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Calculating properties with the polymorphous coherent-potential approximation
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The formulas for calculating properties of an alloy such as the density of states, the charge density, and the
Bloch spectral density function are derived from multiple-scattering theory for the polymorphous coherent-
potential approximatiofPCPA. The chemical shifts obtained for three alloy systems using the PCPA, the
Korringa-Kohn-Rostoker CPA, and the locally self-consistent multiple-scattering method are compared with
experiment. A significant improvement in the treatment of Coulomb effects is achieved using the PCPA with
only a little more computational effort than for the older isomorphous CPA's.

[. INTRODUCTION one-electron potentiaf®.Care was taken to insure that they
satisfy the requirement of the DFT-LDA that they are ob-
The one-electron method based on the density-functionaghined as functional derivatives of the potential energy with
theory and the local-density approximattofDFT-LDA) is  respect to the local charge densities. The addition of a self-
used routinely to calculate the energetics of ordered crystakonsistency step, however, brings in an aspect of the CPA
line solids. These band-theory methods cannot be used theory that had never been considered before.
treat disordered solids, even such conceptually simple ones In order to understand the difficulties involved with in-
as substitutional solid-solution alloys, because of the lack o€luding charge self-consistency in a CPA, it is necessary to
long-range order. Faced with this situation, many researchetse aware that all of the model calculations and mathematical
turn to completely different approaches in their quest to exstudies of the CPA made use of isomorphous models of al-
plain the properties of alloy systems. Some introduce heurisioys. An isomorphous model is one in which, for a binary
tic models with parameters that are obtained from fitting toalloy, the A atoms are all assumed to have identical charge
observationg. Others carry out DFT-LDA calculations on densitiesp(r) and hence potential functions(r), and the
intermetallic compounds having relatively small numbers ofB atoms all have identicghg(r) and vg(r). In the CPA, a
atoms in the unit'ce'lls Wit_h the purpose of interpolating thescattering matriﬁA(tC) is calculated for amA atom embed-
energetics of the infinite disordered system from those of thgeq in a lattice with the effectivematrix t. on all the other
o_rdered soI|d§_.Today, the electronic structure for models of gjtes. The scattering matrix for ah atom embedded in a
disordered solids can be calculated using supercells that €on- cuum. which appears i (t.), is calculated in the usual
tain thousands of atoms. This has been made possible by the ' pp' M(te), i - i
development of ordel methods based on plane-wave Wy from the potentiabs(r). The scattering matrig(tc) is
expansioror multiple-scattering theory Still, it is useful ~ calculated analogously. The desirehatrix, t., is obtained
for certain applications, and more satisfying philosophically,from the null scattering requirementata(tc) + cgtg(tc)
to have a simple approximate theory that will describe the=0. The assumption of isomorphous models was so ubiqui-
important features of the electronic structure of alloys. Exactous that theorists made it without thinking.
calculations on one-dimensional and three-dimensional mod- It is known from band-theory calculations on ordered in-
els of alloys, as well as more mathematical considerafionstermetallic compounds that there is a charge transfer between
convinced theorists that the  coherent-potentialthe different species of atoms, and this leads to a Madelung
approximatiof (CPA) provides such a simple approximate contribution to the self-consistent potentials. The net charges
theory. on the A and B sites areqa=[pa(r)dr—Z, and gg
The CPA calculations on solvable models of alloys give= [ pg(r)dr—Zg, where the integrals are over the unit cells
qualitative guidance for the interpretation of experiments orand the Z's are the atomic numbers. The charge self-
real alloys, but to make the predictions quantitative it wasconsistent KKR-CPA method also predicts nonzero net
necessary to merge the CPA with the charges, but it contains a curious inconsistency in that there
Korringa-Kohn-Rostokér(KKR) band theory methodThe is no Madelung potential in it. A careful analysis shows that
KKR-CPA was later extended to produce self-consistenthe derivation of self-consistent potentials in a disordered
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alloy subject to the condition that the resulting model mustearest-neighbor shell radius. Instead, the contributions to
be isomorphic leads inevitably to the conclusion that thethis potential from succeeding shells diminish very slowly. It
Madelung potentials must be zero. In addition to the arguis demonstrated in that same reference that a part of the
ments in the original derivatior!d,a way of understanding Coulomb energy has a contributiog, that depends only on
this paradoxical result is to note that any distribution ofthe average charge transfer, as would be anticipated from an
charged atoms will give a different Madelung potential atisomorphous CPA, but it is also demonstrated that there is a
each site, irrespective of the kind of atom at the site. Thecontributionuc, that is not determined by the average charge
only way for all theA atoms to have the same potential andtransfer but depends on the distribution of the charges about
all the B atoms to have another, as required by the isomorthe average.
phous model, is to approximate the Madelung contributions Isomorphous CPA models have been remarkably success-
with zero. It was understood at the time that the isomorphoutul in explaining many interesting properties of alldyand
picture was only an approximation. However, the technologysome of the reasons for that are given in Ref. 18. Even
to test such ideas had not yet been developed, and it wakough the Madelung potentials are set equal to zero in the
