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Ioffe-Regel crossover for plane-wave vibrational excitations in vitreous silica

S. N. Taraskin and S. R. Elliott
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 28 June 1999!

The first Ioffe-Regel crossover for vibrational plane waves~when wavelength and mean free path are
comparable! has been investigated theoretically for models of vitreous silica (v-SiO2) constructed by molecu-
lar dynamics. The crossover is found to be from a state of weak scattering to one of strong scattering, not
vibrational localization. Three methods have been used to investigate the crossover: an analysis of the time
evolution of a vibrational plane wave, a spectral-density analysis in frequency space, and an analysis of the
final scattered state in momentum space. The first Ioffe-Regel crossover frequency is found by all three
methods to be;1 THz for v-SiO2, for both longitudinal and transverse polarizations. A second Ioffe-Regel
crossover occurs at;6 THz for v-SiO2, corresponding to the frequency at which the mean free path is
minimal ~comparable to the interatomic spacing!, and the spectral-density width is maximal~comparable to the
frequency range of the vibrational density of states!.
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I. INTRODUCTION

The scattering of classical plane waves in random me
is a subject of continuing interest.1,2 Phenomena related t
this include weak localization,1,2 Anderson localization,3

phonon localization,4–6 and, the subject of this paper, th
Ioffe-Regel crossover7 between weakly and strongly scatte
ing regimes.8,9

As the degree of disorder in a medium increases, the s
tering of a wave propagating in the medium increases
hence the mean free pathl correspondingly decreases. Th
decrease inl cannot continue without limit. The minimum
possible value of mean free path is comparable to the in
atomic spacing in a solid,l min;a. However, before this limit
is reached, another limit is reached when the mean free
becomes comparable to the wavelength of the propaga
plane-wave excitation

l;l IR . ~1.1!

This is the Ioffe-Regel limit; whenl ,l, a plane wave can
no longer be defined. The definition given by Eq.~1.1! may
be rewritten equivalently in terms of frequency as

n IRt;1, ~1.2!

where the decay timet of the plane wave is given by

t5 lc, ~1.3!

where c is the speed of propagation of a plane wave.
should be noted that, in the literature, definitions differing
a factor 2p are sometimes used,10,11 e.g., kl;1 instead of
Eq. ~1.1!, where the wave vectork52p/l.

Somewhat confusingly, both the conditionsl;l IR and
l min;a have been termed the Ioffe-Regel criterion in t
literature.3,12 In order to distinguish between them, we m
perhaps refer to them, respectively, as the first and sec
Ioffe-Regel limits. In this paper, we will mostly be con
cerned with the first limit.

The Ioffe-Regel criterion corresponds to a crossover
behavior from a weakly to a strongly scattering regime,
PRB 610163-1829/2000/61~18!/12031~7!/$15.00
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we shall see. As a result, momentum~or equivalently the
wave vectork) is no longer a good label for the propagatin
excitation beyond the Ioffe-Regel limit and another, equiv
lent, definition of the Ioffe-Regel crossover condition
when the uncertainty in wave vector is comparable to
value of the wave vector itself:

Dk;kIR . ~1.4!

In this paper, we obtain theoretical estimates for the Iof
Regel crossover frequency for both longitudinal and tra
verse vibrational plane-wave excitations propagating
simulated models of vitreous silica by investigating the b
havior in both time and frequency domains, using Eq.~1.2!
as the definition, and ink space using Eq.~1.4! as the rel-
evant definition.

The rest of the paper is arranged in the following mann
Section II briefly describes the possible ways of investigat
the Ioffe-Regel crossover. Estimates of the Ioffe-Regel cro
over parameters, obtained from spectral-density peak wid
and a temporal-decay method, are given in Sec. III and S
IV, respectively. An identification of the Ioffe-Regel cros
over from a consideration of the final state is given in Sec.
Discussion and conclusions are presented in Secs. VI
VII.

