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Propagation of plane-wave vibrational excitations in disordered systems

S. N. Taraskin and S. R. Elliott
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 11 August 1998; revised manuscript received 28 June 1999!

The propagational behavior of vibrational plane waves in a disordered medium has been analyzed theoreti-
cally in the time and frequency domains and in terms of the final scattered state in momentum space. Numeri-
cal results have been obtained for a normal-mode analysis of models of vitreous silica constructed by molecu-
lar dynamics, and also for a simple model of a zigzag chain of atoms with force-constant disorder.
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I. INTRODUCTION

Propagation of classical plane waves in random scatte
media has attracted a lot of theoretical and experimenta
tention in recent years.1,2 Different types of plane waves in
cluding light, electron wave functions, and atomic vibratio
are the subject of investigation in this respect. Below
consider only propagation of plane-wave atomic vibratio
excitations in disordered systems. This topic has attracte
lot of attention from both theoretical3–7 and experimenta
sides.8–22 This is due to the fact that a study of plane-wa
propagation helps to get information about vibrational d
namics of the system~e.g., about the normal modes and th
properties! and allows us to investigate heat transfer in d
ordered structures~see, e.g., Refs. 23 and 24 and referen
therein!.

A plane-wave vibrational excitation normally does n
propagate freely in a disordered structure. It scatters an
attenuated with time. The main questions here are: what
the physical mechanisms of the scattering and what are
physical characteristics of such scattering~e.g., the decay
time!. Different decay channels have been suggested to
plain the attenuation of plane-wave vibrational excitations
disordered structures:~i! disorder-induced channels;7,23–26

~ii ! anharmonic channels,25 and~iii ! channels involving two-
level systems.4,16,27,28The anharmonic channels are strong
enhanced with increasing temperature, particularly at te
peratures comparable with the glass-transition tempera
Tg;103 K. In contrast, scattering by two-level systems c
be important at low temperatures,4 T!TTLS;10– 100 K.27,29

In the intermediate temperature range,TTLS&T!Tg , which
is considered below, the scattering processes involving t
level systems are suppressed and the atomic dynamics
usually harmonic,7,30,31meaning that disorder-induced cha
nels play the most important role in the decay mechanism
plane-wave excitations.

In a harmonic solid, a powerful normal-mode analysi32

can be used for the problem under consideration. The nor
modes can be found either analytically or numerically.
general theory of atomic vibrations in disordered structur
which in principle should result in normal modes, has be
mainly developed for particular simple model structures
toy models,23,32–37which can hardly describe quantitative
the situation in real structures. Therefore a numerical
proach could be very useful in the calculation of norm
modes, e.g., by direct diagonalization of the dynamical m
PRB 610163-1829/2000/61~18!/12017~14!/$15.00
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trix which can be available, e.g., from molecular-dynam
simulations.

Our approach to investigating the propagation of pla
wave vibrational excitations in disordered media is based
combining analytical and numerical techniques. First,
create a realistic structural model of a disordered atomic
terial using molecular dynamics. We need such a struct
model in order to find numerically all eigenmodes and eig
frequencies~in the harmonic approximation!, e.g., by direct
diagonalization of the dynamical matrix. These characte
tics fully determine the dynamical response of the system
any external excitations, including the plane-wave exc
tions of present interest. A straightforward analytical form
ism assuming known eigenmodes and eigenfrequencies
be easily developed and applied to the analysis of pla
wave propagation in three complementary domains: tim
frequency, and wave vector. In other words, we have inv
tigated the evolution of plane-wave vibrational excitations
three ways:~i! by following numerically the time evolution
of plane waves and calculating the decay time;~ii ! by ana-
lyzing the spectral densities of the excitations in frequen
space and thereby obtaining complementary estimates o
decay time;~iii ! by analyzing in momentum (k) space~ana-
lytically and numerically! the final state after scattering from
the initial plane-wave state.

The main difficulty in investigating the propagation o
vibrational excitations in disordered systems by a norm
mode analysis is related to the restricted scope of nume
analyses of finite-size models. For example, for a cu
finite-sized model with a box length ofL.28 Å ~as used in
this study!, the minimum value of the wave vectorkmin
52p/L, allowed by the periodic boundary conditions
kmin.0.22 Å21. There is a corresponding restriction also
the minimum frequencyvmin , attainable in such finite-size
simulations, given byvmin5ckmin , wherec is an appropriate
sound velocity. Moreover, due to finite model size, the lo
frequency region of the vibrational density of states~VDOS!
related to the acoustic plane-wave excitations is not de
and hence the number of scattering~‘‘decay’’ ! channels of
the plane waves with such frequencies is restricted~see also
Refs. 26 and 38!. In order to overcome this difficulty, we
have extended the results of the numerical simulations
tained for finite-size models to frequencies and wave vec
belowvmin andkmin , respectively, by developing an analyt
cal continuation model~see accompanying paper39!, as well
as studying low-dimensional ‘‘toy’’ disordered models.
12 017 ©2000 The American Physical Society
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12 018 PRB 61S. N. TARASKIN AND S. R. ELLIOTT
In order to analyze the propagation of vibrational exci
tions in a realistic structural model simulating a real dis
dered system, namely vitreous silica (v-SiO2), we have also
undertaken a preliminary analysis of a simple ‘‘toy’’mode
i.e., a zigzag chain with force-constant disorder, that exhi
qualitatively similar scattering behavior for vibrational exc
tations to that found from the simulations of the glass.

The rest of the paper is arranged in the following mann
Section II briefly describes details of the computer simu
tions of the structural models ofv-SiO2 used. The basis o
the analytical consideration of the propagation behavior
vibrational plane waves is presented in Sec. III. An analy
in frequency space~in terms of spectral densities! is given in
Sec. IV, and a complementary analysis in terms of the t
evolution of vibrational excitations is given in Sec. V. A
analysis in momentumk space of the final state of the sca
tered plane-wave excitations is presented in Sec. VI. A
cussion of scattering mechanisms of plane-wave vibratio
excitations and preliminary results of the scattering beha
of a disordered zigzag chain are presented in Sec. VII.
accompanying paper39 uses techniques outlined in this pap
to investigate the Ioffe-Regel crossover inv-SiO2.

II. DETAILS OF SIMULATIONS

The models ofv-SiO2 have been constructed byN-P-T
molecular-dynamics simulations, using the potential of v
Beest, Kramer, and van Santen.40 The van Beest potentia
has been modified for small interatomic distances accord
to Ref. 41. At large interatomic distances, we have use
cutoff for short-range interactions, multiplying the modifie
van Beest potential by a Fermi-like step function. The s
function is characterized by the step position atRcut55.5 Å
and the step widthdRcut50.5 Å for all atomic species. The
latter cutoff has been used to obtain a density of the gla
structure~at zero pressure!, of 2.38 g/cm3, reasonably close
to the experimental value of 2.2 g/cm3 ~see the discussion o
the densification problem in Ref. 41!. Note that a similar
cutoff (Rcut55.0 Å anddRcut50) has been used in Ref. 42

All glassy models have been created by quenching fr
the melt (T56000 K! to the well-relaxed glassy state (T
;1024 K! at an average quench rate of;1 K/ps. No coor-
dination defects have been found in the models. The fu
dense dynamical matrices for the relaxed systems were
agonalized directly, resulting in eigenvectors$ej% and eigen-
values (v j ), thus allowing us to perform a complete ha
monic vibrational analysis. Structural characteristics a
vibrational properties of the models are very similar to tho
described in Ref. 43.

