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Debye-Waller factor in solid 3He and 4He

E. W. Draeger and D. M. Ceperley
Department of Physics and National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois 6

~Received 14 October 1999!

The Debye-Waller factor and the mean-squared displacement from lattice sites for solid3He and4He were
calculated with path-integral Monte Carlo at temperatures between 5 and 35 K, and densities between 38 and
67 nm23. It was found that the mean-squared displacement exhibits finite-size scaling consistent with a
crossover between the quantum and classical limits ofN22/3 andN21/3, respectively. The temperature depen-
dence appears to beT3, different than expected from harmonic theory. An anisotropick4 term was also
observed in the Debye-Waller factor, indicating the presence of non-Gaussian corrections to the density
distribution around lattice sites. Our results, extrapolated to the thermodynamic limit, agree well with recent
values from scattering experiments.
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I. INTRODUCTION

Solid helium at low temperatures is the prototype qu
tum crystal1, since its ground state is not well described
harmonic perturbations about a minimum potential confi
ration. For temperatures between 5 and 35 K, and dens
between 38 and 67 nm23, the kinetic energy is always
greater than about 25 K and dominates over thermal e
gies. Solid helium has a wide range of experimentally acc
sible temperatures and densities. With new scatte
sources, the density distribution and other correlation fu
tions can be measured with unprecedented accuracy, al
ing for a careful comparison between theory and experim

It is possible to calculate the properties of helium ve
accurately using Monte Carlo methods, because the in
atomic potential is accurately known, more accurately th
any other atomic or molecular condensed matter system.
ditionally, for bosonic and distinguishable particle system
path-integral Monte Carlo~PIMC! methods can calculat
equilibrium properties directly from an assumed Hamilton
without significant approximation. Even in the case of so
3He, effects of Fermi statistics can be neglected for temp
tures above 0.1 K and densities slightly away from melti

In scattering, the Debye-Waller factor is the fraction
intensity shift due to recoilless processes, and can be dire
related to the one-dimensional mean-squared displacem
of particles from their lattice siteŝu2&. In this paper we
computê u2& and compare it to experimental results, obta
ing good agreement. In the process we make several in
esting observations. First, the density distribution of heli
atoms is slightly non-Gaussian, a fact that had been sp
lated on but not yet observed. Second, we observe s
unusual dependence of^u2& on the size of the finite system
being simulated, indicating a scaling crossover between
quantum and classical regimes. The dependence of^u2& on
the number of atomsN being simulated appears to be we
described by harmonic theory. Finally, the temperature
pendence appears to beT3, rather than theT2 predicted by
harmonic theory.

A. Debye-Waller Factor

The static structure factor, as measured in scattering
defined as
PRB 610163-1829/2000/61~18!/12094~7!/$15.00
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S~k!5^urku2&, ~1!

whererk[(1/AN)( ie
ik•r i. The structure factor can be com

puted directly with PIMC for finite systems ofN&10 000
atoms. In a solid, the structure factor has large peaks at
reciprocal-lattice vectors of the perfect lattice. It is usua
assumed that the magnitude ofS(k) behaves as

S~k!}exp~22W!>exp~2k2^u2&!, ~2!

where exp(22W) is the Debye-Waller factor. This equatio
relies on the assumption that the particle densities are
mally distributed about the lattice sites.

We will now derive a more general form of Eq.~2!. We
will assume a finite system, with periodic boundary con
tions and preciselyN particles at positionsr i andN perfect
lattice sitesZ i . Using particle symmetry, we can rewrite E
~1! as

S~k!511~N21!^eik•(r12r j)& j , ~3!

where the angle brackets^& j denote an average over both th
thermal density matrixand particles j Þ1. When k is a
reciprocal-lattice vector,

eik•(r12r j)5eik(u12uj ), ~4!

whereui5 k̂•(r i2Zi) is the displacement of particlei from
its lattice site in the direction ofk. We assume a simple
Bravais lattice, and assign each particle to a lattice site. N
consider the variablex[u12uj . Using the cumulant
expansion2 to evaluate the average of an exponential in ter
of the moments ofx, we can write

^eikx&5expS 2
k2

2
^x2&1

k4

24
~^x4&23^x2&2!1••• D , ~5!

since the odd powers ofx in the expansion vanish under th
interchange 1↔ j allowed by particle symmetry. For a sys
tem much larger than the correlation lengthj of u, which is
finite in solid helium,u1 is uncorrelated withuj except for
the neighbors of particle 1. Hence
12 094 ©2000 The American Physical Society
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PRB 61 12 095DEBYE-WALLER FACTOR IN SOLID 3He AND 4He
^x2&52^u2&22^u1uj&>2^u2&1O@~j/L !3#,

^x4&52^u4&16^u2&224^u1
3uj&24^u1uj

3&

>2^u4&16^u2&21O@~j/L !3#. ~6!