II. BASIC METHOD

The vibrational behavior of simulated models of vitreo
silica in the vicinity of the Ioffe-Regel crossover was inve
tigated in the harmonic approximation by means of a norm
mode analysis using the methods described in detail in
preceding accompanying paper,13 hereafter termed paper I.

An initial plane-wave vibrational excitation~in practice, a
standing wave!, of a given polarization type, wave vecto
and frequency, is scattered by the disordered structure in
different final state. The decay timet of the scattering pro-
cess found from the temporal decay of the initial plane wa
can be used to find the Ioffe-Regel condition using Eq.~1.2!.
Actually, in the frequency domain, the full width at ha
maximumG of the peak-shaped spectral-density functionS̄k
12 031 ©2000 The American Physical Society
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defined by Eq.~4.4! in paper I, which is the mass-weighte
projection of a plane wavewk given by Eq.~3.1! in paper I,
onto the vibrational eigenmodes, can also be used to ob
an estimate fort, i.e., tk

21.pGn(k) @see Eq.~4.9! in paper
I#, for a particular value of wave vectork of the initial plane
wave.

The scattering process involving the initial plane~stand-
ing! wave can also be analyzed ink space in terms of the
properties of the final state, averaged over time ast→`. The
quantity of interest is the distributionr(k8,n̂8uk,n̂) @see Eq.
~6.2! in paper I# of the time-averaged weights of differen
plane-wave components$k8,n̂8%, characterized by wave vec
tor k8 and unit polarization vectorn̂8, in the final state origi-
nating from an initial state$k,n̂%. The Ioffe-Regel limit can
be determined by investigating the widths of the peaks
r(k8,n̂8uk,n̂).

III. FREQUENCY DOMAIN

In disordered structures, and for small values of the wa
vector magnitude (ka!1), the spectral density for both lon
gitudinal and transverse polarizations has the shape
single pronounced peak.13 The peak position gives the ave
age frequencyn̄k of the propagating excitation, and the pe
width is associated with the decay timetk of the excitation
@see Eq.~4.7! in paper I#. With increasing wave vector~or
frequency!, the peak widthGn(k) increases13 and hencetk
decreases until the Ioffe-Regel limit@Eq. ~1.2!# is reached.
Fits to the peak shape of the spectral density using b
Lorentzian and damped harmonic oscillator14 functions give
rather similar results13 for n̄k andtk .

The Ioffe-Regel crossover wave vectorkIR is found from
the intersection of the two curvestk

21(k) vs k andn̄k(k) vs k
according to Eq.~1.2!. Figures 1~a! and 1~b! show such plots
for transverse and longitudinal initial plane waves. The c
culated dispersion curvesn̄k(k) show the expected linear de
pendences~dashed lines in Fig. 1! in the Ioffe-Regel cross-
over region. Thek dependence of the inverse decay tim
tk

21(k), exhibits a quadratic behavior fork*0.3 Å21, but
not exactly in the Ioffe-Regel crossover region. This discr
ancy is a finite-size effect due to a limited size of the sim
lation box; the density of modes is rather sparse at the low
frequencies and, as a result, the spectral density is ins
ciently wide ~not enough eigenmodes in this regime! and
hencetk

21 is too small. In order to avoid this shortcoming
the simulated results, we extrapolated to low frequencies
quadratic behavior~solid lines in Fig. 1!, as found experi-
mentally using a variety of techniques.14–17

The Ioffe-Regel crossover wave vectors are estima
from the intersection point of the solid and dashed lines
Fig. 1. The values thus obtained arekIR,t.0.15 Å21 and
kIR,l.0.1 Å21 for transverse and longitudinal polarization
respectively, of the initial plane-wave excitations. Using t
experimental transverse and longitudinal sound velocitie
v-SiO2,14,18viz. ct.37.5 Å/ps andcl.59 Å/ps, respectively,
with which the simulated results are in very good agreem
at low frequencies,13 the Ioffe-Regel crossover frequenc
(n IR5ckIR/2p) is found to ben IR,t.n IR,l.1 THz for both
polarizations. The mean free path of the propagating pla
in
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wave excitations at the Ioffe-Regel limit is given byl IR,t(l)
.l IR,t(l) , or l IR,t(l).ct( l) /n IR,t(l);2p/kIR,t(l) , and is esti-
mated to bel IR,t.42 Å for transverse andl IR,l.63 Å for
longitudinal polarizations. Note that these results are cor
for not very low temperatures,T*100 K, where the decay
time is temperature independent~see Ref. 11!.