hoped that the fluctuations about the average charges wouKKR-CPA, that approximation gives surprisingly good val-
be small. ues for the free energy of mixing. Another curve in Fig. 2 of
The isomorphous KKR-CPA was criticized because theRef. 17 shows that the average of the Madelung potentials
Madelung potentials were set equal to zEr@nd efforts  for all the A sites orB sites in the alloy is short range as
were made to deal with this criticism. These led to two veryassumed in the SIM-CPA and S-CPA. The param&gr
similar methods, the screened-impurity mddelPA (SIM-  turns out to be approximately equal B, and this explains
CPA) and the screened CP@-CPA."® Both of these mod- the successes that these isomorphous CPA’s have had. On
els are isomorphous, and the Madelung potential is calcuthe other hand, locating the screening charge on a shell is
lated by placing a shell of charge around each atom at glearly an approximation, and definiiRyy to be R; makes
radius Resf. The total charge on the shell is equal to thethe SIM-CPA and S-CPA theories precise but removes the
charge on the atom. Using calculations on the screening gdossibility for improving them by treatinB.s as an adjust-
single impurities in an otherwise perfect crystal as a giffde, able parameter. In addition, it has been shown that the form
the effective radius is usually chosen to be equal to radius ofor the total Coulomb energy that arises naturally in the mod-
the nearest-neighbor shdé®;. The resulting self-consistent els is unsatisfactory. In the SIM-CPA, the expression is mul-
potentials contain a Madelung term, and there is a Coulomliplied by an adjustable parametgithat cannot be obtained
contribution to the total energy. The charge transtgrand  from within the theory*® It is even more disturbing that this
gg predicted by the SIM-CPA and S-CPA are different from parameter multiplies the Coulomb energy, but it does not
the ones obtained from the KKR-CPA, and they improve theoccur in the one-electron potential. This violates the require-
agreement with many experiments. If one accepts the argunent of the DFT-LDA that the one-electron potential is the
ment that the mathematically correct value for the Madelundunctional derivative of the energy with respect to the charge
potential in an isomorphous model of an alloy is zero, asdensity. The parametg8 can be understood as an effort to
derived in Ref. 10, the derivations of the isomorphous SIM-emulate the contribution¢, to the Coulomb energy within
CPA and S-CPA must contain inconsistencies. There is ¢e limitations of an isomorphous CFA.
sense in which the SIM-CPA and S-CPA can be justified, Because of the theoretical objections to isomorphous
and that will be explained below. models, it was suggested in Ref. 18 that Coulomb effects
The environment for developing theories of alloys could be included better at the level of the coherent-potential
changed dramatically with the advent of the ortlecalcu-  approximation with a polymorphous CRRCPA than with
lations mentioned abovk. Using a technique called the lo- any isomorphous CPA. The PCPA will generate charge den-
cally self-consistent multiple-scattering meth¢dSMS),>  sities pai(r) and pgi(r) and hence potential functions
first-principles DFT-LDA calculations on models of alloys v,;(r) andvg;(r) that are different for every site in the alloy,
using supercells that contain hundreds or even thousands af found from the first-principles LSMS calculations. The
atoms have been carried dit*®Figure 1 of Ref. 18 shows theory of the PCPA was deduced from a careful study of the
the distribution of atomic chargep for a 50% copper-zinc results of ordeiN calculations, so it is necessary to describe
alloy on a fcc Bravais lattice calculated with a supercell con-some of the inner workings of the ordiirmethods in more
taining 500 atoms. It is seen that there is quite a broad disdetail.
tribution of charges on the sites, and the numerical output The LSMS makes use of the principle of near-sightedness
shows that they' are different for every site. Of course,q  that has been espoused by Kéhinsofar as the continuity of
falls within one range of values if there is &natom on site  the wave functions is concerned. Infinitely many atoms are
i, and another range if there isBaatom there. It follows that included in the calculation, with supercells containiat-
an alloy is more properly described by a polymorphousoms being reproduced periodically to fill all space. The
model in which the charge densify(r) on every site is multiple-scattering equations are solved completely for all
unique. This result was anticipated to some extent in Ref. 11the atoms in a local interaction zor{elZ) surrounding a
although those authors deduced from their calculations ogiven atom. The matrices for the sites outside the LIZ are
supercells containing 4-12 atoms that the number of posset equal to zero. This process is repeated for LIZ’s centered
sible charges that a given kind of atom can have is small andn each atom in the supercell, which makes the calculation
depends only on the occupation of the sites in the nearestrderN. The principle of near-sightedness is not used in the
neighbor shell. It is shown in Fig. 2 of Ref. 17 that the Coulomb part of the calculation. The Madelung potential for
Madelung potential at any lattice site is not screened at theach site is calculated exactly with the contributions from the
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full infinity of atomic charges, not just the ones in the LIZ, alloy under the class of restrictions that define a CPA leads
being included. It could be said that the multiple-scatteringto the PCPA. If the additional restriction that the resulting
part of the calculation is orddy; but the Coulomb part is model must be isomorphous is invoked, the result is the
not. The Madelung potentials for solids with periodic bound-KKR-CPA. The S-CPA and SIM-CPA do not fit into this
ary conditions are easy to calculate with the Ewald mefiod, chain of approximations, although, as mentioned above, they
so that does not slow down the overall procedure. are useful approximations.