The models ofv-SiO2 were of two types: a cubic mode
containingN51650 atoms and of box lengthL.28.4 Å, and
a bar configuration containingN51500 atoms of size 85.6
315.6315.6 Å ~a bar-shaped model of B2O3 has been also
used in Ref. 44!. For the sake of comparison, several mod
of a-cristobalite have also been created. The bar-sha
models were constructed to allow access to much lower
ues ofk(*0.07 Å21) for modes propagating along the b
than can be obtained for the cubic models (k*0.22 Å21).
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III. BASIC FORMALISM

The time evolution of any vibrational excitation is full
determined in the harmonic approximation by the eige
modes and eigenfrequencies of the system. Indeed, the in
excitation can be expanded in the eigenmodes, the time
pendence of which is known. The coefficients in such
expansion are defined by the shape of the initial vibratio
excitation ~by initial atomic displacements! and initial ve-
locities of the atoms. Here we consider only plane-wave
tial excitations, mainly because exactly such excitations
generated in a system by inelastic neutron, light, and elec
scattering.45

In amorphous materials, because of disorder, the eig
modes are not plane waves even in the long-wavelen
limit. Therefore, an initial plane wave, when expanded ov
eigenmodes, contains different eigenmodes characterize
different weights in this expansion. The eigenmodes part
pating in the expansion are characterized by different eig
frequencies and therefore evolve differently with time,
that the propagating excitation becomes different in sh
compared with the initial one. On the other hand, we c
always expand any vibrational state in plane waves wh
form another complete~but not fully orthogonal, as dis-
cussed below! basis set, i.e., make a Fourier analysis. If w
do this with the evolving excitation~initially a single plane
wave! after a certain time, then this expansion contains
only the initial plane-wave component but also other pla
waves characterized by different wave vectors. This me
that the initial plane wave is scattered by the structure int
different final state. Our aim here is to study both the proc
itself of decay of plane waves, and also the final state a
decay, for different wave vectors and polarizations of an i
tial plane wave.

Let us consider an excitation introduced in the syste
u(t)5uk(t), which at the initial moment of time,t50, is an
ideal plane wave,wk,n̂ , characterized by the wave vectork,
unit polarization vectorn̂ and initial phasef0:

uk~ t50!5wk[An̂ cos@k•r1f0#, ~3.1!

where u is a vibrational state vector in a 3N-dimensional
linear vector space spanned by the orthonormal basis$si%
( i 51, . . . ,3N), with the basis vectors being, e.g., the un
displacement vectors of a certain atom along one of the C
tesian axes~the site basis!. In that case, the components
vector u are the displacement vectors,ui ( i 51, . . . ,N), of
atomsi from their equilibrium positions,r i . The normaliza-
tion constantA is defined below and the wave-vector indexk
includes also the polarization indexn̂. In our analytical treat-
ment, we assume that eigenmodes and eigenfrequencie
known, e.g., from numerical simulations. The initial di
placement vector, Eq.~3.1!, each atomic component o
which is multiplied by the mass factormi5MiN/( iM i (Mi
stands for the mass of atomi ), can be expanded in eigen
modes as

uk~0!5(
j 51

3N

āk
j ej/Am, ~3.2!



e

io
f
e

ity
a
f

m
n

s

r
l
y
s
te

r

ves
rdi-
ring
-

Eq.
he

e
,

ith
ag-
to

al

y
e-
our

ne
are
l

All
ed,

fi-

es

PRB 61 12 019PROPAGATION OF PLANE-WAVE VIBRATIONAL . . .
where the symbolic scriptej/Am means that eachi th com-
ponent of vectorej is divided by the factorAmi . The coeffi-
cients āk

j in expansion~3.2!, the squares of which are th
spectral-density coefficients of the system~see, e.g., Refs. 24
and 46!, are defined by the following equation:

āk
j 5^ej

•Amuk~0!&[(
i 51

N

Amiei
j
•wk,i . ~3.3!

The expansion coefficients, Eq.~3.3!, fully determine the
dynamical response of the system to plane-wave excitat
Indeed, at any moment of timet, the displacement vector o
the propagating excitation can be represented via eig
modes developing in time as

uk~ t !5(
1

3N

āk
j ej

Am
cosv j t. ~3.4!

For the sake of simplicity and without loss of general
~as shown below!, we consider the initial excitation to be
standing wave, i.e.,u̇k(0)50, leading to the absence o
terms proportional to sinvjt in expression~3.4!. It is conve-
nient for the initial vectorAmuk(0) to be normalized to
unity, so that

(
1

3N

uāk
j u251, ~3.5!

and the normalization constant in Eq.~3.1! is A2

5@( imi uuk(0)u2#21.
Equation~3.4! gives us a formal answer for the proble

under investigation. Now we want to be more specific a
characterize such an evolving stateuk(t) in some qualitative
way. The simplest thing to do is to make a Fourier analy
of this state, i.e., expand it in plane waves:

uk~ t !5(
k8

ukk8~ t !, ~3.6!

where the sum is taken over all wave vectorsk8 ~allowed by
the periodic simulation box in the case of a finite model! and
all polarizations~two transverse and one longitudinal fo
each wave vector! with k being the wave vector of the initia
plane wave. Such an expansion gives us an opportunit
calculate the weights of different plane-wave component
the propagating excitation, which appear in it due to scat
ing.

The wavesukk8(t) in Eq. ~3.6! are defined as

ukk8~ t !5akk8~ t !An̂8cos@k8•r1fkk8~ t !#. ~3.7!

The same normalization as in Eq.~3.1! is used here. In orde
to find the time dependence of the amplitudeakk8(t) and
phasefkk8(t), it is convenient to rewrite Eq.~3.7! in the
following form:

ukk8~ t !5akk8,c~ t !wk8,c1akk8,s~ t !wk8,s, ~3.8!

where

wk8,c5An̂8cosk8•r and wk8,s5An̂8sink8•r , ~3.9!

so that
n.

n-

d

is

to
in
r-

akk8~ t !5@akk8,c
2

~ t !1akk8,s
2

~ t !#1/2, ~3.10!

fkk8~ t !5arctan@akk8,s~ t !/akk8,c~ t !#. ~3.11!

Strictly speaking, the set of plane waves$wk% used in
expansion~3.6! is not orthogonal because these plane wa
are defined in terms of discrete disordered atomic coo
nates. This drawback can be easily overcome by conside
the orthonormal basis$w̃k% obtained from the original plane
wave basis$wk%, e.g., by standard Gramm-Schmidt~GS! or-
thogonalization. Indeed, the overlap integrals^wkwk8& be-
tween plane waves are macroscopically small,

^wkwk8&

^wkwk&
5

1

wk
2 (

i
wk,iwk8,i}

1

AN
, ~3.12!

because of summing random numbers. Bearing in mind
~3.12!, we can easily find an approximate relation for t
wave w̃k5$w̃k,i% from the orthogonal set,

w̃k,i.wk,iS 12(
k8

^wk8wk&

^wk8wk8&

wk8,i

wk,i
D . ~3.13!

The shape of wavew̃k is close to the shape ofwk if the sum
in Eq. ~3.13! is much less than unity. This is the case if th
number of wavesNorth(k) involved in the orthogonalization
i.e., the number of terms in the sum in Eq.~3.13!, is small
enough. Indeed, if we start the GS orthogonalization w
plane waves characterized by the smallest wave-vector m
nitude and then carry on by including waves according
their increasing wave-vector magnitudeuku, then the sum in
Eq. ~3.13! includes all waves withuk8u&k, i.e., North(k)
}k3. Taking into account thatwk8,i /wk,i are random values
being order of unity and using Eq.~3.12! we can easily ob-
tain an estimate for the sum in Eq.~3.13!, (k8
}@North(k)/Ntot(kmax)#1/2}(k/kmax)

3/2, with Ntot53N being
the total number of waves in the set andkmax'p/a the typi-
cal maximum wave-vector magnitude (a is the average in-
teratomic distance!. Therefore the shape of the orthogon
wavesw̃k is close to the shape of the plane waveswk if k
&k* , with the value ofk* chosen such that inequalit
(k* /kmax)

3/2!1 is satisfied. For the particular case of vitr
ous silica, a reasonable estimate of the upper limit of
consideration ink space isk* .1 Å21 as compared tokmax
.1.7 Å21. This means that two sets, non-orthogonal pla
waves and corresponding orthonormal GS waves,
equivalent in the rangek&k* in the sense that all physica
characteristics~e.g., spectral densities,r functions, etc.! are
practically identical, as we have checked numerically.
the results presented below, unless specifically mention
were obtained for the plane-wave basis.

