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Propagation of plane-wave vibrational excitations in disordered systems
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The propagational behavior of vibrational plane waves in a disordered medium has been analyzed theoreti-
cally in the time and frequency domains and in terms of the final scattered state in momentum space. Numeri-
cal results have been obtained for a normal-mode analysis of models of vitreous silica constructed by molecu-
lar dynamics, and also for a simple model of a zigzag chain of atoms with force-constant disorder.

I. INTRODUCTION trix which can be available, e.g., from molecular-dynamics
simulations.

Propagation of classical plane waves in random scattering Our approach to investigating the propagation of plane-
media has attracted a lot of theoretical and experimental awave vibrational excitations in disordered media is based on
tention in recent years? Different types of plane waves in- combining analytical and numerical techniques. First, we
cluding light, electron wave functions, and atomic vibrationscreate a realistic structural model of a disordered atomic ma-
are the subject of investigation in this respect. Below weterial using molecular dynamics. We need such a structural
consider only propagation of plane-wave atomic vibrationaimodel in order to find numerically all eigenmodes and eigen-
excitations in disordered systems. This topic has attracted #equenciegin the harmonic approximatione.g., by direct
lot of attention from both theoretical’ and experimental diagonalization of the dynamical matrix. These characteris-
sides®?? This is due to the fact that a study of plane-wavetics fully determine the dynamical response of the system to
propagation helps to get information about vibrational dy-any external excitations, including the plane-wave excita-
namics of the systerfe.g., about the normal modes and theirtions of present interest. A straightforward analytical formal-
properties and allows us to investigate heat transfer in dis-ism assuming known eigenmodes and eigenfrequencies can
ordered structureésee, e.g., Refs. 23 and 24 and referencede easily developed and applied to the analysis of plane-
therein. wave propagation in three complementary domains: time,

A plane-wave vibrational excitation normally does not frequency, and wave vector. In other words, we have inves-
propagate freely in a disordered structure. It scatters and iégated the evolution of plane-wave vibrational excitations in
attenuated with time. The main questions here are: what ariéiree waysi(i) by following numerically the time evolution
the physical mechanisms of the scattering and what are thef plane waves and calculating the decay tirig; by ana-
physical characteristics of such scatterifegg., the decay lyzing the spectral densities of the excitations in frequency
time). Different decay channels have been suggested to expace and thereby obtaining complementary estimates of the
plain the attenuation of plane-wave vibrational excitations indecay timejiii) by analyzing in momentumk( space(ana-
disordered structuresi) disorder-induced channefg3-26 lytically and numerically the final state after scattering from
(i) anharmonic channef8,and(iii ) channels involving two-  the initial plane-wave state.
level system&:%2728The anharmonic channels are strongly ~ The main difficulty in investigating the propagation of
enhanced with increasing temperature, particularly at temvibrational excitations in disordered systems by a normal-
peratures comparable with the glass-transition temperaturgjode analysis is related to the restricted scope of numerical

~103 K. In contrast, scattering by two-level systems cananalyses of finite-size models. For example, for a cubic
be important at low temperaturéé’ <Ty.5~10-100 K?"?® finite-sized model with a box length &f=28 A (as used in
In the intermediate temperature randg, s<T<Tg, which  this study, the minimum value of the wave vectdgy,
is considered below, the scattering processes involving two=2w/L, allowed by the periodic boundary conditions is
level systems are suppressed and the atomic dynamics dtgi,=0.22 A~1. There is a corresponding restriction also on
usually harmonic;*>**meaning that disorder-induced chan- the minimum frequencyv,,i,, attainable in such finite-size
nels play the most important role in the decay mechanism o$imulations, given by ,;,= ckmin, Wherec is an appropriate
plane-wave excitations. sound velocity. Moreover, due to finite model size, the low-

In a harmonic solid, a powerful normal-mode anal$5sis frequency region of the vibrational density of staté®OS)
can be used for the problem under consideration. The normaélated to the acoustic plane-wave excitations is not dense,
modes can be found either analytically or numerically. Aand hence the number of scatterifiglecay”) channels of
general theory of atomic vibrations in disordered structuresthe plane waves with such frequencies is restri¢tse also
which in principle should result in normal modes, has beerRefs. 26 and 38 In order to overcome this difficulty, we
mainly developed for particular simple model structures orhave extended the results of the numerical simulations ob-
toy models’>32-37which can hardly describe quantitatively tained for finite-size models to frequencies and wave vectors
the situation in real structures. Therefore a numerical apbelow w,;, andk,, respectively, by developing an analyti-
proach could be very useful in the calculation of normalcal continuation modelsee accompanying paper as well
modes, e.g., by direct diagonalization of the dynamical maas studying low-dimensional “toy” disordered models.
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In order to analyze the propagation of vibrational excita- . BASIC FORMALISM
tions in a realistic structural model simulating a real disor-
dered system, nar'ne'ly vitreous S!I'Q&G'OZ.)’ we Pavf also determined in the harmonic approximation by the eigen-
undertaken a preliminary analysis of a simple “toy"model, ,,qes and eigenfrequencies of the system. Indeed, the initial
i.e., a zigzag chain with force-constant disorder, that exhibitgyitation can be expanded in the eigenmodes, the time de-
qualitatively similar scattering behavior for vibrational exci- pendence of which is known. The coefficients in such an
tations to that found from the simulations of the glass.  expansion are defined by the shape of the initial vibrational

The rest of the paper is arranged in the following mannerexcitation (by initial atomic displacementsand initial ve-
Section Il briefly describes details of the computer simuladocities of the atoms. Here we consider only plane-wave ini-
tions of the structural models af-SiO, used. The basis of tial excitations, mainly because exactly such excitations are
the analytical consideration of the propagation behavior ofjenerated in a system by inelastic neutron, light, and electron
vibrational plane waves is presented in Sec. lll. An analysiscattering®
in frequency spacén terms of spectral densitigs given in In amorphous materials, because of disorder, the eigen-
Sec. IV, and a complementary analysis in terms of the timgnodes are not plane waves even in the long-wavelength
evolution of vibrational excitations is given in Sec. V. An limit. Therefore, an initial plane wave, when expanded over
analysis in momenturk space of the final state of the scat- €igenmodes, contains different eigenmodes characterized by
tered plane-wave excitations is presented in Sec. VI. A disdifferent weights in this expansion. The eigenmodes partici-
cussion of scattering mechanisms of plane-wave vibrationaating in the expansion are characterized by different eigen-
excitations and preliminary results of the scattering behaviofréduencies and therefore evolve differently with time, so
of a disordered zigzag chain are presented in Sec. ViI. Thi1at the propagating excitation becomes different in shape

sccompanying papetuses teemiquesoutined ntis paper 705 1 0 T o, 01 e o e v o
investi he loffe-Regel cr verupnSio,. :
to investigate the loffe-Regel crossoverunSio, form another completdbut not fully orthogonal, as dis-

cussed beloybasis set, i.e., make a Fourier analysis. If we
do this with the evolving excitatiofinitially a single plane
Il. DETAILS OF SIMULATIONS wave after a certain time, then this expansion contains not

The models of-SiO, have been constructed by-P-T only the initial plane-wave component but also other plane

molecular-dynamics simulations, using the potential of vanvaves characterized by different wave vectors. This means

Beest, Kramer, and van SanthThe van Beest potential that the initial plane wave is scattered by the structure into a

has been modified for small interatomic distances accordingIfferent final state. Our aim here is to study bqth the process
. o self of decay of plane waves, and also the final state after
to Ref. 41. At large interatomic distances, we have used q

: : T e ecay, for different wave vectors and polarizations of an ini-
cutoff for short-range interactions, multiplying the modified tial plane wave.

van Beeg;t potential _by a Fermi-like step_f_unction. The step | ot us consider an excitation introduced in the system,
function is characterized by the step positiorRa;=5.5 A u(t) =u,(t), which at the initial moment of timeg;=0, is an