A locally self-consistent Greens functi¢bSGF) method Calculations of various alloy parameters have been car-

has been suggest&which was influenced by the success of ied out with the LSGF within the tight-binding linear
the LSMS. In the LSGF, the LIZ’s are made smaller bymuffm-tm orbital (TB-LMTO) method, and the LIZ was cho-

putting an effective scatterer on the sites outside the LzSen to contain one atom in some of these. Calculations based

rather than zero as in the LSMS. A reasonable choice, a@" the multiple-scattering theory, which is the natural lan-
though not the only choice, for this scattering matrix is adguage of_the CPA method, .W'” b? shown in this Paper. The
CPAt matrixt, .2 As is the case in the LSMS the Madelung use of this method makes it easier to compare with LSMS

potentials are calculated exactly, the sums including the in‘:’md KKR-CPA results. In Sec. Ill, some of the details of the

finity of atomic charges. Placing the effective scatterers Or?omputatlonal methods are described. In a previous p"&per,

the sites of a Bravais lattice outside the LIZ limits the LSGF 't vlvas shqgvn that the Ch?micilz Shlifts Ln ‘#IO{S aTrre] a Eartipu-l
to systems for which the atomic sites are periodic, while théary sensitive measure of the Loulomb Efiects. The chemica

LSMS can be applied to systems in which the atoms havéhlfts obtam(_ad from t_he KK.R'CPA’ PCPA, and ITSMS are
arbitrary atomic positions, such as bulk amorphous séfids. compared with experiment in Sec. IV. The atomic charges
The LSMS must also be used for systems for which a homopredlcted by. the three theories in real allqy systems are als_o
geneous alloy is a poor reference medium, such as magne -gmpared with each oth_er. In the last sectlon,_the argumgnt is
multilayers and interface®,and magnetic noncollinearify. made that the PCPA g|ves_useful results W'”} only a little
The LSGF is clearly the best method for the study of disorMOre effort than the older_|somorphous CPA's, and other
dered substitutional alloys, and it predicts the same elec@SPects of the theory are discussed.

tronic structure as the LSMS if both methods are converged.

In particular, the model of an alloy produced by a LSGF Il. CALCULATING PROPERTIES WITH THE PCPA
calculation is also polymorphous, and this holds for LSGF
calculations in which the LIZ is chosen to contain only one o ) )
atom. As pointed out in Ref. 18, it is the authors position that The DFT-LDA Schralinger equation for a collection of
the particular kind of LSGF calculation in which the effec- atoms can be written as

tive scatterer is determined by the CPA condition and the
LIZ contains one atom has the shape that is needed for a
PCPA. The originators of the LSGF did not have the con-

struction of a PCPA as one of their goals because, among . )
other things, they are also the originators of theWhere the one-electron potentials will be assumed to have

SIM-CPA 232412 the muffin-tin form. Multiple-scattering theory can deal with

It is reasonable for an expert in the CPA to worry that,Moré general potentials, such as atomic-sphere approxima-
while the PCPA should lead to an improved treatment ofiion (ASA) potentials or even fgll potentlfils, but the notation
Coulomb effects and give a physically more correct picturd?€comes complex. The atomic potentiai(r,), wherer,
of the alloy, all of the other desirable features of the CPA=T—Rn, is spherically symmetric whenis within a sphere
that have been so useful in applications over many years wiffentered on the lattice sif®,, and is zero otherwise. One
be lost. The main purpose of this paper is to develop a mathvay to write the corresponding Green’s function was shown
ematical formalism which leads to the PCPA and from whichin FS to be
the site-diagonal and non-site-diagonal average Green’s

A. The Green'’s function for alloys

(r)=Ey(r), €y

N
—V2+Zl vi(r)

functions are obtained. These Green’s functions are different G(E,r,r')= 2 ZNEr )7 Z" (B

from the ones derived for the isomorphous CPA because v ST e

charge correlations are built into them, but they can be used

equally well to calculate the properties of alloys. A rather _2 Z0(E,r)INE ). )
subtle point that comes from the formalism is that full po- C "

tentials (i.e., not muffin-tin can be used in PCPA calcula-

tions, while they cannot in isomorphous CPA calculations.
The formulas for calculating properties of an alloy such as 2 noo

the density of states, the charge density, and the Bloch spec- [=V"+wa(r)—E]Z((r) =0, C)

tral density function with an isomorphous CPA were derivedinat is regular at the origin and equals

from multiple-scattering theory in a paper that will be re-

ferred to as F&8 In the following section, the analogous ZME,N) =YL(Dj («0)ME) =i kY (Dh(xr), (4)

formulas will be derived for the PCPA. The differences be- _ _ o

tween the two sets of formulas for the non-site-diagonaWhenr is greater than the radius of théh muffin-tin sphere.