Now we would like to find the time-dependent coef
cientsakk8,c(s)(t) before the cos-~sin-! like components in
Eq. ~3.6!. This can be easily done by multiplying both sid
of this equation bywk8,c(s) and using Eq.~3.4!, so that

akk8,c(s)~ t !5(
j

āk
j ak8,c(s)

j cosv j t/^wk8,c(s)
2 &, ~3.14!

where
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^wk8,c(s)
2 &[(

i 51

N

u~wk8,c(s)! i u2. ~3.15!

The coefficientsak8,c(s)
j for plane waves of cos- and sin-lik

type entering the expression~3.14! are similar toāk
j except

that the eigenvectors are weighted differently with t
atomic masses:

ak8,c(s)
j

5K ej
•

1

Am
wk8,c(s)L [(

i 51

N
1

Ami

ei
j
•~wk8,c(s)! i .

~3.16!

They are also differently normalized:

(
j 51

3N

uak,c(s)
j u25

(
i

~mi !
21uwk,c(s)u2

(
i

mi uwk,c(s)u2
, ~3.17!

as compared to the expansion coefficientsak,c(s)
j @cf. Eq.

~3.5!#. In a single-component system,( j 51
3N uak,c(s)

j u2

5(1
3Nuāk

j u251, but in a multicomponent system the norma
ization constant~3.17! is not necessarily unity, and, e.g.,
the case of vitreous silica it has the value.0.7.

Equations~3.10!–~3.17! fully determine the time evolu-
tion of differentk8 plane-wave components in the propag
ing vibrational excitation via the coefficientsāk

j andak8,c(s)
j

and the vibrational spectrum itself. These equations will
used for the numerical analysis undertaken below. The n
step which can be done analytically is related to the ti
averaging in Eqs.~3.10!–~3.17!. For example, averaging th
square of Eq.~3.10! as t→` gives usakk8

2 (t), the weight of
the plane-wave component characterized by the wave ve
k8 and polarizationn̂8 in the final state if the initial state is
plane wave characterized byk and n̂:

akk8
2

~ t !.
1

2
H (

j
uāk

j u2uak8,s
j u2

~^wk8,s
2 &!2

1

(
j

uāk
j u2uak8,c

j u2

~^wk8,c
2 &!2

J ,

~3.18!

where, as in Eq.~3.1! and subsequently, the wave-vect
indexk8 also includes the polarization indexn̂8. This weight
is proportional to the functionsuāk

j u2 anduak
j u2 which play an

important role in the following analysis and are called t
spectral-density coefficients~see also Refs. 24 and 46!.

Another useful characteristic often used to characte
the decay of an initial excitation is the time correlatio
function,47

^u~ t !•u~0!&

^u~0!•u~0!&
[

(
i

ui~ t !ui~0!

(
i

wk,iwk,i

5

(
j

āk
j ak

j cosv j t

^wk
2&

.

~3.19!

This correlation function describes the dephasing of the
tial wave and can be used to estimate the typical time of s
-

e
xt
e

tor

e

i-
h

dephasing. The coefficientak
j in Eq. ~3.19! is defined by Eq.

~3.16! with wk,c(s) replaced bywk , and is related to the
coefficientāk

j according to the following equation:

ak
j 5(

j 8
āk

j 8^ejm21ej 8&. ~3.20!

In the case of a one-component system, the coefficientsak
j

and āk
j are obviously identical. Their product,āk

j ak
j , is also

called the spectral-density coefficient.
The general characteristics of plane-wave propagation

fined in this section can be used for quantitative~numerical!
analysis. How to do this is demonstrated in the rest of
paper.

IV. SPECTRAL DENSITIES

The coefficientsāk
j , ak

j in the expansion of differen
k-plane waves over the eigenmodes, i.e., projections of p
waves onto eigenvectors, and related spectral-density co
cientsuak

j u2, uāk
j u2, andāk

j ak
j fully determine the dynamica

response of the system to the initial plane-wave excitati
These three spectral-density coefficients differ from ea
other due to different contributions in the coefficientsāk

j and
ak

j of the mass factor@which is not unity in multicomponen
systems—see Eqs.~3.3! and ~3.16!#. In the case of vitreous
silica, the masses of the atomic species are quite compar
and the mass factor is of the order of unity, so that the d
ferent types of the spectral-density coefficients differ on
slightly from each other. In Fig. 1, we showuāk

j u2, uak
j u2, and

āk
j ak

j for a longitudinal initial plane wave characterized b
k50.3 Å21 ~here, and in what follows, all the simulate
data, if not mentioned explicitly, are presented for the b
shaped structural model ofv-SiO2). It appears~see below!
that the frequency dependences of the spectral-density c
ficients are very similar to each other and the following a
proximate relationships can be used:

uak
j u2.A1uāk

j u2 and āk
j ak

j .A2uāk
j u2, ~4.1!

FIG. 1. Different spectral densitiesS̄k(n) ~curve 1!, Sk(n)
~curve 2!, andSk(n) ~curve 3! for a longitudinal initial plane wave
characterized by the wave-vector magnitudek50.3 Å21. The dot-

ted line represents the fit ofS̄k(n) by a Lorentzian@Eq. ~4.8!# while
the dashed line refers to a fit by the DHO model~Refs. 7 and 13!.
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PRB 61 12 021PROPAGATION OF PLANE-WAVE VIBRATIONAL . . .
with the normalization constants for the correspond
spectral-density coefficients being

A15(
j

uak
j u2, ~4.2!

A25(
j

āk
j ak

j , ~4.3!

which, in the case of vitreous silica, giveA1.0.7 andA2
.0.8. Relations~4.1! are valid, as we checked numericall
in the low- and intermediate-frequency range (n&30 THz!
but break down in the region of the high-frequency band
v-SiO2 at n&30 THz. However, at the not very large valu
of wave vectork&k* .1 Å21, which we consider, the
spectral-density coefficients are not mainly concentrated
the high-frequency region~see below! and the relationships
~4.1! are approximately correct.

The spectral-density coefficientsuāk
j u2 contribute to the

function akk8
2 (t) @see Eq.~3.18!# and, together withuak

j u2,
define the properties of the final state. The distribution fu
tion āk

j ak
j defines the decay of the time correlation functi

given by Eq.~3.19!. The spectral-density coefficientsuak
j u2

are also important from an experimental point of view, b
cause the dynamical structure factor measured in inela
neutron- and x-ray-scattering~IXS! experiments is propor
tional to them.45 In what follows, we mainly refer to the
spectral-density coefficientsuāk

j u2, taking into consideration
that relations~4.1! are fulfilled.

The spectral-density coefficients are defined for discr
frequencies only. The standard transformation to
spectral-density functionsS̄k(v), Sk(v), andSk(v) defined
in the whole frequency range can be made as follows:46

S̄k~v!5g~v!uāk~v!u2, Sk~v!5g~v!āk
j ~v!ak

j ~v!

and Sk~v!5g~v!uak~v!u2, ~4.4!

where, e.g.,uāk(v)u2 is defined as

uāk~v!u25

(
j 51

3N

uāk
j u2d~v2v j !

3Ng~v!
, ~4.5!

and g(v)5( j 51
3N d(v2v j )/3N is the VDOS. The spectra

densities are continuous functions if Gaussians~or Lorentz-
ians! are used instead of thed function representation in Eq
~4.5!. Exactly these functions are presented in Fig. 1 a
everywhere below unless specified. As seen from Fig. 1,
ferent spectral densities have similar frequency depende
thus confirming relations~4.1!.