T‘nd the Stf?phWidtt)chut: 065 A f%r all atczjmic ;peiieﬁ. TTe ideal plane wavew, ;;, characterized by the wave vector
atter cutoff has been used to obtain a density of the glassy . - oA o _
structure(at zero pressujeof 2.38 g/cni, reasonably close tnt polarization vecton and initial phasepo;
to the experimental value of 2.2 g/értsee the discussion of
the densification problem in Ref. #1Note that a similar uk(t:o)zwkz/_\ﬁ cogk-r+ ], (3.2
cutoff (Rg,=5.0 A anddR.,=0) has been used in Ref. 42.
All glassy models have been created by quenching fromWhereu is a vibrational state vector in aN3dimensional
the r_n4e|t (T=6000 K) to the well-relaxed glassy statf (|inear vector space spanned by the orthonormal besjs
~10"" K) at an average quench rate®fl K/ps. No coor- (j_7  a\) with the basis vectors being, e.g., the unit
dination defects have been found in the models. The fullyyispiacement vectors of a certain atom along one of the Car-
dense dynamical matrices for the relaxed systems were digsian axegthe site basis In that case, the components of
agonalized directly, resulting in eigenvectdes} and eigen-  vectoru are the displacement vectons, (i=1,... N), of
values @), thus allowing us to perform a complete har- atomsi from their equilibrium positions;; . The normaliza-
monic vibrational analysis. Structural characteristics andjon constani is defined below and the wave-vector index
vibrational properties of the models are very similar to thosgncjydes also the polarization indéx In our analytical treat-
described in Ref. 43. ment, we assume that eigenmodes and eigenfrequencies are
The models ob-SiO, were of two types: a cubic model known, e.g., from numerical simulations. The initial dis-
containingN = 1650 atoms and of box length=28.4 A, and  placement vector, Eq(3.1), each atomic component of
a bar configuration containiny= 1500 atoms of size 85.6 which is multiplied by the mass facton;=M;N/=;M; (M;
X 15.6x 15.6 A (a bar-shaped model of,B; has been also stands for the mass of atoi)), can be expanded in eigen-
used in Ref. 44 For the sake of comparison, several modelsmodes as
of «a-cristobalite have also been created. The bar-shaped
models were constructed to allow access to much lower val- 3N
ues ofk(=0.07 A1) for modes propagating along the bar u(0)= ale/ym 3.2
than can be obtained for the cubic modets=0.22 A™1). k =k ’ '

The time evolution of any vibrational excitation is fully
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where the symbolic scrip#/ /m means that eactth com- akk,(t):[a2 (t)+a2 (t)]Y2 (3.10
P . . kk’,c kk’,s !

ponent of vecto# is divided by the factor/m;. The coeffi-

cients a} in expansion(3.2), the squares of which are the b (1) =arctafiay {t)/ag: (t)]. (3.11

spectral-density coefficients of the systésme, e.g., Refs. 24 ' _ .

and 486, are defined by the following equation: Strictly speaking, the set of plane wavés,} used in

expansion3.6) is not orthogonal because these plane waves
— _ N , are defined in terms of discrete disordered atomic coordi-
k=(¢e" \/ﬁuk(o»zzﬁ Ve wy ;. (3.3 nates. This drawback can be easily overcome by considering
. . ) the orthonormal basigw,} obtained from the original plane-
The expansion coefficients, E¢3.3), fully determine the \y5ve basigw,}, e.g., by standard Gramm-Schmi@S) or-

dynamical response of the system to plane-wave excitationogonalization. Indeed, the overlap integrévgw,:) be-
Indeed, at any moment of tintg the displacement vector of yeen plane waves are macroscopically small

the propagating excitation can be represented via eigen-

modes developing in time as (Ww) 1 1
= Wy Wy ¢ ——=, (312
N (Wiwiy w2 Z NN
u(t) =2, af—=coswjt. (3.4) _ o
T “Um because of summing random numbers. Bearing in mind Eq.

(3.12, we can easily find an approximate relation for the

For the sake of simplicity and without loss of generality wave\Tvk={\7vk .} from the orthogonal set
vl 1

(as shown beloyy we consider the initial excitation to be a
standing wave, i.e.u,(0)=0, leading to the absence of _
terms proportional to simjt in expressior(3.4). It is conve- Wy =Wy
nient for the initial vectorymu,(0) to be normalized to
unity, so that

Wi Wy ) Wir
1_2 < k k> ki .
K’ <Wk/Wk/> Wk,i

(3.13

The shape of wavey, is close to the shape @i, if the sum

3N in EQ. (3.13 is much less than unity. This is the case if the
> lal|?=1, (3.5  number of waved,(k) involved in the orthogonalization,
1 i.e., the number of terms in the sum in E§.13), is small
and the normalization constant in Eq3.1) is A2  enough. Indeed, if we start the GS orthogonalization with
=[=;m|u(0)[?]~ L. plane waves characterized by the smallest wave-vector mag-

Equation(3.4) gives us a formal answer for the problem Nitude and then carry on by including waves according to
under investigation. Now we want to be more specific andneir increasing wave-vector magnitufid, then the sum in
characterize such an evolving stagt) in some qualitative E9. (3.13 includes all waves withlk'[=<k, i.e., No(k)
way. The simplest thing to do is to make a Fourier analysis*k®. Taking into account that, ; /w; are random values

of this state, i.e., expand it in plane waves: being order of unity and using E¢3.12 we can easily ob-
tain an estimate for the sum in EQq3.13, =,

%[ Norin(K)/Niot(Kmax) 1% (K/ Kmap) 2, with Nyg=3N' being
uk(t):%‘ Uger (1), (38 the total number of waves in the set aagh,~ m/a the typi-

cal maximum wave-vector magnitude (s the average in-
where the sum is taken over all wave vectifgallowed by  teratomic distange Therefore the shape of the orthogonal
the periodic simulation box in the case of a finite modeid wavesw, is close to the shape of the plane wavesif k
all polarizations(two transverse and one longitudinal for =K V\;(ith the value ofk, chosen such that inequality
each wave vectowith k being the wave vector of the initial k**/l,(ma><)3/2<1 is satisfiedf For the particular case of vitre-
plane wave. Sugh an expansion gives us an opportunity 1§, silica, a reasonable estimate of the upper limit of our
calculate the weights of different plane-wave components .o nsideration irk space isk, ~1 A as compared t&
fche propagating excitation, which appear in it due to scatter-_ 17 A1 This means tha*t WO Sets, non-orthogonaTaSIane

ing. .
. . waves and corresponding orthonormal GS waves, are
The wavesu(t) in Eq. (3.6) are defined as equivalent in the rangk=k, in the sense that all physical
_ ) ’. characteristicge.g., spectral densitiep, functions, eto. are
Uiger (1) = Byger (DAN'COF K1+ e (1)]. .7 practically identical, as we have checked numerically. All
The same normalization as in E®.1) is used here. In order the results presented below, unless specifically mentioned,
to find the time dependence of the amplitudlg.(t) and  were obtained for the plane-wave basis.

phased¢,, (1), it is convenient to rewrite Eq(3.7) in the Now we would like to find the time-dependent coeffi-
following form: cientsay s(t) before the cos{sin-) like components in
Eq. (3.6). This can be easily done by multiplying both sides
Uer (1) = aer, (D) Wier o+ 8 (D) Wicr s, (3.8 of this equation by . and using Eq(3.4), so that
where

