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Effect of symmetry-breaking perturbations in the one-dimensional SU„4… spin-orbital model
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We study the effect of symmetry-breaking perturbations in the one-dimensional SU~4! spin-orbital model.
We allow the exchange in spin (J1) and orbital (J2) channel to be different and thus reduce the symmetry to
SU(2)^ SU(2). A magnetic fieldh along theSz direction is also applied. Using the formalism developed by
Azariaet al. @Phys. Rev. Lett.83, 624~1999!# we extend their analysis of the isotropicJ15J2 , h50 case and
obtain the low-energy effective theory near the SU~4! point in the generic caseJ1ÞJ2 , hÞ0. In zero magnetic
field, we retrieve the same qualitative low-energy physics as in the isotropic case. In particular, the isotropic
massless behavior found on the lineJ15J2,K/4 extends in a large anisotropic region. We discover, however,
that the anisotropy plays its trick in allowing nontrivial scaling behaviors of the physical quantities. For
example, the mass gapM has two different scaling behaviors depending on the anisotropy. In addition, we
show that in some regions, the anisotropy is responsible for anomalous finite-size effects and may change
qualitatively the shape of the computed critical line in a finite system. When a magnetic field is present the
effect of the anisotropy is striking. In addition to the usual commensurate-incommensurate phase transition that
occurs in the spin sector of the theory, we find that the field may induce a second transition of the KT type in
the remaining degrees of freedom to which it doesnot couple directly. In this sector, we find that the effective
theory is that of an SO~4! Gross-Neveu model with anh-dependent coupling that may change its sign ash
varies.
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I. INTRODUCTION

In past years, there has been an intense interest devot
one-dimensional spin-orbital models.1 The main reason
stems from the recent discovery of the new quasi-o
dimensional spin gapped materials Na2Ti2Sb2O ~Ref. 2! and
NaV2O5.3 It is believed that the unusual magnetic propert
observed in these compounds should be explained b
simple two-band Hubbard models atquarter filling. At this
filling, and in the large Coulomb repulsion the effectiv
Hamiltonian simplifies greatly and is equivalent to a mod
of two interacting spin one-half Heisenberg models:4,5

H5(
i

J1SW i•SW i 111J2TW i•TW i 111K~SW i•SW i 11!~TW i•TW i 11!,

~1!

whereSW i andTW i are spin-1/2 operators that represent spin a
orbital degrees of freedom at each sitei andJ1(2) andK are
positive. It is important to notice that Eq.~1! is not only
SU~2! invariant inSW space but also inTW space. For generic
couplings J1(2) and K, the Hamiltonian ~1! is SU(2)s
^ SU(2)t symmetric. Two particular cases are of intere
First, whenJ15J2 there is an additionalZ2 symmetry in the
exchange betweenSW i and TW i . The other important case i
when J15J25K/4 in which case the Hamiltonian is SU~4!
invariant.6 In fact, the Hamiltonian~1! is a simplified version
of the most general case. Indeed, depending on the m
scopic couplings, there can be other terms that break
SU~2! symmetry in both spin and orbital sectors. The cho
PRB 610163-1829/2000/61~18!/12112~14!/$15.00
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of studying Eq.~1! is dictated by the fact that since it retain
some symmetries it is a simple starting point from which o
can expect to gain some insight before tackling with t
more general case. In this respect, the model~1! describes
the simplest physically relevant symmetry breaking patt
SU(4)→SU(2)s^ SU(2)t .

The Hamiltonian~1! can be interpreted in terms of a two
leg spin ladder coupled by a four spins interaction. Such
interaction can be generated either by phonons or, in
doped state, by conventional Coulomb repulsion between
holes.7 Some of the properties of Eq.~1! are well established
in theweakcoupling limit. In the limitK!J1(2) , the Hamil-
tonian ~1! describes a non-Haldane spin liquid where ma
non excitations are incoherent.7

The strong coupling regime,K;J1(2) , has just begun to
be investigated.5,6,8–10From the theoretical point of view the
situation is awkward. Indeed, as stated above, at the spe
point J15J25K/4, the Hamiltonian~1! has an enlarged
SU~4! symmetry6 and is exactly solvable by the Beth
ansatz.11 The model is critical withthree gapless bosonic
modes and flows in the infrared towards the Wess-Zumi
Novikov-Witten ~WZNW! model SU(4)1.12 It is confor-
mally invariant with the central chargec53. Therefore,
there should be aqualitativechange in the physical behavio
of Eq. ~1! when going from small to largeK. From the the-
oretical point of view this situation is striking since th
means that one cannot go continuously from weak to str
coupling. This is a manifestation of the Zamolodchiko
c-theorem13 that states that starting atK50 with two decou-
pledS51/2 chains with the central chargec52 ~two gapless
12 112 ©2000 The American Physical Society
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PRB 61 12 113EFFECT OF SYMMETRY-BREAKING PERTURBATIONS . . .
bosonic modes! one cannot flow, in the renormalizatio
group ~RG! sense, towards the SU~4! point which hasc53
~three gapless bosonic modes!. Very recently, a new ap
proach to tackle with the strong coupling regime has b
developed by Azariaet al.14 The idea is to start from the
strong coupling fixed point SU(4)1 and to perturb around it

This strategy has been applied to the symmetric lineJ
5J15J2. It was shown that whenJ,K/4 a small deviation
from the SU~4! point is irrelevant and thus the low energ
physics is governed by the SU(4)1 fixed point. In contrast,
when J.K/4 the interaction is relevant and a gap opens
the spectrum. The system dimerizes with alternating spin
orbital singlets. In addition it was argued that the SU~4! sym-
metry was restored at long distance and that the low ene
effective Hamiltonian was that of the SO~6! Gross-Neveu
~GN! model. The low-lyingcoherentexcitations were then
shown to be fermions that transform as an antisymme
tensor of rank two of SU~4!. These excitations are cohere
with wave vector nearp/2.

The purpose of this work is to extend the analysis to
asymmetric case (J1ÞJ2) and to inquire how anisotropy
modifies the low energy physics described above. This pa
is organized as follows. In Sec. II we present the tools t
are necessary to explore the vicinity of the SU(4)1 fixed
point and derive the effective low-energy theory associa
with Eq. ~1!. A detailed renormalization group analysis
then presented in Sec. III. We obtain the phase diagram
the plane (J1 , J2) and discuss the asymptotic behaviors
the mass gapM. A discussion on crossover effects linked
the anisotropy is also presented. In Sec. IV we investig
the effect of a magnetic field on the anisotropic model.
nally in Sec. V we summarize our results and present so
technical details relative to the computation of the mass
in the Appendix.

II. THE LOW ENERGY EFFECTIVE FIELD THEORY

A. The SU„4… Heisenberg chain

Our approach is very similar to the description of theS
51/2 Heisenberg spin chain at low energy from the s
sector of the repulsive Hubbard model at half filling.12 To
this end, let us introduce the SU~4! Hubbard model withU
.0:

HU5(
ias

~2tci 11as
† cias1H.c.!

1
U

2 (
iabss8

niasnibs8~12dabdss8!. ~2!