The shape of the spectral density depends on the cha
teristics of the plane wave~wave vector and polarization!
and on the atomic structure itself. In disordered structu
and for small values of the wave-vector magnitude (ka
!1), the spectral density both for longitudinal and tran
verse polarizations has the shape of a single pronoun
peak@see Figs. 2~a! and 2~d!#. With an increase of the mag
nitudek of the wave vector, the peak-shaped spectral den
shifts to higher frequencies and its width increases@see Figs.
g

f
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2~b! and 2~e!#. At large enoughk*k* .1 Å21, the spectral
density no longer consists of a single peak but rather
sembles the vibrational density of states~VDOS! @see Figs.
2~c! and 2~f!#, clearly showing the two frequency band
found inv-SiO2.43 We should notice that the rangek*k* is
outside the limits of our consideration and the results th
could serve as rough esimates only. Indeed, for the w
vectors aroundk.k* , the GS orthonormal states still re
semble the original nonorthogonal plane waves@see Fig.
3~b!# and the spectral densities calculated for both of th
are close to each other@cf. the solid and dashed curves

FIG. 2. The spectral densitiesS̄k(n) for transverse@~a!, ~b!, and
~c!# and longitudinal@~d!, ~e!, and~f!# initial polarizations at differ-
ent magnitudesk of the initial wave vector as shown in the figure

FIG. 3. The spectral densitiesS̄k(n) for plane wave~solid lines!
and for the corresponding Gramm-Schmidt orthonormal s
~dashed lines! of longitudinal initial polarization at different mag
nitudes,k*k* , of the initial wave vector:~a! k50.96 Å21 and~c!
k51.47 Å21. A part of the displacement pattern for a longitudin
plane wave~solid circles! and the corresponding Gramm-Schmi
orthonormal state~crosses! are shown for~b! k50.96 Å21 and ~d!
k51.47 Å21.
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Fig. 3~a!#. The situation becomes much worse with incre
ing k @see Fig. 3~c!#, because the GS orthonormal states
such wave vectors are not so similar to the original pla
waves@see Fig. 3~d!#.

In an attempt to understand the origin of changes in
shape of the spectral densities and the origin of a partic
shape itself, we calculated these quantities for a crystal
counterpart of vitreous silica, namelya-cristobalite, and
compared them to those forv-SiO2 ~see Fig. 4!. At very
small wave vectors,k!p/a (a is a typical size of the unit
cell, a.5 – 7 Å!, the spectral density is a singled function
@see Fig. 4~a!#, meaning that long-wavelength plane wav
give the major contribution to acoustic phonons, which
very similar to plane waves. With increasingk, the contribu-
tions of plane waves to acoustic phonons become sh
with increasing contributions from optic phonons, and ak
*p/a ~e.g.,k*0.3 Å21 for longitudinal branches! they are
of the same order@see Figs. 4~b! and 4~c!#. Thus the spectra
density for an amorphous solid (v-SiO2) can be imagined as
being a directional average over thed functions for the cor-
responding crystal (a-cristobalite!, each d function being
broadened by structural disorder. Doveet al.48 have also dis-
cussed the relationship between the low-frequency dynam
of a-cristobalite and those of amorphous silicates.

In the low-frequency regime, where the spectral densi
have the shapes of pronounced peaks, the positions of t
peaks,n t,l , are related to the wave-vector magnitude acco
ing to the linear relation~see Fig. 5!

n t,l.ct,lk/2p, ~4.6!

as for acoustic waves in crystals. As seen from Fig. 5,
calculated dots in the low-frequency range lie on the stra
lines plotted with use of experimentally found sound velo
ties @ct.37.5 Å/ps andcl.59 Å/ps ~Refs. 13 and 49!#. A
microscopic structure on the interatomic scalea ~ordered or
disordered! is not important in this frequency regime whe

FIG. 4. The spectral densitiesS̄k(n) for longitudinal vibrations
for different structural models ofv-SiO2 and similar spectral-

density coefficientsuāk
j u2 for a-cristobalite at various values o

wave vectork. The meaning of the symbols and curves in the low
two panels is the same as in the top panel.
-
r
e

e
ar
e

e

ed

cs

s
se
-

e
t

-

the wavelengthl@a and plane waves propagate in an effe
tively elastic continuum. Therefore it is not surprising to fin
a linear dispersion~4.6! for a disordered material ifl@a.

If the spectral densities are peak shaped, two of their ch
acteristics, the peak position and width, are normally use
order to describe the propagation of plane-wa
excitations.7,12,13,24The peak position is associated with th
average frequency of the propagating excitation, while
peak width is associated with the decay time of the exc
tion. Indeed, if we look at thek-plane-wave component in
the propagating excitation,u(t), its evolution with time is
described by relation~3.7! at k85k. The weight~amplitude!
of this component,akk(t), decays with time according to
Eqs.~3.10! and ~3.14!. A rough estimate of the time depen
dence ofakk(t) can be obtained if we assume thatakk(t)
}akk ,c(t), i.e., akk(t) is approximately the back cosine Fou
rier transformation of the spectral-density coefficientsāk

j ak
j

@see Eq.~3.14!#. If the spectral density has the shape of
well-defined peak which can be fitted, say, by a Lorentz
~see the dotted line in Fig. 1!, i.e.,

f L5
1

p

~Gv/2!

~v2v̄k!
21~Gv/2!2

, ~4.7!

where the Lorentzian positionv k̄ and full width at half maxi-
mum ~FWHM! Gv are the fitting parameters, then the ba
cosine Fourier transform of the function~4.7! is

akk~ t !.A2 cosv̄kt exp$2Gvt/2%, ~4.8!

where we have actually used Eq.~4.7! to fit the spectral
density S̄k normalized to unity and then applied Eq.~4.1!
with spectral-density coefficients replaced by the spec
densities themselves. As clearly seen from Eq.~4.8!, the de-
cay of thek-plane-wave component can be characterized
the average radial frequencyv̄k and the inverse decay time

r

FIG. 5. The dispersion laws for transverse~a! and longitudinal
~b! polarizations of an initial plane-wave excitation. The so
circles and squares were obtained from the fit of the spectral d
sities by Lorentzians and the DHO model, respectively. The o
squares were obtained by the temporal decay method as desc
in Sec. V. The open circles were calculated according to Eq.~5.3!.
The stars in~b! correspond to IXS data~Ref. 13!. The solid lines
represent the long-wavelength limit characterized by the exp
mentally found sound velocities.
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tk
21.Gv~k!/25pGn~k!, ~4.9!

with Gn(THz)5Gv/2p.
In Refs. 7 and 13, the damped harmonic oscillator~DHO!

model has been used to fit spectral densities~see the dashed
line in Fig. 1!, which gives similar values for the averag
frequency and width, if (Gv)2!v̄k

2 . This inequality holds
true in the regionk&k* .1 Å21 where the spectral densitie
have a well-defined peak shape and fitting of the spec
densities by Lorentzian and/or DHO curves makes sense

We have used fits both by the Lorentzian and DHO m
els to obtain the average frequency and decay time of
propagating plane-wave excitation as a function of the ini
wave vector. The results are presented in Figs. 5 and 6.
dependence ofn̄k5v̄k/2p vs k shown in Fig. 5 can be asso
ciated with some sort of ‘‘dispersion law.’’ Of course, th
propagating excitation, which was a plane wave at the ini
moment of time, cannot be characterized by only one w
vector~and single frequency! and instead consists of a pack
of plane waves@see Eq.~3.6!# with different wave vectors~a
packet of eigenmodes characterized by different frequ
cies!. We chose from thek8 packet only one componen
characterized by the same wave vector as that of the in
plane wave and followed its time evolution. In that case,
dependenciesn̄k presented in Fig. 5 can be regarded as
dispersion laws for a single plane-wave component. The
perimental data for longitudinal external plane-wave exc
tions from IXS experiments,13 obtained by fitting the experi
mental curves with the DHO model, are shown by the st
in Fig. 5~b! and they agree well with our results~see also
Ref. 7!.