Green’s function and the Bloch spectral density functionltis assumed in Eq2) thatr/>r, . The matrixm"(E) is the

AB(E,k) are particularly interesting. It is demonstrated thatinverse of thet matrix t" that describes the scattering from

the manipulation of the DFT-LDA Green'’s function for an the potentialv,(r). Sincet" is diagonal for muffin-tin poten-

In this equationZ|'(E,r) is the solution of
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tials, its inverse is as well, angi is a diagonal element of scribed in the previous section. This point will be made even
that matrix. The functiong,(«r) and h,(xr) are Bessel more clearly in Sec. IID, where the calculation of the self-
functions, andk is the square root of the energy. Following consistent potential in the PCPA is discussed in more detail.
FS, the spherical harmonidg (r) are chosen to be real. The The difference between the varioAsand B atoms is due to
functionJ\(E,r) is the solution of Eq(1) that is not regular their spatial correlation with all of the other atoms, and in-
at the origin and approaché (r)j,(«r) whenr is greater formation about this spatial correlation is lost in the kind of
than the radius of thath muffin-tin sphere. The coefficients €nsemble-averaging process used in FS. The site-averaged
'™ are elements of the scattering-path matrix defined peSreen’s function will be seen to be periodic, as it should be.

low. This form of the Green’s function is valid whenand Since the prolperties Of. interest are self-averaging, the
r' are inside thenth muffin-tin sphere or in the interstitial ensemble- and site-averaging processes lead to the same re-

region between the muffin-tin spheres, where the potential igults w_hen_ applied to the same model. The co_ncept of se_lf-
7610 averaging is used frequently in modern discussions of statis-
) tical physics, but it first appeared in alloy theory in the

The same Green'’s function can be written in a different ~". 30 ;
way whenr is in the nth muffin-tin sphere and’ is in the writings of Lifshitz>" The argument was made in FS that the

mth sphere, or they are in the interstitial region. For thisensemble-averaged quantities should represent _the properties
case. the Green’s function is of a smg!e real crystal because of self-averaging. For the
’ PCPA, it is necessary to argue that average values for prop-
erties can be found from one large sample because of
G(E,rr')=2 ZNE )7 21 (E,r}). (5  self-averaging It will be shown in the following that for-
LL mulas derived with the site-averaging process become iden-
The expressions for the Green’s functions in E§sand(5) tical to those derived with ensemble averaging when the
have been used in a wide range of calculations, and are relinodel is taken to be isomorphous.
able. Clearly, the convergence of the sums becomes a prob-
lem if the magnitudes of the position vectors are too large. C. Averaging the Green’s function for the site-diagonal case

. .nm
The elements of the scattering-path matrig,’, (E), are Using the site-averaging process, the average of the
volumeV of the large sample is

MET/:mlnaLL’anm_gEE" . (6) N
[ 1 _ L
That'is to say, (GErIM)=5 2 LEL) ZU(EN) T L Z(Er)
=M (7) v
The functionsg]|’, are components of the free-electron —> ZHENI(Exr")]. (8)
Green'’s functions that describe propagation from lattice sites L

R, to Ry, and are zero v_vhenzmn. The elements of the |, gach term in the sum ovéy the origin of the coordinate
inverse of thet matrix on siteR,, my’, were defined above. gystem is moved to the lattice positi®. The limit of this
process is reached &kand hencé/ increase without bound.
B. The averaging process It should be clear that this averaged Green’s function is pe-

A theory of the electronic states in a disordered alloy musfiodic, (G(E,r,r'))=(G(E,r+Ry,r'+Ry)), because the
have a statistical as well as a quantum-mechanical aspe€t™ IS unchanged. , . .
because the knowledge about the structure of such a system APProximating this averaged Green's function using the
will, of necessity, be incomplete. In the ideal random alloy,Philosophy of the coherent-potential approximation entails
which is considered here, the atoms are distributed on th&MPplifying the scattering-path matrix elements in a specific
sites of a Bravais lattice. The probability of @nor B atom ~ Way- As was discussed in FS, the single-site approximation
occupying a site i, or cg. In more realistic models, the to the scattering-path matrix leads to a redefinition of the

Warren-Cowley short-range order coefficients measure thenatrix elementsy' , so that they are given by the inverse of

deviation from a random distribution. a matrixM; whose elements are given by
A major difference between the isomorphous CPA and . _
the PCPA is the nature of the averaging process used in the Mg"'=m' for n=i, m=i,
statistical stage. It was natural in FS to use an ensemble- .
averaging process, the ensemble being the set Ny ( M¢"M=m5,,—g"™ for n#i, or m#i, 9