Herecias
† denotes electron creation with channel~orbital! a

51,2 and spins5↑,↓ at thei th site. The occupation numbe
is defined bynias5cias

† cias . In the limit of large positive U,
and atquarter filling, it is not difficult to show that Eq.~2!
reduces to Eq.~1! with the identification
n
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SW i5
1

2 (
a

ciaa
† sW abciab ,

TW i5
1

2 (
a

ciaa
† tWabciba , ~3!

wheresW ~respectivelytW ) are the Pauli matrices acting in th
spin ~respectively orbital! space. The low energy physics ca
be described in terms of right moversRas and left movers
Las fermions which correspond to the lattice fermioncias in
the continuum limit:

cias

Aa0

.Ras~x!exp~ ikFx!1Las~x!exp~2 ikFx!, x5 ia0 ,

~4!

wherea0 is the lattice spacing and the Fermi wave vector
defined bykF5p/4a0. At this point we bosonize and intro
duce four chiral bosonic fieldsFasR,L using the Abelian
bosonization of Dirac fermions:15

Ras5
kas

A2pa0

exp~ iA4pFasR!,

Las5
kas

A2pa0

exp~2 iA4pFasL!, ~5!

where the bosonic fields satisfy the following commutati
relation:

@FasR ,Fbs8L#5
i

4
dabdss8 ~6!

so that$Ras(x),Las(y)%50. The anticommutation betwee
fermions with different spin-channel indexes is insured
the presence of Klein factors~here Majorana fermions! kas
with the following anticommutation rule:

$kas ,kbs8%52dabdss8 . ~7!

As in the solution of the two-channel Kondo effect b
Abelian bosonization16 it is suitable to introduce the physi
cally transparent basis:

Fc5
1

2
~F1↑1F1↓1F2↑1F2↓!,

Fs5
1

2
~F1↑2F1↓1F2↑2F2↓!,

F f5
1

2
~F1↑1F1↓2F2↑2F2↓!,

Fs f5
1

2
~F1↑2F1↓2F2↑1F2↓!. ~8!

In this new basis, the total charge degree of freedom is
scribed by the bosonic fieldFc while the other ‘‘spin-
orbital’’ degrees of freedom, are faithfully bosonized by t
three bosonic fieldsFs ,F f ,Fs f . It is now straightforward to
obtain the continuum limit of the Hubbard Hamiltonian~2!:

HU5Hc1Hs f , ~9!

where
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Hc5
vF

2
„~]xFc!

21~]xQc!
2
…1

3Ua0

2p
~]xFc!

2, ~10!

and

Hs f5 (
a5s, f ,s f

S vF

2
„~]xFa!21~]xQa!2

…2
Ua0

2p
~]xFa!2D

1
U

p2a0

~cosA4pFs cosA4pF f

1cosA4pF f cosA4pFs f

1cosA4pFs cosA4pFs f!. ~11!

As in the SU~2! Heisenberg chain, spin and charge degr
of freedom separate. Notice however that at this order in
there are no umklapp terms in the charge sector since we
at quarter filling and the 4kF contribution to the effective
Hamiltonian oscillates. Umklapp terms will arise at high
order in perturbation theory and will be responsible for
Mott transition at a finite value ofU5Uc.

17 Assuming that
U@Uc , we focus now on the spin-orbital sector.

The interaction term inHs f has scaling dimension 2 and
therefore marginal. This term is nothing but the SU~4!
current-current interaction. The 15 SU(4)1 currentsJ R

a and
J L

a can be expressed in terms of the three bosonic fieldsFs ,
F f andFs f and the spin-orbital part of the Hamiltonian~9!
takes the form

Hs f5
2pvs

5 (
a51,15

~J R
aJ R

a1J L
aJ L

a!12gs (
a51,15

J R
aJ L

a ,

~12!

where

gs52Ua0 ,

vs5vF2Ua0/2p. ~13!

The first term in Eq.~12! is just the Sugawara form of th
SU(4)1 WZNW model while the second term is the margin
current-current interaction. WhenU.0, gs,0, the current-
current interactionJ R

aJ L
a is thus irrelevant, as a consequen

the spin orbital sector is described by the SU~4!1 WZNW
model.12

B. Majorana representation and the SO„6…
Gross-Neveu model

As first emphasized by Sheltonet al.18 in their study of
the two-leg spin-1/2 ladders it is very convenient to form
late spin ladder problems in terms of real~Majorana! fermi-
ons. This can be done by refermionizing the three boso
fields Fs , F f , andFs f . Let us introduce the six Majoran
fermionsja,a51 –6 as follows:

~j11 i j2!R(L)5
h1

Apa0

exp~6 iA4pFsR(L)!, ~14!

~j31 i j4!R(L)5
h2

Apa0

exp~6 iA4pF f R(L)!,
s
U
re

r

l

-

ic

~j51 ij6!R(L)5
h3

Apa0

exp~6 iA4pFs f R(L)!,

]xFs5 iAp~jR
1jR

21jL
1jL

2!,

]xF f5 iAp~jR
3jR

41jL
3jL

4!,

]xFs f5 iAp~jR
5jR

61jL
5jL

6!,

whereh i are Klein factors. With all these relations at han
one can rewrite the Hamiltonian~11! in terms of six Majo-
rana fermions:

Hs f52
ivs

2 (
a51

6

~jR
a]xjR

a2jL
a]xjL

a!1gs (
i , j

k ik j ,

~15!

where we have introduced the energy density of the differ
Ising models:i ea5ka5jR

ajL
a . The Hamiltonian~15! is noth-

ing but that of the SO~6! GN model with a marginallyirrel-
evantinteraction whenU.0. Thus in the far infrared the six
Majorana fermions decouple and remain massless. Thi
the SO(6)1 fixed point.

The above result assumes thatU is small and the question
that naturally arises is whether it can be extended to la
values ofU where Eq.~2! reduces to Eq.~1!. For exactly the
same reasons as for the SU~2! Heisenberg chain the answe
is positive. We know from the exact solution that the SU~4!
model is critical with three massless bosonic modes
equivalently six massless Majorana fermions. We know fr
conformal field theory that the fixed point Hamiltonian ca
only be the SU(4)1;SO(6)1 WZNW model. The marginal
interaction( i , jk ik j is the only one that respects both th
SO~6! symmetry as well as translation invariance. Therefo
in the vicinity of the fixed point the SU~4! Heisenberg mode
will be given by

H52
ius

2 (
a51

6

~jR
a]xjR

a2jL
a]xjL

a!12G3(
i , j

k ik j ,

~16!

where the spin velocityus and the couplingG3,0 are un-
known and nonuniversal parameter that could be extrac
from the exact solution. The only thing that happens wh
going from smallU to largeU is a renormalization of thegs
andvs .

The Majorana description used here is extremely usefu
understand the symmetry properties of our model. Inde
for example, one can define the spin and orbital triplets:

jW sR(L)5~j2,j1,j6!R(L) ,

jW tR(L)5~j4,j3,j5!R(L) . ~17!

These quantities transform like a vector under spin SO(s
and orbital SO(3)t rotations. These correspond to the SU(2s

and SU(2)t transformations acting on the operatorsSW andTW ,
respectively.

To get a complete description of the SO(6)1 fixed point
one needs the continuum expressions for the effective
and orbital densities in terms of the Majorana fermions:
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SW 5JW sR1JW sL1exp~ ipx/2a0!NW s1H.c.1~21!x/a0nW s~x!,

TW 5JW tR1JW tL1exp~ ipx/2a0!NW t1H.c.1~21!x/a0nW t~x!,
~18!

whereJW s,t is the uniform,k50, part andNW s,t andnW s,t are the
2kF5p/2a0 and 4kF5p/a0 contributions. Notice that in
contrast with the SU~2! Heisenberg chain, the spin densi
has three oscillating components. The reason for this co
from conformal field theory. Indeed the different oscillatin
components of the spin density areprimary fields of the
SU(4)1 WZNW model. There are three of them with scalin
dimensions~3/4,1,3/4!.19 They all belong to the representa
tions ~building blocks! of SU~4! with Young tableau consist
ing of a (a51,2,3) boxes and one column. In particular t
staggered components at 4kF5p, nW s,t , are components o
an antisymmetric tensor of rank 2.