Note that the dispersion laws for both branches are p
tically linear in the low-frequency~long-wavelength! regime
for n&3 THz. Above this frequency, a sort of ‘‘fast-sound
behavior is observed. The increase in the slope ofn̄k is re-
lated to changes in the shape of the spectral densitie

FIG. 6. Inverse decay timet21 versus the initial wave-vecto
magnitudek for transverse~a! and longitudinal~b! initial polariza-
tions. The same symbols are used as in Fig. 5. In the insets, the
are plotted on a double logarithmic scale in order to compare th
with the quadratic dependence shown by solid lines. The error
were obtained from the averaging of the results over initial ph

f0 and direction of the polarizationn̂ ~for transverse polarization!
of the initial wave@see Eq.~3.1!#.
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shoulder on the high-frequency side of the spectral-den
peak for the longitudinal branch starts to appear atk*0.3
Å21 @n*0.3 THz—see Figs. 2~d! and 2~e!#. A similar trans-
formation happens with the peak for the transverse branc
k*0.5 Å21.

The width of the spectral density, as mentioned abo
@see Eq.~4.9!#, defines the decay time of the plane-wa
excitation. In Fig. 6, we have plotted the inverse decay tim
which is proportional to the peak width, against wave-vec
magnitude for both polarizations of the initial plane-wa
excitation. As follows from the insets in Fig. 6, the inver
decay time increases with increasingk approximately pro-
portional to k2 for 0.2&k&0.5 Å21 for the longitudinal
branch and for 0.3&k&1 Å21 in the case of the transvers
branch. The first two points for the transverse branch
tained atk.0.07 and.0.15 Å21 and the first point for the
longitudinal branch, for which the corresponding frequenc
are below&1 THz, serve only as estimates of the decay tim
due to finite-size limitations. Such a quadratic dependence
wave-vector magnitude has been found not only in the I
experiments in the rangek;0.1– 1 Å21 ~at T51050 K!
~Ref. 13! @see stars in Fig. 6~b!# and aroundk;0.15– 0.2
Å21 ~at T5295 K!,15 but also in a very wide range~over a
few decades! at smallerk by a picosecond optical techniqu
~at T5300 K!,50 Brillouin light-scattering~at T5300 K!,13,51

and by ultrasonic measurements.51

The positions of the spectral-density peaks are very w
defined, and the average frequency can be easily assoc
with the peak position~see Fig. 5! but only limited informa-
tion about the peak width can be obtained. This is due to
fact that in the frequency range&1 THz the frequency spec
trum is not dense~because of the finite size of the mode!
and the number of decay channels can be underestima
The experimental data for the line widths in the IXS expe
ments shown in Fig. 6~b! by the stars are in very good agre
ment with our results.

It should be noted that a linear and quadratic depende
of the average frequency and the linewidth, respectively,
quite general features found for structural models of differ
materials.18,26,38,44,52–56A possible explanation of the qua
dratic dependence of the linewidth on the wave-vector m
nitude is given in Ref. 57 in terms of anharmonic effects

V. TIME EVOLUTION OF PLANE-WAVE EXCITATIONS

Investigation of the spectral densities, as shown in S
IV, provides us with indirect estimates of the average f
quency and decay time of the propagating plane-wave e
tations. The other straightforward way to obtain the avera
frequency and decay time of plane-wave excitations is
calculate directly the time dependence of the displacem
vector,u(t).

At least two functions can be used to study the decay
plane-wave excitations. The standard way lies in the ca
lation and analysis of the correlation function~3.19!.47 The
correlation function is proportional to the projection of th
displacement vector at timet onto the initial plane wave,
An̂ cos(k•r1f0) @see Eq.~3.1!#. The evolution of the corre-
lation function shows how the value of this projection onto
time-invariant k-plane-wave component decays with tim
~see Fig. 7, where the decay of the correlation functions fr
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unity at t50 occurs on the time scale&1 ps!. As follows
from Eq. ~3.19!, the time dependence is exactly the ba
cosine Fourier transform of the spectral-density coefficie
Therefore the analysis performed in Sec. IV is equally ap
cable to the investigation of the decay of the correlat
function and should give the same results for the aver
frequency and decay time as those obtained directly fr
time dependencies. Indeed, as seen from Fig. 7, for b
polarizations the correlation functions decay and oscillate
qualitative agreement with expression~4.8!. The decay times
~the typical times at which the envelope of the correlat
function drops to zero! estimated from Fig. 7 aret t
.0.5(0.4) ps andt l.0.16(0.1) ps, agreeing well with th
estimates~given in brackets! obtained from fits of the spec
tral densities by the DHO model.

The other, and from our viewpoint, more appropriate w
lies in the investigation of the time evolution of thek-plane-
wave component,ukk , defined in Eq.~3.7!. The value to be
calculated is the projection,akk(t) @see Eqs.~3.7! and
~3.10!–~3.11!#, of the displacement vector,uk(t), onto the
time-varying k-plane-wave component, An̂ cos@k•r
1fkk(t)#. The difference between this quantity and the c
relation function is related to the appearance of the tim
dependent phase in thek-plane-wave component. Indeed,
we want to study the decay of the plane-wave excitat
characterized by the wave vectork at t50 then we should
follow the time evolution of thek-plane-wave componen
which not only decays~the amplitude decreases! but also
moves~the phase depends on time!. Therefore the total dis-
placement vector should be projected onto the mov
k-plane-wave component.

The evolution of thek-plane-wave component is shown
Figs. 8 and 9. We chose the initial plane wave to be a sta
ing wave of cos-type and calculated separately the am
tudesakk ,c(t) andakk ,s(t) of the cos- and sin-like constitu
ents. As clearly seen from Fig. 8~a!, akk ,c(0)51 and
akk ,s(0)50, but then the sin-like component is activat
with time and becomes comparable with the cos-like com
nent. This means that the phasefkk(t) of the k-component
depends on time@see Figs. 9~a! and 9~b!# and the
k-plane-wave component is no longer a standing wave
rather a running wave. The running wave moves with

FIG. 7. The correlation function Eq.~3.19! for transverse~a! and
longitudinal~b! initial polarizations of plane-wave excitations cha
acterized by the wave-vector magnitudek.0.3 Å21.
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phase velocity,vf(t)5@df(t)/dt#/k, which is a function of
time. The phase rate,df(t)/dt[kvf(t), strongly fluctuates
in magnitude and changes sign in an apparently chaotic m
ner @see Figs. 9~a! and 9~b!#, so that thek-plane-wave com-
ponent moves in a diffusivelike manner.

The average values of the different powers of phase-
magnitude, defined as

nk
(n)[

1

2p
FUdfkk

dt UnG1/n

5
1

2pF1

t E
0

tUdfkk

dt Un

dtG1/n

,

~5.1!

where the phase rate is to be found from Eqs.~3.11!–~3.14!
~it is proportional to the back sine Fourier transformation
the first moment of the spectral-density coefficients, prop
tional to ( jv j āk

j ak8,c(s)
j sinvjt, and to the back cosine Fou

rier transformation of the spectral-density coefficients! can

FIG. 8. The amplitudeakk(t)/akk(0) ~solid lines! on a linear~a!
and semilogarithmic~b! scale versus time for a longitudinal initia
plane wave withk.0.29 Å21. The amplitudes of cos-like~the
dashed curve! and sin-like~the dotted curve! constituents are shown
in ~a!. The fit of the time dependence of the amplitude by Eq.~5.4!
is shown by the dashed line in~b! while the averaged amplitude

@akk
2 (t)#1/2 is indicated by the dot-dashed line. The dependence

the fitting parametersn̄k8 ~the solid line! andtk ~the dotted line! in
Eq. ~5.4! on the upper time limitt r is shown in the inset in~b!.

FIG. 9. The phasesfkk(t) @see Eq.~3.11!# andck(t) @see Eq.
~5.2!# for longitudinal ~a! and transverse~b! initial polarizations of
plane waves withk.0.29 Å21.
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be easily numerically averaged over time. Despite the
fluctuations in magnitude offkk(t), the averaged characte
istics ~5.1! are well defined. As an example, we have calc
lated the integralck(t) of the magnitude of the phase ra
@n51 in Eq. ~5.1!#,

ck~ t !5E
0

tUdfkk

dt Udt, ~5.2!

and plotted it versus time in Figs. 9~a! and 9~b!. The average
magnitude of the phase rate,kv̄f,k , has then been calculate
as the average slope of this curve, which is very close
straight line.