. . A go(H)=> alal, _cosot/{wW?, ), (3.14
W c=An’cosk’-r and w, =An'sink’-r, (3.9 et ; G R C

so that where
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N
2 _
<Wk',c(s)>:izl |(Wk’,c(s))i|2- (3.19 0.6
) =
The coefficients!, for plane waves of cos- and sin-like G
k’,c(s) . S 04
type entering the expressidB.14) are similar toa} except %
that the eigenvectors are weighted differently with the E
atomic masses: (% 02
N
. 1 1
j _ _
ap, o=\ € —=w, => ——d- (W )i - 0.0
A o(s) < N ,c(s)> 2 ﬁﬁ' k' o(s)i
(3.16
They are also differently normalized: FIG. 1. Different spectral densitieS(») (curve 1, S (»)
(curve 2, andS(v) (curve 3 for a longitudinal initial plane wave
S (m) Y 12 characterized by the wave-vector magnitkde0.3 A~1. The dot-
SN i (M) Wi e(s ted line represents the fit &(») by a LorentziarfEq. (4.8)] while
'21 |gf<,c(s)|2: ) (3.17 the dashed line refers to a fit by the DHO mo¢Refs. 7 and 1B
=
Z mi|Wk,c(s)|2

dephasing. The coefficiem{( in Eq. (3.19 is defined by Eq.

as compared to the expansion coeff|C|er)z§§C o [cf. Eq.  (3.16 with wy o replaced byw,, and is related to the

(3.5]. In a single-component systemzJ 1|ak c(S)| coefficienta) according to the following equation:

=33|al|?=1, but in a multicomponent system the normal-

ization constant3.17) is not necessarily unity, and, e.g., in — g

the case of vitr((aous7)silica it has the vzilu@.?y. ’ 2{52, aj (em-te). (3.20
Equations(3.10—(3.17) fully determine the time evolu- .

tion of differentk’ plane-wave components in the propagat In the case of a one-component system, the coefficiefits

ing vibrational excitation via the coefficients, anda, .y  andal, are obviously identical. Their product].c, is also

and the vibrational spectrum itself. These equations will bealled the spectral-density coefficient.

used for the numerical analysis undertaken below. The next The general characteristics of plane-wave propagation de-

step which can be done analytically is related to the timefined in this section can be used for quantitatimemerica)

averaging in Eqs(3.10—(3.17. For example, averaging the analysis. How to do this is demonstrated in the rest of the

square of Eq(3.10 ast—« gives usaﬁk,(t), the weight of  paper.

the plane-wave component characterized by the wave vector

k’ and polarizatiom’ in the final state if the initial state is a IV. SPECTRAL DENSITIES

plane wave characterized lkyandﬁ:

The coefficientsal, a) in the expansion of different
2 |Ek|2|glj<' Jz 2 |Ek|2|2{<’ C|2 k-plane waves over the eigenmodes, i.e., projection; of plane
j ’ j ‘ waves onto eigenvectors, and related spectral-density coeffi-
cients|a}|?, |ak|?, andal ) fully determine the dynamical
3 response of the system to the initial plane-wave excitation.
(3.18 . o :

] These three spectral-density coefficients differ from each
YVZerelé,as; |n. ET(j'l) tind slub'se?.ueqtl);,At/h(_arhv'vave—'vi(t:tor other due to different contributions in the coefficien{sand
index in rization index. This wei j P . ;

_ € a_so cludes e_poa_J 2a 0 J. ?X ) S Welg a}, of the mass factdiwhich is not unity in mulncomponent

is proportional to the functionsr|* and| a|* which play an  systems—see Eq$3.3) and(3.16]. In the case of vitreous

important role in the following analysis and are called thesilica, the masses of the atomic species are quite comparable

spectral-density coefficientsee also Refs. 24 and 16 ~and the mass factor is of the order of unity, so that the dif-
Another useful characteristic often used to characterizgerent types of the spectral-density coefficients differ only

the decay of an initial excitation is the time correlation slightly from each other. In Fig. 1, we shdwl|?, |a}/2, and

function*’ — Lo .
akal for a longitudinal initial plane wave characterized by
k=0.3 A1 (here, and in what follows, all the simulated

az,t)z— +
wV=3 (W, )2 ((We, )2

(u(t)- u(0)) > u(hu(0) > alal coswt data, if not mentioned explicitly, are presented for the bar-

=_ = ] shaped structural model of-Si0,). It appears(see below

(u(0)-u(0)) S wew (Wg) that the frequency dependences of the spectral-density coef-
- I |

ficients are very similar to each other and the following ap-
(3.19 proximate relationships can be used:

This correlation function describes the dephasing of the ini- i12 —i2 — —i2
tial wave and can be used to estimate the typical time of such lak|*=As]ai]*  and  ajap=Aslall%, 4.9
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with the normalization constants for the corresponding v (THz)
spectral-density coefficients being 0 2 40 4 8 ,
6 | trans. (';:1)- Iéng. (ld)
A= |adl?, (4.2 4t lok01sk'] f01s |
j .l 0.22 022
¥ o3 Y 03
o 2 0 o = e
A= alal, 4.3 e S B
] o 02 0.37 1 037
= — 0.59 /0,59
which, in the case of vitreous silica, give;=0.7 andA, 5 W 081 A& 08!
=0.8. Relationg4.1) are valid, as we checked numerically, A ‘ol ong. ()
in the low- and intermediate-frequency range<(30 TH2) D008 N 096 " [0.96 118 |
but break down in the region of the high-frequency band of 0.04 \'/1-18 N
v-Si0, at =30 THz. However, at the not very large values - AN
~ -1 i i N N
of wave vect_orksk*_—_l A~1 which we consider, the _ 000 — o 50 0 10 20 30 40
spectral-density coefficients are not mainly concentrated in v (THz)
the high-frequency regiofsee below and the relationships
(4.1) are approximately correct. FIG. 2. The spectral densiti@(v) for transversé(a), (b), and

The spectral-density coefficienta]|? contribute to the ()] and longitudina[(d), (¢), and(f)] initial polarizations at differ-
function aik’(t) [see Eq.(3.18] and, together WitHgHz, ent magnitude& of the initial wave vector as shown in the figure.
define the properties of the final state. The distribution func-
tion a}al, defines the decay of the time correlation function2(b) and 2e)]. At large enougtk=k, =1 A™*, the spectral
given by Eq.(3.19. The spectral-density coefficienal|? density no Ionger .consists qf a single peak but rat_her re-
are also important from an experimental point of view, be-sembles the vibrational density of stal®DOS) [see Figs.
cause the dynamical structure factor measured in inelastié(c) and 2f)], igea”y showing the two frequency bands
neutron- and x-ray-scatteringXS) experiments is propor- found inv-Si0,."> We should notice that the range=k, is
tional to thent®® In what follows, we mainly refer to the outside the limits of our consideration and the results there
spectral-density coefficienist|2, taking into consideration C¢ould serve as rough esimates only. Indeed, for the wave
that relationg4.1) are fulfilled. vectors arounk=Kk, , the GS orthonormal states still re-

The spectral-density coefficients are defined for discret§€Mble the original nonorthogonal plane wayese Fig.
frequencies only. The standard transformation to thes(D)] and the spectral densities calculated for both of them

spectral-density functiongk(w), Sq(w), andS,(w) defined are close to each othécf. the solid and dashed curves in
in the whole frequency range can be made as foll#fvs:

0.08 e —— 0.1
S(©)=g(0) (@)% S(©)=g(w)ak(w)ak(v) AN
and S(w)=g(o)|ay(w)|?, (4.4 ALY 0
where, e.g.|ay(w)|? is defined as 002 L A ?
Pl i ]
3N 2 / i
> all?8(w— o)) 8 %070 20 s0 a0
o222 £ o4
|a(w)] Nge) 4.5 5
' & 008t
and g(w) ==, 8(w—!)/3N is the VDOS. The spectral 006 |
densities are continuous functions if GaussiésrsLorentz- ’
iang are used instead of th&function representation in Eq. 0.04 |
(4.5). Exactly these functions are presented in Fig. 1 and 002 |
everywhere below unless specified. As seen from Fig. 1, dif-
ferent spectral densities have similar frequency dependences 00 70 20 30 40 05 0 s w0

thus confirming relation$4.1).