The uniform components express in terms of the Ma
rana fermions as follows:

JW sR(L)52
i

2
jW sR(L)`jW sR(L) ,

JW tR(L)52
i

2
jW tR(L)`jW tR(L) . ~19!

Notice that in contrast with the SU~2! Heisenberg chain, the
uniform part of the spin densities are SU(2)2 currents. The
expressions for the 4kF5p/a0 densities are given by

nW s5 iBjW sR̀ jW sL ,

nW t5 iBjW tR`jW tL , ~20!

whereB is a nonuniversal constant. Their scaling dimens
at the SO(6)1 fixed point isDp51. Both densities~19! and
~20! are rather simple when expressed in terms of the Ma
rana fermions. This is not the case with the 2kF5p/2a0

densitiesNW s,t that are nonlocal in the Majorana fermionsja.
Indeed they involve order and disorder operatorssa andma
of the six Ising models that are associated with the six M
jorana fermions. The expressions of bothNW s,t are lengthy
and we shall give here only thez component that will be
sufficient for our purpose:

N s
z5A~ im1m2s3s4s5s61s1s2m3m4m5m6!,

N t
z5A~ is1s2m3m4s5s61m1m2s3s4m5m6!, ~21!

where A is also a nonuniversal constant. Since at the f
fermion point, the order and disorder operators have sca
dimension 1/8, the 2kF densitiesNW s,t have the scaling di-
mensionDp/253/4.

This completes the continuum description at the SU~4!
point. The theory is critical and flows to the SO(6)1 fixed
point. There is a marginally irrelevant correction whose m
nitude is nonuniversal and is given by the unknown coupl
G3,0. This is in complete agreement with the non-Abeli
bosonization approach of Affleck.12 With the continuum ex-
pressions of the spin and orbital operators at the SU~4! point
in terms of the six Majorana fermions and the associa
es

-

n

-

-

e
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-
g

d

Ising models we shall be able to investigate the propertie
Eq. ~1! close to the SU~4! symmetric model. But before
moving to this point, let us stress that the effective theo
depends on three unknown parametersA and B and G3
which can be in principle extracted from numerical studi
In the following, we shall assume that the above descript
still holds for small deviations of the SU~4! point. The only
modification being a renormalization of the nonunivers
constantsA, B andG3.

C. The SU„2…‹SU„2… symmetry-breaking perturbation

We shall now derive the effective low energy theory a
sociated with Eq.~1! for arbitrary values ofJ1 andJ2 close
to the SU~4! invariant point given byJ15J25K/4. To this
end, let us parametrize the couplings as follows:

J15
K

4
1G1 ,

J25
K

4
1G2 , ~22!

where bothG1 andG2 are much smaller thanK. The Hamil-
tonian ~1! can then be written as

H5HSU(4)1G1(
i

SW i•SW i 111G2(
i

TW i•TW i 11 . ~23!

Using the low energy description of the spin-orbital ope
tors ~19!, ~20!, and~21!, one can expand Eq.~23! around the
SO(6)1 fixed point:

H52
ius

2
~jW sR•]xjW sR2jW sL•]xjW sL!1g1~k11k21k6!2

2
iut

2
~jW tR•]xjW tR2jW tL•]xjW tL!1g2~k31k41k5!2

12G3~k11k21k6!~k31k41k5!, ~24!

where

g15G11G3 ,

g25G21G3 , ~25!

and the two renormalized velocitiesus andut are given by

us5vs12G1 /p,

ut5vs12G2 /p. ~26!

In the above equations and in the remaining of this paper,
include the effect of the 4kF components of the spin an
orbital densities in a redefinition of the couplings:G(1,2)
→(11B2)G(1,2) . The Hamiltonian~24! describes two mar-
ginally coupled SO~3! Gross-Neveu models: one in the sp
channel described by the three MajoranajW s and one in the
orbital channel described by the three MajoranajW t . The situ-
ation at hand is to be contrasted another time with the
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encountered in the study of spin ladders. In the latter mod
deviation from criticality leads, in general, to releva
perturbation and a gap always opens independently
the sign of the couplings. There are however nota
exceptions where frustration plays its trick. This is t
case of some three-leg frustrated ladders where for s
particular values of the couplings only marginal interacti
remains in the effective action. As a result a nontriv
critical state, the so-called ‘‘chirally stabilized’’ liquid
shows off.20 In the model the situation is even more strikin
since we find only marginal interactions in a finite region
the couplings. This is mainly due to the fact that the frus
tion is maximal in the strong coupling region. A direct co
sequence of the marginality of all the interactions is that
expect the phase diagram to result from a delicate bala
between the different terms entering in Eq.~24!. This is why
it is now worth discussing the effect of the three differe
terms in Eq.~24!.

Consider first the case whereG350. Then we are
left with the two decoupled SO(3)s and SO(3)t GN
models which are exactly solvable. At issue is the sign
G1 and G2. When G1.0 and G2.0 a gap opens in
both spin and orbital channels. The spectrum cons
of kinks and antikinks~there are no fermions!.21 When
G1,0 and G2,0, the interaction is irrelevant and th
model flows towards the isotropic SO(6)1;SU(4)1 fixed
point with the central chargec53. When G1G2,0 one
of the SO~3! GN models will become massive while th
other one will flow towards the SO(3)1 fixed point. The
Hamiltonian will remain critical withthree massless Majo-
rana fermions leaving the whole system with the cen
chargec53/2.

Now the physically relevant question is whether
not this scheme survives a small negativeG3. Indeed,
it would be not correct to neglect the last term in Eq.~24!.
First of all, from the point of view of the lattice Hamiltonia
~23!, the Hamiltonian~24! has to be thought as the effectiv
Hamiltonian obtained by integrating out high ener
modes up to a scale where one sits close enough
the SO(6)1 fixed point where the continuum limit ca
be taken. Thus, genericallyG3 is not zero. The second
reason is that all other interactions aremarginal. In such
a case, it is well known that operators that are naiv
irrelevant may become dangerous and strongly mod
the physics in the infrared. Therefore, even thou
G3,0, one has to keep it and analyze with care Eq.~24!
with all couplings different from zero. As we shall se
the strong tendency to the SO(3)1 criticality in the regions
G1G2,0 will be spoiled in most of the parameter spac
There will be though still a finite region where th
Hamiltonian will be critical but with an approximate SO~6!
symmetry.

III. RENORMALIZATION GROUP ANALYSIS

A. The renormalization group flow

The RG equations for the couplings entering in Eq.~24!
are given at leading order by
ls
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ġ15
1

pus
g1

21
3

put
G3

2 ,

ġ25
1

put
g2

21
3

pus
G3

2 ,

Ġ35
2G3

p S g1

us
1

g2

ut
D . ~27!

In the above equation,Ġ means]G/]t where t5 log(l) is
the RG scale. It is more convenient to express the set of E
~27! in terms of the couplings that enter in the lattice Ham
tonian ~23!:

Ġ15G1
222G2G3 ,

Ġ25G2
222G1G3 ,

Ġ352G3~G11G212G3!, ~28!

where, for simplicity we have made the following redefin
tion:

G1→1/pAusut„aG12~12a!G3…,

G2→1/pAusut„1/aG22~121/a!G3…,

G3→1/pAusutG3 , ~29!

with a5Aut /us. At the leading order, the velocitiesus and
ut also renormalize:

u̇s526usG3
2IS ut

us
D ,

u̇t526utG3
2IS us

ut
D , ~30!

where

I~x!5
12x

11x
. ~31!