The averaged magnitude of the phase rate can be re
to the average frequencyn̄k of the k-plane-wave componen
according to the following equation:

n̄k5ck~ t !/t. ~5.3!

Indeed, the running plane-wave component moves in sp
backward (df/dt,0) and forward (df/dt.0) with time,
so thatf(t) is not a monotonic function of time@see Figs.
9~a! and 9~b!# and both the average phase and phase rate
equal to zero. If we consider a similar wave but always m
ing in one direction~replacingdf/dt by udf/dtu), then the
phaseck(t) is now a monotonic function@see Figs. 9~a! and
9~b!# and the average phase rateck(t)/t, or the average fre-
quency by definition, is not zero. Bearing in mind th
equivalence of these two waves from the viewpoint of
definition of the frequency of the running wave, we arrive
Eq. ~5.3!. The results forn̄k versus differentk for transverse
and longitudinal polarizations are presented in Figs. 5~a! and
5~b! ~the open circles!, respectively.

It should be stressed that even for large values ofk, where
the spectral density is not peak shaped, the value of the
eraged magnitude of the phase rate~frequency!, kv̄f,k5 n̄k ,
is well defined. The dispersion laws, thus obtained, supp
the estimations made from the fits of the spectral densitie
Lorentzians and the DHO model~see Fig. 5!. The values of
the averaged frequency of thek-plane-wave component ca
culated from Eqs.~5.2!–~5.3! are not based on any fit and a
defined even for the featureless spectral densities atk*1
Å21 @see Figs. 2~c! and 2~f!#. This is the advantage of thi
method as compared to those based on the fitting proced
described in Sec. IV. Note that calculation of the first fr
quency moments for the spectral densities results in diffe
estimates~by up to 40%) of the average frequencies as co
pared to those found using Eq.~5.1!.

We have shown how the average frequency of the pro
gating plane-wave excitation can be calculated from the t
dependences of the phase. The decay timetk of the propa-
gating plane-wave excitation can also be calculated, but n
from the time dependence of the amplitude,akk(t) ~see Fig.
8!. As seen from Fig. 8~a!, the amplitude first decays with
time and then fluctuates around the average value,akk

2 @see
the dot-dashed line in Fig. 8~b!#. The decay time is calcu
lated from the fit of the dependenceakk(t)/akk(0) in the
initial stage of relaxation (t&t r), when the amplitude still
does not reach the average value, by the following empir
function @see the dashed line in Fig. 8~b!#:
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akk~ t !/akk~0!5exp~2t/tk!ucos~2pn̄k8t !u, ~5.4!

with n̄k8 , the frequency in the initial stage of relaxation fo
t&t r , and the decay timetk being the fitting parameters. Th
values of these parameters slightly depend on the upper
t r for fitting, as shown in the inset in Fig. 8~b!. The data for
n̄k8 andtk averaged overt r , the initial phasef0 in Eq. ~3.1!,

the direction of the polarization vectorn̂ in Eq. ~3.1! in the
case of the transverse polarization, and the direction of
wave vector are shown, respectively, in Fig. 5~the open
squares! and Fig. 6~the open squares!. As follows from these
figures, the temporal-decay method gives values of aver
frequencies quite close to those obtained from the fitting
spectral densities. The same is true for the decay time ex
in the regions of intermediate and largek*0.5 Å21, where
the decay time found by the temporal-decay method
greater, especially than those values obtained by fitting of
spectral densities with the DHO model~see Figs. 6!.

VI. ANALYSIS OF THE FINAL STATE
FOR THE SCATTERED PLANE WAVE

The decay of the plane-wave excitation can also be ch
acterized via the properties of the final state after dec
averaged over time ast→`. An initial plane-wave excitation
characterized by the wave vectork and polarizationn̂ is
scattered to different plane-wave components character
by the wave vectorsk8 and polarizationsn̂8. The distribution
r(k8,n̂8uk,n̂) of the weights of different plane-wave compo
nents averaged over time in the final state,

r~k8,n̂8uk,n̂![akk8,n̂n̂8
2

~ t !, ~6.1!

is of particular interest@see Eq.~3.18! where the function
from the right-hand side of Eq.~6.1! is evaluated#. Bearing in
mind that in Eq.~3.18!, ^wk8,s

2 &.^wk8,c
2 &.^wk8

2 & ~for finite
systems! and that the sumuak8,s

j u21uak8,c
j u2 is independent of

the phase of cos- and sin-like components defined by
~3.9!, expressions~3.18! and ~6.1! can be transformed to

r~k8,n̂8uk,n̂!.
(

j
uāk

j u2uak8
j u2

~^wk8
2 &!2

. ~6.2!

The probability for an initial plane wave to be scattered in
a plane wave characterized by wave vectork8 and either
transverse or longitudinal polarization is given by the to
distribution functionr tot(k8uk,n̂),

r tot~k8uk,n̂!52r~k8,n̂t8uk,n̂!1r~k8,n̂l8uk,n̂!, ~6.3!

where the unit vectorn̂t8 stands for transverse polarization

the final state whilen̂l8 refers to longitudinal polarization
and the factor 2 takes into account the existence of two
dependent and, in glasses, equivalent transverse pola
tions. Glasses are isotropic, and an averaging of Eq.~6.3!
over the directions of both initial and final wave vecto
~including averaging over transverse polarizations in the
tial wave! can be made, resulting in
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r tot,t(l)~k8uk!5^r tot~k8uk,n̂t( l) !&Vk,k8
. ~6.4!

In practice, for better statistics, when calculating the dis
bution functionsr tot(k8uk,n̂), we have also performed a
averaging over phases@e.g.,f0 in Eq. ~3.1!# and over direc-
tions of the polarization vector~for transverse polarization!
both in the initial and final states.

If we are interested in the contribution of the same pla
wavek component as in the initial excitation, then the wa
vectork8 should be replaced byk in Eq. ~6.3! and averaging
only overk directions should be made in Eq.~6.4!.

First, we consider the final state of a singlek-plane-wave
component characterized by the same wave vector as
initial one. The phase of this wave has a random value an
not an informative characteristic. The important quantity
the amplitude of the wave, or more precisely its squa
average value@see the dot-dashed line in Fig. 8~b!#, defined
by Eqs.~3.18! and ~6.2! at k85k,

akk
2 .

1

2
H (

j
uāk

j u2uak,s
j u2

~^wk,s
2 &!2

1

(
j

uāk
j u2uak,c

j u2

~^wk,c
2 &!2

J
.

(
j

uāk
j u2uak

j u2

~^wk
2&!2

. ~6.5!

This value can be easily estimated for a peak-shaped spe
density of widthG. Indeed, the number of eigenmodes co
tributing to an initial plane wave is 3N•(G/D), whereD is
the width of the whole vibrational spectrum (.40 THz in the
case of vitreous silica!. Then we can easily evaluate from th
normalization conditions Eqs.~3.5! and ~3.20! the average
value of the spectral-density coefficients in the peak reg
uākk

j u2;uakk ,s
j u2;(D/G)•(1/3N), and obtain the following

estimate forakk
2 ,

akk
2 ;

D

G
•

1

3N
, ~6.6!

where we have taken into account that^wk
2&;1 according to

Eq. ~3.5!. The factorD/G in relation ~6.6! shows that the
averaged squared amplitude is inversely proportional to
number of initially excited modes and not to all the mod
This factor, being much larger than unity in the lon
wavelength regime, decreases with increasing wave-ve
magnitude because of the increase ofG ~see Fig. 2! and
becomes comparable to unity atk*k* .1 Å21 when the
peak width is comparable to the full spectral widthG;D.