The common frequency dependence of the inverse de
time for both longitudinal and transverse polarizations of
initial plane-wave excitations is clearly seen in a joint plot
t21(n) vs n ~Fig. 2!. The quadratic dependence oft21(n)
vs n is evident in the experimental data. The Ioffe-Reg

FIG. 1. The average frequencyn̄ ~solid symbols! and inverse
relaxation timet21 ~open symbols! of transverse~a! and longitudi-
nal ~b! initial plane waves versus the initial wave-vector magnitud
The circles and squares are obtained from fits of the spectral
sities by the DHO model and Lorentzians, respectively, as
scribed in Sec. III. The diamonds are obtained by the tempo
decay method. The open triangles and stars in~b! represent IXS
data~Ref. 14!. The crossing points of the solid lines correspondi
to the quadratic dependence oft21 on k and the dashed lines refer

ring to the linear dependence ofn̄k on k mark the~first! Ioffe-Regel
crossover.

FIG. 2. The inverse decay time vs frequency of plane waves
are longitudinal~open circles and squares are for the bar and cu
models! and transverse~solid circles and squares!, together with
experimental data taken from Ref. 10~stars! and from Ref. 14~dia-
monds!. The straight line is the curvet215n. The values oft21

versus frequency of the initial plane wave obtained by the tempo
decay method~open circles! and from the fit of the spectral dens
ties by the DHO model function~solid diamonds! are given in the
inset.
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crossover frequency is found as the intersection of the
curvest21(n) vs n and t215n. It can be seen thatn IR,t
.n IR,l.1 THz.

IV. TIME DOMAIN

Analysis of the peak widths of the spectral densities p
vides indirect estimates of the decay time of propagat
plane-wave excitations. However, a more straightforw
way to obtain this quantity is to calculate directly the tim
dependence of the amplitudeakk(t) of the atomic displace-
ment vectorukk(t) @see Eq.~3.7! in paper I# which is defined
by Eq.~5.4! in paper I. Details of this procedure are given
paper I, together with a general method for obtainingn̄k from
the phasefkk(t), even in the case of rather broad and fe
tureless spectral densities.

The results fortk
21 obtained by this temporal-deca

method are shown as the diamonds in Fig. 1 and as o
circles in the inset to Fig. 2. It can be seen that there is g
agreement with the results obtained from the spectral-den
analysis in the Ioffe-Regel crossover region, although de
tions occur at higherk or n. Thus the estimates forkIR and
n IR obtained by the temporal-decay method are the sam
those obtained by analysis of the spectral densities in
frequency domain.

V. MOMENTUM SPACE

The analysis of allk8-plane-wave components in the fin
scattered state, in particular the distributionr(k8,n̂8uk,n̂)
@see Eq.~6.1! in paper I# of their weights, allows the natur
of the Ioffe-Regel regime to be clarified, the Ioffe-Regel p
rameters to be found and an understanding gained of why
crossover frequencies are identical~see Fig. 2! for both types
of polarizations of the initial wave.

