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We study the effect of symmetry-breaking perturbations in the one-dimensiorid) Sfin-orbital model.
We allow the exchange in spid{) and orbital §,) channel to be different and thus reduce the symmetry to
SU(2)®SU(2). A magnetic fielch along theS? direction is also applied. Using the formalism developed by
Azariaet al.[Phys. Rev. Lett83, 624(1999] we extend their analysis of the isotrogdig=J,, h=0 case and
obtain the low-energy effective theory near the(&\point in the generic cash #J,, h#0. In zero magnetic
field, we retrieve the same qualitative low-energy physics as in the isotropic case. In particular, the isotropic
massless behavior found on the lihg=J,<K/4 extends in a large anisotropic region. We discover, however,
that the anisotropy plays its trick in allowing nontrivial scaling behaviors of the physical quantities. For
example, the mass gay has two different scaling behaviors depending on the anisotropy. In addition, we
show that in some regions, the anisotropy is responsible for anomalous finite-size effects and may change
qualitatively the shape of the computed critical line in a finite system. When a magnetic field is present the
effect of the anisotropy is striking. In addition to the usual commensurate-incommensurate phase transition that
occurs in the spin sector of the theory, we find that the field may induce a second transition of the KT type in
the remaining degrees of freedom to which it doescouple directly. In this sector, we find that the effective
theory is that of an S@) Gross-Neveu model with an-dependent coupling that may change its sigrhas
varies.

I. INTRODUCTION of studying Eq.(1) is dictated by the fact that since it retains
some symmetries it is a simple starting point from which one
In past years, there has been an intense interest devoteddan expect to gain some insight before tackling with the
one-dimensional spin-orbital modélsThe main reason more general case. In this respect, the mddgldescribes
stems from the recent discovery of the new quasi-onethe simplest physically relevant symmetry breaking pattern
dimensional spin gapped materials NigSh,O (Ref. 2 and  SU(4)— SU(2),® SU(2),.
NaV,0s.2 It is believed that the unusual magnetic properties The Hamiltonian(1) can be interpreted in terms of a two-
observed in these compounds should be explained by leg spin ladder coupled by a four spins interaction. Such an
simple two-band Hubbard models garter filling. At this  interaction can be generated either by phonons or, in the
filling, and in the large Coulomb repulsion the effective doped state, by conventional Coulomb repulsion between the
Hamiltonian simplifies greatly and is equivalent to a modelholes’ Some of the properties of E¢l) are well established

of two interacting spin one-half Heisenberg modtts: in theweakcoupling limit. In the limitK<J, ,,, the Hamil-
tonian (1) describes a non-Haldane spin liquid where mag-
> > > > > > > > H H H v
H:E, Jlsi . Si+1+ J2Ti 'Ti+1+ K(Si 'SJrl)(Ti 'Ti+l)’ non excitations are incoherent.
1

The strong coupling regiméS ~J; (), has just begun to
(1)  be investigated:®®-1°From the theoretical point of view the
here& andT. in-1/2 tors that t SDIi ituation is awkward. Indeed, as stated above, at the special
whereS; andT; are spin operators that represent spin an(zoint J;=J,=K/4, the Hamiltonian(1l) has an enlarged
orbital degrees of freedom at each siandJ, () andK are SU(4) symmetry and is exactly solvable by the Bethe
positive. It is 'mF’?”a”t to notice th‘ilt Eq) is not only ansatZ! The model is critical withthree gapless bosonic
SU(2) invariant in S space but also ifT space. For generic  modes and flows in the infrared towards the Wess-Zumino-
couplings J;(») and K, the Hamiltonian (1) is SU(2)  Novikov-Witten (WZNW) model SU(4).*? It is confor-
®SU(2) symmetric. Two particular cases are of interest.mally invariant with the central charge=3. Therefore,
First, whenJ, =J, there is an additional, symmetry in the  there should be qualitativechange in the physical behavior
exchange betwee8; and T,. The other important case is of Eqg. (1) when going from small to larg&. From the the-
when J;=J,=K/4 in which case the Hamiltonian is $4)  oretical point of view this situation is striking since this
invariant® In fact, the Hamiltoniar{1) is a simplified version means that one cannot go continuously from weak to strong
of the most general case. Indeed, depending on the micr@oupling. This is a manifestation of the Zamolodchikov
scopic couplings, there can be other terms that break thetheorent®that states that starting Kt=0 with two decou-
SU(2) symmetry in both spin and orbital sectors. The choicepled S=1/2 chains with the central charge-2 (two gapless
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bosonic modesone cannot flow, in the renormalization o1 i -
group (RG) sense, towards the $4) point which hasc=3 325 > CiaaT apCiag s
(three gapless bosonic moge&ery recently, a new ap- 2
proach to tackle with the strong coupling regime has been
developed by Azarit all* The idea is to start from the
strong coupling fixed point SU(4)and to perturb around it. _ _
This strategy has been applied to the symmetric ine whereo (respectivelyr) are the Pauli matrices acting in the
=J,=J,. It was shown that whed<K/4 a small deviation ~Spin(respectively orbitalspace. The low energy physics can
from the SU4) point is irrelevant and thus the low energy be described in terms of right moveRs,, and left movers
physics is governed by the SU(alixed point. In contrast, Lac férmions which correspond to the lattice fermiog,, in
when J>K/4 the interaction is relevant and a gap opens inthe continuum limit:
the spectrum. The system dimerizes with alternating spin andciag
orbital singlets. In addition it was argued that the(&sym- — =R,,(X)explikpx) + L (x)exp —ikgx), x=iag,
metry was restored at long distance and that the low energy\/50
effective Hamiltonian was that of the $& Gross-Neveu @
(GN) model. The low-lyingcoherentexcitations were then Wherea, is the lattice spacing and the Fermi wave vector is
shown to be fermions that transform as an antisymmetri€lefined byke=m/4a,. At this point we bosonize and intro-
tensor of rank two of SU). These excitations are coherent duce four chiral bosonic field®,,r, using the Abelian
with wave vector neasr/2. bosonization of Dirac fermions:
The purpose of this work is to extend the analysis to the
asymmetric caseJg#J,) and to inquire how anisotropy Ras=
modifies the low energy physics described above. This paper
is organized as follows. In Sec. Il we present the tools that

—

1 -
izz 2 CiTaaTabCibai (3)

K

2 expli VATD ,,R),
dg
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%‘

are necessary to explore the vicinity of the SU(4ixed Lay= Kao exp(—iard,,.), (5)
point and derive the effective low-energy theory associated V2mag

with Eq. (1). A detailed renormalization group analysis is yyhere the bosonic fields satisfy the following commutation
then presented in Sec. lll. We obtain the phase diagram ipe|ation:

the plane §;, J,) and discuss the asymptotic behaviors of )

the mass ga|M.IA discussion on crossover effectsillnkeq to [ oor, PporL]= ~ SapSor 6)

the anisotropy is also presented. In Sec. IV we investigate 4

nally in Sec. V we summarize our results and present somgsrmions with different spin-channel indexes is insured by
technical details relative to the computation of the mass gaghe presence of Klein factohere Majorana fermionsx,,

in the Appendix. with the following anticommutation rule:
{KaU!KbU’}:Zﬁabgo’o" . (7)
Il. THE LOW ENERGY EFFECTIVE FIELD THEORY As in the solution of the two-channel Kondo effect by