The RG equations~28! and ~30! can be exactly solved an
reduce to a single differential equation. To show this let
introduce the following variables:

m5G1G21G1G31G2G3 ,

d5G12G2 ,

s5G11G212G3 . ~32!

Equation~28! and ~30! greatly simplify to
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ṁ5ms,

ḋ5ds,

Ġ352G3s, ~33!

and

u̇s2u̇t526G3
2~us2ut!,

usut5const. ~34!

While the meaning of boths and d is clear, the physica
interpretation of the variablem is not straightforward. As we
shall see in the following,m measures the departure fro
criticality.

The solution of both Eqs.~33! and ~34! are then easily
obtained:

m~ t !5m~0!X~ t !,

d~ t !5d~0!X~ t !,

G3~ t !5G3~0!X2~ t !,

~us2ut!~ t !5~us2ut!~0!expS 26G3
2~0!E

0

t

X4~t!dt D ,

~usut!~ t !5~usut!~0!, ~35!

where

X~ t !5expE
0

t

s~t!dt ~36!

is the solution of the differential equation:

S Ẋ

X
D 2

5P~X!. ~37!

In the latter equationP(X) is a fourth order polynomial tha
depends on the initial conditions of the flow:

P~X!54G3
2~0!X41d2~0!X214m~0!X. ~38!

Once the solutionX(t) of Eq. ~37! is known, the behavior of
the RG flow is completely determined. In particular the tim
evolution of couplingsG1(t) andG2(t) is given by

G(1,2)~ t !5
1

2
„e~s!AP@X~ t !#22G3~0!X2~ t !6d~0!X~ t !…,

~39!

wheree(s)5sign(s).
As in the XXZ model we distinguishthree different

phases A, B, and C that are separated by the two surf
defined bym50.

The A phase. There one hasm(0).0 ands(0).0 and
X(t)→` as t→` @see Fig. 1~a!#. All couplings are relevant
and a gap opens in the spectrum. In addition, the veloc
us(t) and ut(t) goes to a fixed valueus* 5ut* . Looking in
more details in the larget behavior of the couplings, on
finds thatG1(t);G2(t);22G3(t) so that the effective in-
teraction in the far infrared takes the suggestive for
es

s

:

;@(k11k21k6)2(k31k41k5)#2 which after the transfor-
mationjW sR→jW sR, jW sL→2jW sL acquires a manifestely SO~6!
invariant form;((1

6ka)2. One may therefore be tempted
conclude that the SO~6! symmetry is restored in the far in
frared and that the low energy spectrum of the Hamilton
would be approximatively that of the SO~6! GN model.
However, as pointed out by Azaria, Lecheminant, a
Tsvelik,22 one cannot conclude on the basis of perturbat
theory alone. In fact looking at the flow in the infrared is n
sufficient and can be misleading. The point is that in the
phase, sinceX(t)→0 ast→2` all couplings go to zero in
the ultraviolet and the theory is asymptotically free. From t
field theoretical point of view this means that a well defin
renormalized theory withthree different renormalized cou-
plings G1R , G2R , and G3R exists.24 Therefore, it is most
likely that the SO~6! symmetry isnot restored in the A
phase. The situation here is very similar to theXXZ model
where in the A phase~the Ising region!, though there is an
apparent SU~2! symmetry restoration in the far infrared, th
exactsolution tells us that this is not the case.23

The B phase. There one hasm(0).0 ands(0),0 and
the flow in theX variable is reversed@Fig. 1~b!#. All cou-
plings goes to zero in the infrared and the interaction is
relevant. The six Majorana fermions are massless and
model is critical with the central chargec5631/253. How-
ever, for generic values of the initial conditions@d(0)Þ0#,
the fixed point Hamiltonian does not have the SO~6! symme-
try. Indeed, the velocities in both spin and orbital sector ha
different fixed point valuesus* Þut* so that the symmetry a
the fixed point is SO(3)s^ SO(3)t . It is only on the sym-
metric line (G15G2) that the fixed point symmetry is SO~6!.

The C phase. There one hasm(0),0 ands can have both
signs. As seen in Fig. 1~c!, X(t)→` when botht→6`. The
theory is not asymptotically free neither in the infrarednor in
the ultraviolet. Though one certainly expects that a g
opens in the spectrum, perturbation theory is pathologica24

Indeed, from the field theoretical point of view, the lack
asymptotic freedom in the ultraviolet implies that a well d
fined renormalized theory withthree different couplings
G1R , G2R andG3R does not exist. The low energy physics
such a situation is a highly nontrivial and essentially no
perturbative problem and one is left to make a sensible c
jecture.

FIG. 1. RG flows for the variableX(t) in the different phases A,
B, and C. In the phase C,X(t) reaches a minimum valueX* at a
scale t* . When s(0),0, the minimum is reached for a physica
time t* .0.
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As in the A phase discussed above, in the far infra
G1(t);G2(t);22G3(t) as well asus* 5ut* so one may
wonder again whether the SO~6! symmetry is approxima-
tively restored or not. We stress that the situation at h
here is very different to what happens in the A phase si
the theory isnot asymptotically free in the ultraviolet. Thi
may have important consequences for the low energy p
ics. Indeed it is well known that the divergency of som
couplings at high energy is reminiscent of the fact that so
part of the interaction isirrelevantat low energy. Of course
perturbation theory alone cannot tell uswhich part of the
interaction is irrelevant and at present all what we have
hand to make a reasonable hypothesis is our perturba
results. The simplest scenario is that the SO~6! symmetry is
approximatively restored provided the initial conditions a
not too anisotropic~see however subsection C!. As a support
of this conjecture let us mention that this is what happen
the C phase of theXXZ model where the Bethe ansatz sol
tion tells us that the SU~2! symmetry is restored up to expo
nentially small corrections.23 We are of course aware that ou
hypothesis is highly questionable but it is the simplest o
and could in principle be tested either numerically or expe
mentally. Indeed, the immediate consequence of the pos
SO~6! restoration is that the effective low energy effecti
theory of the Hamiltonian~1! in the C phase is approxima
tively that of the SO~6! GN model:

H52
iu*

2 (
a51

6

~jR
a]xjR

a2jL
a]xjL

a!1G(
i , j

k ik j , ~40!

where theeffectivecouplingG is positive. The model~40! is
integrable. Its spectrum is known and consists of the fun
mental fermion, with massM, together with a kink of mass
m5M /A2.21 At this point the question that naturally arises
how this enlarged SO~6! symmetry reflects in the spin an
orbital correlation functions. The answer to this importa
question requires the computation of the exact dynam
correlation functions in the SO~6! restored massive phas
This could be accomplished in principle by the form facto
approach as in the frustrated two leg ladder considere
Ref. 25. However this task is even more difficult for th
SO~6! case and goes beyond the scope of this paper.

B. Phase diagram

Let us now sum up our results and present the phase
gram associated with Hamiltonian~24!. As even at the SU~4!
symmetric point the couplingG3 is not zero, the best way to
visualize the phase diagram is to fix the value ofG3 and to
look in the plane (G1 ,G2). As one can see from Fig. 2, ther
are two curves separating the three regions A, B and C wh
are given by the equation

m5G1G21G1G31G2G350. ~41!