The distribution functionr(k8,n̂8uk,n̂) can be calculated
for the simulated models ofv-SiO2, and the results for the
bar-shaped structural model were given in paper I. Suc
model is effectively one dimensional and has restrictions
the available initialk and finalk8 vectors, which are mainly
directed along the bar in the low-k limit. This also restricts
the number of the scattering channels. In order to check
influence of the dimensionality of the model on the scatter
of plane waves, we have performed a similar analysis fo
cubic ~three-dimensional! model of v-SiO2. The results for
the distribution fuctions are presented in Fig. 3. As follo
from Fig. 3, we have not found any influence of the dime
sionality of the model for the available wave-vector mag
tudes k*0.22 Å21 ~for the cubic model!. The weights
shown in Fig. 3 were calculated for the plane-wave com
nents characterized by all availablek8 vectors. Different data
points at the same magnitude of the final wave vectork8 in
Fig. 3 correspond to different directions ofk8. These data
fluctuate around average values mainly within the relat
variance&30%. With this precision we can say then that t
probabilities for an initial wave to be scattered in differe
directions are approximately the same. In other words,
could roughly interpret the scattering of plane waves in
vicinity of the Ioffe-Regel regime as being ‘‘elastics scatter-
ing.’’ By elastic we mean that the average frequencies
initial and final waves are close to each other~see the dis-
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cussion in paper I!. Note that, with increase of the initia
wave-vector magnitude, there is a shift of the maxima in
distributionsr(k8,n̂t8uk,n̂t) and r(k8,n̂l8uk,n̂l) to lower val-
ues as compared tok ~the origin of the shift is discussed i
the paper I!. For example, in the case of transverse init
polarization, n̂5n̂t for k.0.44 Å21, the shift reaches the
value ;0.1 Å21, quite comparable with the initial wave
vector magnitude@see Fig. 3~f!#.

The Ioffe-Regel wave-vector parameters, as found
Secs. III and IV, arekIR,l.0.1 Å21 andkIR, t.0.15 Å21 for
longitudinal and transverse initial plane waves, respectiv
For our finite-size model, only a few data points are availa
in this range of k. Therefore the distribution function
r tot(k8uk,n̂t) and r tot(k8uk,n̂l) are not at all well defined in
the Ioffe-Regel region. A way to overcome this shortcomi
of finite-size models is discussed in the following.

The main disadvantage of finite-size simulations from
viewpoint of the present analysis is a very sparse acoustic
frequency spectrum in the low-frequency region below a
around 1 THz. This is a major difficulty and can hardly b
overcome by the construction of bigger models, say, rea
tically containing up to 108 particles~which are nevetheles
much smaller than macroscopic values;1022). The use of
an analytical approach could be very useful in this case.

Our particular interest is related to the calculation of t
distribution functions of weights of different plane waves
the final state after scattering of an initial plane wave. W
need to know these functions fork&0.1 Å21, or equivalently
for n&1 THz, i.e., in the regions unavailable in the finit
size simulations, in order to understand what happens w
these distributions in the Ioffe-Regel regime.

The distribution function defined in Eq.~6.2! of paper I
can be rewritten in the following form:

r(k8,n̂8uk,n̂).3NE
0

`

g~v!ua~vuk,n̂!u2ua~vuk8,n̂8!u2dv,

~5.1!

where for simplicity we have ignored inessential differenc
between the different spectral densitiesuā(vuk,n̂)u2

FIG. 3. The distribution functionsr(k8,n̂t8uk,n̂) ~circles!,

r(k8,n̂l8uk,n̂) ~pluses! andr tot(k8uk,n̂) ~stars! for longitudinal@~a!,
~c!, and~e!# and transverse@~b!, ~d!, and~f!# initial polarizations of
plane waves characterized by different initial wave-vector mag
tudesk for the cube-shaped structural model ofv-SiO2. The ordi-
nate scales for~a! and ~b! are on the left, and on the right for th
other figures.
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[ua(vuk,n̂)u2 and ua(vuk,n̂)u2 @see Eqs.~4.4!–~4.5! in pa-
per I# and put^wk8