The shape of the spectral density depends on the charac-
teristics of the plane wavéwave vector and polarization g 3 The spectral densitig(») for plane waveisolid lineg
and on the atomic structure itself. In disordered structure§,q for the corresponding Gramm-Schmidt orthonormal state
and for small values of the wave-vector magnitude ((gashed linesof longitudinal initial polarization at different mag-
<1), the spectral density both for longitudinal and trans-pitydes k=k, , of the initial wave vector(a) k=0.96 A~* and(c)
verse polarizations has the shape of a single pronouncag-1.47 A 1. A part of the displacement pattern for a longitudinal
peak[see Figs. @) and 2d)]. With an increase of the mag- plane wave(solid circles and the corresponding Gramm-Schmidt
nitudek of the wave vector, the peak-shaped spectral densitgrthonormal statécrossesare shown forb) k=0.96 A~ and (d)
shifts to higher frequencies and its width incredses Figs. k=1.47 A%,

v (THz) x (R)
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10f L k0158 -si0, ba T ansverse
ke0.15%. (v=Si0y bar) (a) transverse ¢ E
® k=0.15A ' (p—cristobalite [1,0,0)) 6 a
05 I = k=0.11A""(u~cristoballte [0,0,1]) | & 2
B 4 L aﬁ L]
0.0 {gatma - = 21
"g 02t - k=°'44°A:: S0 ] ':'_: 0 + + + +
. ——- k=0.44A i be; ~ i i
s . -k—044&-1(v 0, cube) > 15| (b) longitudinal ¢ §
s o1 /° PO l $°
% = k=0.45A"" 10 gt
2 3 3 2 . gl’
& 00 ' — ¢
03} — k=0.80A-" 5T .
. ——— ke081A™" 0 . . . .
oz , oke081R™ ] 00 02 04 06 08 10
L] 0 ]
o1} " ¢ : oke079A | k(A_1)
1
0'06 0 20 30 40 FIG. 5. The dispersion laws for transver@ and longitudinal
v (THz) (b) polarizations of an initial plane-wave excitation. The solid

circles and squares were obtained from the fit of the spectral den-
sities by Lorentzians and the DHO model, respectively. The open
squares were obtained by the temporal decay method as described
in Sec. V. The open circles were calculated according to(&§).

The stars in(b) correspond to IXS datéRef. 13. The solid lines
represent the long-wavelength limit characterized by the experi-
mentally found sound velocities.

FIG. 4. The spectral densiti€g(v) for longitudinal vibrations
for different structural models ob-SiO, and similar spectral-
density coefficients]?d2 for a-cristobalite at various values of
wave vectok. The meaning of the symbols and curves in the lower
two panels is the same as in the top panel.

Fig. 3@]. The situation becomes much worse with increas- :
. . the wavelengthh>a and plane waves propagate in an effec-
ing k [see Fig. &)], because the GS orthonormal states for vav g P waves propagate |

S . tively elastic continuum. Therefore it is not surprising to find
such wave vectors are not so similar to the original planea linear dispersiori4.6) for a disordered material > a.
waves[see Fig. &)].

| tt tt derstand th iqin of ch in th If the spectral densities are peak shaped, two of their char-

N an atempt o understand the ongin of changes I Me e istics the peak position and width, are normally used in
shape of the spectral densities and the origin of a part|culz';16rder to describe the propagation of plane-wave
shape itself, we calculated these quantities for a CrySta”i”%xcitations7.'12'13'24The peak position is associated with the
counterpgrthof wtrezus S|fI|ca,S_namelz;t-c':r!stobalge, and average frequency of the propagating excitation, while the
compared them to those far-: 10, (sge '9. 3 AL very. peak width is associated with the decay time of the excita-
small wave vectorsk<w/a (a is a typical size of the unit i, 1ndeed; if we look at thé-plane-wave component in

cell, aF;'VS_? A, the _specrt1ral Idensity is Ia sinr?&lfunction the propagating excitationy(t), its evolution with time is
[see Fig. 4)], meaning that long-wavelength plane Waves joscribed by relatiof3.7) atk’ =k. The weight(amplitude

give the major contribution to acoustic phonons, which are s this component ) decavs with time according to
very similar to plane waves. With increasikgthe contribu- b Auc(1), Y 9

tiqns_of plar_1e waves to acoustic phqnons become share qrslé(egg%ki?g (iélnA')'bQ g%?gir;:;t:?]@f ;);;S;gr?r;g((agen
ith 1 asing Coribulons fom 9L PHOnOnS SAGL o, 1. 16,1 1S spproximatl heback osine o
of the same orddjsee Figs. @) and 4¢)]. Thus the spectral rier transformation of the spectral-dgnsity coefficieatgy)
density for an amorphous solid{Si0,) can be imagined as [5€€ EQ.(3.14]. If the spectral density has the shape of a
being a directional average over theunctions for the cor-  Well-defined peak which can be fitted, say, by a Lorentzian
responding crystal d-cristobalitd, each s function being (S€€ the dotted line in Fig,)li.e.,
broadened by structural disorder. Dasteal 8 have also dis- 1 (T./2)
cussed the relationship between the low-frequency dynamics fi=— @ ,
of a-cristobalite and those of amorphous silicates. T (0~ w)?+(T,/2)?
In the low-frequency regime, where the spectral densities ) J— ) )
have the shapes of pronounced peaks, the positions of theWdere the Lorentzian positiany and full width at half maxi-

peaks,v,,, are related to the wave-vector magnitude accordMum (FWHM) I',, are the fitting parameters, then the back
ing to the linear relatiorisee Fig. 5 cosine Fourier transform of the functida.7) is

(4.7)

vy=cyki2m, (4.6 Ay (1) =Ag cosayt exp{ — T ,t/2}, (4.9

as for acoustic waves in crystals. As seen from Fig. 5, thd'here we have actually used E@.7) to fit the spectral
calculated dots in the low-frequency range lie on the straighglensity S normalized to unity and then applied Eg.1)
lines plotted with use of experimentally found sound veloci-With spectral-density coefficients replaced by the spectral
ties [c,=37.5 Alps andc,=59 A/ps (Refs. 13 and 44. A densities themselves. As clearly seen from &), the de-
microscopic structure on the interatomic scaléordered or ~ cay of thek-plane-wave component can be characterized by
disorderedl is not important in this frequency regime where the average radial frequeney, and the inverse decay time
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transverse e -

(@) |

shoulder on the high-frequency side of the spectral-density
peak for the longitudinal branch starts to appeak=at0.3
A~1[v=0.3 THz—see Figs.(®@) and Ze)]. A similar trans-
formation happens with the peak for the transverse branch at
k=0.5 A~1,

The width of the spectral density, as mentioned above
[see Eq.(4.9)], defines the decay time of the plane-wave
excitation. In Fig. 6, we have plotted the inverse decay time,
which is proportional to the peak width, against wave-vector
magnitude for both polarizations of the initial plane-wave

10 wf? ] excitation. As follows from the insets in Fig. 6, the inverse
*‘*ﬁ} (b) decay time increases with increasikgapproximately pro-
%0 02 04 06 08 10 portional to k? for 0.2<k=<0.5 A™! for the longitudinal
K ('&_1) branch and for 03k=<1 A~ in the case of the transverse

branch. The first two points for the transverse branch ob-

FIG. 6. Inverse decay time * versus the initial wave-vector tained atk=0.07 and=0.15 A"* and the first point for the
magnitudek for transversda) and longitudinal(b) initial polariza-  longitudinal branch, for which the corresponding frequencies
tions. The same symbols are used as in Fig. 5. In the insets, the da@ée belows=1 THz, serve only as estimates of the decay time
are plotted on a double logarithmic scale in order to compare therlue to finite-size limitations. Such a quadratic dependence on
with the quadratic dependence shown by solid lines. The error bargrave-vector magnitude has been found not only in the IXS
were obtained from the averaging of the results over initial phas@xperiments in the rangk~0.1-1 A! (at T=1050 K)
¢, and direction of the polarization (for transverse polarization (Ref. 13 [see stars in Fig. (6)] and aroundk~0.15-0.2
of the initial wave[see Eq.(3.1)]. A~ (at T=295 K),®® but also in a very wide rang@ver a
few decadesat smallerk by a picosecond optical technique
(at T=300 K),*° Brillouin light-scattering(at T= 300 K),135?
and by ultrasonic measurements.