Abelian bosonizatiolf it is suitable to introduce the physi-

A. The SU4) Heisenberg chain cally transparent basis:

Our approach is very similar to the description of tBe 1
=1/2 Heisenberg spin chain at low energy from the spin Ge=5 (Dot Py + Py +Py)),
sector of the repulsive Hubbard model at half fillitfgTo

this end, let us introduce the $4) Hubbard model witHJ 1
>0: <I>S=§(d>n—<bll+d>2¢—d>21),

1
Pi=5(Pyy+ Py =Py = Py)),
Hy=2 (—tef,10,CiaptH.C)

lao

1
‘I’sfzz(q)n_‘bu_‘bzﬁ‘q)zl)- (8

3 iagg, MiaoNiba’ (17 Sabdaor)- @ 1 this new basis, the total charge degree of freedom is de-
scribed by the bosonic fieldb. while the other *“spin-
orbital” degrees of freedom, are faithfully bosonized by the

Herec/,, denotes electron creation with chanteibital) a  three bosonic field®, @, d;. Itis now straightforward to
=1,2 and Spim:T,l at theith site. The Occupation number obtain the continuum limit of the Hubbard Ham”toni@:

is defined bmiagchagciag. In the limit of large positive U,

and atquarter filling, it is not difficult to show that Eq(2) Hy=Het Hst, ©
reduces to Eq(l) with the identification where
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3

Y2 w02, (10
'

_UF 2 2
Hc_7(((9xq)c) +((9x®c) )+ 2

and

Uag

v
HSf: 7':(((9)((1)3)2—‘{_(&)(@3)2)_ﬁ(a)(@a)z

a=s,f,sf

(cosya4mdgcosyamd;

+

7Tza.0
+cosy4md; cosyadmdg;

+cosya4mdg cosyadnd;). (11

As in the SUW2) Heisenberg chain, spin and charge degrees
of freedom separate. Notice however that at this order in U
there are no umklapp terms in the charge sector since we are

at quarter filling and the K- contribution to the effective
Hamiltonian oscillates. Umklapp terms will arise at higher
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(548 R =—=exp i V4D )
R(L) \/7T_ao q sfR(L)

ID=iVm(ERER+ ELED),
O i=im( et £,

Oy D= m(Ente+ EED),

where 7; are Klein factors. With all these relations at hand,
one can rewrite the Hamiltoniafll) in terms of six Majo-
rana fermions:

. 6
v
Hom = 52 S (Bl 80D +0: S KiK.,
a=1 <]
15

where we have introduced the energy density of the different
Ising modelsi €,= «,= £x&L . The Hamiltonian(15) is noth-

order in perturbation theory and will be responsible for aing but that of the S@) GN model with a marginallyrrel-

Mott transition at a finite value of) = U_.1” Assuming that
U>U_., we focus now on the spin-orbital sector.

The interaction term ift{s; has scaling dimension 2 and is
therefore marginal. This term is nothing but the (8U
current-current interaction. The 15 SUg49urrents 7% and
J1 can be expressed in terms of the three bosonic fiélgds
®; andd4; and the spin-orbital part of the Hamiltoni&®)
takes the form

27
s= 2 _(JRIR+TRTN+29s 2 JRIE
a=1,15 a=1,15
(12
where
gs= —Uay,
vs=vg—Uay/27. (13

The first term in Eq(12) is just the Sugawara form of the
SU(4); WZNW model while the second term is the marginal
current-current interaction. Whdo>0, gs<0, the current-
current interaction7gJ+ is thus irrelevant, as a consequence
the spin orbital sector is described by the (8} WZNW
model*?

B. Majorana representation and the SA6)
Gross-Neveu model

As first emphasized by Sheltagt al® in their study of
the two-leg spin-1/2 ladders it is very convenient to formu-
late spin ladder problems in terms of réklajoranag fermi-

ons. This can be done by refermionizing the three bosonic

fields @4, &, anddg;. Let us introduce the six Majorana
fermions£?,a=1-6 as follows:

(418 = o =i B, (14
0

(£+i8r0)= %exﬂii@@mu))'
0

evantinteraction wherd >0. Thus in the far infrared the six
Majorana fermions decouple and remain massless. This is
the SO(6) fixed point.

The above result assumes thhats small and the question
that naturally arises is whether it can be extended to large
values ofU where Eq.(2) reduces to Eq(1). For exactly the
same reasons as for the @JHeisenberg chain the answer
is positive. We know from the exact solution that the(&U
model is critical with three massless bosonic modes or
equivalently six massless Majorana fermions. We know from
conformal field theory that the fixed point Hamiltonian can
only be the SU(4)~S0O(6); WZNW model. The marginal
interaction; -« «; is the only one that respects both the
SQO(6) symmetry as well as translation invariance. Therefore
in the vicinity of the fixed point the S(4) Heisenberg model
will be given by

6
> (

a=1

iu
M= 2 (6Routh 610xE0) +265 2 win,

(16)

where the spin velocityg and the couplings;<0 are un-
known and nonuniversal parameter that could be extracted
from the exact solution. The only thing that happens when
going from smallU to largeU is a renormalization of thgg
andvg.

The Majorana description used here is extremely useful to
understand the symmetry properties of our model. Indeed,
for example, one can define the spin and orbital triplets:

Esry=(E4,64,6%R0y

Eir)= (468, - (17)

These quantities transform like a vector under spin SQ(3)
and orbital SO(3)rotations. These correspond to the SU(2)

and SU(2) transformations acting on the operatérandf,
respectively.

To get a complete description of the SO(6ixed point
one needs the continuum expressions for the effective spin
and orbital densities in terms of the Majorana fermions:
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3= st_,_ st+ exgli wx/2a0)/\75+ H.ct (- 1)x/a0r‘]’s(x), Ising models we shall be able to invgstigate the properties of
Eq. (1) close to the S symmetric model. But before
T . - xans moving to this point, let us stress that the effective theory
T=Jdwt Ju +expimx/2a0) N+ H.c+ (1) 0nt(x),(18) depends on three unknown parametérsand B and G,
which can be in principle extracted from numerical studies.
whereJs is the uniformk=0, part andV; andn are the  In the following, we shall assume that the above description
2ke=m/2a, and &g=mla, contributions. Notice that in still holds for small deviations of the S4) point. The only
contrast with the S(2) Heisenberg chain, the spin density modification being a renormalization of the nonuniversal
has three oscillating components. The reason for this comegonstantsA, B and Gs.
from conformal field theory. Indeed the different oscillating
components of the spin density apgimary fields of the C. The SU2)®SU(2) symmetry-breaking perturbation
SU(4); WZNW model. There are three of them with scaling
dimensions(3/4,1,3/4.1° They all belong to the representa-
tions (building blocks of SU(4) with Young tableau consist-
ing ofa (a=1,2,3) boxes and one column. In particular the

staggered components akg= T, ﬁs,t, are components of
an antisymmetric tensor of rank 2. K

The uniform components express in terms of the Majo- Ji=—+Gy,
rana fermions as follows: 4