2 &.1. The integrand in Eq.~5.1! depends
on the vibrational density of states~VDOS! and spectral den
sities. In the low-frequency regime, the VDOS is supposed
be a monotonically increasing function while the spect
densities are peak-shaped~see Fig. 11 in paper I! and the
widths of the peaks decrease with decreasing frequenc
the VDOS only slightly changes on the scale of the pe
width then thev dependence of the integrand in Eq.~5.1! is
mainly defined by the spectral densities and the shape o
resulting distribution function is practically independent o
particularv dependence of the VDOS in the low-frequen
regime. This is actually the case for any reasonable appr
mation for the VDOS asg(v)}vn with n52 – 4 or g(v)
}exp(v/w) with w;0.1 THz if the peak width&w. The
precisev dependence of the VDOS in the low-frequen
regime is not known and we used the Debye law as a ro
estimate, gD(v)53v2/vD

3 . For n*n IR , the VDOS is
known from simulations and experiment.19 The resulting to-
tal VDOS’s being the concatenation of these two VDO
smoothly matching each other in the overlap region,
shown in Fig. 4~a!. The use of a differentv dependence for
the VDOS, e.g.,g(v)}v4 ~see Ref. 20!, following from the
soft-potential model, does not change the shape
r(k8,n̂8uk,n̂) described below.

The important feature of the spectral densities is that t
are peak shaped in the Ioffe-Regel regime and below

FIG. 4. ~a! The VDOS and~b! the dependencies of the avera

frequencyn̄ and the peak widthsG on the wave-vector magnitudek
for transverse~solid lines! and longitudinal~dashed lines! polariza-
tions which have been used for the integrand in Eq.~5.1!. The
vertical arrow in~a! shows the frequency below which the Deb
law has been used for the VDOS while the vertical arrows in~b!
showk values below which the quadratic law forG has been used
o
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These peaks can be fitted by Lorentzians and/or the dam
harmonic oscillator~DHO! model~see Sec. III and paper I!.
The fitting functions depend on two parameters: the p
positionn t( l) (k) and the peak widthG t( l) (k). For n&n IR , we
used a linear dependence,n t( l) (k)5ct( l)k/2p, with the ex-
perimental values of sound velocities, while forn*n IR the
results of simulations were used@see Fig. 4~b!#. The depen-
dence of the peak width onk for k&kIR,t(l) , has been fitted
by the experimentally found quadratic dependence, while
k*kIR,t(l) , the results of the simulations have been used~see
Fig. 6 in paper I! so that the resulting curves are as shown
Fig. 4~b!.

Once the integrand in Eq.~5.1! is defined, the distribution
function r(k8,n̂8uk,n̂) can easily be found. Results for bot
polarizations of the initial wave are presented in Fig. 5 a
should be compared with the results of the simulatio
shown in Fig. 3. Note that we have not performed a dir
tional averaging for both the initial and final wave vectors
Eq. ~5.1! on purpose in order to be able to compare t
results with the simulation results obtained for the bar c
figuration ~effectively a one-dimensional structure!, for
which such averaging in the low-k region is unavailable as
well. The directional averaging of the functionr tot(k8uk,n̂)
52r(k8,n̂t8uk,n̂)1r(k8,n̂l8uk,n̂) over the final wave vector
enhances the transverse peak and smooths the double-p
structure of the distribution function because of the fac
(k8)2 appearing in the averaging, but the functio
r tot(k8uk,n̂)/(k8)2 has the same shape as shown in Fig. 5

Comparing Fig. 3 with Fig. 5, and Fig. 10 in the paper
we see, not surprisingly, agreement, both qualitative a
quantitative~for peak positions and their relative height!, for
the shapes of the curves in the case of large enough valu
k ~say,k.0.4 Å21). The advantage of the results present
in Fig. 5 as compared to those shown in Fig. 3 is that th
clearly demonstrate the evolution of the distribution fun
tions r(k8,n̂8uk,n̂) for different polarizationsn̂ and n̂8 with
increasingk, including the range below and around the Ioff
Regel crossover. At any value ofk under consideration, the
distribution functionsr(k8,n̂8uk,n̂) characterizing the indi-