In the region B all models are critical with approxima
SO~6! symmetry. The spectrum consists into six massl
Majorana fermions with different velocities in both spin a
orbital sectors. As one crosses the critical lineS one enters
in a fully massive phase~C phase! with an approximate
SO~6! symmetry. For large positive values of the couplin
G1 and G2 one may finally enter the region A. Notice th
d

d
e

s-

e

t
ve

in

e
i-
le

a-

t
al

in

ia-

h

s

there is no phase transition between the A phase and th
phase since both phases are massive but rather a sm
cross over.

The most important feature of our phase diagram is t
the two regions withG1G2,0 which would have been
massless in the absence ofG3 do not survive an arbitrarily
small value ofG3. Therefore thec53/2 phases discussed i
the previous section are not stable. Though the whole reg
is essentially massive there are still room for criticality sin
the B phase extends in both quadrantsG1G2,0. From Eq.
~41! the width of the critical region is of the orderuG3u.
Therefore the main effect ofG3 is to drive the system eithe
to a fully massive phase~phase C! or to a fully massless
phase~phase B!, both with an approximate SO~6! symmetry.
Of course, the phase diagram as depicted in the Fig.
strictly valid in the smallG limit. In particular higher order
corrections may modify the shape of the critical curveS. We
stress however, that its behavior in the vicinity of the SU~4!
point atG15G250 is given by our one loop result. In par
ticular the fact thatS crosses the symmetric line with a righ
angle will not change as one includes higher order in per
bation theory. However, as one goes to large deviations f
the SU~4! point our effective theory will not apply since fo
large enough positive~respectively negative! G1 and nega-
tive ~respectively positive! G2 the orbital~respectively spin!
degrees of freedom order ferromagnetically.5,10

C. Effect of the anisotropy

At this point one may wonder whether the anisotropy h
no effect at all in the physical quantities. Apart from th
velocity anisotropy in the B phase, one may still expect so
nontrivial effect of the anisotropy in the C phase. Indee
after all even though bothc53/2 phases are unstable the
should be some significant signature of the presence of
SO(3)1 fixed point in the scaling of the physical quantitie
and in the finite size scaling. The very reason for this is t
the SO~6! symmetry is restored dynamically with help of
marginal operator.

Crossover and finite size scaling. Let us look at the RG
flow in more details. The regions of interest are those w

FIG. 2. Phase diagram for anisotropic couplings in the pla
(G1 ,G2) at a fixed value ofG3. The massless phase B is separa
from the massive C phase by the critical lineS. The special pointS
on the symmetric line which is at the border between the C and
A phases is SO~6! symmetric withG15G2522G3. We plot also
the two trajectories labeledg1 andg2 for which the scaling of the
mass gap has two different qualitative behaviors.
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G1G2,0 in which, as discussed in the previous section
not for G3 one of the coupling would have been irreleva
Then either the spin or the orbital degrees of freedom wo
have remained massless. In the following we shall conc
trate on the orbital degrees of freedom. All the results t
will be given can be straightforwardly extended to the s
degrees of freedom.

Consider first initial conditions slightly above the phase
in the lower right quadrant withG1G2,0 ~see Fig. 2!. We
are then in the phase C withG1(0).0 andG2(0),0. As
seen in the Fig. 3~a!, the flow can be splitted into two
‘‘time’’ slices.

At first uG3u strongly decreases and remains almost c
stant. Then, both spin and orbital degrees of freedom we
interact sinceuG(1,2)u@uG3u. In the meantime, the couplin
G2 increases and changes its sign at a timet02 where it
vanishes. At ‘‘times’’ t,t02 the orbital degrees of freedom
do not know yet they shall enter in a massive phase and
system is on the influence of the SO(3)1 fixed point. Finally,
as t→tM all the couplings blow up and one enters in t
strong coupling region. The physical interpretation of th
phenomenon is clear: it is the spin degrees of freedom
drive the orbital degrees of freedom away from critical
and it takes roughly exp(t02) RG iterations for the orbita
sector to escape from the basin of attraction of the SO(1
fixed point.

The other interesting region is the portion of the B pha
delimited by the critical curveS and theG2 axis in upper
left quadrant of Fig. 2. ThereG1(0),0 andG2(0).0. As
seen in Fig. 3~b!, it is the spin degrees of freedom that driv
the orbital ones to criticality. The couplingG2 changes its
sign and vanishes at a timet02 and goes to zero in the limi
t→`. In both cases, the crossover ‘‘time’’t02 is given by the
implicit equation:

X~ t02!5A m~0!

d~0!G3~0!
. ~42!

Of course a similar discussion holds for the couplingG1
and defines another crossover timet01 which is defined by
the implicit equation:

X~ t01!5A 2m~0!

d~0!G3~0!
. ~43!

We plot in Fig. 4 the iso-t02 and iso-t01 curves in the plane
(G1 ,G2).

FIG. 3. Qualitative RG evolution of the coupling constants
regions whereG1(0)G2(0),0 and where the crossover ‘‘time’
defined byG2(t02)50 exists.
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We stress that this crossover phenomenon may have
portant practical consequences in numerical simulations.
deed, in a finite system of sizeL, the critical region will seem
to extend towards the iso-t01 with t015 ln L in the region
G1,0, G2.0 and towards the iso-t02 with t025 ln L in the
regionG1.0, G2,0. The low lying spectrum will look like
if either the spin or the orbital degrees of freedom wou
have been massless. It is important to notice that these
pseudocritical lines bend upwards in contrast with the criti
line S.

The mass gap. The anisotropy has also nontrivial effect o
the mass gap of the system. To see this we have comp
the mass gapM with help of the RG equations~28!. As well
known, the gapM is defined as the scale where perturbati
theory breaks down. More precisely it is given by the sc
tM5 ln(1/Ma0) at which the couplings blow up:

X~ tM !5`. ~44!

The above implicit equation can be solved but the result
analytical expression is too cumbersome to be quoted h
Details are given in the Appendix and we shall content o
selves by its asymptotic behaviors as one approaches
critical surfaceS.

We find two qualitatively different behaviors dependin
on the way one approachesS. When one approachesS at the
SU~4! point (G15G250) we find

M;L exp„2C~g1!/D2/3
…, ~45!

whereD5AG1
21G2

2→0 and the constantC(g1) depends on
the trajectory labeledg1 in the Fig. 2. On the other hand, a
one approachesS at any other point the asymptotic behavi
of the gap is different:

M;L exp„2C~g2!/D…, ~46!

where nowD is the Euclidean distance of the critical surfac
As aboveC(g2) depends on the curve labeledg2 in Fig. 2.
There are two other marginal cases as one approacheS
tangentially: the exponents ofD in both Eqs.~45! and ~46!
are doubled. We see that the gap is genericallylarger in the
regions withsmallanisotropy. To visualize this phenomeno
we present in Fig. 5 the isogap curves in the plane (G1 ,G2).
We observe that at a given distanceD from the critical lineS
the gap increases as one moves towards the symmetri

FIG. 4. Iso-t0 curves in the plane (G1 ,G2); the dashed line
corresponds to an iso-t02 associated with the orbital degrees of fre
dom whereas the dashed dotted line is an iso-t01 associated with the
spin degrees of freedom.S denotes the critical line.
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12 120 PRB 61P. AZARIA, E. BOULAT, AND P. LECHEMINANT
gion (G1;G2) and is maximum on the symmetric lin
(G15G2). Similarly, to keep the value of the gap to som
constantM one has to move away fromS as one leaves the
symmetric region.

