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Debye-Waller factor in solid *He and “He
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The Debye-Waller factor and the mean-squared displacement from lattice sites fottéelahd“He were
calculated with path-integral Monte Carlo at temperatures between 5 and 35 K, and densities between 38 and
67 nm 3. It was found that the mean-squared displacement exhibits finite-size scaling consistent with a
crossover between the quantum and classical limits o andN~3, respectively. The temperature depen-
dence appears to bE®, different than expected from harmonic theory. An anisotrdgicterm was also
observed in the Debye-Waller factor, indicating the presence of non-Gaussian corrections to the density
distribution around lattice sites. Our results, extrapolated to the thermodynamic limit, agree well with recent
values from scattering experiments.

. INTRODUCTION S(k)={|pul?), 1

Solid helium at low temperatures is the prototype quanwherep,=(1/y/N)=;e'k""i. The structure factor can be com-
tum crystat, since its ground state is not well described byputed directly with PIMC for finite systems df=<10000
harmonic perturbations about a minimum potential configuatoms. In a solid, the structure factor has large peaks at the
ration. For temperatures between 5 and 35 K, and densitiggciprocal-lattice vectors of the perfect lattice. It is usually

between 38 and 67 nTﬁ, the kinetic energy is alW&yS assumed that the magnitudeﬁﬁ() behaves as
greater than about 25 K and dominates over thermal ener-

gies. Solid helium has a wide range of experimentally acces- K — W)= — K22 2
sible temperatures and densities. With new scattering S(k)expt J=exn (), @

sources, the density distribution and other correlation funcyhere expt-2W) is the Debye-Waller factor. This equation

tions can be measured with unprecedented accuracy, alloWajies on the assumption that the particle densities are nor-
ing for a careful comparison between theory and expenmen;na”y distributed about the lattice sites.

It is possible to calculate the properties of helium very We will now derive a more general form of Eg). We

accur_ately using Monte Carlo methods, because the mte(M” assume a finite system, with periodic boundary condi-
atomic potential is accurately known, more accurately thag

any other atomic or molecular condensed matter system. A 10nS an_d preuse!y\I parnf:les at positions; andN per_fect

ditionally, for bosonic and distinguishable particle systems,attice sitesZ;. Using particle symmetry, we can rewrite Eqg.

path-integral Monte CarlgPIMC) methods can calculate (1) @S

equilibrium properties directly from an assumed Hamiltonian A

without significant approximation. Even in the case of solid S(k)=1+(N—1)(e'* (=), 3

3He, effects of Fermi statistics can be neglected for tempera-

tures above 0.1 K and densities slightly away from melting Where the angle bracket; denote an average over both the
In scattering, the Debye-Waller factor is the fractionaltheérmal density matrixand particles j#1. Whenk is a

intensity shift due to recoilless processes, and can be directfgciprocal-lattice vector,

related to the one-dimensional mean-squared displacement , ,

of particles from their lattice siteu?). In this paper we ek (nr) =glkluru)), (4)

compute(u?) and compare it to experimental results, obtain- ~

ing good agreement. In the process we make several intewhereu;=k-(r;—Z2;) is the displacement of particiefrom

esting observations. First, the density distribution of heliumits lattice site in the direction ok. We assume a simple

atoms is slightly non-Gaussian, a fact that had been spec®ravais lattice, and assign each particle to a lattice site. Now

lated on but not yet observed. Second, we observe sommnsider the variablex=u;—u;. Using the cumulant

unusual dependence (%) on the size of the finite system expansiofAto evaluate the average of an exponential in terms

being simulated, indicating a scaling crossover between thef the moments ok, we can write

quantum and classical regimes. The dependende®fon

the number of atomsl being simulated appears to be well- _ k? 4

described by harmonic theory. Finally, the temperature de- <e'kx>:exl< - §<X2>+ ﬂ(<x4>—3<x2>2)+ )
pendence appears to B€, rather than thd? predicted by

harmonic theory. since the odd powers ofin the expansion vanish under the

interchange & | allowed by particle symmetry. For a sys-
tem much larger than the correlation lengtlof u, which is

The static structure factor, as measured in scattering, iinite in solid helium,u, is uncorrelated withu; except for
defined as the neighbors of particle 1. Hence