Here,L is the box length. Combining Eqs.~3!, ~5!, and~6!,
we obtain

S~k!>11~N21!expS 2k2^u2&1
kk4

12
^u2&2D , ~7!

where the kurtosisk is defined as the relative deviation o
the fourth moment from a normal distribution,

k[
^u4&

^u2&2
23. ~8!

The kurtosis vanishes if the density distribution is normal
the scattering direction. Previous analysis of this kind h
assumed Gaussian fluctuations, and hence neglecte
higher-order terms beyond the first. However, we find t
the kurtosis is not precisely zero and has directional dep
dence.

The directional dependence is constrained by the cry
symmetry. From Eqs.~5! and ~6!, it follows that

^~k•u!2&5(
a,b

kakbSab
(2) , ~9!

^~k•u!4&5 (
a,b,g,d

kakbkgkdSabgd
(4) ~10!

whereS(2), S(4) are tensors, completely symmetric in the
indices. For a Bravais lattice with inversion symmetry t
only nonzero elements are ones with pairs of repeated i
ces. Then, because of cubic symmetry,Sab

(2)5^u2&dab and
Sabgd

(4) has only two independent elementsSxxyy and Sxxxx.
We can determine these elements by fitting the kurto
along different crystal axes. We choosek100 andk111 for fcc.
The spherically averaged kurtosis is given by

k̄[3F ^r 4&

15̂ u2&2
21G

5
3

5
k1111

2

5
k100. ~11!

II. PIMC CALCULATIONS OF SOLID HELIUM

Path-integral Monte Carlo simulations were performed
discussed in Ref. 3. The system being simulated consis
particles ~boltzmannons! in a box with periodic boundary
conditions at a fixed density. Approximating the particles
boltzmannons should be valid as long as there are no va
cies and the temperature is greater than the exchange
quency>1026 K ~see Table II, Ref. 3!. The helium atoms
were assumed to interact pairwise with the Aziz potenti4.
Although small errors in energy are expected with this p
tential due to the absence of three-body interactions, we
pect the pair potential to describe well the density distrib
tion due to the fact that three-body and higher-ord
s
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contributions are smoothly varying with respect to atom
positions. Although newer pair potentials now exist,5,6 we
believe the Aziz potential to be sufficiently accurate for the
calculations. We implicitly test these assumptions by co
paring to experimental values. The pair potential was se
zero for interatomic distances greater than 6 Å. We de
mined that this is the minimum cutoff that could be us
without causing systematic errors in the mean-squared
placement. The pair potential was used to compute the e
pair density matrix for the system with an imaginary tim
step equal tot51/160 K21. Using this action, the time ste
error was found to be negligible. We used neighbor lists
achieve linear scaling of the computer time versus the nu
ber of atoms, and were able to simulate systems of up
3000 atoms. Typically, about 50 000 Monte Carlo pas
were used.

We computed the Debye-Waller factor two differe
ways. First,̂ u2& was computed directly from the distance
the atoms from their lattice sites,

^u2&5
1

3 K 1

NM (
i 51

N

(
j 51

M

~r i j 2Z i !
2L , ~12!

where M is the number of imaginary time slices,N is the
number of particles, andr i j is the position of particlei at
imaginary time slicej. The factor of 1/3 arises because in
cubic crystal we can also average over the three spatia
rections.

For the sake of convenience, it is useful to forbid partic
exchanges between lattice sites so that the particles do
have to be periodically reassigned to the nearest site.
assured localization to a lattice site by ‘‘tethering’’ each p
ticle: specifying a distance from its lattice site past which
attempted moves were rejected. The tether distance, 2.
was chosen to be on the order of, but slightly less than,
average nearest-neighbor distance and did not introduc
noticeable change in̂u2& or the structure factor.