We shall now derive the effective low energy theory as-
sociated with Eq(1) for arbitrary values ofl; andJ, close
to the SU4) invariant point given byl;=J,=K/4. To this
end, let us parametrize the couplings as follows:

>

[ N K
Jsr)=— §§sR(L)/\§sR(L) : Jzzz + Gy, (22

. i . where bothG; andG, are much smaller thad. The Hamil-
Jiriyy=— §§tR(L)/\§tR(L)- (199 tonian(1) can then be written as

Notice that in contrast with the SB) Heisenberg chain, the 5 o S -
uniform part of the spin densities are SU§{Xurrents. The HzHSU(4)+GlEi Si'Si+1+G22i: Ti-Tipa. (23
expressions for thelkt = m/ay densities are given by
. . R Using the low energy description of the spin-orbital opera-
Ng=iB&rN\Egl s tors(19), (20), and(21), one can expand E¢23) around the
SO(6), fixed point:

n=iB&rNE (20 .
iug - I, R
whereB is a nonuniversal constant. Their scaling dimension H=— f(fsg OvEsr— EsL- Oxésl) +01( K1+ Kpt Kg)?
at the SO(6) fixed point isA .=1. Both densitie$19) and
(20) are rather simple when expressed in terms of the Majo- iu, - . .
rana fermions. This is not the case with thie2 7/2a, — 5 (&re Ixéir™ & Ixéu) T 9okt Kyt Ks)?
densities/\*/'syt that are nonlocal in the Majorana fermio&
Indeed they involve order and disorder operagsand u, +2G3( K1+ Kot Kg) (K3t Kyt Ks), (24

of the six Ising models that are associated with the six Ma-

. . . - h
jorana fermions. The expressions of both; are lengthy where
and we shall give here only the component that will be

sufficient for our purpose: 9:=G1+Gs,

Ne=A(i 114203040506+ 0102431 4145146, 92=G,+Gs, (25

. and the two renormalized velocities andu, are given by
Ni=A(i 0102031140506+ H11120304pm516),  (2D) ‘

where A is also a nonuniversal constant. Since at the free Us=vst2Gy/,
fermion point, the order and disorder operators have scaling
dimension 1/8, the &- densities\V;; have the scaling di- Uu=vst2G, /. (26)

MeNSIONA = 3/4. In the above equations and in the remaining of this paper, we

This completes the continuum description at the(gU . .
: s include the effect of the K components of the spin and
point. The theory is critical and flows to the SO&)xed orbital densities in a redefinition of the couplingS;; »

point. There is a marginally irrelevant correction whose mag- o S .
ni is nonuniversal and is given he unknown lin H_(1+B )G(1,2)- The Hamiltonian(24) describes two mar-
tude is nonuniversal and is given by the unknown coupling inally coupled S@) Gross-Neveu models: one in the spin

G3<0. This is in complete agreement with the non-Abelian9 : s )
bosonization approach of Affleck.With the continuum ex-  channel described by the three Majorafigand one in the
pressions of the spin and orbital operators at thé4gpoint  orbital channel described by the three Major@paThe situ-
in terms of the six Majorana fermions and the associatedtion at hand is to be contrasted another time with the one
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encountered in the study of spin ladders. In the latter models . 1, 3
deviation from criticality leads, in general, to relevant 91=7Tu g1t EG .
perturbation and a gap always opens independently of S !
the sign of the couplings. There are however notable
exceptions where frustration plays its trick. This is the -1 5, 3
02=——07+ G3,
case of some three-leg frustrated ladders where for some Uy TUg
particular values of the couplings only marginal interaction
remains in the effective action. As a result a nontrivial . 2Gs/9, 9
critical state, the so-called “chirally stabilized” liquid, G3=—3(—1+ —2)_ (27)
shows off?° In the model the situation is even more striking T \Us U

since we find only marginal interactions in a finite region ofIn the above equatiorG meansdG/dt wheret=Ilog(\) is
the couplings. This is mainly due to the fact that the frustahe RG scale. It is more convenient to express the set of Egs.

tion is maximal in the strong coupling region. A direct con- 27) in terms of the couplings that enter in the lattice Hamil-
sequence of the marginality of all the interactions is that wegnjan (23):

expect the phase diagram to result from a delicate balance
between the different terms entering in E&4). This is why
it is now worth discussing the effect of the three different
terms in Eq.(24).
Coqsider first the case wher€&;=0. Then we are G2=G§—ZGlG3,
left with the two decoupled SO(3)and SO(3) GN
models which are exactly solvable. At issue is the sign of )
G, and G,. When G,;>0 and G,>0 a gap opens in G3=2G;5(G;+G,+2Gy), (28

both spin and orbital channels. The spectrum consists Lo . -
of kinks and antikinks(there are no fermiongt When Where, for simplicity we have made the following redefini

G,=G5-2G,G;3,

tion:
G1<0 and G,<0, the interaction is irrelevant and the on
model flows towards the isotropic SO@6)SU(4), fixed
point with the central charge=3. When G,G,<0 one G1— Umyusl(aGy— (1-a)Ga),
of the S@3) GN models will become massive while the
other one will flow towards the SO(3)fixed point. The G,o— Umuguy(1/aGy— (1— 1/a)G3),

Hamiltonian will remain critical withthree massless Majo-

rana fermions leaving the whole system with the central
chargec=3/2. Gz— Um\usuGs, (29

Now the physically relevant question is whether or i o= lu,/us. At the leading order, the velocitias, and
not this scheme survives a small negati@. Indeed, | also renormalize:

it would be not correct to neglect the last term in E2¢).

First of all, from the point of view of the lattice Hamiltonian

(23), the Hamiltonian24) has to be thought as the effective U= _GUSng'( ﬁ)
Hamiltonian obtained by integrating out high energy u
modes up to a scale where one sits close enough to

the SO(6) fixed point where the continuum limit can . Ug

be taken. Thus, genericall; is not zero. The second ut:_6utG§I(u_)- (30)
reason is that all other interactions amarginal In such !

a case, it is well known that operators that are naivelywhere

irrelevant may become dangerous and strongly modify

the physics in the infrared. Therefore, even though 1—x

G3<0, one has to keep it and analyze with care Exf) )= 17%" (39)
with all couplings different from zero. As we shall see,

the strong tendency to the SO(3griticality in the regions The RG equation$28) and (30) can be exactly solved and
G,G,<0 will be spoiled in most of the parameter space.reduce to a single differential equation. To show this let us
There will be though still a finite region where the introduce the following variables:

Hamiltonian will be critical but with an approximate $&)

symmetry. u=G1G,+G;G3+G,G3,

S

IIl. RENORMALIZATION GROUP ANALYSIS d=G;-G,

A. The renormalization group flow
. . . . S:Gl+GZ+2G3- (32)
The RG equations for the couplings entering in E2f)

are given at leading order by Equation(28) and(30) greatly simplify to
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©= s,
d=ds,
G3=2G3s, (33
and
Us— U= —6G3(us—uy),

UsU;= const. (39

While the meaning of botls and d is clear, the physical
interpretation of the variablg is not straightforward. As we
shall see in the followingu measures the departure from

criticality.