A. Debye-Waller Factor

0163-1829/2000/618)/120947)/$15.00 PRB 61 12 094 ©2000 The American Physical Society



PRB 61 DEBYE-WALLER FACTOR IN SOLID *He AND “He 12 095

<X2>=2<U2)—2<U1Uj)52(uz>+0[(§/L)3], contributions are smoothly varying with respect to atomic
positions. Although newer pair potentials now exiStye

(xHy=2(u+ 6<u2>2—4<u§uj> — 4<U1Uf’> believe the Aziz potential to be sufficiently accurate for these

calculations. We implicitly test these assumptions by com-

=2(u*)+6(u*)?+ O[(&/L)°]. (6)  paring to experimental values. The pair potential was set to

Here, L is the box length. Combining Eq&3), (5). and (6), zero for intera_lto_mic dista_n_ces greater than 6 A. We deter-
we obtain eng ombining Eqe3), (5), and (6) mined that this is the minimum cutoff that could be used

without causing systematic errors in the mean-squared dis-
wk? placement. The pair potential was used to compute the exact
5(k)51+(N—1)EXF{ —k*(u?)+ ﬁ<u2>2 , () pair density matrix for the system with an imaginary time
step equal ta=1/160 K !. Using this action, the time step
where the kurtosisc is defined as the relative deviation of error was found to be negligible. We used neighbor lists to
the fourth moment from a normal distribution, achieve linear scaling of the computer time versus the num-
ber of atoms, and were able to simulate systems of up to
_ (uh) B 8 3000 atoms. Typically, about 50000 Monte Carlo passes
UG ®  Were used.
We computed the Debye-Waller factor two different
The kurtosis vanishes if the density distribution is normal inways. First(u?) was computed directly from the distance of
the scattering direction. Previous analysis of this kind hashe atoms from their lattice sites,
assumed Gaussian fluctuations, and hence neglected all

K

higher-order terms beyond the first. However, we find that 1/ 1 N
the kurtosis is not precisely zero and has directional depen- (U= —— E 2 (ri—Z)?), (12
dence. 3I\NM & =

The directional dependence is constrained by the cryst

symmetry. From Eqs(5) and (6), it follows that ‘%hereM is the number of imaginary time sliceb| is the

number of particles, and;; is the position of particleé at
imaginary time slicg. The factor of 1/3 arises because in a

((k-u)2>=2 kakﬂS(fg, (9) cubic crystal we can also average over the three spatial di-
@p rections.
For the sake of convenience, it is useful to forbid particle
((k-uy4y= 2 kakﬁkykas(;[gya (10) exchanges betvyee_n lattice sitgs so that the particle; do not
a,B.7,8 have to be periodically reassigned to the nearest site. We

whereS® S are tensors. completely symmetric in their assured localization to a lattice site by “tethering” each par-
’ ' P y sy ticle: specifying a distance from its lattice site past which all

indices. For a Bravais lattice with Inversion symmetry Fheattempted moves were rejected. The tether distance, 2.6 A,
only nonzero elements are ones with pairs of repeated ind|-

Th b f cubi @22 (s q was chosen to be on the order of, but slightly less than, the
C?f)" en, because of cubic symme 5= (U%)dag @n average nearest-neighbor distance and did not introduce a
Sugys has only two independent elemer8s,,, and Sxx-  noticeable change itu2) or the structure factor.

We can determine these elements by fitting the kurtosis The second method for computing the Debye-Waller fac-
along different crystal axes. We choosgoand«y, forfec.  or was to calculat&(k) directly from Eq.(1) from the set of

The spherically averaged kurtosis is given by all reciprocal-lattice vectors dé<9 A~! and then use Eq.
4 (7) to determing u?) and the kurtosi by a least-squares fit
—q to In[(S(k) — 1)/(N—1)]. This method has the advantage of
15 u2>2 not requiring tethering or indeed any of the assumptions used