+Ng)!/Na!'Ng! alloys that can be formed by distributing
NaA atoms andNgB atoms on the lattice sites, and then mentum indices. The matrix' is the inverse of the matrix
passing to the limit thall, andNg approach infinity. In the that defines scattering from the potentieqr), and the ma-
PCPA, the average is over the sites of one infinitely Iargetrix mC is the inverse of the effective scatt,ert@r Another

sample. The reason for this type of averaging is that the onl¥v : - : .
. 4 L ay to write this scattering-path operator is
reliable way to calculate the Madelung potential at a site is to y g-p P

include the contributions from the charges on all the other A _, £:00_ pi -00_ _O00Fi (10)
sites. This is the lesson that has been learned from the ¢ coem
LSMS, the LSGF, and other ordértechniques, as was de- where

in a block-matrix notation that eliminates the angular mo-
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Di=[1+ TOO(mn_ m°) ]~ L. (11)  thatthe potentials on all the or B sites areva(r) or vg(r),

and hence the matrices are” or t®. The resulting equation
As discussed in Sec. I, the CPA averaged Green’s functiog

describes a periodic system with the scattering magrian
every site. The matrixy " is the scattering-path matrix for sDb A A
this system, and is obtained from the inverse of the matrix Giso(Es,1")= E [CAZL(E,T) 7| OZL’(E r’)
M. with elements 5008
+cBZ (E,r)r 7 Z (E;r')]

M{M=m®8,,—g"™ for all n and m. (12
Since this system is periodie! = 7 = 720, — > [CaZMENINET)
The site-diagonal average Green'’s function in the single- -
site approximation is then +cgZB(E,NJIBE,r)] (19

N
GSY(E,r,r')=— ! Z

=}
icv

00 which is identical with Eq(2.33 of FS. The most obvious
E Z (E,r)7g, LL’ZL’(E r' difference between the Eq4.3) and(19) is that in the PCPA
all the atoms are assumed to be unique, and hence their con-
centrations are just W. The formulas that are the analog of
(13) Eqgs.(15) and(17) are

—2 ZH(E,nJL(E,r) .

n(E))=cAn”(E)+cgnB(E) (20)
The average density of states per site for the alloy is an < ) =Ca ®
example of a site-diagonal property, and it can be found fron@nd
this Green’s function b
/ (p(r))=CapA(r)+ Cap®(r). (20
(n(E))=— me GSP(E,r,r)dv, (14) The Green'’s functions defined in Eq4.3) and(19) are pe—
™ Q r|od|c as they should beGRX(E,r,r')=G(E,r+R,,r’

Ry).

where() is the volume of the central unit cell. Clearly, the
density of states associated with any site in the effective
crystal is the average of that quantity for the individual at-
oms inV To this point, the single-site approximation has been used,
but nothing has been said about the definition of the effective
i scattering matrix,. The relation that definels in the iso-
(n(B))= Nizl n'(E), (15 morphous CPA appears in E(.24) of FS as

D. The PCPA condition and self-consistency

N

where Ca TA 00, Ca 7_E; 00_ 7-80, 22)

: 00 where 72 is obtained from Eqs(9) by putting the inverse
n'(E)=— —Im{ 2, L(E!r)ZLf(EJ)d”LLr] of the scattering matrix for the potentiak(r) on the central
LL 1g Sie and2% is obtained similarly. This is just the conver-
(16) sion of the original definition of the CPARef. 7) into the
The charge density on a site in the effective crystal is similanguage of the multiple-scattering thedfyThe extension

larly of this relation that defines the effective scattering matrix in
the PCPA is
N
(pO)=% 3, p(r) (17) N
P =N ) 1 )
= N2 0=, (23
Ni=

where

. where the scattering-path matrices are defined in(Eg).
o F i | 1,00 The information necessary for calculating self-consistent
pP== T f_x ImLEL, 2B N2 (B )7/ (E))dE. potentials and total energies in the PCPA is contained in the
' (18) site-diagonal Green'’s functions in E(L3). As in any other
system in which there is charge transfer, the local part of the
The term in Eq.(13) that includes the singular solution DFT-LDA potential»;(r) is calculated from the charge den-
JL(E,r) normally does not appear in formulas for propertiessity p'(r) defined in Eq(18). The Madelung contribution is
because it is real. defined using the net chargeg= [p!(r)dr—2z; for all j
As stated above, Eq13) should become identical with =i, whereZ;=Z, if there is an A atom on thqath site, and
the corresponding KKR-CPA equation when it is applied toz =Zgif there is aB atom on the site. This is the same way
an |somorphous model. For that case, the functions of posthat v;(r) is calculated in the LSMS or the LSGF.
tion Z! (E,r) andJ} (E,r) are allZ\(E,r) andJ{\(E, r) when ~In practical applications of the PCPA, the charge densities
there is anA atom on theith site orZB(E r) andJB C(E,r) p'(r) and potential(r) cannot be calculated fdt equal to
when aB atom is there. This is equivalent to the assumptiorinfinity, S0 it is necessary to make a supercell approximation.
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In this approximation, the configuration of atoms in the cen- 1 N _ o
tral supercelllis repro_duced p(_ariodically to fill all space. This (G(E,r,r+Rn)>=NZ E Z'L(r)T'LJL,Z'L,(r). (26)
same approximation is made in ordémethods, such as the =l