The solution of both Eqs(33) and (34) are then easily

obtained:
m(t)=p(0)X(1),
d(t)=d(0)X(t),
Ga(t)=G3(0)X*(1),

(Us— U ()= (us— Ut)(O)eXP< —6G3(0) fotx“(T)dT) :

(usu) (1) = (usuy)(0), (395
where

X(t)=epr'0ts( 7dr (36

is the solution of the differential equation:

>'( 2
(2) =P(X). (37)

In the latter equatio®(X) is a fourth order polynomial that

depends on the initial conditions of the flow:

P(X)=4G3(0)X*+d?(0)X?+4u(0)X. (39

Once the solutioiX(t) of Eq. (37) is known, the behavior of
the RG flow is completely determined. In particular the time

evolution of couplingsG,(t) andG,(t) is given by

1
Gzt =5 (e(s) VPIX(D)]~ 2G3(0)XA(t) =d(0)X(1)),
(39
where e(s) =sign(s).
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1 1
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FIG. 1. RG flows for the variabl¥(t) in the different phases A,
B, and C. In the phase &(t) reaches a minimum valug* at a
scalet*. Whens(0)<0, the minimum is reached for a physical
time t*>0.

~[(ky1+ kp+ k) — (k3+ K4+ ks5) ]? Which after the transfor-
mation égr— &sr, &sL— — &, acquires a manifestely 36)
invariant form~(2‘15;<a)2. One may therefore be tempted to
conclude that the S@) symmetry is restored in the far in-
frared and that the low energy spectrum of the Hamiltonian
would be approximatively that of the $6 GN model.
However, as pointed out by Azaria, Lecheminant, and
Tsvelik?? one cannot conclude on the basis of perturbation
theory alone. In fact looking at the flow in the infrared is not
sufficient and can be misleading. The point is that in the A
phase, sincX(t)—0 ast— — all couplings go to zero in
the ultraviolet and the theory is asymptotically free. From the
field theoretical point of view this means that a well defined
renormalized theory witlthree different renormalized cou-
plings Gy, Gor, and Gzg exists?* Therefore, it is most
likely that the S@b6) symmetry isnot restored in the A
phase. The situation here is very similar to ¥ Z model
where in the A phaséhe Ising regioh, though there is an
apparent S(2) symmetry restoration in the far infrared, the
exactsolution tells us that this is not the caSe.

The B phaseThere one hag(0)>0 ands(0)<0 and
the flow in theX variable is reverseflFig. 1(b)]. All cou-
plings goes to zero in the infrared and the interaction is ir-
relevant. The six Majorana fermions are massless and the
model is critical with the central charge=6x 1/2=3. How-
ever, for generic values of the initial conditiopd(0)+ 0],
the fixed point Hamiltonian does not have the(6Gymme-
try. Indeed, the velocities in both spin and orbital sector have
different fixed point valuesi; #u; so that the symmetry at
the fixed point is SO(3» SO(3) . It is only on the sym-
metric line (G;=G,) that the fixed point symmetry is 36).

The C phaseThere one hag(0)<0 ands can have both
signs. As seen in Fig.(&), X(t) —c when botht— * . The

As in the XXZ model we distinguishthree different  theory is not asymptotically free neither in the infrareat in
phases A, B, and C that are separated by the two surfacgge ultraviolet. Though one certainly expects that a gap
defined byu=0. opens in the spectrum, perturbation theory is patholodfcal.

The A phaseThere one ha(0)>0 ands(0)>0 and |ndeed, from the field theoretical point of view, the lack of
X(t)— ast—c [see Fig. 18)]. All couplings are relevant asymptotic freedom in the ultraviolet implies that a well de-
and a gap opens in the spectrum. In addition, the velocitiefined renormalized theory withhree different couplings
us(t) andu(t) goes to a fixed valuey =uf . Looking in  G,g, G, andGs does not exist. The low energy physics in
more details in the largé behavior of the couplings, one such a situation is a highly nontrivial and essentially non-
finds thatG,(t) ~G,(t) ~ —2G;(t) so that the effective in- perturbative problem and one is left to make a sensible con-
teraction in the far infrared takes the suggestive formjecture.
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As in the A phase discussed above, in the far infrared G,
G1(t) ~Gy(t)~ —2G5(t) as well asul =uy so one may
wonder again whether the $& symmetry is approxima- A
tively restored or not. We stress that the situation at hand S
here is very different to what happens in the A phase since Y,
the theory isnot asymptotically free in the ultraviolet. This \
may have important consequences for the low energy phys- 1
ics. Indeed it is well known that the divergency of some v
couplings at high energy is reminiscent of the fact that some B —
part of the interaction igrrelevantat low energy. Of course, /
perturbation theory alone cannot tell uwaich part of the
interaction is irrelevant and at present all what we have at 5
hand to make a reasonable hypothesis is our perturbative
results. The simplest scenario is that the(@&ymmetry is FIG. 2. Phase diagram for anisotropic couplings in the plane
approximatively restored provided the initial conditions are(G1,G,) at a fixed value of5;. The massless phase B is separated
not too anisotropi¢see however subsection.@s a support ~ from the massive C phase by the critical lilbe The special poin§
of this Conjecture let us mention that this is what happens iPn the symmetric line which is at the border between the C and the
the C phase of th¥XZ model where the Bethe ansatz solu- A Phases is S@) symmetric withG,=G,=—2G;. We plot also
tion tells us that the S(2) symmetry is restored up to expo- the two trajectories |¢.’:1be|e¢1 and.yz .for whlch.the scaling of the
nentially small correction& We are of course aware that our Mass gap has two different qualitative behaviors.

hypothesis is highly questionable but it is the simplest on . .
and could in principle be tested either numerically or experi(—athere is no phase transition between the A phase and the C

mentally. Indeed, the immediate consequence of the possibRJ1ase since both phases are massive but rather a smooth

SQ(6) restoration is that the effective low energy effective CTOSS Over.

S . : : The most important feature of our phase diagram is that
theory of the Hamiltoniar{1) in the C phase is approxima- . . :
tively that of the S@) GN model: the two regions withG;G,<0 which would have been

massless in the absence ®§ do not survive an arbitrarily

iux 8 small value ofG;. Therefore thee=3/2 phases discussed in
H=— - > (E%ﬁx§§—§fﬁx§f)+(32 kikj, (40  the previous section are not stable. Though the whole region
a=1 =< is essentially massive there are still room for criticality since

where theeffectivecouplingG is positive. The model40) is e B phase extends in both quadraGgs,<0. From Eq.
integrable. Its spectrum is known and consists of the funda#L) the width of the critical region is of the ordéGs|.
mental fermion, with mas, together with a kink of mass Therefore the main effect @b; is to drive the system either
m=M//2 ! At this point the question that naturally arises is toh a fuII%/ mass?)/e rﬁ)hz.ish@hase ¢ ortoa fully massless
how this enlarged S@®) symmetry reflects in the spin and pfase(p asehB, ﬁt W'td. an approxgnat.e Sida).syr;:met_ry. 5
orbital correlation functions. The answer to this importantO _course, t. € phase diagram as eplcte n the Fig. 2 is
guestion requires the computation of the exact dynamica?trICtIy _val|d in the Sf_“a"G limit. In pa”"’“"’?‘F higher order
correlation functions in the S®) restored massive phase. correct;]ons may r?]od[fy tgehshe_lpe_of Lhe c;n_ugal c]chE\r:.eWe
This could be accomplished in principle by the form factorsStress owEver,_t at its behavior in the vicinity of t e(8u
approach as in the frustrated two leg ladder considered iROINt 8tG1=G,=0 is given by our one loop result. In par-
Ref. 25. However this task is even more difficult for the tcular the fact thak crosses the symmetric line with a right