FIG. 5. The distribution functionsr(k8,n̂t8uk,n̂) ~the dot-dashed

lines!, r(k8,n̂l8uk,n̂) ~the dashed lines! and r tot(k8uk,n̂) ~the solid
lines! for longitudinal@~a!, ~c!, and~e!# and transverse@~b!, ~d!, and
~f!# initial polarizations of plane waves characterized by differe
initial wave-vector magnitudesk obtained from Eq.~5.1! with use
of the VDOS and parameters for spectral densities presented in
4. Plots~c! and ~d! correspond to the~first! Ioffe-Regel crossover.
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vidual channels are peak-shaped~dashed and dot-dashe
lines in Fig. 5!. Below the Ioffe-Regel limit, these peaks a
narrow and the total distributions,r tot(k8uk,n̂), have a
double-peaked shape@see Figs. 5~a! and 5~b!#. These two
peaks correspond to the two possible scattering channel
each polarization of the initial wave, i.e.,$ l→t% @the higher
transverse peak in Fig. 5~a!#, $ l→ l % @the lower longitudinal
peak in Fig. 5~a!#, and$t→t% @the upper transverse peak
Fig. 5~b!#, and $t→ l % @the lower longitudinal peak in Fig
5~b!#.

As follows from Eq.~5.1!, the widthsdkt of the transverse
peak anddkl of the longitudinal peak in the distribution
r(k8,n̂8uk,n̂t) and r(k8,n̂8uk,n̂l) , respectively, are deter
mined by the widths of the corresponding spectral densit
which depend only on the frequency of the initial plane wa
but not on its polarization~see Fig. 2!. Two important con-
sequences follow from this statement. First, the widths of
transverse and longitudinal peaks inr are comparable,dkt
.dkl ~actually, we found the widths of the transverse pe
to be slightly larger than the widths of the longitudinal pe
for v-SiO2—see Figs. 3 and 5!. This is because the frequen
cies of the plane-wave components comprising these p
are approximately the same and are equal to the frequenc
the initial plane-wave excitation. Second, if the frequenc
of the initial longitudinal and transverse waves are the sa
~meaning that the corresponding spectral densities are c
acterized by the same peak positions and approximately
same peak widths, see Fig. 2 in paper I!, then they are simi-
larly scattered by the disordered structure, i.e., the distr
tion functionsr tot(k8uk,n̂t) andr tot(k8uk,n̂l) look similar@cf.
Figs. 5~c! and 5~d! for which the frequency of the initia
plane wave is the same,n.1 THz#.

With increasing frequencyn or wave vectork of the ini-
tial plane wave, the peaks related to the individual chann
shift to higherk8 and become broader. At a certain frequen
n IR , which is independent of the polarization of the initi
plane-wave excitation~as discussed above!, the widths of
these peaks become comparable with the peak separa
Dk85kt82kl8 , between longitudinalkl8 and transversekt8
peaks inr tot :

Dk8~n!.
cl2ct

cl
kt8~n!, ~5.2!

so that the Ioffe-Regel criterion in this picture is given by

dkt8~n IR!.dkl8~n IR!.Dk8~n IR!. ~5.3!

The total distributionsr tot(k8uk,n̂t) and r tot(k8uk,n̂l) , char-
acterized by the same frequencyn IR , change from having a
double-peaked shape@see Figs. 5~a! and 5~b!# to a single-
peak one@see Figs. 5~c! and 5~d!# with increasingk of the
initial plane wave. Such a qualitative change in the shap
the total distribution of the weights of plane waves in t
final state can be associated with the Ioffe-Regel crosso
regime. Therefore, in this picture, condition~5.3! marks the
Ioffe-Regel crossover, beyond which the final state a
scattering contains many plane-wave components chara
ized by wave-vector magnitudes differing from the initi
one by values of the order of the initial magnitude~strong-
scattering regime!. The wave-vector magnitude correspon
for
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ing to the Ioffe-Regel crossover, of course, does depend
the polarization of the initial plane wave and is determin
by the sound dispersion laws

kIR,t52pn IR /ct and kIR,l52pn IR /cl . ~5.4!