The positions of the spectral-density peaks are very well
defined, and the average frequency can be easily associated
with the peak positiorisee Fig. % but only limited informa-
tion about the peak width can be obtained. This is due to the
fact that in the frequency rangel THz the frequency spec-
trum is not densebecause of the finite size of the moyel

nd the number of decay channels can be underestimated.
he experimental data for the line widths in the IXS experi-

7 =T, (k)2= =T (Kk), (4.9

with I ,(THz)=T"/27.

In Refs. 7 and 13, the damped harmonic oscill&aRiHO)
model has been used to fit spectral densitse® the dashed
line in Fig. 1, which gives similar values for the average
frequency and width, if](w)2<gﬁ. This inequality holds
true in the regiork<k, =1 A~! where the spectral densities
have a well-defined peak shape and fitting of the spectr

densities by Lorentzian and/or DHO curves makes sense.
ments shown in Fig. ®) by the stars are in very good agree-
We have used fits both by the Lorentzian and DHO mod- ment with our results.

els to obtain the average frequency and decay time of the It should be noted that a linear and quadratic dependence

propagating plane-wave excitation as a function of the |n|t|alOf the average frequency and the linewidth, respectively, are

wave vector. The results are presented in Figs. 5 and 6. Thlfmte general features found for structural models of different
dependence of,= w,/27 vs k shown in Fig. 5 can be asso- materialsté-26:38:44.52-565 possible explanation of the qua-
ciated with some sort of “dispersion law.” Of course, the dratic dependence of the linewidth on the wave-vector mag-

propagating excitation, which was a plane wave at the initiahitude is given in Ref. 57 in terms of anharmonic effects.
moment of time, cannot be characterized by only one wave

vector(and single frequengyand instead consists of a packet
of plane waves$see Eq(3.6)] with different wave vectorga

packet of eigenmodes characterized by different frequen- |nyestigation of the spectral densities, as shown in Sec.
cies. We chose from thek’ packet only one component |v, provides us with indirect estimates of the average fre-
characterized by the same wave vector as that of the initighuency and decay time of the propagating plane-wave exci-
plane wave and followed its time evolution. In that case, theations. The other straightforward way to obtain the average
dependenciesy presented in Fig. 5 can be regarded as thdrequency and decay time of plane-wave excitations is to
dispersion laws for a single plane-wave component. The excalculate directly the time dependence of the displacement
perimental data for longitudinal external plane-wave excitavector,u(t).
tions from IXS experiment$’ obtained by fitting the experi- At least two functions can be used to study the decay of
mental curves with the DHO model, are shown by the starplane-wave excitations. The standard way lies in the calcu-
in Fig. 5(b) and they agree well with our resultsee also lation and analysis of the correlation functié®.19.*” The
Ref. 7). correlation function is proportional to the projection of the
Note that the dispersion laws for both branches are praddisplacement vector at timeonto the initial plane wave,
tically linear in the low-frequencylong-wavelengthregime  Ancosk-r + ¢,) [see Eq(3.1)]. The evolution of the corre-
for v=3 THz. Above this frequency, a sort of “fast-sound” |ation function shows how the value of this projection onto a
behavior is observed. The increase in the slope,ois re- time-invariant k-plane-wave component decays with time
lated to changes in the shape of the spectral densities. fsee Fig. 7, where the decay of the correlation functions from

V. TIME EVOLUTION OF PLANE-WAVE EXCITATIONS
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FIG. 8. The amplitudey (t)/a.(0) (solid lines on a linearn(a)
and semilogarithmicb) scale versus time for a longitudinal initial
plane wave withk=0.29 A"1. The amplitudes of cos-likéthe
dashed curveand sin-like(the dotted curveconstituents are shown
unity att=0 occurs on the time scals1 ps. As follows ?n (a). The fit of the time dgper_ldence_ of the amplitude by @4)
from Eq. (3.19, the time dependence is exactly the back!S shown by the dashed line ift) while the averaged amplitude
cosine Fourier transform of the spectral-density coefficientd.a«(t)]1¥ is indicated by the dot-dashed line. The dependence of
Therefore the analysis performed in Sec. IV is equally applithe fitting parameters, (the solid ling and 7, (the dotted ling in
cable to the investigation of the decay of the correlationEd. (5.4) on the upper time limit, is shown in the inset irib).
function and should give the same results for the average
frequency and decay time as those obtained directly fronphase velocityy ,(t) =[d¢(t)/dt]/k, which is a function of
time dependencies. Indeed, as seen from Fig. 7, for botime. The phase rate¢(t)/dt=kv 4(t), strongly fluctuates
polarizations the correlation functions decay and oscillate irin magnitude and changes sign in an apparently chaotic man-
qualitative agreement with expressi@h8). The decay times ner[see Figs. &) and 9b)], so that thek-plane-wave com-
(the typical times at which the envelope of the correlationponent moves in a diffusivelike manner.
function drops to zero estimated from Fig. 7 arer The average values of the different powers of phase-rate
=0.5(0.4) ps andr=0.16(0.1) ps, agreeing well with the magnitude, defined as
estimateggiven in bracketsobtained from fits of the spec-

FIG. 7. The correlation function E¢3.19 for transversda) and
longitudinal(b) initial polarizations of plane-wave excitations char-
acterized by the wave-vector magnitukle 0.3 A2,

tral densities by the DHO model. m_ 1 do "™ 1[1 (t{dpglm 2"
' The othgr, anq frgm our vievypoint, more appropriate way LSy [ =i J; dt dt|
lies in the investigation of the time evolution of theplane- (5.1)

wave component)y, , defined in Eq(3.7). The value to be

calculated is the projectiona,(t) [see EQgs.(3.7) and  where the phase rate is to be found from E§s11)—(3.14
(3.10—(3.11], of the displacement vector(t), onto the (it is proportional to the back sine Fourier transformation of
time-varying  k-plane-wave  component, Ancogk-r the first moment of the spectral-density coefficients, propor-
+ ¢ (t)]. The difference between this quantity and the cor-tional to = w; a{(_{(,’c(s)sin wjt, and to the back cosine Fou-
relation function is related to the appearance of the timerier transformation of the spectral-density coeffici¢rtan
dependent phase in theplane-wave component. Indeed, if

we want to study the decay of the plane-wave excitation 20
characterized by the wave vectorat t=0 then we should

follow the time evolution of thek-plane-wave component 10 |
which not only decay<the amplitude decreasebut also
moves(the phase depends on tim&herefore the total dis-
placement vector should be projected onto the moving
k-plane-wave component.

The evolution of th&k-plane-wave component is shown in
Figs. 8 and 9. We chose the initial plane wave to be a stand-
ing wave of cos-type and calculated separately the ampli-
tudesay (t) anday s(t) of the cos- and sin-like constitu-
ents. As clearly seen from Fig.(@, ax (0)=1 and 0
. .s(0)=0, but then the sin-like component is activated -10
with time and becomes comparable with the cos-like compo-
nent. This means that the phagg(t) of the k-component
depends on time[see Figs. &) and 9b)] and the FIG. 9. The phases(t) [see Eq.(3.11] and ¢ (t) [see Eq.
k-plane-wave component is no longer a standing wave bu.2)] for longitudinal (a) and transverséb) initial polarizations of
rather a running wave. The running wave moves with theplane waves wittk=0.29 A™1.