The second method for computing the Debye-Waller f
tor was to calculateS(k) directly from Eq.~1! from the set of
all reciprocal-lattice vectors ofk<9 Å21 and then use Eq
~7! to determinê u2& and the kurtosisk by a least-squares fi
to ln@„S(k)21…/(N21)#. This method has the advantage
not requiring tethering or indeed any of the assumptions u
in deriving Eq.~7!. It also allows one to determine not onl
^u2& but also any non-Gaussian components. Agreement
tween the two approaches shows that correlations inu in Eq.
~6! do decay rapidly. Calculatinĝu2& either directly with
Eq. ~12! or from fitting to S(k) always gave the same valu
within statistical error, with similar error bars~see Fig. 1!.

III. FINITE-SIZE SCALING

Before we can present the comparison to experiment,
must extrapolate the results obtained for a finite system
the thermodynamic limit. We observed a very slow conv
gence. To carefully examine the finite-size effects we sim
lated much larger systems~up to 3000 atoms! than had been
done previously with PIMC. Even with the increased ran
of system size, the finite-size effects are not well describ
by a power law, but are instead in a crossover region. For
temperature and density values studied in this paper,
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12 096 PRB 61E. W. DRAEGER AND D. M. CEPERLEY
crossover region appears to span the range of system
available to present computer simulation (Ncrossover<105),
requiring careful fitting to obtain values in the thermod
namic limit.

Young and Alder7 have used Debye theory to analyze t
finite-size dependence of a system of classical hard sph
and determined that^u2&}r22/3TN21/3. They found that this
scaling was accurately able to fit values obtained w
molecular-dynamics simulations. Recent classical Mo
Carlo calculation on a Lennard-Jones model of an fcc so8

also found the same dependence.
Runge and Chester9 looked at the size effects of a hard

sphere system using PIMC. Using the same Debye the
but now taking quantum effects into account, they estima
that the finite-size effects scale asN22/3 at zero temperature
and found a crossover from the quantum to the classical s
ing (N21/3) as the temperature was increased.

MacFarland et al.10 used shadow wave functions
T50 to compute the finite-size scaling of the Debye-Wal
factor for solid 4He. However, these calculations neglect
the effects of long-range correlations in the wave funct
induced by phonons, which are implicitly included in PIMC
Because of the neglect of these phonons, they found clas
finite-size scaling proportional toN21/3.

We used harmonic theory to derive a reasonable fu
tional form for the finite-size effects of̂u2& in a crossover
region and the width of that crossover region. In general,
can write the mean-squared displacement as11

^u2&5a3E d3k

~2p!3E dv

2p

A~k,v!

eb\v21
, ~13!

whereA(k,v) is the spectral function for the displacemen
displacement Green’s function,a351/r is the volume of the
unit cell, andb51/kBT. It is useful to define

A~k!5E
2`

` dv

2p

A~k,v!

eb\v21
~14!

FIG. 1. Extrapolation of finite PIMC simulation data to the the
modynamic limit, for fcc4He, Vm510.98 cm3, T520.0 K. ^u2&
was calculated by direct averaging~open circles! and by fitting to
S(k) data~open triangles!. Both methods always agreed within st
tistical error bars. Least-squares fitting was used to fit the dire
averaged data to Eq.~23!. The experimental data point~solid circle!
is from Arms and Simmons.
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^u2&5
a3

~2p!3E d3k A~k!. ~15!

Let us assume that the effect of the periodic bound
conditions is to replace the integral in Eq.~13! with a sum

d^u2&[^u2&`2^u2&N

5
a3

~2p!3E d3k A~k!2
a3

~2p!3 (
kÞ0

A~k!kc
3 . ~16!

The finite spacing ofk is a function of the system size, and
given by kc52p(r/N)1/3 for a cubic simulation cell. The
main contribution to the finite-size error is due to the om
sion of thek50 value. If we further assume that for sma
values of k that A(k) factors into an analytic function
~smooth and continuous neark50) and a singular factor
uku2n, then it can be shown that the dominant term in E
~16! is

d^u2&}kc
32n}N(n/3)21. ~17!

According to this theory, one must determine the exponenn
of the singular part of the Green’s functionA(k), at k50.