Effect of anisotropy on the SO(6) symmetry restorati.
We conclude this section by looking at the effect of the a
isotropy on the SO~6! symmetry restoration in the C phas
As discussed above, in the C phase the couplingsG1 andG2
tend to22G3 in the far infrared~i.e., ast→tM) so that the
effective Hamiltonian has an apparent SO~6! symmetry.
Looking in more detail at the asymptotic behavior of t
couplingsG1(t) andG2(t) we find that

G(1,2)~ t !;22G3~0!X2~ t !6
d~0!

2
X~ t !. ~47!

Therefore, as whent→tM , X(t)→`, there remains a sub
dominant infrared singularity whend(0)Þ0. We thus expect
some corrections to the SO~6! behavior. To get an estimat
of these corrections we make the reasonable hypothesis
when the anisotropy is small enough, the effective the
will be given by an SO~6! GN model with a small symmetry
breaking perturbation proportional to

H;2
iu*

2 (
a51

6

~jR
a]xjR

a2jL
a]xjL

a!1G(
i , j

k ik j

1l„~k31k41k5!22~k11k21k6!2
…, ~48!

where l!G. Of course we do not know the value of th
effective couplingl, but it is sufficient for our purpose that
is small enough which will be the case ifd(0) is small. From
Eq. ~48! one can get an estimate of the mass splitting in b
the spin and orbital sectors:

Ms

Mt
;11 l ln~1/Ma0! . ~49!

Therefore, we expect the SO~6! symmetry will hold approxi-
matively only for small enough gap and anisotropy. T
above argument is of course far from being rigorous bu
helps to get an idea of the effect of the anisotropy in

FIG. 5. Isogap curves in the plane (G1,G2); S denotes the
critical line.
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symmetry restoration process. This should serve as a w
ing that, once again, one should be careful with the conc
sions drawn from perturbation theory.

IV. EFFECT OF A MAGNETIC FIELD

In contrast with the SU~2! Heisenberg chain there is n
unique way to apply a magnetic field in the SU~4! model.
Indeed, while in the SU~2! case there is, apart from the tot
spin, only one conserved charges Sz in the SU~4! model there
are three of them. These are the three Cartan generator
the SU~4! Lie algebra. In this work we have chosen for th
three commuting generators:

H15Sz, H25Tz, and H352SzTz. ~50!

Other choices are possible but Eq.~50! is the one that is
physically relevant to our problem. We thus see that one i
liberty to apply a magnetic field in any ‘‘direction’’ in the
Cartan basis~50!. However, if one relies on the physica
interpretation of both operatorsSW and TW as spin and orbital
operators, a magnetic field only couples toH15Sz. The re-
sulting Hamiltonian thus writes

Hh5(
i

J1SW i•SW i 111J2TW i•TW i 11

1K~SW i•SW i 11!~TW i•TW i 11!1h(
i

Si
z . ~51!

The magnetic field breaks the SU~4! symmetry down to
SU(2)^ U(1). For a sufficiently large value ofh.ho the
spin degrees of freedom align parallel to the field and
remaining degrees of freedom will decouple. More intere
ing is the situation whenh is small. In this case, one ma
expand Eq.~51! around the SU(4)1 fixed point, as in previ-
ous section, and study its effects in perturbation. For sm
values ofh, the effective low energy Hamiltonian associat
with Eq. ~51! can be easily derived using the expression
the spin operatorSz in terms of the Majorana fermions a
given by Eqs.~19!, ~20!, and ~21!. Dropping all oscillating
terms, the only contribution comes from the uniform part
the spin density and the effect of the magnetic field is jus
add to the Hamiltonian~24! the interactionHZ5 ih(jR

1jR
2

1jL
1jL

2) and the low-energy Hamiltonian thus writes

Hh52
ius

2
~jW sR•]xjW sR2jW sL•]xjW sL!1g1~k11k21k6!2

2
iut

2
~jW tR•]xjW tR2jW tL•]xjW tL!1g2~k31k41k5!2

12G3~k11k21k6!~k31k41k5!1 ih~jR
1jR

21jL
1jL

2!,

~52!

where we recall that

g15G11G3 ,
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g25G21G3 . ~53!

A. Renormalization group analysis

The situation at hand is similar to that of theXXZ model
in a field.26 There exists a magnetic lengthlh below which
the magnetic field has no substantial effect on the phys
However as the scalel@lh , the field strongly modifies the
low energy behavior. Indeed, in this regime, as we shall
below, the two Majorana fermionsj1 andj2 completely de-
couple from the four others. The best way to see this is
bosonize the ‘‘1-2’’ sector of the Hamiltonian~52! with help
of Eq. ~14!. The resulting Hamiltonian becomes

Hh5
vf

2 S 1

K
~]xFs!

21K~]xQs!
2D

2
iv6

2
~jR

6]xjR
62jL

6]xjL
6!2

iv t

2
~jW tR•]xjW tR2jW tL•]xjW tL!

12 f 2~k3k41k3k51k4k5!12 f 3k6~k31k41k5!

2
2i f 4

pa0
cos~A4pFs12qx!~k31k41k5!

2
2i f 5

pa0
cos~A4pFs12qx!k6 , ~54!

where

K512
g1

pus
,

vf5us1
g1

p
,

q52
Kh

vf
. ~55!

In the above Hamiltonian, we have introduced new velocit
and coupling constants with bare values:v65us , v t5ut ,
f 25g2 , f 35 f 45G3 and f 55g1 corresponding to the opera
tors that are stable under renormalization. As readily se
the cosine terms involvingFs will start to oscillate with
wave vectorq;h. Therefore, at sufficiently large magnet
field the two last terms in Eq.~54! can be dropped and th
bosonic field Fs completely decouples. When a gap
present, i.e., when one sits in the C phase ath50, there
exists a critical fieldhc;M below which the field has little
effects on the low energy physics. Ash increases and be
comes greater thanhc , the spin sector undergoes
commensurate-incommensurate transition of the JNPT ty27

to an incommensurate massless phase with central ch
cs51. In contrast, in the absence of a gap, i.e., when one
in the B phase ath50, the spin sector always decouples
sufficiently low energies. Of course, this decoupling pro
dure has to be understood in the framework of the renorm
ization group. To this end we have computed the one lo
recursion relation associated with the Hamiltonian~54!. Ne-
glecting the velocity renormalization we obtain

K̇52~3 f 4
21 f 5

2!J0~2q!,
s.

e

o

s

n,

rge
its
t
-
l-
p

q̇5q2~3 f 4
21 f 5

2!J1~2q!,

ḟ 25 f 2
21 f 3

212 f 4
2J0~2q!,

ḟ 352 f 2f 312 f 4f 5J0~2q!,

ḟ 45~12K ! f 41~2 f 2f 41 f 3f 5!„11J0~2q!…/2,

ḟ 55~12K ! f 513 f 3f 4„11J0~2q!…/2, ~56!

where the couplings have been rescaled asf→ f /pv* , v*
being a velocity scale, andJ(0,1)(x) are the Bessel function
of the first and second kinds. Apart from the inherent anis
ropy in our problem, the above equations resemble tha
the XXZ model in a field.26 We see on Eqs.~56! that when
q(t);p the two Bessel functions start to oscillate and t
renormalization coming from both thef 4 and f 5 terms is
stopped. This defines the magnetic lengthlh as q(th)
5p (th5 ln lh) where the spin degrees of freedom decou
from the rest of the interaction~as well known, there is no
unique way to define the magnetic length but we ha
checked that other reasonable choices do not affect qua
tively the physics!. At this point, it is worth stressing that in
the massive phase,th must be much smaller thantM , the
scale at which perturbation theory breaks down. This mea
of course, thath.M as discussed above.