LSMS and LSGF. The use of supercells does not interfererhe sum is only over site because the sifés related to site
with the periodicity of the Green’s functions demonstrated inj py R;=Ri+R,. It is shown in Eq.(2.43 in FS that the
the previous paragraph. The calculation of the Madelung pogjng|e-site approximation to the scattering-path matrix in this
tential for all the sites in the supercell takes very litlle time gquation is
when the Ewald(Ref. 22 method is used. As a practical
matter, calculations of interesting properties using supercells Al=pi Tici D, (27)
of various sizes have shown that the supercell approximation -~
is not serious as long as the cells contain some hundreds wfhere 7, is the scattering path matrix for a periodic lattice
atoms. One reason for this is that the Madelung sums are nthat has the PCPA scattering mattixon every site. This
seriously affected if the actual contents of the adjoining sumatrix is found from the inverse of the matit. defined in
percells in the large sample are replaced with replicas of th&g. (12), and depends only on the separation between sites
central cell. Another is that the properties of interest in theand]
calculations are self-averaging. . g

It may seem contradictory to talk about an effective crys- ¢ =1e(Rij) =[M¢ 1. (28)
tal that is perlod|.c, and at .the same time talk abOL_Jt Netha matrix D'
charges on the sites. A similar contradiction occurs in th
isomorphous CPA, because one usgf) andpg(r) to cal-
culate the DFT-LDA potential in spite of the fact that the GNSD(E,r,r+R,)
effective scatterers on all the sites are the same. Ensuring this
does not lead to a contradiction is the purpose of the CPA
condition. The major point of FS is that this is a necessary
part of the formalism. A quantity like the total density of
states does not require knowledge of the wave functions and (29

can be calculated from the periodic effective crystal with Inserting this in Eq(25) leads to the expression for the av-

on every site using Lloyd’s formul® Information about in- eraged Green’s function in tHerepresentation
dividual sites must be used in the calculation of a property

that requires wave functions, such as the potentials, because .
there is no average wave function in an alloy, only an aver-  G(E.k,k)= L)G (E,r,r)dr
age Green'’s function.

is given in Eg.(11). Thus, the non-site-
ediagonal averaged Green’s function is

N

1 : o ,

— E E E 1 1 1] ] i

N =100, ZLl(r)DLlLTC'LL'D'—"—zz'-z(r)'

+ > ekRny FLo(Ry) 7e (Rp),

E. Averaging the Green'’s function for the non-site-diagonal L

n
case Rn#0

The most interesting non-site-diagonal properties are re- (30)
lated to the Bloch spectral density function. The PCPA, "kewhereGSD(E,r,r’) is defined in Eq(13). In Eq. (30),
the isomorphous CPA, leads to an effective Green'’s function
that is periodic. This means that Bloch vectirshould play 1 N _ _ _ '
a role in the theory, even though they are not good quantum F, ,(R,)= N > Z, (nzl (rdrb, D! .,
numbers. TheE vs k relation of ordinary band theory is Sl Joo ! : v
replaced in alloy theory with the Bloch spectral density, (3D
which is the density of states knspace. The formulas for the which depends orR, becauseR;=R;+R,. The matrix

Bloch spectral density function derived in FS and displayed=(R,) has weight one in the sense that it is the sumNof