SO6) case and goes beyond the scope of this paper. angle will not change as one includes higher order in pertur-
bation theory. However, as one goes to large deviations from

the SU4) point our effective theory will not apply since for

large enough positivérespectively negatiyeG, and nega-
Let us now sum up our results and present the phase diaive (respectively positiveG, the orbital(respectively spin

gram associated with Hamiltonig@4). As even at the S4)  degrees of freedom order ferromagneticaity.

symmetric point the couplin@; is not zero, the best way to

visualize the phase diagram is to fix the valueGf and to C. Effect of the anisotropy

look in the plane G;,G5). As one can see from Fig. 2, there

are two curves separating the three regions A, B and C which Atf;h'st pcilnt”o_nethay \évondelr Whet?te_r theAanlstoftropytrr\]as
are given by the equation no effect at all in the physical quantities. Apart from the

velocity anisotropy in the B phase, one may still expect some

u=G,G,+G,G3+G,G5=0. (41 nontrivial effect of the anisotropy in the C phase. Indeed,
after all even though both=3/2 phases are unstable there

In the region B all models are critical with approximate should be some significant signature of the presence of the

SQ6) symmetry. The spectrum consists into six massles$O(3), fixed point in the scaling of the physical quantities

Majorana fermions with different velocities in both spin and and in the finite size scaling. The very reason for this is that

orbital sectors. As one crosses the critical [hene enters the SA6) symmetry is restored dynamically with help of a

in a fully massive phaséC phas¢ with an approximate marginal operator.

SQ(6) symmetry. For large positive values of the couplings Crossover and finite size scalinget us look at the RG

G, and G, one may finally enter the region A. Notice that flow in more details. The regions of interest are those with

B. Phase diagram
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® ql(t ,0_1.) = 0 _________ G,
- 2G,
p3 !
S — J
¥ ‘\‘\“”"'»"“\\
& \
G i G(t)=0

FIG. 3. Qualitative RG evolution of the coupling constants in : ‘

regions whereG;(0)G,(0)<0 and where the crossover “time” . )
defined byG,(t,) =0 exists. FIG. 4. Isot, curves in the planeG,,G,); the dashed line

corresponds to an isiy, associated with the orbital degrees of free-
dom whereas the dashed dotted line is antjs@ssociated with the

G;,G,<0 in which, as discussed in the previous section, if. i
12 b spin degrees of freedor. denotes the critical line.

not for G one of the coupling would have been irrelevant.

Then either the spin or the orbital degrees of freedom would We st that thi h h .
have remained massless. In the following we shall concen- € stress that this Crossover phénomenon may nave im-

trate on the orbital degrees of freedom. All the results thaportan.t pra_ctical consequences in ny_merical_ simqlations. In-

will be given can be straightforwardly extended to the spindeed’ in afinite system Qf site t_he critical region will seem

degrees of freedom. to extend towards the isig,; W|th t01=.InL in the region
Consider first initial conditions slightly above the phase gC1<0, G>>0 and towards the_|stb2 with t02:|.n L in the

in the lower right quadrant witls;G,<0 (see Fig. 2 We regionG,;>0, G,<0. The low lying spectrum will look like

are then in the phase C witB,(0)>0 andG,(0)<0. As if either the spin or the orbital degrees of freedom would
seen in the Fig. @), the flovb can be spli%ted intb tWwo have been massless. It is important to notice that these two

“ime” slices pseudocritical lines bend upwards in contrast with the critical
At first |G| strongly decreases and remains almost conline 2. . -

stant. Then, both spin and orbital degrees of freedom weakI}/h The mass ga[?Ttr;]e anls;)trop¥ has aI?r(]). nontrlr\]/ lal effect ont q

interact sincgG(; »|>|Gsl. In the meantime, the coupling thg m:sg 3:54 c\)/vith?]esl)é)so??ﬁe ;Gs%?quafiovrg&aﬁ* svczernpu €

G, increases and changes its sign at a tiggwhere it known, the gapM is defined as the scale where perturbation

vanishes. At “times”t<tg, the orbital degrees of freedom theorv breaks down. More preciselv it is aiven by the scale
do not know yet they shall enter in a massive phase and thg _ry . P €y 9 ) y
tu=1In(1/Ma,) at which the couplings blow up:

system is on the influence of the SO(3ixed point. Finally,
ast—ty, all the couplings blow up and one enters in the X(ty)=c. (44)
strong coupling region. The physical interpretation of this
phenomenon is clear: it is the spin degrees of freedom thakhe above implicit equation can be solved but the resulting
drive the orbital degrees of freedom away from criticality analytical expression is too cumbersome to be quoted here.
and it takes roughly expf,) RG iterations for the orbital Details are given in the Appendix and we shall content our-
sector to escape from the basin of attraction of the SQ(3)selves by its asymptotic behaviors as one approaches the
fixed point. critical surface>.

The other interesting region is the portion of the B phase We find two qualitatively different behaviors depending
delimited by the critical curv& and theG, axis in upper on the way one approach&s When one approach&sat the
left quadrant of Fig. 2. Ther&;(0)<0 andG,(0)>0. As  SU(4) point (G;=G,=0) we find
seen in Fig. &), it is the spin degrees of freedom that drive
the orbital ones to criticality. The coupling, changes its M~ A exp(—C(y,)/A%9), (45)

sign and vanishes at a tinig, and goes to zero in the limit wh _
R ereA= \/Gzl+ Gzz—>0 and the constar@@(y,) depends on
itr:joiéiltneb%t:tico?]s.es, the crossover “timég; is given by the 4, trajectory labeled, in the Fig. 2. On the other hand, as
P q ' one approaches at any other point the asymptotic behavior

w(0) of the gap is different:
X(td =\ a0 42
1" Na06o “ M~ A exp(~ C(72)/A), @

Of course a similar discussion holds for the couplBg  where nowA is the Euclidean distance of the critical surface.
and defines another crossover timgg which is defined by As aboveC(y,) depends on the curve labeled in Fig. 2.

the implicit equation: There are two other marginal cases as one approakhes
tangentially: the exponents df in both Eqgs.(45) and (46)
| —n(0) are doubled. We see that the gap is generidaliger in the

X(to) = d(0)G5(0) (43 regions withsmallanisotropy. To visualize this phenomenon

we present in Fig. 5 the isogap curves in the pla@Ge,G,).
We plot in Fig. 4 the isdy, and isoty, curves in the plane We observe that at a given distankdrom the critical lineX
(G1,Gy). the gap increases as one moves towards the symmetric re-



12120 P. AZARIA, E. BOULAT, AND P. LECHEMINANT PRB 61

symmetry restoration process. This should serve as a warn-
ing that, once again, one should be careful with the conclu-
—— G, sions drawn from perturbation theory.