For a harmonic lattice,

Aharmonic~k,v!5
2p\

2mvk
@d~v2vk!2d~v1vk!#, ~18!

wherevk is the frequency of a phonon of wave vectork and
m is the mass. In the limit of smallk, the dispersionvk is
linear in k. Integrating overv, we obtain

A~k!5
\

m

1

vk
cothS b\vk

2 D . ~19!

Thus forkBT@\vk we findn52, but atT'0, n51, as did
Young and Alder7 and Runge and Chester.9 A crossover be-
tween the two scaling forms occurs at\vk'kBT.

ly

FIG. 2. Numerical calculation ofA(k) as a function of
\vk /kBT, for a damped harmonic oscillator with linewidthgk

50.2vk . Shown is the crossover between the quantum lim
~dashed line! and the classical limit~dotted line!, which allows one
to estimate the range of system sizes affected by the cross
region.
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TABLE I. PIMC results.̂ u2&` was estimated by fitting finite PIMC data to the function given in Eq.~23!,
assuming a sound speeds5400062000 m/sec. The listed uncertainty in^u2&` represents the range of fitte
values corresponding to the uncertainty ins. The errors in the energies represent the statistical uncertai
in the final digit, while the experimental errors are the total uncertainties as estimated by the authork100

represents the estimated kurtosis in the^100& direction.k was estimated for the largest system size availab
usuallyN51372.

Type Vm(cm3) T ~K! Texpt ~K! ^u2&`(1022 Å 2) ^u2&expt(1022 Å 2) k100 Ekinetic ~K! Etot ~K!

fcc 4He 10.98 20.00 20.25 9.77~39! 9.99~27! a 0.09 80.30~2! 50.24~2!

fcc 4He 10.98 17.78 9.15~32! 0.08 79.10~4! 48.02~5!

fcc 4He 10.98 16.84 8.71~23! 0.07 79.15~6! 47.52~6!

fcc 4He 10.98 16.00 8.76~21! 0.07 78.51~4! 46.64~4!

fcc 4He 10.98 15.24 8.49~18! 0.06 78.61~6! 46.44~6!

fcc 4He 10.98 13.33 8.36~16! 0.06 77.63~4! 45.08~4!

fcc 4He 10.98 10.00 8.02~8! 0.06 77.06~2! 43.99~2!

fcc 4He 10.98 8.00 7.89~7! 0.06 76.87~4! 43.67~3!

fcc 4He 10.98 5.00 7.79~5! 0.06 76.80~2! 43.50~2!

fcc 4He 10.39 24.60 24.40 8.89~53! 8.23~40! b 0.09 90.41~4! 68.71~5!

fcc 4He 10.02 26.67 25.94 8.29~61! 8.43~18! b 0.09 96.48~4! 81.53~4!

fcc 4He 9.02 35.56 38.00 6.91~94! 5.66c 0.09 118.14~7! 133.74~8!

fcc 4He 9.02 22.86 5.77~21! 0.04 110.68~5! 120.77~5!

fcc 4He 9.43 21.33 6.31~21! 0.05 109.14~6! 114.16~6!

fcc 4He 9.97 26.67 28.00 8.14~58! 6.93c 0.08 101.33~5! 94.26~5!

fcc 4He 9.97 18.82 19.00 7.04~20! 6.20c 0.05 98.82~6! 88.03~6!

fcc 3He 11.54 17.78 18.13 11.41~40! 11.43~11! a 0.10 86.14~3! 58.53~3!

fcc 3He 11.54 10.00 10.00~12! 0.08 84.15~4! 54.68~4!

fcc 3He 11.54 5.00 9.72~5! 0.12 83.88~5! 54.22~4!

fcc 3He 10.98 17.78 9.87~28! 0.09 93.18~5! 70.39~5!

fcc 3He 10.00 29.09 9.07~76! 0.09 113.74~5! 110.00~6!

hcp 4He 12.12 14.55 14.23 11.17~13! 11.25~28! a 66.44~4! 27.95~4!

hcp 4He 12.12 11.85 12.00 10.24~13! 10.26~17! a 65.56~6! 26.16~6!

hcp 4He 12.12 5.00 9.52~5! 64.37~3! 24.15~3!

hcp 4He 15.72 5.71 5.80 17.40~13! d 17.31~18! e 40.66~3! 0.78~3!

hcp 4He 10.98 5.00 7.78~3! 76.74~4! 43.47~3!

hcp 3He 11.90 16.84 16.81 11.84~24! 11.96~26! a 82.17~6! 52.13~6!