Let us consider an initial plane wave characterized by
wave vectork and polarizationn̂. This wave is scattered with
time into different plane waves characterized by wave v
tors k8 and polarizationsn̂8, which do not necessarily coin
cide with the initial polarization. We would like to know th
weights of all plane-wave components in the final state a
function of wave-vector magnitudek8. The distributions of
the transverse and longitudinal plane waves,r(k8,n̂t8uk,n̂)

andr(k8,n̂l8uk,n̂) @see Eq.~6.2!#, respectively, and the tota

distribution,r tot(k8uk,n̂) @see Eq.~6.3!#, for both transverse
-
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n̂t and longitudinaln̂l polarizations of the initial plane-wave
excitation are of particular interest. These distributions
pend only on the spectral-density coefficientsuāk

j u2, uak8
j u2

and the vibrational spectrum itself and can be easily ca
lated numerically for differentk. The results of such calcu
lations are presented in Fig. 10. The upper~lower! row de-
scribes the scattering of initial longitudinal~transverse! plane
waves, characterized by different wave-vector magnitud
into transverse and longitudinal plane waves and also
total distribution of the weights in the final state.

First, we consider scattering of a longitudinal initial wav
~the upper row in Fig. 10!. The weight distributions
r(k8,n̂l8uk,n̂l) and r(k8,n̂t8uk,n̂l) characterize the scatterin
of the longitudinal wave to a longitudinal wave, the$ l→ l %
channel, and of the longitudinal wave to a transverse wa
the $ l→t% channel, respectively. As follows from Fig. 10
these distributions are peak shaped but the positions of
peaks are different. The distribution for the$ l→ l % channel
has a maximum aroundkll8.kl[k ~or maybe a bit below the
initial wave vector!, while the distribution for the$ l→t%
channel is mainly concentrated at a higher wave-vec
value,klt8.kl . The total distribution,r tot(k8uk,n̂l) , in the fi-
nal state is a sum of double the distribution for the$ l→t%
channel and the distribution for the$ l→ l % channel. If the
peaks related to the individual channels and constituting
total distribution are narrow enough, then the distributi
function r tot(k8uk,n̂l) is double-peaked~not clearly seen in
Fig. 10!. If the peaks are too wide, thenr tot(k8uk,n̂l) looks
like a single wide peak~see Fig. 10! with a maximum posi-
tion kl,tot8 close toklt8 .

Such a shape of the distributions of the weights of pla
waves in the final state can be qualitatively understood in
following way. The distribution functionr(k8,n̂t8uk,n̂l) of
the transverse waves is an integral~sum in the case of a
finite-size model! of the product of two spectral-density co
efficients, uāk,n̂l

j u2 for longitudinal anduak8,n̂8t8
j u2 for trans-

verse polarization. In the acoustic regime, these peak-sha

FIG. 10. The distribution functionsr(k8,n̂t8uk,n̂) ~circles!,

r(k8,n̂l8uk,n̂) ~pluses! andrav(k8uk,n̂) ~stars! for longitudinal @~a!,
~c!, and~e!# and transverse@~b!, ~d!, and~f!# initial polarizations of
plane waves characterized by different initial wave-vector mag
tudesk for the bar-shaped structural model ofv-SiO2. The ordinate
scales for~a! and ~b! are on the left, and on the right for the othe
figures.
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spectral densities have maxima atn l.clk/2p and n t8
.ctk8/2p, respectively, which generally do not coincid
with each other. In Fig. 11~a!, as an example we show th
spectral density for an initial longitudinal wave atk.0.15
Å21 ~solid line! and a few spectral densities for transver
waves in the final state~dotted lines! characterized byk8
.0.15 Å21 ~curve 1!, 0.22 Å21 ~curve 2!, 0.29 Å21 ~curve
3!, and 0.37 Å21 ~curve 4!. The distribution function
r(k8,n̂t8uk,n̂l) has a maximum at the valuek8, such that the

product of the spectral-density coefficientsr j (k8,n̂t8uk,n̂l)

5uāk,n̂l

j u2
•uak8,n̂

t8
j u2 is maximal in the peak regions of th

spectral densities. The latter condition is obeyed if the pe
of the two spectral densities lie approximately in the sa
frequency region, i.e.,n l.n t8 @see, e.g., curves 2 and 3 co
ering the same region as the solid line in Fig. 11~a!#. When
we plotr j (k8,n̂t8uk,n̂l) versus frequency@Fig. 11~b!#, indeed
we see that the maximum area lies under curves (2) and
obtained by multiplication of the corresponding curves
the solid line in Fig. 11~a!. Therefore the distribution
r(k8,n̂t8uk,n̂l) has a maximum aroundklt8 satisfying the equa-
tion n l.clk/2p.ctklt8/2p.n t8 , i.e.,

klt8.clk/ct , ~6.7!

which is obviously greater than the wave vector of the init
longitudinal wave.

The distribution of longitudinal waves for the$ l→ l %
channel can be analyzed in a similar manner. The main
ference from the$ l→t% channel is that the spectral density
the longitudinal plane wave in the final state coincides w

FIG. 11. ~a!: The spectral densitiesS̄k(n) for a longitudinal

initial plane wave withk.0.15 Å21 ~solid line! and S̄k8(n) for the
transverse final plane-wave components characterized by diffe
k8.0.15 Å21 ~curve 1!, 0.22 Å21 ~curve 2!, 0.29 Å21 ~curve 3!,

0.37 Å21 ~curve 4!. ~b! The functionsrn(k8,n̂t8uk,n̂l) which are
related to the products of the spectral-density coefficients accor

to the relation rn(k8,n̂t8uk,n̂l)5(1/3N)( jr j (k8,n̂t8uk,n̂l)d(n2n j )

5(1/3N)( j uāk,n̂l

j u2
•uak8,n̂8t

j u2d(n2n j ). The initial-state spectral-

density coefficientuāk,n̂l

j u2, corresponds to the solid line in~a! while

the final-state spectral-density coefficientsuak8,n̂
t8

j u2 correspond to

the dotted curves in~a! @denoted by the same numbers in~a! as their
products in~b!#.
ks
e

3)

l

if-

the spectral density of the initial longitudinal plane wave
approximately the same wavevector magnitude as for the
tial wave,

kll8.k. ~6.8!

Actually, the valuekll8 should be slightly shifted to lowe
values, because the height of the peak for the spectral-de
coefficients uak8

j u2 increases with decreasingk8 and the
maximum of the product of the spectral densities is reac
in the low-frequency tail of the spectral density for the initi
plane wave.

The scattering of an initially transverse plane wave occ
similarly. In particular, the conclusion that the average f
quency,n8, of the majority of the plane-wave componen
comprising the final state coincides with the average f
quencyn of the initial plane wave,

n8.n, ~6.9!

holds true independently of the polarization of the init
plane-wave excitation. Therefore we can roughly say that
disorder-induced scattering of the plane wave is appro
mately ‘‘elastic’’ ~on average!. This is not an absolutely pre
cise conclusion because, first, the plane-wave compon
are distributed in frequency~composed of eigenmodes ha
ing different frequencies! in the initial and final states and
second, even the maximum of the distribution in the fin
state is slightly shifted to lower frequencies as compared
the initial one, as discussed above.

In the case of the scattering of the initial transverse pla
wave, two channels are available:$t→ l % and $t→t%. The
distribution functionsr(k8,n̂l8uk,n̂t) andr(k8,n̂t8uk,n̂t) of the
weights of plane waves in the final state for these chann
have peaks located around the following values:

ktl8.ctk/cl and ktt8.k. ~6.10!

As follows from Eq.~6.10! and Figs. 10~b!, 10~d!, and 10~f!,
the peak for longitudinal waves lies below the initialk, while
for transverse waves the peak approximately coincides w
k, being slightly shifted to smaller values for reasons simi
to those discussed above for the$ l→ l % channel.

VII. LOW-DIMENSIONAL MODEL

One way to overcome the disadvantages of finite-s
three-dimensional~3D! numerical models is to analyze low
dimensional models. Much lower wave vectorsk*kmin

(d)

52p/N1/da ~with a being a typical interatomic distance an
N the number of atoms! are available, for example, in one
dimensional (D51) models as compared to the 3D case, a
the acoustic spectrum appears to be much more dens
order to check and support the analytical and numerical
proaches presented above for the 3D case, we have
formed numerical experiments for a disordered 1D mo
and calculated the distribution functionr(k8,n̂8uk,n̂) for it.