At times t.th , the couplingsf 4 and f 5 do not participate
in the RG equations of the couplingsK, q, f 2 and f 3 and Eqs.
~56! reduce to

K̇50,

q̇5q ~57!

and

ḟ 25 f 2
21 f 3

2 ,

ḟ 352 f 2f 3 . ~58!

This means that in the regimet.th the Hamiltonian~54!
decouples:

Hh5Hs1H' , ~59!

where

Hs5
vf

2 S 1

K
~]xFs!

21K~]xQs!
2D ~60!

and

H'52
iv6

2
~jR

6]xjR
62jL

6]xjL
6!2

iv t

2
~jW tR•]xjW tR2jW tL•]xjW tL!

12 f 2~k3k41k3k51k4k5!12 f 3k6~k31k41k5!,

~61!

whereK, vf , v6 , v t , f 2 and f 3 are theeffectivecouplings at
the magnetic lengthlh .

Let us first concentrate on the spin sector as given by
~60!. The Hamiltonian~60! is that of a Luttinger liquid with
stiffnessK. The spin sector is thus massless and contribu
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to a central chargecs51. In addition, the correlation func
tions involving the fieldFs will be incommensurate with
h-dependent wave vectorq. From Eqs.~21! one sees that the
incommensurability will reflect in both the spin and orbit
correlation functions.

We focus now on the remaining part of the interactio
The HamiltonianH' describes the interaction between t
orbital sector with the remaining spin-orbital Z2 degree of
freedom (j6) of the spin sector. The low energy physics
this sector is nontrivial and at issue is the behavior of the
flow associated with Eq.~58! where the initial conditions
have to be taken at the magnetic length withf 2(th) and
f 3(th) at th5 ln(lh).

These equations are trivially solved. Indeed, upon int
ducing the new variables

f 65 f 26 f 3 , ~62!

Eqs.~58! decouple:

ḟ 65 f 6
2 . ~63!

As in the previous section, we distinguish between th
phases A, B, and C depending on the initial conditions of
flow.

The A phase. This is when f 1(th).0 and f 2(th).0.
Both couplings are relevant and a gap opens in the spect
Moreover, since the theory is asymptotically free in the
traviolet there are two length scales in the problem:m6

;exp2„p/ f 6(th)….
The B phase. There f 1(th),0 and f 2(th),0. The cou-

plings are irrelevant and the four Majorana fermions beco
massless leaving the theory with the central chargec'52.
The fixed point has only an approximate SO~4! symmetry
since there remains a velocity anisotropy. Indeed, as in
zero field case, in generalv t* Þv6* . The generic symmetry o
the fixed point is thus rather SO(3)^ Z2.

The C phase. Finally is the C phase wheref 2(th).0 and
f 1(th),0. Thenf 2(t) is relevant andf 1(t) will go to zero
in the infrared. Therefore, as in the previous section, o
may conjecture that the SO~4! symmetry is approximately
restored. In the far infrared the effective Hamiltonian is th
of the SO~4! Gross-Neveu model:

H'52
iu

2 (
a53

6

~jR
a]xjR

a2jL
a]xjL

a!1 f 2~ th!(
i , j

k ik j , ~64!

which is integrable. Its spectrum consists only on kinks a
antikinks with massm;exp2„p/ f 2(th)….21

Notice, and this will be important for the discussion th
will follow, that in both the phases B and C the effectiv
theories are given~up to a velocity anisotropy! by Eq. ~64!
with the difference thatf 2(th) is negativein the phase B~so
that the interaction is irrelevant! while it is positive in the
phase C.

B. Phase diagram

It is clear from the discussion given above that the val
of the effective couplings at the magnetic length are cruc
Of course, the existence of the commensura
incommensurate transition in the spin sector depends onl
.
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the mass gapM of the zero field Hamiltonian. What is mor
interesting, is what happens in the remaining orbital a
spin-orbital sectors described by the Majorana fermio
j3,j4,j5,j6. As we shall see now the anisotropy will play i
tricks. Indeed, what is into question is the sign of the co
pling f 2(th) at the magnetic length. Returning to the orig
nal variables, one finds thatf 25G2. We saw in the preced
ing section that in zero magnetic field the time evolution
G2 was very sensitive to the presence of the SO(3)1 fixed
point in the orbital sector and could change its sign at a ti
t02 depending on the the initial conditions@see Fig. 3~a! and
Fig. 3~b!#. The presence of a fieldh does not affect qualita-
tively this feature and provides for a renormalization oft02
which becomesh-dependent:t02→t02(h). We consider now
two cases.

First is when one sits in the B phase between theG1 axis
and the critical surfaceS, with G1,0 ~see Fig. 2!. At zero
magnetic field the system is critical with the central char
c53. Theref 2 is positive and decreases ast increases van-
ishes at some RG timet02(h) and then changes sign. Now
th,t02(h), f 2(th) will be still positive and a gap will open
in the orbital and spin-orbital sector according to Eq.~64!.
On the other hand, ifth.t02(h) then f 2(th),0 and there is
no gap. This means that there exists a critical value of
field hc0 above which a gap opens. The portion of critic
surfaceS in the regionG1,0 is thus unstable. The physica
interpretation of this result is clear. In zero field, it was t
spin degrees of freedom that drived the orbital degrees
freedom to criticality. When the field is large enough,
effect is to decouple a part of the spin degrees of freed
before the remaining fluctuations had a chance to enter
basin of attraction of the SO(4)1 fixed point. Thus, the effec
of the magnetic field in this region is to reduce the extens
of the phase B.

The other interesting region is when one sits in the
phase just above the critical surfaceS in the lower right
quadrant of Fig. 2, i.e., whenG1.0 andG2,0. ThereG2 is
negative but is driven to positive values by the spin degr
of freedom. It changes sign at a timet02(h) where it van-
ishes. Now ifth,t02(h), f 2(th) will be still negative while
if th.t02(h), f 2(th) will be positive. Therefore there exist
a critical field hc0 below which the orbital and spin-orbita
sectors will be still massive. Abovehc0, the gap will close.
Again, the physical reason why the gap vanishes abovehc0 is
that, the spin degrees of freedom did not have enough tim
drive the orbital sector to strong coupling. We therefore co
clude that the B phase has a tendency to extend in the re
G1.0, G2,0 when a field is present.

To summarize, we expect two kinds of transition as o
varies the magnetic field. When the theory is massive ah
50, as one increasesh there will be a first transition in the
spin sector to an incommensurate phase with the cen
chargecs51. The remaining degrees of freedom will be st
massive but are described by the SO~4! GN model. The co-
herent fermionic excitations of the SO~6! GN model disap-
pear from the spectrum and the only massive excitations
remain are the kinks of the SO~4! GN model. Consequently
all excitations will be incoherent. What happens as one
creasesh further strongly depends on the anisotropy. IfG2
.0 the magnetic field just renormalizes the mass of
SO~4! kinks, the spectrum is still massive. The total cent
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charge of the model is thusc5cs1c'51. However, when
G2,0, there is asecondphase transition at a fieldhc0 of the
Kosterlitz-Thouless~KT! type28 to a commensurate massle
phase withc'52. Both spin and orbital degrees of freedo
are massless and the total central charge isc5cs1c'53.

Notice that there will be three different velocities:v6*
Þvf* Þv t* so that the symmetry at the fixed point is n
SO~6! but rather SO(3)̂ U(1)^ Z2.