— IV. EFFECT OF A MAGNETIC FIELD

-~ In contrast with the S(2) Heisenberg chain there is no
unigue way to apply a magnetic field in the &YW model.

G Indeed, while in the S(2) case there is, apart from the total

spin, only one conserved chargesiBthe SU4) model there

arethree of them. These are the three Cartan generators of

\ the SU4) Lie algebra. In this work we have chosen for the

b three commuting generators:

A RN Hl=S, H?=T?, and H3=25T%. (50

FIG. 5. Isogap curves in the plan&{,G,); 3 denotes the Other choices are possible but E&Q) is the one that is
critical line. physically relevant to our problem. We thus see that one is at

liberty to apply a magnetic field in any “direction” in the

gion (G;~G,) and is maximum on the symmetric line Cartan basig50). However, if one relies on the physical

(G1=Gy). Similarly, to keep the value of the gap to some jterpretation of both operato and T as spin and orbital
constantM one has to move away frol as one leaves the gperators, a magnetic field only couplesHé=S? The re-

symmetric region. _ sulting Hamiltonian thus writes
Effect of anisotropy on the SO(6) symmetry restoration
We conclude this section by looking at the effect of the an-
isotropy on the S@) symmetry restoration in the C phase. B N > =
As discussed above, in the C phase the coupldgandG, Hn= EI D15 St d2Tir s
tend to—2G; in the far infrared(i.e., ast—t,,) so that the
effective Hamiltonian has an apparent (8D symmetry. o > = 2
Looking in more detail at the asymptotic behavior of the +K(3'3+1)(Ti'Ti+1)+hEi S (51
couplingsG,(t) andG,(t) we find that

40) The magnetic field breaks the 1 symmetry down to
0 SU(2)®U(1). For asufficiently large value oh>h, the
G(LZ)(t)N_263(0)X2(t)iTX(t)' (47) spin degrees of freedom align parallel to the field and the
) remaining degrees of freedom will decouple. More interest-
Therefore, as wheb—ty , X(t)—c, there remains a sub- jnq is the situation wheih is small. In this case, one may
dominant mfrgred singularity wheal((_))aéo. We thus expect expand Eq(51) around the SU(4)fixed point, as in previ-
some corrections to the 36 behavior. To get an estimate ;5 section, and study its effects in perturbation. For small
of these corrections we make the reasonable hypothesis thalyes ofh, the effective low energy Hamiltonian associated
when the anisotropy is small enough, the effective theoryyi £q. (51) can be easily derived using the expression of
will be given by an S@6) GN model with a small symmetry- e gpin operato? in terms of the Majorana fermions as
breaking perturbation proportional to given by Eqgs.(19), (20), and (21). Dropping all oscillating
terms, the only contribution comes from the uniform part of
iu* 2 0 a .a. .a the spin density and the effect of the magnetic field is just to
H~=— a§=:1 (§Rf3’x§R—§Ll9x§L)+GZ4j KiKj add to the Hamiltonian(24) the interactionH,=ih(£ké3
+§ﬁ§f) and the low-energy Hamiltonian thus writes

FN((k3+ Kt K5)— (K1 + Ko+ K6) ), (48)
whereN<G. Of course we do not know the value of the iug - . .
effective coupling\, but it is sufficient for our purpose that it Hn=— - (&sr- dufsr™ s xést) T 0a(Kk1t 1+ Ke)?
is small enough which will be the casedf0) is small. From
Eq. (48) one can get an estimate of the mass splitting in both iug - . R 5
the spin and orbital sectors: — 5 (Er Ixéir™ & Ixéu) T 92 k3t Kyt Ks)
M, +2G3( k1t kot Kg) (Kat kgt K5) HiN(ERéRt ELED),
.~ 1 A In(Mag). (49)

t (52

Therefore, we expect the $6) symmetry will hold approxi-
matively only for small enough gap and anisotropy. The
above argument is of course far from being rigorous but it

helps to get an idea of the effect of the anisotropy in the 0,=G;+G3;,

where we recall that
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92=G,+G3. (53 aq=q—(3f2+f2)J,(2q),
A. Renormalization group analysis f2= f§+ f§+ 2fﬁJo(2q),

The situation at hand is similar to that of tXeXZ model .
in a field?® There exists a magnetic length, below which f3=2f,f3+2f4f530(20),
the magnetic field has no substantial effect on the physics. )
However as the scale>\,, the field strongly modifies the fa=(1-K)f4+(2f,f 4+ f3f5)(1+30(20))/2,
low energy behavior. Indeed, in this regime, as we shall see ]
below, the two Majorana fermiong" and £ completely de- fs=(1—K)fs+3f5f,(1+J30(29))/2, (56)

couple from the four others. The best way to see this is t
bosonize the “1-2” sector of the Hamiltonia2) with help
of Eq. (14). The resulting Hamiltonian becomes

here the couplings have been rescaled asf/mv*, v*
being a velocity scale, and, ;)(x) are the Bessel functions
of the first and second kinds. Apart from the inherent anisot-
vyl ropy in our problem, the above equations resemble that of
Hn=— R(&X®s)2+ K(3,04)? the XXZ model in a field?® We see on Eqg56) that when
q(t)~# the two Bessel functions start to oscillate and the
ive v, . L . renormalization coming from both thg, and f5 terms is
_7(§6RO7X§6R_§E‘9X§E)_7(§tR'ax§tR_§tL"9x§tL) stopped. This defines the magnetic length as q(ty)
= (t,=In\;,) where the spin degrees of freedom decouple
+ 2 5(KkgKa+ Kgks+ Kyks) + 2f3kg( K3t Kyt K5) from the rest of the interactiotas well known, there is no
unigue way to define the magnetic length but we have

2if, I checked that other reasonable choices do not affect qualita-
a Waocos{ APt 20x)(kat st Ks) tively the physics At this point, it is worth stressing that in
0if the massive phasé, must be much smaller thar,, the
s scale at which perturbation theory breaks down. This means
— ———cog V47D +20X) kg, 54 : : ’
mag IVATDs+ 20X K (54 of course, thah>M as discussed above.

At timest>t,,, the couplings, andfs do not participate

where in the RG equations of the couplings g, f, andf; and Egs.
0, (56) reduce to
K=1- ,
mUs K=0,
01 L
vy=Ust —, q=q (57)
and
Kh
—_ P2, £2
In the above Hamiltonian, we have introduced new velocities f3:2f2f3_ (58)

and coupling constants with bare valueg=ug, v,=uU,, _ ) ) o
f,=g,, fa=f,=G; andfs=g, corresponding to the opera- This means that in the reginte>t,, the Hamiltonian(54)
tors that are stable under renormalization. As readily seerfl€couples:
the cosine terms involvingbs will start to oscillate with _
wave vectorg~h. Therefore, at sufficiently large magnetic Hn=Hst o (59
field the two last terms in Eq54) can be dropped and the where
bosonic field ®; completely decouples. When a gap is
present, i.e., when one sits in the C phaséhatO, there
exists a critical fielch.~M below which the field has little
effects on the low energy physics. Asincreases and be-
comes greater tharh., the spin sector undergoes a
commensurate-incommensurate transition of the INPFfype v iv
to an incommensurate massless phase with central chargg, = — f(ggaxgg—gfaxgﬁ)— f(EtR'ﬁxétR—étL'ﬁxgtL)
cs=1. In contrast, in the absence of a gap, i.e., when one sits
in the B phase ah=0, the spin sector always decouples at +2f,(kak4T k3K5+ Kaks) + 2 3x6( K3t kgt Ks),
sufficiently low energies. Of course, this decoupling proce-
dure has to be understood in the framework of the renormal- (61)
ization group. To this end we have Computed the one IOOMhereK1 Vg, Vg, Ut f2 andf3 are th&ffectiv&oup”ngs at
recursion relation associated with the Hamilton{&#). Ne-  the magnetic length ,.
glecting the velocity renormalization we obtain Let us first concentrate on the spin sector as given by Eq.