(@)

transverse

o

| () longitudinal

phase/ 25
8

20

time (ps)
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be easily numerically averaged over time. Despite the big akk(t)/akk(O)=exq—t/rk)|cos{27r7t)| (5.4)
fluctuations in magnitude oy (t), the averaged character- K

istics (5.1) are well defined. As an example, we have calcu-with 1, , the frequency in the initial stage of relaxation for

lated the integral/s(t) of the magnitude of the phase rate t<t,, and the decay time, being the fitting parameters. The
[n=1in Eq.(5.1)], values of these parameters slightly depend on the upper limit
t, for fitting, as shown in the inset in Fig(®. The data for
()= jt‘dg):k dt. (5.2) v, and , averaged ovet,, the initial ppasaﬁo in Eq. (3.2),
0 the direction of the polarization vectorin Eq. (3.1) in the
. T case of the transverse polarization, and the direction of the
and plotted it versus time in Figs(#) and 9b). The average wave vector are shownp, respectively, in Fig.(the open
magnitude of the phase rate;, , has then been calculated squaresand Fig. 6(the open squargsAs follows from these
as the average slope of this curve, which is very close to ggyres, the temporal-decay method gives values of average
straight line. _ frequencies quite close to those obtained from the fitting of
The averaged magnitude of the phase rate can be relate@ectral densities. The same is true for the decay time except
to the average frequenay, of the k-plane-wave component in the regions of intermediate and large=0.5 A%, where

according to the following equation: the decay time found by the temporal-decay method is
greater, especially than those values obtained by fitting of the
= (). (5.3  spectral densities with the DHO modeske Figs.
Indeed, the running plane-wave component moves in space V1. ANALYSIS OF THE FINAL STATE
backward @4/dt<0) and forward ¢{i¢/dt>0) with time, FOR THE SCATTERED PLANE WAVE

so that¢(t) is not a monotonic function of timgsee Figs.

9(a) and 9b)] and both the average phase and phase rate are The decay of the plane-wave excitation can also be char-
equal to zero. If we consider a similar wave but always mov-acterized via the properties of the final state after decay,
ing in one directionreplacingd ¢/dt by |d¢/dt|), then the — averaged over time ds-c. An initial plane-wave excitation
phasey(t) is now a monotonic functiofsee Figs. @ and  characterized by the wave vectrand polarizationn is

9(b)] and the average phase ratg(t)/t, or the average fre- scattered to different plane-wave components characterized
quency by definition, is not zero. Bearing in mind the py the wave vectork’ and polarizations’. The distribution
equivalence of these two waves from the viewpoint of thep(k’,ﬁ’|k,ﬁ) of the weights of different plane-wave compo-
definition of the frequency of the running wave, we arrive at

= ) nents averaged over time in the final state,
Eq. (5.3). The results fow, versus differenk for transverse
and longitudinal polarizations are presented in Figa) &nd
5(b) (the open circles respectively.

It should be stressed that even for large values ofhere s of particular interesfsee Eq.(3.18 where the function
the spectral density is not peak shaped, the value of the ayrom the right-hand side of E@6.1) is evaluatedi Bearing in
eraged magnitude of the phase réftequency, kv, =vc,  mind that in Eq.(3.18, (WZ, )=(w’, y=(w.,) (for finite
is well defined. The dispersion laws, thus obtained, S“pporéystemssand that the surhxj " |2+|aj /’ |2 is independent of
the estimations made from the fits of the spectral densities by phase of cos- and §n-ifke cgrkrlgonents defined by Eq
Lorentzians and the DHO modgee Fig. 5. The values of (3.9), expressiong3.18 and(6.1) can be transformed to
the averaged frequency of tlkeplane-wave component cal-
culated from Egs(5.2)—(5.3) are not based on any fit and are

p(k'.'lk,n)=ag, =.(1), (6.

defined even for the featureless spectral densitiek=at > [al)?al,|?
A~1[see Figs. &) and 2f)]. This is the advantage of this p(k/,ﬁ/|k'ﬁ)zj—_ 6.2
method as compared to those based on the fitting procedures ((Wi,))2

described in Sec. IV. Note that calculation of the first fre- . o _

quency moments for the spectral densities results in differenthe probability for an initial plane wave to be scattered into

estimategby up to 40%) of the average frequencies as com2 plane wave characterized by wave vedtérand either

pared to those found using E.1). transverse or longitudinal polarization is given by the total
We have shown how the average frequency of the propadistribution functionp(k’|k,n),

gating plane-wave excitation can be calculated from the time . . . A .

dependences of the pha;e. The decay tinef the propa- P K'[k,n)=2p(k’,n{|k,n)+p(k’,n/|k,n), (6.3

gating plane-wave excitation can also be calculated, but now R

from the time dependence of the amplitudg,(t) (see Fig. where the unit vecton; stands for transverse polarization in

8). As seen from Fig. &), the amplitude first decays with the final state whilen| refers to longitudinal polarization,
time and then fluctuates around the average vaifie[see  and the factor 2 takes into account the existence of two in-
the dot-dashed line in Fig.(B)]. The decay time is calcu- dependent and, in glasses, equivalent transverse polariza-
lated from the fit of the dependeneg,(t)/a(0) in the tions. Glasses are isotropic, and an averaging of (Ec®

initial stage of relaxationt&t,), when the amplitude still over the directions of both initial and final wave vectors
does not reach the average value, by the following empiricalincluding averaging over transverse polarizations in the ini-
function[see the dashed line in Fig(8]: tial wave can be made, resulting in
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0.010

.

ptot,t(l)(k, |k) = <ptot(k, |krﬁt(|))>nk'k,- (6.4

L@ 02041 1® 03747 0.004
. - . o , "% long. « long.
In practice, for better statjstlcs, when calculating the distri- 0.005 | _, I | - | 000
bution functionsp,(k’|k,n), we have also performed an = * ,:’\ ., " . +~\ ‘
averaging over phasése.g., ¢, in Eq. (3.1)] and over direc- x e et 117 s

ging phas¢e.g., ¢ in Eq. (3.1)] = 5000 |2 o2t L 2 B

tions of the polarization vectaoffor transverse polarization (b). o J(d) T ) oy
both in the initial and final states. 008 ?razfﬁ | %?ﬁ ?,'2::
If we are interested in the contribution of the same plane- o0a | | 3 1o 1 0.01
wavek component as in the initial excitation, then the wave : + .
vectork’ should be replaced byin Eq. (6.3 and averaging il o N
. . X ELEDE e ok R :
only overk directions should be made in E@.4). 0000 o 08 0.4 08 04 08 0
First, we consider the final state of a singlelane-wave k' (,&—1)

component characterized by the same wave vector as the
initial one. The phase of this wave has a random value and iS FiG. 10. The distribution functiong(k’,n/|k,n) (circles,
not an informative characteristic. The Important quantity Isp(k',ﬁ|/|k,ﬁ) (pluses andpa\,(k'|k,ﬁ) (stars for Iongitudinal[(a),

the amplitude of the wave, or more precisely its squaredc) and(e)] and transversgb), (d), and(f)] initial polarizations of
average valugsee the dot-dashed line in FiglbB], defined  plane waves characterized by different initial wave-vector magni-

by Egs.(3.18 and(6.2) atk’ =K, tudesk for the bar-shaped structural modelofSiO,. The ordinate
scales for(@) and(b) are on the left, and on the right for the other
- i - j figures.
] D lalllad g 3 el g
2
A= 2 2 \\2 2 \\2 ~ S . Lo
(Wics)) ((Wic.e)) n, and longitudinaln, polarizations of the initial plane-wave
excitation are of particular interest. These distributions de-
> lall? all? pend only on the spectral-density coefficietug|?, |a;,|?
- _ (6.5 and the vibrational spectrum itself and can be easily calcu-
((WE))? lated numerically for differenk. The results of such calcu-

