ,
m=r,m qr,n-pCSﬁ‘]' eﬁ(smtrfsm)—l

13

where s.;=(s¥m)(stm+1)(2m+1)? s.,=(s¥m)(s
+*m+1)(s¥m—1)(s=m+2), and q;=48, q,=32. The
mass density for Fe; is given by 1.9X 10° kg/m??’ the
sound velocityc by 1400 m/qyielding a Debye temperature
of ®,=33 K).?® The incoherent Zener probability;,. in
Fig. 7 fits the dat® well if one adjusts the coupling constant
to gp=2.3 K.

For the temperature range 0.05sK'<0.7 K we achieve
good agreement between our theory and the?diftave take
the state$+ 10), |=9), and| = 8) into account. In particular,
the path leading throught8) gives a non-negligible contri-
bution for T=0.6 K. Solving the relaxation diagram shown
in Fig. 6 we obtain from Eq(7) the following results for Fg
in the casen=0:

b,

8
Fo=2[ Tgo+ >
n=9 1

+
WlO,n

n
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E? E2 _ Wio,b
s A TE10,-10 2 TER —nVW10nPn
=ex —
P hag® =9 o "WE2 _ +H2W2
10 ap n,—n 10n
(14)

where we have used the approximatigp _,~W, and
leb) |>En 1.7 -n- Pine=1—Ap, which is plotted in Fig.

7, is in good agreement with the measureméhecept for
the most narrow minima dtl,~=*=0.2 T. However, the ex-
perimental uncertainty of these minima is very large since
they depend strongly on the initial magnetizatfor? In or-

der to account for the increase®f,. at T=0.6, 0.65, 0.7 K
for higher fieldsH, , we had to correct the energy levels
occurring in Eq.(13) by first-order perturbations iAl, . Be-
low 0.4 K P, is T independent, which agrees well with Ref.
21.

In conclusion, our theory, which is based only on thermal-
assisted tunneling and neglects dipolar and hypéffiiedds,
agrees well with the recent measurements in Refs. 20 and 21
and also leads to the prediction of the anisotrofBes Bg,
Bg, and the spin-phonon coupling constagtin Fe;.

Detailed calculations of the biased cases=(,2, ...)
will be published elsewhere.
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