. 5 o (60). The Hamiltonian(60) is that of a Luttinger liquid with

K= —(3f3+15)Jo(20), stiffnessK. The spin sector is thus massless and contributes

vyl
Ho= | g (3 PI?HK(3,0)2 (60

and
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to a central charge;,=1. In addition, the correlation func- the mass gaM of the zero field Hamiltonian. What is more
tions involving the field®¢ will be incommensurate with interesting, is what happens in the remaining orbital and
h-dependent wave vectogr From Egs.(21) one sees that the spin-orbital sectors described by the Majorana fermions
incommensurability will reflect in both the spin and orbital £3,&4,£°,&5. As we shall see now the anisotropy will play its
correlation functions. tricks. Indeed, what is into question is the sign of the cou-
We focus now on the remaining part of the interaction.pling f _(t;,) at the magnetic length. Returning to the origi-
The Hamiltonian, describes the interaction between thenal variables, one finds th&t =G,. We saw in the preced-
orbital sector with the remaining spin-orbital, Zlegree of ing section that in zero magnetic field the time evolution of
freedom ¢°) of the spin sector. The low energy physics in G, was very sensitive to the presence of the SQ(®ed
this sector is nontrivial and at issue is the behavior of the RGoint in the orbital sector and could change its sign at a time
flow associated with Eq(58) where the initial conditions ty, depending on the the initial conditiofisee Fig. 8a) and
have to be taken at the magnetic length wit{t,) and Fig. 3(b)]. The presence of a field does not affect qualita-

fa(tp) attp=In(\p). tively this feature and provides for a renormalizationt gf
These equations are trivially solved. Indeed, upon introwhich becomed-dependentty,—tg,(h). We consider now
ducing the new variables two cases.
First is when one sits in the B phase between@jeaxis
fo=fx13, (62)  and the critical surfac&, with G;<0 (see Fig. 2 At zero

magnetic field the system is critical with the central charge
c=3. Theref _ is positive and decreases tascreases van-

Po_g2 63) ishes at some RG timg,(h) and then changes sign. Now if
=0 th<<tgo(h), f_(tn) will be still positive and a gap will open
As in the previous section, we distinguish between thredn the orbital and spin-orbital sector according to EH).
phases A, B, and C depending on the initial conditions of th€n the other hand, if,>to,(h) thenf_(t,)<0 and there is
flow. no gap. This means that there exists a critical value of the

The A phaseThis is whenf, (t,)>0 andf_(t;,)>0. field he qbove Which a gap opens. The portion of cri.tical
Both couplings are relevant and a gap opens in the spectruriurfaceX in the regionG,; <0 is thus unstable. The physical
Moreover, since the theory is asymptotica”y free in the u|-interpretati0n of this result is clear. In zero field, it was the
traviolet there are two length scales in the problem: spin degrees of freedom that drived the orbital degrees of
~exp— (/. (ty)). - freedom to criticality. When the field is large enough, its

The B phaseTheref ., (t,)<0 andf_(t,)<0. The cou- effect is to decouple a part of the spin degrees of freedom
plings are irrelevant and the four Majorana fermions becom@eforethe remaining fluctuations had a chance to enter the
The fixed point has only an approximate @symmetry  Of the magnetic field in this region is to reduce the extension
since there remains a velocity anisotropy. Indeed, as in thef the phase B. _ o o
zero field case, in generaf #v . The generic symmetry of The other interesting region is when one sits in the C
the fixed point is thus rather SO(8)Z,. phase just above the critical surfagein the lower right

The C phaseFinally is the C phase wheffe (t;)>0 and ~duadrant of Fig. 2, i.e., whe@,>0 andG,<0. ThereG; is
f,(t,)<0. Thenf_(t) is relevant and , (t) will go to zero negative but is driven to posmve vglues by the spin degrees
in the infrared. Therefore, as in the previous section, on@f freedom. It changes sign at a ting(h) where it van-
may conjecture that the $S@ symmetry is approximately ishes. Now ift,<<tg,(h), f_(t,) will be still negative while

restored. In the far infrared the effective Hamiltonian is thatlf th=te(N), f_(ty) will be positive. Therefore there exists
of the S@4) Gross-Neveu model: a critical fieldhy below which the orbital and spin-orbital

sectors will be still massive. Abovie.,, the gap will close.
iu 8 Again, the physical reason why the gap vanishes abgyés
H, =— > D (£Ro - 0,88+ f,(th)z ki, (64)  that, the spin degrees of freedom did not have enough time to
a=3 1< drive the orbital sector to strong coupling. We therefore con-
which is integrable. Its spectrum consists only on kinks and!ude that the B phase has a tendency to extend in the region

antikinks with massn~ exp—(m/f_(t;)).2* G;>0, G,<0 _when a field is prese_nt. N

Notice, and this will be important for the discussion that 1© Summarize, we expect two kinds of transition as one
will follow, that in both the phases B and C the effective varies the magnetic field. When the theory is massiva at
theories are giverup to a velocity anisotropyby Eq. (64) =0, as one increasdsthere will be a first transition in the
with the difference thaf _(t,) is negativein the phase Bso spin sector to an incommensurate phase with the central

that the interaction is irrelevanwhile it is positivein the ~ chargecs=1. The remaining degrees of freedom will be still
phase C. massive but are described by the (80GN model. The co-

herent fermionic excitations of the $8) GN model disap-
pear from the spectrum and the only massive excitations that
remain are the kinks of the S8 GN model. Consequently

It is clear from the discussion given above that the valuesll excitations will be incoherent. What happens as one in-
of the effective couplings at the magnetic length are crucialcreased further strongly depends on the anisotropyGl
Of course, the existence of the commensurate=>0 the magnetic field just renormalizes the mass of the
incommensurate transition in the spin sector depends only 080(4) kinks, the spectrum is still massive. The total central

Egs.(58) decouple:

B. Phase diagram
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charge of the model is thus=cs+c, =1. However, when remain massless. Since both sectors interact marginally, at
G,<0, there is asecondphase transition at a fielt,, of the  issue is a delicate balance between the strength of the inter-
Kosterlitz-Thoules$KT) type?® to a commensurate massless actions: it is one kind of degree of freedom that drives the
phase withc, =2. Both spin and orbital degrees of freedom other to its favorite behavior. In particular, this is the reason
are massless and the total central charge=igs+c, =3. why the massless phase extends in the region with either
Notice that there will be three different velocitiesy G;>0 or G,>0. In any case, the whole system ultimately
ivfﬁvt* so that the symmetry at the fixed point is not becomes either fully massless or fully massive. The crucial
SQ(6) but rather SO(3pU(1)® Z,. point is that since the interactions are only marginal, it may
When there is no gap at zero field the spin sector is altake a very long time, in the renormalization group sense, to
ways critical with incommensurate correlation functions.reach the asymptotic low energy regime. This has important
What happens for the spin-orbital and orbital degrees of freeeonsequences.
dom depends again strongly on the anisotropy. WiEgn First of all is the nontrivial behavior of the mass gap of
<0 they remain massless and the total central charge is thuke system. We found that the giabis generically smaller in
c=3. However, ifG,>0, there will be a KT type phase the regions with large anisotropy, i.e., in the two quadrants
transition at a critical fielch,, to a massivephase with ap- G;G,<0 above the critical curv&. This is due precisely to
proximate S@4) symmetry. the strong tendency to massless behavior in these regions. As
We stress that the mechanism that leads to the KT type consequence the ghphas two qualitatively different scal-
phase transition at the magnetic fidlg, is highly nontrivial  ing behaviors as one approactesither from the symmetric
since the magnetic field doe®t couple directly to both the region or the asymmetric or{ehe trajectories labeleg,; and

orbital and the spin-orbital degrees of freedom. v, in Fig. 2: M~exp(—C,/A%3) andM ~exp(—C,/A).
Second is the finite size scaling. Since the gap opens ex-
V. CONCLUSIONS ponentially it is very difficult to localize accurately the criti-

cal line in a finite system. In the current model the situa-

In the present work we have studied the effect oftion is even more askward in the regioBsG,<0. Indeed,
symmetry-breaking perturbations in the one-dimensionajn a finite system of sizé, the critical region will seem to
SU(4) spin-orbital model. Using the low energy effective extend and the pseudocritical lines will be given by the two
field theory developed in Ref. 14, we have investigated theso+,, and isoty, curves, withtg; 2=InL, that have the
phase diagram of the SU(2)SU(2) model where the ex- opposite curvature than the true critical lide(see Fig. 4.
change in both the spinl() and the orbital §,) sectors are |n this pseudocritical region, either the spin or the orbital
different. We found that the different phases of the symmetdegrees of freedom will look massless. The phase diagram in
ric J;=J, line extend to the cas&, #J,. In particular the zero magnetic field as obtained by very recent DMRG
massless phase, governed by the S@#ed point, extends calculationd®° is in qualitative agreement with our RG
to a finite region in the planel(,J,) around the SU}) point  analysis. However, the critical line obtained in these numeri-
(J1.=K/4J,=K/4). Similarly, in the vicinity of the critical cal computations has the opposite curvature that the one loop
surface, the massive phase has also an approximat) SOresultS,. Our interpretation of this fact is that what has been
symmetry provided the anisotropy is not too large. In thisobserved are the two istgy; o) curves. This reflects once
phase, as in the isotropic case, the system spontaneousigain the nontrivial finite size scaling induced by the anisot-
breaks translational invariance and dimerizes with alternateopy.
spin and orbital singlet¥ Both spin and orbital excitation Finally, is the effect of a magnetic field. The magnetic
are coherent at wave vectke= /2. All these results remain field affects the spin degrees of freedom in the usual way. In
valid in the vicinity of the SW4) point. The question that the massless phase it leads to incommensuration in the spin
naturally arises is what happens whiérdecreases. Indeed, sector while when a gap is present, a commensurate-
in the limit K<J(; 5) one enters in the weak coupling limit incommensurate transition can occur at a critical field. How-
where magnon excitations are incoherent at wave vdctor ever, what happens to the remaining degrees of freedom
=.” In the simplest scenario, as discussed in Ref. 14, onstrongly depends on the anisotropy. In the region, where both
expects that the coherent peakkat 7/2 in the dynamical degrees of freedom do not compete, i.e., wigiG,>0, the
susceptibility will disapear at a critical value &f=K . remaining orbital and spin-orbital sector remains either
Such a special point where an oscillating component of thenassless or massive with an approximatg8Q@ymmetry.
correlation function disappears is a disorder pdirand  On the other hand, the most stricking effect occurs when the
therefore, we do not expect a phase transitiorKgtbut  spin and orbital fluctuations compete, i.e., 8;G,<0. In
rather a smooth crossover. this region the field reinforces the effect of the orbital de-

Although these results could have been anticipated on thgrees of freedom and can induce a second phase transition,
basis of the previous study of the symmetric cdssince the  of the KT type, for a sufficiently large field, from massive to
interactions are marginal, the anisotropy reveals itself in anassless approximate $4) behavior. The origin of this
nontrivial scaling of the physical quantities. Indeed, we havenontrivial effect of the magnetic field stems from the inter-
shown that the anisotropy plays its tricks in two particularplay of the presence of orbital degeneracy and anisotropy.
regions of the phase diagram wi,G,<0, whereG(;,  We hope that this transition will be observed in further ex-
=J(12— K/4 measures the departure from the(&lpoint.  periments on quasi-one-dimensional spin gapped materials
In these regions, both spin and orbital degrees of freedorwith orbital degeneracy.
compete. For instance, whed;>0 and G,<0, the spin Note addedAfter this work was completed, we became
sector tends to open a gap while the orbital one wants taware of a work by Itoiet al3® who also predict the exten-



12124
sion of the massless phase in the anisotropic region.

APPENDIX

In this appendix, we shall compute the mass ihajm the
phase C, and obtain the asymptoticshbfin the vicinity of
the critical surfaceX. As well known, within perturbation
theory the gap defines the scajg=In(1/Ma,) where all the
couplings blow up. Clearlyty, is given by the equation

X(ty) =c. (A1)

Integrating Eq.(37) and recalling the dynamic of in the
phase C we find

ool o
= € o

M - )1 IxJP(X)

where e=sign(s); P(X) is given by Eq.(38) and has only
two reals roots 0 anX*<1. In the followings, u and G4

have to be understood as initial conditions.
Performing the integrals we obtain

ty= \/%[Em(oxk)—eE(a<1>,k)]

1 [p(u
+§ W(F_1)(F[a(O),k]—eF[a(l),k])

Gs
M

1 S
p+u* 2|Gg(p+ur—1)]

whereF andE the elliptic functions of the first and the sec-
ond kind, respectively, with parameters

(A3)
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u*—u
a(u)=2 arcta ,
p
+u*—G42uu*?
k= \/p o (Ad)
u* andp? being given by
u*=1/X*,
2G3
p2=u*?— f (A5)
wu

Developingty, around a point G,.,G,.,G3.) belonging
to the critical surfac& between the phases B and<&e Fig.
2), we obtain the asymptotics

M~ A exp(—C(y1)/A%3) if G$=G5=0,

M~A exp—C(y,)/A if GS#GS, (AB)

whereA is the Euclidian distance from. The two constants
C(vy,) andC(y,) are given by

C(y1)=0.6845 G,.Y3(cosh) 23,

C( 72) = ([ 1+ ZGéc/(GlC_ G‘Zc)z]co32 0)_ 1/2,
(A7)

where ¢ is the angle to the normal &.
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