in deriving Eq.(7). It also allows one to determine not only
:§ i E (11) (u?) but also any non-Gaussian components. Agreement be-
5 1117 5 K100- tween the two approaches shows that correlationsiimgg.
(6) do decay rapidly. Calculatingu?) either directly with
Eq. (12) or from fitting to S(k) always gave the same value
within statistical error, with similar error bafsee Fig. 1
Path-integral Monte Carlo simulations were performed as
disc_ussed in Ref. 3. Thg system be_ing simulgted consists of Il FINITE-SIZE SCALING
particles (boltzmannons in a box with periodic boundary
conditions at a fixed density. Approximating the particles as Before we can present the comparison to experiment, we
boltzmannons should be valid as long as there are no vacamust extrapolate the results obtained for a finite system to
cies and the temperature is greater than the exchange friie thermodynamic limit. We observed a very slow conver-
quency=10"% K (see Table Il, Ref. B The helium atoms gence. To carefully examine the finite-size effects we simu-
were assumed to interact pairwise with the Aziz potehtial lated much larger systentap to 3000 atomsthan had been
Although small errors in energy are expected with this po-done previously with PIMC. Even with the increased range
tential due to the absence of three-body interactions, we exef system size, the finite-size effects are not well described
pect the pair potential to describe well the density distribu-by a power law, but are instead in a crossover region. For the
tion due to the fact that three-body and higher-ordetemperature and density values studied in this paper, the

II. PIMC CALCULATIONS OF SOLID HELIUM
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FIG. 2. Numerical calculation ofA(k) as a function of
hoy/kgT, for a damped harmonic oscillator with linewidti,
=0.2w,. Shown is the crossover between the quantum limit
(dashed lingand the classical limitdotted ling, which allows one
)%o estimate the range of system sizes affected by the crossover
egion.

FIG. 1. Extrapolation of finite PIMC simulation data to the ther-
modynamic limit, for fcc*He, V,,=10.98 cnf, T=20.0 K. (u?)
was calculated by direct averagiiigpen circley and by fitting to
S(k) data(open triangles Both methods always agreed within sta-
tistical error bars. Least-squares fitting was used to fit the directl
averaged data to ER3). The experimental data poiftgolid circle
is from Arms and Simmons.

so that
crossover region appears to span the range of system sizes 28
available to present computer simulatioNfpssove=10°), (ud)= f d3k A(K) (15)
requiring careful fitting to obtain values in the thermody- )
namic limit.

Young and Aldef have used Debye theory to analyze the Let us assume that the effect of the periodic boundary
finite-size dependence of a system of classical hard sphergenditions is to replace the integral in H4.3) with a sum
and determined thgu?)op~2*TN~Y3 They found that this

2\—/,2 2
scaling was accurately able to fit values obtained with S(u%)=(u%).—(U)n
molecular-dynamics simulations. Recent classical Monte 23 28
Carlo calculation on a Lennard-Jones model of an fcc &olid = Sf d3k A(k)— > AKKS. (16)
also found the same dependence. (27) (2m)3

Runge and Chestetooked at the size effects of a hard-
sphere system using PIMC. Using the same Debye theory. - 13 . i
but now taking quantum effects into account, they estimate@VeN Py ke=2m(p/N)™* for a cubic simulation cell. The
that the finite-size effects scale Bs 2 at zero temperature main contribution to the finite-size error is due to the omis-

and found a crossover from the quantum to the classical scafio" Of thek=0 value. If we further assume that for small
ing (N~13) as the temperature was increased. values of k that A(k) factors into an analytic function

MacFarland et all® used shadow wave functions at (smooth and continuous ne&r=0) and a singular factor

T=0 to compute the finite-size scaling of the Debye-Waller/ K| "> then it can be shown that the dominant term in Eq.
factor for solid “He. However, these calculations neglected(16) 1S
the effects of long-range correlations in the wave function 2 13— v N(W/3)—1
induced by phonons, which are implicitly included in PIMC. Aueeke =N ' 17

Because of the neglect of these phonons, they found classicAtcording to this theory, one must determine the expoment

finite-size scaling proportional tN_lls-_ of the singular part of the Green’s functi@x(k), atk=0.
We used harmonic theory to derive a reasonable func- For a harmonic lattice,

tional form for the finite-size effects dfu?) in a crossover
region and the width of that crossover region. In general, one T
can write the mean-squared displacement as Anarmonid K, @) ZmW(w— w) —dwtoy], (18

rThe finite spacing ok is a function of the system size, and is

d*k [ do Ak,w) wherew is the frequency of a phonon of wave veckoand
(2m)° 27 pho_1’ (13)  mis the mass. In the limit of smak, the dispersionw, is
Tr linear ink. Integrating ovelw, we obtain