in Egs.(4.8) and(4.9) of that paper are integrals, but divided by. .
. Specializing to the isomophous case, for whigh(r)
A°(E,k)=—(U/m)ImG(E,k,k), (24)  =z{(r) with probability c, and Z} (r)=ZE(r) with prob-
ability cg,F ' (R,,) becomes
where
| Fit=cd > | zt(nztndrdf, D,
G(E,k,k)=>, e'k‘Rnf G(E,r,r+Rydr. (25 Litz JO
n Q
+cac z8 (nz? (ndrp?  D®
In Eq. (25), the sum is over all Bravais lattice vectdgs,, A Ble,Lz Q L(NZ5(NADL, By
and the integral is over the central unit cell. It should be
noted thatG(!E,k,k) .is not the Fqurier transfo_rm of the +CaCa E ZE (r)zﬁ (r)erE LDi\ L
Green'’s function, as is used, e.g., in the analysis of positron L, Jo ! 2 =2
annihilation experiments.
The Green’s function that must bg usedAﬁ(E,k) is +c§ E Z’,f sz (r)erf LDE L, (32
obtained from Eq(5) by means of the site-averaging process L, Jo ! 2 = =2
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which does not depend oR,. The resulting formula for with the constraint that the alloy model must have the chosen
G(E,k,k) is identical to Eq(4.10 of FS, which means that concentration. The computer code can build in short-range
the Bloch spectral densities will be the same. order as measured by the Warren-Cowley coefficients, but
It is reassuring that the formulas fGrfE, and AB(E, k) that capability was not used in the present work.
obtained with the site-averaging process are identical with Ignoring static displacements of the atoms from the sites
the ones obtained with the ensemble-averaging process wheif the Bravais lattice is an approximation, but there is no
the former are applied to an isomorphous model. When enreason to expect it to be a serious one for the present case.
semble averaging is used, the sum in E2) is over sited From the sharpness of the Bragg peaks and the smallness of
andj independently. Since the functif;, in Eq.(32) does the static Debye-Waller factors observed in diffraction ex-
not depend orR,, it can be factored out of the integral in Periments on metallic alloys, it is clear that, to a first ap-
Eq. (30). This makes the expression for the Bloch spectraProximation, the atoms fall on the sites of the average lattice.
density for the isomorphous case, H4.15 of FS, consid- This conclusion is corroborated by the most recent experi-
erably easier to deal with computationally. mental studies? Thermal displacements are also important.
At room temperature, the rms average of the thermal dis-
FB d the PCPA placements is 3—4 times larger than t_he rms average Qf the
- beyond the static displacementS,even for alloys with a large size mis-
There are three steps in the derivations given above; thmatch.
site-averaging process, the single-site approximation, and de- Initial guesses are made for the atomic potentials, and the
fining the effective scattering matrix as the one given by t matrices are calculated. The PCPA equations in (£8)
Eq. (23). It should be observed that these steps are indepemre solved iteratively, using a generalization of the programs
dent, and that different levels of theory can be obtained byhat were originally developed for use in KKR-CPA calcula-
truncating the derivation after step one or making differentiions. The new charge densities for each site are found using
choices in step 3. In particular, after a LSMS calculation onEq. (18), and the whole process is repeated until the total
a supercell has been carried out, the results can be insertedergy and potentials have converged. It has been demon-
into Egs. (8) and (26) to get site-diagonal and non-site- strated computationalf§ that the muffin-tin approximation
diagonal averaged Green’s functions. These can be used ditroduces no significant error in calculations like the ones
rectly to obtain such quantities as the Bloch spectral densitiediscussed here. Even for the most extreme case, the copper-
without making a single-site or a CPA approximation. Thepalladium alloy system, the heats of mixing calculated with
process of averaging reduces the amount of information imuffin-tin and non-muffin-tin methods are not significantly
the LSMS results, but there are situations in which this isdifferent. That is, calculations on copper-palladium in the
desirable. Experience with orddr-calculations like the L1, structure with the muffin-tin LSMS method give6.6
LSMS has demonstrated that there is frequently too mucmRy, while the non-muffin-tin Viennab initio simulation
information in the results. The averaging process may bg@ackagé’ (vAsp) gives —6.8 mRy. It has been reported in
helpful in resolving the more important physical effects fromthe literaturé® that the non-muffin-tin linear augmented
the mass of computed data. The averaged Green’s functioqdane-wave method gives6.3 mRy. The advantage in using
could also provide a good standard by which approximationshe muffin-tin approximation, as compared with an atomic-
like the PCPA can be tested. sphere approximation, is that the multiple-scattering equa-
It should also be noted that the site-averaging procestons are exact. Questions of convergence that must be ad-
may be applied to supercells that have short-range order atressed when full-potential methods are used are avoided in
displacements of the atoms from their average lattice sites. the present approach, although such methods will be incor-
will have to be seen if these capabilities are of any practicaporated in later calculations when they are deemed neces-
use. LSMS calculations on copper-zinc alloys with short-sary. As emphasized earlier, the Madelung contribution is
range order have been publisheahd it would be interesting calculated without approximation.
to see the degree to which these could be reproduced with a It might be thought that the solution of the equation for
PCPA that contains such order. There has been a lot of inthe effective scattering matrix for the N-atom PCPA case,
terest in the inclusion of displacements in alloy theories reEq. (23), would be much more difficult than for the isomor-
cently, and this is a proposal for including them in a CPAphous CPA, Eq(22). It turns out that, using the standard
level theory. method described in Ref. 28, only twice as many iterations
were needed to solve the equation for the PCPA than for the
KKR-CPA. This is due to the fact that, although the charge is
different on every atom, the scattering matrices for the atoms
The computer codes used for the PCPA calculations deof a given species are quite similar. The Brillouin zone inte-
scribed in this paper are based on the ones that were devajrations required when caIcuIatir’rQo were performed using
oped for the implementation of the LSMS method.The  the prism methot with 36 directions in the irreducible
supercell is first generated for the underlying face centerediedge of the Brillouin zone, which insures milli-Rydberg
cubic (fcc) or body centered cubitbco) Bravais lattice. For  accuracy. All the calculations reported here were performed
bcc alloys, the dimensions of the supercell are normally chowith the Cray T3E-900 512-processor supercomputer oper-
sen to be X5X5 lattice spacings, and it contains 250 at- ated by the National Energy Research Scientific Computing
oms. For fcc alloys, the supercell dimensions are typicallyCenter located at the Lawrence Berkeley National Labora-
4x 4% 4, and contain 256 atoms. The next step is to assigtory. It is, of course, always desirable to use the most pow-
atoms to the lattice sites using a random number generatogerful computing facilities that are available. However, one of

. COMPUTATIONAL METHODS
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TABLE I. Convergence test of the total energy, Fermi energy, and charge transfer for a 50% copper-zinc

alloy.