hcp 3He 12.81 12.31 12.54 13.26~19! 13.43~27! a 71.14~4! 36.37~4!

aArms and Simmons~Ref. 15!. Direct x-ray measurements.
bVenkataraman and Simmons~Ref. 16!. Direct x-ray measurements.
cThomlinson, Eckert, and Shirane~Ref. 17!. Indirect neutron measurements.
dExtrapolated using speed of sounds510006200 m/sec, based on experimental data near this density~Ref.
19!.

eStassis, Khatamian, and Kline~Ref. 18!. Direct neutron measurements.
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Solid helium is known to have a significant phonon lin
width. For smallk, the phonon linewidth can be approx
mated to begk>0.2vk.

12,13 For a damped harmonic lattice

Adamped~k,v!5
\

2mvk
S gk

~v2vk!
21gk

2/4

2
gk

~v1vk!
21gk

2/4
D . ~20!

Integrating overv, we find that forT50,

A~k!5
2\

mvk
tan21S 2vk

gk
D}

1

vk
, ~21!
which givesn51. ForT.0, Eq. ~20! can be integrated nu
merically. As before, we findn52 whenkBT@\vk and n
51 whenkBT!\vk , with a crossover at\vk'kBT, with
width in \vk /kBT equal to that of the undamped harmon
lattice.

The width of the crossover region is defined in terms
the ratio\vk /kBT ~see Fig. 2!. The phonons excluded from
the finite system have linear dispersion with an upper bo
of vk5skc52psr1/3/N1/3, wheres is the speed of sound. By
choosing typical values for temperature, density and so
speed, we can estimate the width of the crossover region
function of the number of particlesN. For example, if we
assume the speed of sound iss>4.031013 Å/sec, we find
that for temperature T520.0 K and density r
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50.055 Å23, Ncrossover;102–105. A simple power law fit to
system sizes in this range is inaccurate.

If we assume a harmonic spectrum, we can use Eq.~19! to
write

d^u2&}E
0

kc
dk k2A~k!}E

0

kc
dk kcothS b\vk

2 D
}N21/3F11 lnS 12exp~2BN21/3!

BN21/3 D G
1O~N21!, ~22!

whereB[2pb\sr1/3. The functional form of̂ u2& can now
be written as

^u2&5^u2&`2AN21/3F11 lnS 12exp~2BN21/3!

BN21/3 D G .

~23!

The parameterB is not effectively constrained by the PIMC
values of^u2& versusN, and therefore cannot be accurate
determined by fitting. Instead, by using physically reasona
values ofB, we can use least-squares fitting~of A and^u2&`)
to extrapolate our PIMC data to the thermodynamic limit a
get values for̂ u2&` ~see Table I!. The speed of sounds can
be obtained from experimental measurements of isother
compressibilitykT,14 using the relationship

s25
1

rmkT
, ~24!

However, we obtained poor fits using the value ofB obtained
in this manner. The lack of self-consistency with physic
parameters shows that the undamped harmonic lattice
to derive Eq.~23! is insufficient for describing the mean
squared displacement in solid helium. A larger range oB
was required for reasonable fitting, both due to anisotrop
s and the approximations used in calculating the functio
form Eq. ~23!. We were able to obtain reasonable fitting
using values of B which correspond to s54000

FIG. 3. Temperature dependence of^u2&` , using the extrapo-
lated values from Table I. Shown are values for fcc4He, Vm

510.98 cm3 ~solid circles!, and fcc 3He, Vm511.54 cm3 ~solid
squares!.
le
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62000 m/sec, which is larger than experimental values
about a factor of 2 on average. For systems away from m
ing, the fitting was insensitive to the value ofB, and the
propagated error fromB was on the same order of magnitud
as the fitting error, in estimatinĝu2&` . The reducedx2 for
systems away from melting was typically between 0.1 a
1.0. For systems near melting, the fitting was much m
sensitive to the estimated range ofB, particularly the lower
bound, and the error bar on̂u2&` was completely deter-
mined by the uncertainty inB. The reducedx2 for these
systems was usually between 5 and 10. A more accu
functional form, perhaps one which takes the phonon li
width into account, would greatly improve the accuracy
extrapolating to the thermodynamic limit for these system

Our PIMC calculations agree with all direct scatterin
measurements of̂u2&, when extrapolated to the thermody
namic limit. We are able to confirm both computational a
experimental methods to an accuracy of 5% in the me
squared displacement. Near melting, the accuracy of
PIMC values was considerably reduced, due to uncertaint
the functional form of the finite-size effects. PIMC value
were generally higher than the indirect scatteri
measurements.17 Because the indirect measurements
sumed contributions from single-phonon processes only,
discrepancy gives evidence for the importance of mu
phonon processes in solid helium.