=22

whereA(k, ) is the spectral function for the displacement-
displacement Green’s functioa®=1/p is the volume of the AK) = h icotr( Bh wk> (19
unit cell, andB=1/kgT. It is useful to define m wy 2 )

= dw A(K,®) Thus forkgT>% w, we findv=2, but atT~0, v=1, as did
© Alk,w) (14 Young and Aldef and Runge and ChesteA crossover be-

A(k)= —
— 27 ghheo—q tween the two scaling forms occursfab, ~kgT.
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TABLE I. PIMC results{u?)., was estimated by fitting finite PIMC data to the function given in @8),
assuming a sound spese 4000+ 2000 m/sec. The listed uncertainty(in?)., represents the range of fitted
values corresponding to the uncertaintysinThe errors in the energies represent the statistical uncertainties
in the final digit, while the experimental errors are the total uncertainties as estimated by the auffors.
represents the estimated kurtosis in ¢h60) direction.x was estimated for the largest system size available,
usuallyN=1372.

Type Vm(cn]B) T(K) Texpt(K) <u2>00(1072 AZ) <u2>exp1(1072 AZ) K100 Ekinetic (K) Etot (K)

fcc “He  10.98 20.00 20.25 9.739) 9.9927) 2 0.09 80.3(2) 50.242)
fcc “He  10.98 17.78 9.132) 0.08 79.104) 48.025)
fcc *He  10.98 16.84 8.123 0.07 79.1%6) 47.536)
fcc “He  10.98 16.00 8.181) 0.07 78.514) 46.644)
fcc “He  10.98 15.24 8.499 0.06 78.616) 46.446)
fcc “He  10.98 13.33 8.386) 0.06 77.684) 45.084)
fcc “He  10.98  10.00 8.08) 0.06 77.062) 43.992)
fcc “He  10.98  8.00 7.89) 0.06 76.874) 43.673)
fcc “He  10.98  5.00 7.79) 0.06 76.802) 43.502)
fcc “He  10.39 24.60 24.40 8.88B) 8.2340)° 0.09 90.414) 68.715)
fcc “He  10.02 26.67 25.94 8.961) 8.4318)" 0.09 96.484) 81.534)
fcc “He  9.02 3556 38.00 6.994) 5.66°¢ 0.09 118.147) 133.748)
fcc “He  9.02  22.86 5.721) 0.04 110.68) 120.775)
fcc “He  9.43  21.33 6.321) 0.05 109.146) 114.166)
fcc “He  9.97 26.67 28.00 8.139) 6.93¢ 0.08 101.3%) 94.265)
fcc “He  9.97 18.82 19.00 7.020) 6.20° 0.05 98.826) 88.036)
fcc ®He  11.54 17.78 18.13 11.410) 11.4311) 2 0.10 86.143) 58.533)
fcc SHe  11.54 10.00 10.402) 0.08 84.1%4) 54.684)
fcc ®He  11.54  5.00 9.7®) 0.12 83.885) 54.24)
fcc SHe  10.98 17.78 9.829 0.09 93.185 70.395)
fcc SHe  10.00 29.09 9.076) 0.09 113.745) 110.0G6)
hcp*He 1212 1455 14.23 11.1B) 11.2528) 2 66.444) 27.954)
hcp*He 1212 11.85 12.00 10.21) 10.2617) 2 65.566) 26.166)
hcp*He 12.12  5.00 9.58) 64.373) 24.153)
hcp*He 1572 571  5.80 17.403) @ 17.31(18) © 40.663) 0.783)

hcp*He 10.98 5.00 7.78) 76.744)  43.473)
hcp3He 11.90 16.84 16.81 11.84) 11.9626) 2 82.1716) 52.136)
hcp3He 12.81 1231 1254 13.08) 13.4327)2 71.144) 36.374)

aArms and SimmongRef. 15. Direct x-ray measurements.

bVenkataraman and SimmoiRef. 16. Direct X-ray measurements.

“Thomlinson, Eckert, and ShirariRef. 17. Indirect neutron measurements.

dExtrapolated using speed of sousrd 1000+ 200 m/sec, based on experimental data near this de(fraty
19).

Stassis, Khatamian, and Klir®ef. 18. Direct neutron measurements.