) . . lations are presented in Fig. 10. The upflemwer) row de-
This yalue can be easily estimated for a pea_lk—shaped spectigliibes the scattering of initial longitudin@tansversgplane
density of widthl". Indeed, the number of eigenmodes con-\ayes, characterized by different wave-vector magnitudes,

tributing to an initial plane wave is8-(I'/D), whereD is  intg transverse and longitudinal plane waves and also the
the width of the whole vibrational spectruns=@0 THz inthe  {4ta] distribution of the weights in the final state.

case of vitreous silidaThen we can easily evaluate fromthe  Fjrst we consider scattering of a longitudinal initial wave
normalization conditions Eqs{S.S) gr)d (3.20) the average (the upper row in Fig. 10 The weight distributions
value of the spectral-density coefficients in the peak reg'onp(k’,ﬁ,’|k,ﬁ|) andp(k’,ﬁ{lk,ﬁ|) characterize the scattering

| &d|®~] @k 4>~ (DIT) - (1/3N), and obtain the following  of the longitudinal wave to a longitudinal wave, thie—1}
estimate foraﬁk, channel, and of the longitudinal wave to a transverse wave,
the {Il —t} channel, respectively. As follows from Fig. 10,
a—sz. i (6.6) these distributions are peak shaped but the positions of the
KT 3N’ ' peaks are different. The distribution for the—1} channel

. _ . has a maximum arourki, =k;=k (or maybe a bit below the
where we have taken into account tife)~ 1 according to initial wave vecto), while the distribution for the{l —t}

Eq. (3.5. The factorD/I" in relation (6.6) shows that the . X .
averaged squared amplitude is inversely proportional to thghannell is mainly conc.ent.rate.d at a h|gt1er .wave-\./ector
number of initially excited modes and not to all the modes Yalue.Ki>k;. The total distributionpy(k’|k,n;), in the fi-
This factor, being much larger than unity in the long- Nal state is a sum of double the distribution for the-t}
wavelength regime, decreases with increasing wave-vect&hannel and the distribution for thig—1} channel. If the
magnitude because of the increaselbf(see Fig. 2 and  Peaks related to the individual channels and constituting the
becomes comparable to unity k=k, ~1 A1 when the total distribution are narrow enough, then the distribution
peak width is comparable to the full spectral width-D. function p(k’|k,n;) is double-peakednot clearly seen in
Let us consider an initial plane wave characterized by therig. 10. If the peaks are too wide, thE}ﬂot(k'|k-ﬁ|) looks
wave vectok and polarizatiom. This wave is scattered with like a single wide peaksee Fig. 1pwith a maximum posi-
time into different plane waves characterized by wave vection k|, close tok, .
torsk’ and polarizations’, which do not necessarily coin- ~ Such a shape of the distributions of the weights of plane
cide with the initial polarization. We would like to know the waves in the final state can be qualitatively understood in the
weights of all plane-wave components in the final state as &llowing way. The distribution functiorp(k’,ﬁ{|k,ﬁ|) of
function of wave-vector magnitude’. The distributions of the transverse waves is an integtabm in the case of a
the transverse and longitudinal plane Wavﬁeg"ﬁ”k,ﬁ) finite-size m_ode)l of the product of two spectral-density co-
andp(k’,n/|k,n) [see Eq.(6.2)], respectively, and the total efficients, |;]kvﬁ||2 for longitudinal a”d|2f<,,artr|2 for trans-

distribution,ptot(k’|k,ﬁ) [see Eq.6.3)], for both transverse verse polarization. In the acoustic regime, these peak-shaped
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the spectral density of the initial longitudinal plane wave at
approximately the same wavevector magnitude as for the ini-
tial wave,

kj=k. 6.9

Actually, the valuek; should be slightly shifted to lower
values, because the height of the peak for the spectral-density
coefficients |a},|? increases with decreasing’ and the
maximum of the product of the spectral densities is reached
in the low-frequency tail of the spectral density for the initial
plane wave.

The scattering of an initially transverse plane wave occurs
similarly. In particular, the conclusion that the average fre-
quency,v’, of the majority of the plane-wave components
_ comprising the final state coincides with the average fre-

FIG. 11. (a): The spectral densitie§,(») for a longitudinal  quencyv of the initial plane wave,
initial plane wave withk=0.15 A~ (solid line) and S, () for the
transverse final plane-wave components characterized by different v'=y, (6.9

k'=0.15 A" (curve 3, 0.22 A™ (curve 2, 0.29 A (cuve 3, oids true independently of the polarization of the initial
0.37 A™* (curve 4. (b) The functionsp,(k’,n/[k,n) which are  hane wave excitation. Therefore we can roughly say that the
related to the product§ of trje spectral-density E:oeﬁLC|ents acpord'nﬂisorder-induced scattering of the plane wave is approxi-
to the relationp,(k’,n¢|k,n)=(1/3N)Zp;(k",n([k,n) (v=2")  mately “elastic” (on average This is not an absolutely pre-
=(1/3N)Ej|E'k,;,l|2-|z'kr,;,rt|25(v—1/‘)- The initial-state spectral- cise conclusion because, first, the plane-wave components
density coefficientzjk +|?, corresponds to the solid line {a) while ~ aré d.istributed in frquenc@comppged of eﬁgeandeS hav-

! ing different frequencigsin the initial and final states and,
i ) ~ second, even the maximum of the distribution in the final
the dotted curves ife) [denoted by the same numbers@as their  state js slightly shifted to lower frequencies as compared to
products in(b)]. the initial one, as discussed above.

In the case of the scattering of the initial transverse plane
spectral densities have maxima aj=ck/2m and v{  wave, two channels are availablt—I} and {t—t}. The
z.ctk’/zm respective!y, which generally do not coincide yistribution functionsp(k’,ﬁ”k,ﬁt) andp(k’,ﬁ{lk,ﬁt) of the
with each other. In Fig. 1), as an example we show the weights of plane waves in the final state for these channels

spectral density for an initial longitudinal wave lkt=0.15 have peaks located around the following values:
A~1 (solid line) and a few spectral densities for transverse '

waves in the final statédotted line$ characterized by’ ky=ck/c, and kj=k. (6.10

=~0.15 A~ (curve D, 0.22 A~ (curve 2, 0.29 A~* (curve .

3), and 0.:(%7 ﬁ(lj)(curve 9. (The diastribution fl(mction As follows from Eq.((_S.l() and Flgs. 1), 1O(d)’. ap_d 1@!‘),
R . the peak for longitudinal waves lies below the initiawhile
p(k'n[k,n) has a maximum at the value, suchAthatAthe for transverse waves the peak approximately coincides with
product of the spectral-density coefficienig(k’,n{|k,n)  k being slightly shifted to smaller values for reasons similar

=|E’k al|2'|2f</ ﬁ'|2 is maximal in the peak regions of the to those discussed above for tHe—~1} channel.
’ Tt

spectral densities. The latter condition is obeyed if the peaks
of the two spectral densities lie approximately in the same
frequency region, i.ex=v{ [see, e.g., curves 2 and 3 cov- One way to overcome the disadvantages of finite-size
ering the same region as the solid line in Fig(@1 When three-dimensional3D) numerical models is to analyze low-
we plotp]-(k’,ﬁ{|k,ﬁ|) versus frequenclFig. 11(b)], indeed dimensional models. Much lower wave vectoIKSzkETﬁ’i)n

we see that the maximum area lies under curves (2) and (3F 27/N*a (with a being a typical interatomic distance and
obtained by multiplication of the corresponding curves byN the number of atomsare available, for example, in one-
the solid line in Fig. 1a). Therefore the distribution dimensional D=1) models as compared to the 3D case, and

p(k’,ﬁ{|k,ﬁ|) has a maximum arourkj, satisfying the equa- the acoustic spectrum appears to be. much more dgnse. In
tion v=ck/2m=ck.2m= ! , i.e order to check and support the analytical and numerical ap-
- Mt P e

proaches presented above for the 3D case, we have per-
formed numerical experiments for a disordered 1D model

and calculated the distribution functigrtk’,n’|k,n) for it.
which is obviously greater than the wave vector of the initial A “zigzag” linear chain (along thex direction of atoms
longitudinal wave. [see the inset in Fig. 1B)], positionally ordered in the-y