IV. TEMPERATURE DEPENDENCE

Using Eq.~19!, it is straightforward to show that the ha
monic approximation predictŝu2&` to have temperature de
pendence of the form

^u2&`5^u2&`
T501CT2. ~25!

However, our extrapolated values of^u2& appear to fit to a
T3 power law, rather thanT2 for 5<T<20 K ~see Fig. 3!.
With less than a decade in temperature, it is difficult to dr
any direct conclusions from this, although it may indica

FIG. 4. (1/k2)ln$@S(k)21#/(N21)% versusk2 for fcc 4He, Vm

510.98 cm3, N5864, T520.0 K. The kurtosisk is given by the
slope, and agrees with direct calculations of^u4&/^u2&223. In the
^100& direction ~dashed line!, the fitted kurtosis was 0.1160.03,
while the direct value was 0.0960.03. In the^111& direction ~dot-
ted line!, the fitted kurtosis was 0.0560.03, while the direct value
was 0.0260.03.
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PRB 61 12 099DEBYE-WALLER FACTOR IN SOLID 3He AND 4He
that harmonic theory is insufficient to accurately descr
solid helium, and that higher order terms dominate the te
perature dependence.

V. NON-GAUSSIAN CORRECTIONS TO Šu2
‹

We have determined the deviation of the density from
Gaussian distribution by two methods. The first was fitti
ln@S(k)# to a polynomial ink2. As shown in Eq.~7!, the linear
term is^u2&, the quadratic term is proportional to the kurt
sis k. We also directly calculated the kurtosis in the^111&
and ^100& directions, using Eq.~8!. The kurtosis was found
to be nonzero and anisotropic in the fcc solid helium syste
we studied~see Fig. 4!. The spherically averaged kurtosisk̄
at 10.98 cm3 is 0.074~20!. Shown in Fig. 5 are graphs wit
kurtosis in the^100& direction as a function of density an
temperature. The kurtosis is roughly twice as large in s
tems near melting. Away from melting, the kurtosis appe

FIG. 5. Kurtosisk vs molar volumeVm and temperatureT, in
the ^100& direction, for fcc 4He. The kurtosis is noticeably large
near the experimental melting line, but is otherwise independen
temperature and density.
is

.

e
-

a

s

-
s

to be independent of both temperature and density. We fo
thatk is independent ofN, for values ofN>500. For smaller
system sizes, the finite-size effects are large, but drop
quickly with increasingN. However, at the wave vectorsk
<9 Å21, the effect of the kurtosis is only a few percen
making this term difficult to observe in scatterin
experiments.13,15,16,18,20

Vitiello et al.21 have computed spherically averaged ku
toses of 0.051~5! and 0.042~5! at zero temperature usin
shadow wave functions, for molar volumes of 20.5 cm3 and
18.3 cm3. Using more accurate shadow wave function
MacFarlandet al.10 computed a spherically averaged kurt
sis of 0.042~6!, for a molar volume of 18.3 cm3. These val-
ues are consistent with the values computed here.

VI. CONCLUSIONS

PIMC simulations of the Debye-Waller factor in solid h
lium agree with experimental results to better than 5% ac
racy, indicating that the assumed potential, the computatio
methods, and the experimental analysis are correct within
stated errors. We determined the first non-Gaussian contr
tion, a directionally dependent kurtosis. The finite-size
fects were found to be in a crossover region between
classical and quantum scaling limits, and hence a power-
dependence was insufficient for extrapolation to the therm
dynamic limit. The harmonic approximation gave an a
proximate functional form for̂ u2& which was used to ex-
trapolate finite values to the thermodynamic limit. Th
extrapolated values agree with all available direct scatte
measurements, although the extrapolation became more
sitive with increased proximity to the melting transition, wi
correspondingly larger uncertainties. Higher extrapolat
accuracy could be obtained with a more accurate sca
form. The effective temperature dependence of^u2& appears
to be closer toT3, rather than theT2 predicted by harmonic
theory.
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