A ‘‘zigzag’’ linear chain ~along thex direction! of atoms
@see the inset in Fig. 12~b!#, positionally ordered in thex-y
plane, has been chosen as a model. The atoms of two t
( i 51,2), characterized by the massesmi are in equilibrium
positioned at$xi /a,yi /a% ~e.g., we used the coordinate
$0,0% and $0.4,0.5% for the first and second atom, respe

nt

ng



th
n

.

f
ta

ot
w

O

s

f
sy
e

th

f
ion
ve
on

th

e

e

on

is-
ion

e
ent

in

the
ve-
ter-

be
n

r-
rder
the
e
of
ed,
to
en-

ncy
er

r
into

as

in

r

t o
d

am-

ide

12 028 PRB 61S. N. TARASKIN AND S. R. ELLIOTT
tively; the second atom is displaced from the middle of
unit cell, x2Þ0.5, in order to avoid the extended Brilloui
zone form15m2) in the unit cell of sizea, which is periodi-
cally repeatedN/2 times with periodic boundary conditions
The nearest neighbors of different types are connected
springs of force constantk1 while the nearest neighbors o
the same type are connected by springs with force cons
k2. Such a model is one of the simplest in 1D to show b
the longitudinal and transverse acoustic branches that
need for our consideration. The dispersion curves and VD
for the crystalline chain are presented in Figs. 12~a! and
12~b!. Thev21/2-singularity in the VDOS atv→0 @see Fig.
12~b!# is due to the parabolic dispersion law for the tran
verse acoustic phonons in the long-wavelength limit,v t}k2

@see Fig. 12~a!#, which is typical for transverse vibrations o
a linear chain. Disorder then has been introduced in the
tem by randomly distributing spring constants around th
mean valuesk̄1 and k̄2 according to a normal distribution
with variancesdk1 anddk2, respectively. The VDOS of the
disordered chain is shown by the dashed curve in Fig. 12~b!.
For the parameters of the model used, the VDOS in
acoustic regime is not changed appreciably by disorder.

Our main purpose here in analysing the vibrations o
disordered 1D chain is to calculate the distribution funct
r(k8,n̂8uk,n̂) characterizing the scattering of a plane-wa
excitation. First, we have calculated this distribution functi
for the crystalline counterpart (dk i50) and not surprisingly
~a detailed analysis will be given elsewhere! we found for
k<p/a only $t→t% and $ l→ l % channels@see the dashed
lines in Figs. 13~a! and 13~b! marking the peaks atktt85k and
kll8 5k for the$t→t% and$ l→ l % channels, respectively#. Dis-
order changes the situation dramatically and gives rise to
occurrence of$t→ l % and$ l→t% channels@see the solid lines
in Figs. 13~a! and 13~b!# in complete agreement with th

FIG. 12. ~a!: Dispersion curves@ṽ5vAm/k1 vs k̃5k/(p/a)#
for a 1D zigzag chain model@see the inset in~b!# characterized by
the following parameters: the equilibrium coordinate of atoms
the unit cell,x1 /a50; y1 /a50, x2 /a50.4; y2 /a50.5, ratio of
force constantsk2 /k150.1, massesm15m25m, and the total
number of atomsN52000. The arrows mark the initial wave-vecto

magnitudek̃ and final wave-vector valuesk̃tl8 and k̃lt8 ~see text!. ~b!:
The VDOS of the linear zigzag chain model with the same se
parameters as in~a! ~solid line! together with that for a disordere
chain with fluctuations in force constantsdk1 /k150.3, dk2 /k2

50.3 ~dashed line!.
e

by
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results of thek analysis given in Fig. 10. The positions of th
additional peaks, atktl8 ($t→ l % channel! and klt8 ($ l→t%
channel!, can be obtained from the crystalline dispersi
laws for the 1D chain by solving the equations:v t(k)
5v l(ktl8) andv l(k)5v t(klt8), respectively@see arrows in Fig.
12~a!#. The width of the peaks increases with increasing d
order. We have also found a similar shape of the distribut
function r ~for four channels! for all wave vectorsk<p/a
with correspondingv t andv l lying in the range of the dens
spectrum. Therefore the results of this computer experim
on the 1D model fully support thek analysis presented in
Sec. VI.

VIII. SCATTERING MECHANISM

From numerical calculations for both the 1D linear cha
model and the 3D model ofv-SiO2, we have found that
plane waves scatter not only to modes of approximately
same wavelength but also to modes of rather different wa
length but of similar frequency. The reason for such scat
ing is a natural question.

First, we consider the 1D linear chain model. As can
seen from Fig. 12~b!, the VDOS of the disordered chain i
the acoustic regime~for the chosen set of parameters! is
hardly different from the VDOS of the crystalline counte
part. This means that, in this case, force-constant diso
does not create or remove many vibrational states from
acoustic frequency range. Hence the appearance of th$t
→ l % and $ l→t% channels should be explained in terms
existing transverse and longitudinal acoustic waves. Inde
in a crystal, long-wavelength plane waves decay in
phonons with the same wave vector because of quasimom
tum conservation. Therefore a wave with the same freque
but different type of polarization cannot be excited. Disord
destroys the quasimomentum conservation~the wave vector
is no longer a good quantum value! and new channels fo
scattering are opened. A plane-wave excitation decays
eigenmodes having approximately the same frequency

f

FIG. 13. The distribution functionsr( k̃8,n̂8uk̃,n̂) for different
scattering channels~as marked in the figure!, for ~a! longitudinal

(n̂5n̂l) and ~b! transverse (n̂5n̂t) initial polarizations of plane

waves characterized by initial wave-vector magnitudesk̃
5k/(p/a)50.3 for an ordered~dashed lines! and disordered~solid
lines! linear zigzag chain model characterized by the same par
eters as in Fig. 12. The dashed lines corresponding to the$ l→t%
scattering channel in~a! and$t→ l % scattering channel in~b! for the
crystalline ~ordered! chain cannot be seen because they coinc

with the abscissa, since for themr( k̃8,n̂8uk̃,n̂) is effectively zero.
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that of the plane wave having nonzero overlap integrals w
this plane wave. Due to disorder, such overlaps are finite
all the eigenstates within a typical interaction scale indep
dent of their polarization~transverse or longitudinal! and
dominant wave vector. Therefore an original plane wa
independent of its polarization, is scattered into both tra
verse and longitudinal plane waves. This gives a qualita
explanation of the existence of$t→ l % and $ l→t% scattering
channels.

In the 3D case, the situation can be more complica
Apart from the scattering mechanism due to the disord
induced mixing of transverse and longitudinal plane wa
discussed above, extra states~comprising the Boson peak!
relative to the Debye spectrum~e.g., optic modes pushe
down by disorder58,59! could participate in the hybridization
between plane waves with different polarizations.

IX. CONCLUSIONS

We have demonstrated how the evolution of an initia
plane-wave vibrational excitation in an amorphous solid c
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be investigated in time, frequency, and momentum spa
Analysis ink space is particularly informative, and eviden
for scattering between longitudinal and transverse chann
and vice versa, has been obtained from numerical sim
tions for vitreous silica, as well as a ‘‘toy’’ model~zigzag
chain in the plane with force-constant disorder!.

In discussing the limitations of the present approach,
would like to note that only disorder-induced decay chann
of the plane-wave excitations have been analyzed here.
results are formally obtained at zero temperature and
temperature independent in the harmonic approximation
der consideration. We believe that our approach is adeq
in a particular temperature rangeTmin&T&Tmax in real
glasses. At low temperatures,T&Tmin , decay via two-level
systems could be important,4,27,28 while at higher tempera-
tures (T*Tmax) around the glass transition, anharmon
channels could dominate.25 In the particular case of vitreou
silica, the relevant temperature range is 100&T&1000 K,
where the mean free path is practically temperat
independent.29
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