The crossover parameters found from an analysis of
data presented in Fig. 5 using Eqs.~5.3!–~5.4! are as follows:
the Ioffe-Regel frequency isn IR.1 THz for both polariza-
tions of the initial plane wave, and the corresponding wa
vectors arekIR,t.0.15 Å21 for transverse andkIR,l.0.1 Å21

for longitudinal polarizations~or equivalently the corre-
sponding mean free paths,l l(t)5cl(t)t l(t) , arel IR,t.42 Å and
l IR,l.63 Å!. These values forn IR and kIR are in excellent
agreement with the experimental data10,14 and with the esti-
mates obtained from the analysis presented in Secs. III
IV.

VI. DISCUSSION

Our vibrational analysis of simulated models ofv-SiO2
has shown that the Ioffe-Regel crossover frequency for
tially longitudinal plane waves is at a frequencyn IR,l.1
THz, in very good agreement with the same value infer
from experimental inelastic neutron-scattering data.10 How-
ever, transverse modes are not easily probed by inela
neutron-scattering experiments, and hence no estimat
n IR,t for v-SiO2 was available before this theoretical stud
Our finding that n IR,t.n IR,l implies that, concomitantly,
l IR,l / l IR,t.cl /ct , in contrast to the behaviorl IR,l / l IR,t
.(cl /ct)

4 inferred previously for the case of Rayleig
scattering.11 Such a functional relationship implies tha
t IR,l /t IR,t.(cl /ct)

3 (.3.9 for v-SiO2), rather than the
equality t IR,l5t IR,t found in this study~Fig. 2!. The reason
why this equality fort IR ~or of n IR) should exist can be
understood from a consideration of the behavior of the fu
tion r(k8,n̂8uk,n̂), as discussed in Sec. V.

The Ioffe-Regel crossover marks the~smooth! transition
from weak scattering to strong scattering, as clearly e
denced by thek state analysis given in Sec. V. The final sta
after scattering, beyond the Ioffe-Regel limit, contains ve
many plane-wave components characterized by wave-ve
magnitudes differing from the initial one by values of th
order of the initial magnitude, i.e.,Dk.k @see Eq.~1.4!#.
However, unlike the case of electrons,3 such strongly scat-
tered vibrational states are not spatially localized, but inst
are characteristic of a diffusive-transport regime.21 This lack
of vibrational localization at frequencies just beyond t
Ioffe-Regel crossover is evident on examining the displa
ment amplitude of the vibrational eigenmodes;22 such states
are extended through the simulation box but certainly are
propagating plane-wave-like modes.

The frequency dependence of the inverse decay time,

t21.pGn.
n2

n IR
, ~6.1!

which is just a consequence of Eq.~4.9! in paper I, the ex-
perimentally found quadratic dependence in the lo
frequency range, and the definition of the Ioffe-Regel f
quency given by Eq.~1.2!, are not changed at the Ioffe-Reg
crossover frequency,n IR.1 THz ~see Fig. 2!. Nevertheless,
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such a dependence cannot continue with further increas
frequency since there is a natural threshold for it~the ‘‘sec-
ond’’ Ioffe-Regel limit!. Bearing in mind that the invers
decay time is proportional to the width of the spectral dens
@see Eq.~6.1!, we could say that this threshold is certain
less than the natural upper bound for the spectral-den
width, being the width of the whole vibrational spectrumD
(D.40 THz in silica#. In fact, the deviation from the qua
dratic dependence oft21(n) occurs at a much lower fre
quency~see Fig. 2 and inset in it!. This is not surprising,
because we could expect an influence of the shape of
VDOS on the shape~width! of the spectral density startin
with the frequencynmin* at which the width of the spectra
density becomes comparable with the spectral-density p
position,

Gn~nmin* !.nmin* , ~6.2!