When there is no gap at zero field the spin sector is
ways critical with incommensurate correlation function
What happens for the spin-orbital and orbital degrees of fr
dom depends again strongly on the anisotropy. WhenG2
,0 they remain massless and the total central charge is
c53. However, if G2.0, there will be a KT type phase
transition at a critical fieldhc0 to a massivephase with ap-
proximate SO~4! symmetry.

We stress that the mechanism that leads to the KT t
phase transition at the magnetic fieldhc0 is highly nontrivial
since the magnetic field doesnot couple directly to both the
orbital and the spin-orbital degrees of freedom.

V. CONCLUSIONS

In the present work we have studied the effect
symmetry-breaking perturbations in the one-dimensio
SU~4! spin-orbital model. Using the low energy effectiv
field theory developed in Ref. 14, we have investigated
phase diagram of the SU(2)^ SU(2) model where the ex
change in both the spin (J1) and the orbital (J2) sectors are
different. We found that the different phases of the symm
ric J15J2 line extend to the caseJ1ÞJ2. In particular the
massless phase, governed by the SO(6)1 fixed point, extends
to a finite region in the plane (J1 ,J2) around the SU~4! point
(J15K/4,J25K/4). Similarly, in the vicinity of the critical
surface, the massive phase has also an approximate S~6!
symmetry provided the anisotropy is not too large. In t
phase, as in the isotropic case, the system spontaneo
breaks translational invariance and dimerizes with altern
spin and orbital singlets.14 Both spin and orbital excitation
are coherent at wave vectork5p/2. All these results remain
valid in the vicinity of the SU~4! point. The question tha
naturally arises is what happens whenK decreases. Indeed
in the limit K!J(1,2) one enters in the weak coupling lim
where magnon excitations are incoherent at wave vectok
5p.7 In the simplest scenario, as discussed in Ref. 14,
expects that the coherent peak atk5p/2 in the dynamical
susceptibility will disapear at a critical value ofK5KD .
Such a special point where an oscillating component of
correlation function disappears is a disorder point29 and
therefore, we do not expect a phase transition atKD but
rather a smooth crossover.

Although these results could have been anticipated on
basis of the previous study of the symmetric case,14 since the
interactions are marginal, the anisotropy reveals itself i
nontrivial scaling of the physical quantities. Indeed, we ha
shown that the anisotropy plays its tricks in two particu
regions of the phase diagram withG1G2,0, whereG(1,2)
5J(1,2)2K/4 measures the departure from the SU~4! point.
In these regions, both spin and orbital degrees of freed
compete. For instance, whenG1.0 and G2,0, the spin
sector tends to open a gap while the orbital one wants
l-
.
e-

us
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f
l
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sly
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e

e

e

a
e
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m

to

remain massless. Since both sectors interact marginally
issue is a delicate balance between the strength of the in
actions: it is one kind of degree of freedom that drives
other to its favorite behavior. In particular, this is the reas
why the massless phase extends in the region with ei
G1.0 or G2.0. In any case, the whole system ultimate
becomes either fully massless or fully massive. The cru
point is that since the interactions are only marginal, it m
take a very long time, in the renormalization group sense
reach the asymptotic low energy regime. This has import
consequences.

First of all is the nontrivial behavior of the mass gap
the system. We found that the gapM is generically smaller in
the regions with large anisotropy, i.e., in the two quadra
G1G2,0 above the critical curveS. This is due precisely to
the strong tendency to massless behavior in these region
a consequence the gapM has two qualitatively different scal
ing behaviors as one approachesS either from the symmetric
region or the asymmetric one~the trajectories labeledg1 and
g2 in Fig. 2!: M;exp(2C1 /D2/3) andM;exp(2C2 /D).

Second is the finite size scaling. Since the gap opens
ponentially it is very difficult to localize accurately the crit
cal line S in a finite system. In the current model the situ
tion is even more askward in the regionsG1G2,0. Indeed,
in a finite system of sizeL, the critical region will seem to
extend and the pseudocritical lines will be given by the t
iso-t01 and iso-t02 curves, with t0(1,2)5 ln L, that have the
opposite curvature than the true critical lineS ~see Fig. 4.!.
In this pseudocritical region, either the spin or the orbi
degrees of freedom will look massless. The phase diagra
zero magnetic field as obtained by very recent DMR
calculations10,30 is in qualitative agreement with our RG
analysis. However, the critical line obtained in these num
cal computations has the opposite curvature that the one
resultS. Our interpretation of this fact is that what has be
observed are the two iso-t0(1,2) curves. This reflects once
again the nontrivial finite size scaling induced by the anis
ropy.

Finally, is the effect of a magnetic field. The magne
field affects the spin degrees of freedom in the usual way
the massless phase it leads to incommensuration in the
sector while when a gap is present, a commensur
incommensurate transition can occur at a critical field. Ho
ever, what happens to the remaining degrees of freed
strongly depends on the anisotropy. In the region, where b
degrees of freedom do not compete, i.e., whenG1G2.0, the
remaining orbital and spin-orbital sector remains eith
massless or massive with an approximate SO~4! symmetry.
On the other hand, the most stricking effect occurs when
spin and orbital fluctuations compete, i.e., forG1G2,0. In
this region the field reinforces the effect of the orbital d
grees of freedom and can induce a second phase trans
of the KT type, for a sufficiently large field, from massive
massless approximate SO~4! behavior. The origin of this
nontrivial effect of the magnetic field stems from the inte
play of the presence of orbital degeneracy and anisotro
We hope that this transition will be observed in further e
periments on quasi-one-dimensional spin gapped mate
with orbital degeneracy.

Note added. After this work was completed, we becam
aware of a work by Itoiet al.30 who also predict the exten
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sion of the massless phase in the anisotropic region.

APPENDIX

In this appendix, we shall compute the mass gapM in the
phase C, and obtain the asymptotics ofM in the vicinity of
the critical surfaceS. As well known, within perturbation
theory the gap defines the scaletM5 ln(1/Ma0) where all the
couplings blow up. Clearly,tM is given by the equation

X~ tM !5`. ~A1!

Integrating Eq.~37! and recalling the dynamic ofX in the
phase C we find

tM5S E
X!

`

1eE
1

X! D dX

XAP~X!
, ~A2!

wheree5sign(s); P(X) is given by Eq.~38! and has only
two reals roots 0 andX!<1. In the followings, m andG3
have to be understood as initial conditions.

Performing the integrals we obtain

tM5A p

umu@
E„a~0!,k…2eE„a~1!,k…#

1
1

2
A p

umuS u!

p
21D „F@a~0!,k#2eF@a~1!,k#…

2
G3

m F 1

p1u!
2

s

2uG3u~p1u!21!
G , ~A3!

whereF andE the elliptic functions of the first and the se
ond kind, respectively, with parameters
a~u!52 arctanAu!2u

p
,

k5Ap1u!2G3
2/2mu!2

2p
, ~A4!

u! andp2 being given by

u!51/X!,

p25u!22
2G3

2

mu!
. ~A5!

DevelopingtM around a point (G1c ,G2c ,G3c) belonging
to the critical surfaceS between the phases B and C~see Fig.
2!, we obtain the asymptotics

M;L exp„2C~g1!/D2/3
… if G1

c5G2
c50,

M;L exp2C~g2!/D if G1
cÞG2

c , ~A6!

whereD is the Euclidian distance fromS. The two constants
C(g1) andC(g2) are given by

C~g1!50.6845 G3c
21/3~cosu!22/3,

C~g2!5„@112G3c
2 /~G1c2G2c!

2#cos2u…21/2,
~A7!

whereu is the angle to the normal ofS.
an,
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