Solid helium is known to have a significant phonon line- which givesy=1. ForT>0, Eq.(20) can be integrated nu-
width. For smallk, the phonon linewidth can be approxi- merically. As before, we find’=2 whenkgT>%w, and v
mated to bey,=0.2w,.'**®For a damped harmonic lattice, =1 whenkgT<#%w,, With a crossover abw ~kgT, With

width in Aw, /kgT equal to that of the undamped harmonic

Agarmsebk, ©) = Yk lattice.
ped™ 2Mwy (w0—wy )%+ 7,5/4 The width of the crossover region is defined in terms of
the ratioZw, /kgT (see Fig. 2 The phonons excluded from
Yk the finite system have linear dispersion with an upper bound
- (0+ w2+ y2l4) 20 of w=sk.=2msp¥ N3 wheresis the speed of sound. By
choosing typical values for temperature, density and sound
Integrating overw, we find that forT=0, speed, we can estimate the width of the crossover region as a
function of the number of particleN. For example, if we
A(k):ﬁtan—l @) o i (21)  assume the speed of soundsis 4.0x 10*° A/sec, we find
My Y| Ok that for temperature T=20.0 K and density p
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) FIG. 4. (1k?)In{[S(k)—1]/(N—1)} versusk? for fcc “He, Vp,

FIG. 3. Temperature dependence(af).., using the extrapo- ~10.98 cni, N=864, T=20.0 K. The kurtosis is given by the
lated values from Table I. Shown3 are values for ftide, Vim  slope, and agrees with direct calculations(of)/(u?)?—3. In the
=10.98 cnf (solid circles, and fcc *He, Vy=11.54 cnt (solid (100 direction (dashed ling the fitted kurtosis was 0.140.03,
squares while the direct value was 0.690.03. In the(111) direction (dot-

i ] ted ling), the fitted kurtosis was 0.@50.03, while the direct value
=0.055 A3, Nirossover- 10°—1C. A simple power law fitto  was 0.02-0.03.

system sizes in this range is inaccurate.
If we assume a harmonic spectrum, we can usgE3).to  +2000 m/sec, which is larger than experimental values by

write about a factor of 2 on average. For systems away from melt-
) ) ing, the fitting was insensitive to the value Bf and the
5<u2>xf ‘dk sz(k)ocf ‘dk kcot)—( 'Bﬁ“’k) propaggtgd error fr(_)rB was on th(—:-2 same order of mazgnitude
0 0 2 as the fitting error, in estimating“).. . The reducedgy for

systems away from melting was typically between 0.1 and
1—exp(—BN™*3) 1.0. For systems near melting, the fitting was much more
BN 13 sensitive to the estimated range Bif particularly the lower
bound, and the error bar ofu®).,, was completely deter-
+O(N™Y, (220 mined by the uncertainty i8. The reducedy? for these
systems was usually between 5 and 10. A more accurate
functional form, perhaps one which takes the phonon line-
width into account, would greatly improve the accuracy of
extrapolating to the thermodynamic limit for these systems.
Our PIMC calculations agree with all direct scattering
measurements dfu?), when extrapolated to the thermody-
(23 namic limit. We are able to confirm both computational and
c experimental methods to an accuracy of 5% in the mean-
squared displacement. Near melting, the accuracy of the

values of(i%) versusN, and therefore cannot be accurately IMC values was considerably reduced, due to uncertainty in
determined by fitting. Instead, by using physically reasonabl he functional form of the finite-size effects. PIMC values

values ofB, we can use least-squares fittifaj A and(u?).,) v hidh th the indirect tteri
to extrapolate our PIMC data to the thermodynamic limit and/e'€ genera’ly higher an the indirect scattering
measurements. Because the indirect measurements as-

get values fou?).. (see Table)l The speed of sounsican L : :
be obtained from experimental measurements of isotherm gmed contnbl_mons fr_om smgle-phono_n processes only, th|s
iscrepancy gives evidence for the importance of multi-

compressibilityx,* using the relationshi . . .
P Y g P phonon processes in solid helium.