The distribution of longitudinal waves for th@l —1} plane, has been chosen as a model. The atoms of two types
channel can be analyzed in a similar manner. The main dif¢i =1,2), characterized by the massasare in equilibrium
ference from th¢l —t} channel is that the spectral density of positioned at{x;/a,y;/a} (e.g., we used the coordinates
the longitudinal plane wave in the final state coincides with{0,0} and{0.4,0.5 for the first and second atom, respec-

SR

Spectral density

Py(k’ k)

the final-state spectral-density coefficiemt_d;, ﬁ,|2 correspond to
Tt

VIl. LOW-DIMENSIONAL MODEL

kp=ck/c;, (6.7)
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FIG. 12. (a): Dispersion curve§o = wm/x, vs k=k/(m/a)] FIG. 13. The distribution functiong(k’,n’|k,n) for different

for a 1D zigzag chain mod¢bee the inset ifib)] characterized by ~ scattering channelgas marked in the figujefor (@) longitudinal
the following parameters: the equilibrium coordinate of atoms in(n=n;) and (b) transverse i{=n,) initial polarizations of plane

the unit cell,x;/a=0; y;/a=0, x,/a=0.4; y,/a=0.5, ratio of  waves characterized by initial wave-vector magnitud&s

force constantsk,/x,=0.1, massesm=m,=m, and the total  =k/(n=/a)=0.3 for an ordereddashed linesand disorderedsolid
number 0f~atomN=2000. The arrows m~ark the~|n|t|al wave-vector |ines) linear zigzag chain model characterized by the same param-
magnitudek and final wave-vector valudg, andk;; (see text (b): eters as in Fig. 12. The dashed lines corresponding tqIthe}

The VDOS of the linear zigzag chain model with the same set ofscattering channel ife) and{t—1} scattering channel itb) for the
parameters as ifa) (solid line) together with that for a disordered crystalline (ordered chain cannot be seen because they coincide
chain with fluctuations in force constantc;/x;=0.3, dk2/k2  with the abscissa, since for thepgk’,n’|k,n) is effectively zero.
=0.3 (dashed ling
results of thek analysis given in Fig. 10. The positions of the
. L . additional peaks, ak, ({t—I} channel and k/ ({l—t
tively; the second atom is displaced from the middle of theqp ;0 cgn be obtgir(lid fr}éJm the grystallirgte ((:j{ispeision
unit cell,x2¢0.5,.|n order. to av0|d_the ext_end_ed Br-lllo.um laws for the 1D chain by solving the equations;(k)
zone form;=my) in the unit cell of sizea, which is periodi- = w(kj) andw,(K) = wy(k},), respectivelysee arrows in Fig.
cally repeatedN/2 times with periodic boundary conditions. 12(a)]. The width of the peaks increases with increasing dis-
The nearest neighbors of different types are connected byrder. We have also found a similar shape of the distribution
springs of force constant; while the nearest neighbors of function p (for four channelsfor all wave vectork=</a
the same type are connected by springs with force constamiith correspondingys; and w, lying in the range of the dense
k,. Such a model is one of the simplest in 1D to show bothspectrum. Therefore the results of this computer experiment
the longitudinal and transverse acoustic branches that wen the 1D model fully support thk analysis presented in
need for our consideration. The dispersion curves and VDOSec. VI.
for the crystalline chain are presented in Figs(al2and
12(b). The w~Y%singularity in the VDOS atv— 0 [see Fig. Vill. SCATTERING MECHANISM
12(b)] is due to the parabolic dispersion law for the trans-  From numerical calculations for both the 1D linear chain
verse acoustic phonons in the long-wavelength limitck?  model and the 3D model 0§-SiO,, we have found that
[see Fig. 12a)], which is typical for transverse vibrations of plane waves scatter not only to modes of approximately the
a linear chain. Disorder then has been introduced in the syssame wavelength but also to modes of rather different wave-
tem by randomly distributing spring constants around theilength but of similar frequency. The reason for such scatter-
mean valuesc; and , according to a normal distribution ing is a natural question.
with Variancesﬁ,(l and 5,(2, respecti\/e|y_ The VDOS of the First, we QonSider the 1D linear Chair_] model. As C_an. be
disordered chain is shown by the dashed curve in Figh)12 Seen from Fig. 1@), the VDOS of the disordered chain in
For the parameters of the model used, the VDOS in thdhe acoustic regimefor the chosen set of parameteiis
acoustic regime is not changed appreciably by disorder. ~hardly different from the VDOS of the crystalline counter-
Our main purpose here in analysing the vibrations of grart. This means that, in this case, force-constant disorder
disordered 1D chain is to calculate the distribution functiondoes not create or remove many vibrational states from the
~ A o , acoustic frequency range. Hence the appearance oftthe
p(K’,n’[k,n) characterizing the scattering of a plane-wave |y and {| -t} channels should be explained in terms of
excitation. First, we have calculated this distribution functiongyisting transverse and longitudinal acoustic waves. Indeed,
for the crystalline counterpari(; =0) and not surprisingly in a crystal, long-wavelength plane waves decay into
(a detailed analysis will be given elsewhewge found for  phonons with the same wave vector because of quasimomen-
k<m/a only {t—t} and {I—I} channels[see the dashed tuym conservation. Therefore a wave with the same frequency
lines in Figs. 183) and 13b) marking the peaks &=k and  put different type of polarization cannot be excited. Disorder
k; =k for the{t—t} and{l—1} channels, respectivelyDis-  destroys the quasimomentum conservatiwe wave vector
order changes the situation dramatically and gives rise to this no longer a good quantum vajuand new channels for
occurrence oft—|} and{l—t} channelgdsee the solid lines scattering are opened. A plane-wave excitation decays into
in Figs. 13a) and 13b)] in complete agreement with the eigenmodes having approximately the same frequency as
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that of the plane wave having nonzero overlap integrals witlbe investigated in time, frequency, and momentum spaces.
this plane wave. Due to disorder, such overlaps are finite foAnalysis ink space is particularly informative, and evidence
all the eigenstates within a typical interaction scale indepenfor scattering between longitudinal and transverse channels,
dent of their polarizationtransverse or longitudinaland  and vice versa, has been obtained from numerical simula-
dominant wave vector. Therefore an original plane wavetions for vitreous silica, as well as a “toy” modéFigzag
independent of its polarization, is scattered into both transghain in the plane with force-constant disorder
verse an.d Iongitudinql plane waves. This gives a quqlitative In discussing the limitations of the present approach, we
explanation of the existence ¢f—I} and{l—t} scattering \yqud like to note that only disorder-induced decay channels
channels. o _ of the plane-wave excitations have been analyzed here. The
In the 3D case, the situation can be more complicated.ggits” are formally obtained at zero temperature and are

ﬁ%ﬁgeféomixtige f)ﬁ:;er:g/gerg]:z:%mlzr i?ﬁ;ntgl tr}zni'svs;%irsfemperature independent in the harmonic approximation un-
) 9 ong P der consideration. We believe that our approach is adequate
discussed above, extra state®mprising the Boson peak

relative to the Debye spectruite.g., optic modes pushed in a particular temperature rang‘éminsTsTmaX in real
down by disorde®®9 could participate in the hybridization glasses. At low temperatures:= Ty, decay via two-level

between plane waves with different polarizations. systems could be importaht”*®while at higher tempera-
tures T=T,,) around the glass transition, anharmonic

channels could dominaté.In the particular case of vitreous
silica, the relevant temperature range is £00<1000 K,

We have demonstrated how the evolution of an initiallywhere the mean free path is practically temperature
plane-wave vibrational excitation in an amorphous solid carindependent?
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