resulting in the estimatenmin* .pn IR , i.e., at least a factorp
larger than the Ioffe-Regel frequency (nmin* .3 THz for
silica!. At the ~first! Ioffe-Regel frequency, the width of th
spectral density is still small enough not to destroy the q
dratic dependence~6.1!. Therefore we could associate th
second Ioffe-Regel crossover with the frequencyn* *nmin* ,
at which the quadratic dependence of the spectral-den
width ~or inverse decay time! becomes modified. Examinin
Fig. 2 shows that in the case of vitreous silica this happ
aroundn* .6 THz. We believe that the second Ioffe-Reg
limit corresponds tol min.a. The value of the inverse deca
time atn* is (t* )21.15– 30 THz, this range of values re
sulting from different methods of estimatingt ~see inset to
Fig. 2!. Taking the speed of sound for longitudinal acous
waves,cl.59 Å/ps@the longitudinal branch of the curvet21

vs k shows the clearest evidence for the kink, cf. Fig. 1~b!#,
the corresponding mean free path is found to bel * 5clt*
.2 – 4 Å. Thus indeedl * .a, since the nearest-neighbo
Si-O distancedSi-O in silica is about 1.6 Å.19 It is more likely
that the heightsh1 of an SiO4 tetrahedron orh2 of an SiSi4
tetrahedron, respectively, are the limiting distances:h1
.4dSi-O/3.2.1 Å andh2.4.1 Å ~see Ref. 23!. Thus this
second Ioffe-Regel limit marks the onset of the rando
phase-approximation regime, in which the vibrations of d
ferent SiO4 and/or SiSi4 tetrahedra are uncorrelated. It
significant that the spectral density of longitudinal mod
starts to reach its maximum width, limited by the frequen
e
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range of the VDOS (.40 THz!, at the wave vectork*
.0.6 Å21 @see Fig. 2~e! in paper I# corresponding to the
change in slope of curves oft21(k) @see Fig. 6~b! in paper
I#.

The value ofk* can also be estimated from the phon
dispersion of the crystalline counterpart. Indeed, atk*k* ,
the spectral densities ina-cristobalite, the crystalline coun
terpart of vitreous silica, consist of manyd functions cover-
ing the whole frequency range~see Fig. 5 in paper I!. This is
not surprising because a typical value of Brillouin-zo
boundary isp/au.c..0.5– 0.6 Å21 for au.c..5 – 7 Å, being
the unit-cell size, and strong mixing between acoustic a
optic modes occurs around the zone boundary. In disorde
materials, the spectral density could be imagined as a su
position of broadenedd functions of the corresponding crys
talline counterpart~see paper I!. This also allows us to use
the relationshipk* .p/au.c. for an estimate of the wave vec
tor k* for the second Ioffe-Regel crossover.

The frequencyn* of the second crossover,n* 5clk* /2p
.6 THz, of this second Ioffe-Regel limit also does not co
respond to the onset of vibrational localization; examinat
of the participation ratio19 shows that localization occur
only at much higher frequencies (n.30 and 40 THz! corre-
sponding to the band edges in the VDOS ofv-SiO2.19

VII. CONCLUSIONS

The first Ioffe-Regel crossover frequency~when the mean
free path and wavelength of a propagating plane-wave vib
tional excitation are comparable! has been determined fo
simulated models of vitreous silica (v-SiO2) by three meth-
ods: analysis in the time and frequency domains and ik
space. In all cases, the Ioffe-Regel crossover frequenc
found to ben IR.1 THz for both longitudinal and transvers
plane-wave excitations. The Ioffe-Regel limit corresponds
a crossover from a weakly scattered propagating-phonon
gime to a strongly scattered diffusive-mode regime. A s
ond Ioffe-Regel crossover is evident at a higher freque
(n* .6 THz!, which corresponds to the onset of a rando
phase regime in which SiO4 ~or SiSi4) tetrahedra vibrate
incoherently and the width of the spectral density of t
modes becomes comparable to its maximum value~the fre-
quency range of the vibrational density of states!. At this
limit, the mean free path attains its minimum value, comp
rable to the interatomic spacing.
her,

ev.
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