OCN_1/3

1+In(

whereB=27B%sp*. The functional form ofu?) can now
be written as

1—exp(—BN~Y3)

1+In BN-17

<U2>=<U2>w—AN_1/3

The parameteB is not effectively constrained by the PIM

1

s?= , (24 IV. TEMPERATURE DEPENDENCE
PMKT

Using Eq.(19), it is straightforward to show that the har-

However, we obtained poor fits using the valueBajbtained ; - 2
|monic approximation predictai©).. to have temperature de-

in this manner. The lack of self-consistency with physical
parameters shows that the undamped harmonic lattice us@gndence of the form

to derive EQq.(23) is insufficient for describing the mean- 2\ _/;2\T=0 2

squared displacement in solid helium. A larger rangeBof (U =(u%), "+ CT™. @9
was required for reasonable fitting, both due to anisotropy itHowever, our extrapolated values @f?) appear to fit to a

s and the approximations used in calculating the functionall® power law, rather thai? for 5<T=<20 K (see Fig. 3.
form Eq. (23). We were able to obtain reasonable fitting by With less than a decade in temperature, it is difficult to draw
using values of B which correspond to s=4000 any direct conclusions from this, although it may indicate
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0.12 — ' to be independent of both temperature and density. We found
SV e Nobd : that is independent oil, for values ofN=500. For smaller
01t R ] system sizes, the finite-size effects are large, but drop off
x quickly with increasingN. However, at the wave vectoks
% oo0sf s ] <9 A1 the effect of the kurtosis is only a few percent,
2 84 making this term difficult to observe in scattering
0.06 - 2 s a ] experimentg31°16.18.20
¢~ Vitiello et al?! have computed spherically averaged kur-
toses of 0.05(6) and 0.04%5) at zero temperature using
0.04 ' ' . 3
0 10 20 30 shadow wave functions, for molar volumes of 20.5 “and
T(K) . .
18.3 cni. Using more accurate shadow wave functions,
0.3 ' ' MacFarlandet all° computed a spherically averaged kurto-
0.5 | e To00 K Nesoo ] sis of 0.0426), for a molar volume of 18.3 cf These val-
os o T=200K, N=500 ues are consistent with the values computed here.
« O
g o5y VI. CONCLUSIONS
=
AN, PIMC simulations of the Debye-Waller factor in solid he-
0.05 | — — ] lium agree with experimental results to better than 5% accu-
racy, indicating that the assumed potential, the computational
09.5 105 15 125 methods, and the experimental analysis are correct within the
v, (em) stated errors. We determined the first non-Gaussian contribu-

tion, a directionally dependent kurtosis. The finite-size ef-
fects were found to be in a crossover region between the
lassical and quantum scaling limits, and hence a power-law
ependence was insufficient for extrapolation to the thermo-
dynamic limit. The harmonic approximation gave an ap-
roximate functional form fo u?) which was used to ex-
rapolate finite values to the thermodynamic limit. The
extrapolated values agree with all available direct scattering
measurements, although the extrapolation became more sen-
sitive with increased proximity to the melting transition, with
V. NON-GAUSSIAN CORRECTIONS TO (u?) correspondingly larger uncertainties. Higher extrapolation
accuracy could be obtained with a more accurate scaling

We have determined the deviation of the density from &gy The effective temperature dependencéud) appears
Gaussian distribution by two methods. The first was fitting pe closer tar3. rather than tha2 predicted by harmonic
In[S(k)] to a polynomial ink?. As shown in Eq(7), the linear heory. ’

term is(u?), the quadratic term is proportional to the kurto-
sis k. We also directly calculated the kurtosis in t{El1)
and(100 directions, using Eq(8). The kurtosis was found ACKNOWLEDGMENTS

to be nonzero and anisotropic in the fcc solid helium systems  The authors wish to thank R. O. Simmons, G. Baym, G.
we studied(see Fig. 4. The spherically averaged kurtosis H. Bauer, and N. Goldenfeld for useful discussions. This
at 10.98 cm is 0.07420). Shown in Fig. 5 are graphs with research was carried out on the Origin 2000 at the National
kurtosis in the(100 direction as a function of density and Center for Supercomputing Applications, and was supported
temperature. The kurtosis is roughly twice as large in sysby the NASA Microgravity Research Division, Fundamental
tems near melting. Away from melting, the kurtosis appear$hysics Program.

FIG. 5. Kurtosisk vs molar volumeV, and temperaturd, in
the (100 direction, for fcc*He. The kurtosis is noticeably larger
near the experimental melting line, but is otherwise independent o
temperature and density.

that harmonic theory is insufficient to accurately describ
solid helium, and that higher order terms dominate the tem
perature dependence.
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