Supercell size 16 54 128 250
Total energy(Rv) —3414.465156  —3414.465272 —3414.465129 —3414.465064
Fermi energy(Rv) 0.6609 0.6609 0.6609 0.6609
Charge transfete) 0.103 26 0.105 36 0.102 64 0.10143

the major thrusts of our future program development is toPCPA, and KKR-CPA. The LSMS calculations appeared in
simplify the PCPA calculations so that they can be carrieca previous publicatio”’ The charge transfers predicted by
out on small workstations or microcomputers. the three theories are also shown. In the following, the rea-
Tests were made on the dependence of the PCPA resulé®ns for focusing on chemical shifts rather than the densities
on N, the number of atoms in the supercell. It was found thaif states that can be measured with ultraviolet photoemission

surprisingly small samples give quite acceptable predictiongpectroscopy, as was conventional in earlier evaluations of
for such self-averaging quantities as the total energy peg|ioy theories, will be made clear.

atom and the charge transfer. This is illustrated by the calcu- The chemical shifts are defined as follows. In the DFT-
lations on a bce 50% CuZn alloy with a lattice constant of 5. pa  the binding energy of a core levd®/(c) of an A
5 Bohr radii that are shown in Table I. The total energies ’ n

. € ~atom on site in an A-B alloy with a concentratiom is the
calculated with supercells containing 16 and 250 atoms dift,eyative of the one-electron core-level energy measured rela-
fer by only 92 micro-Rydbergs, and the charge transfe

ive to the Fermi energy. The binding energy for thatoms
changes by 0.0018 electron charges. All of these supercellsa 9 [ 9 9y

used in these calculations were generated randomly. This i n1(€) s the average of thE'A‘\”'I(C) over all theA sites. The
at the same time, a test of the sensitivity of the energy to th%1nd|ng energy for thes atomsEnJ(c) 'S deflnedAS|m|IarIy.
arrangement of the atoms in the supercell, since thes hg chemical shifts for. atoms_ |n. an aIIo;&En’,(c.) or
samples have nothing in common except for their concentra?En,1(€), are the change in the binding energy relative to the
tion. The Warren-Cowley short-range order parametersPUreA or B metal. It is well understood that there are sig-
other than the first, are small for these samples, which indiflificant differences between the Koopman approximation to
cates that they are random. The distributions of Warrenth€ binding energy and the measured binding energy of a
Cowley parameters for some larger supercells are shown ifCre eIectron,Odue to the relaxation of the electrons around
Fig. 15 of Ref. 17. It is expected that unwanted order is mord€ core holé” It has been proposed that the many-body
likely to appear in a randomly generated supercell wRés relaxation _cogrectlons are approximately mdependent of
small. Such small supercells will rarely be used becaus§oncentratiort; so they are not expected to be very impor-
PCPA calculations on large supercells are not significantiy@nt in measurements of chemical shifts.
more time consuming, since the calculation of Madelung po- The LSMS and PCPA calculations for the CuPd alloys
tentials with the Ewald method takes very little time. shown in Table Il use supercells containing 256 atoms based
on fcc Bravais lattices, the lattice constant for the 50% alloy
being 6.9 atomic unitéau) and for the 80% alloy being 7.1
a.u. The disordered 50% CuZzn alloy is in tBephase(bco

In Table II, experimental chemical shifts in copper- with a lattice constant of 5.5 a.u. The supercell used with the
palladium, copper-zinc, and silver-palladium alloys are com-LSMS calculations contains 432 atoms, while the one for the
pared with the results of calculations using the LSMS,PCPA calculations contains 256. The ordeg@dphase of

IV. ANALYSIS OF CALCULATIONS

TABLE II. Experimental and theoretical values for the chemical shifts in various alloy systems. Net atomic charges calculated with the
indicated theories.

KKR- KKR-
a Exp LSMS PCPA CPA LSMS PCPA CPA
alloy atom shift shift shift shift charge charge charge
Alloy Bohr radii  level (eV) (eV) (eV) (eV) (e (e (el
50% CuPd 7.1000 @gCu —0.70000 -0.71688 -0.85603 —0.93102 -0.17609 -0.16084 —0.04334
3d Pd 0.260 00 0.33797 0.23202 —0.006 29 0.176 09 0.160 84 0.04384
80% CuPd 6.9000 @gCu —0.25000 —0.26817 —0.29592 —0.32344 —0.07721 —0.07453 -0.02162
3d Pd 0.700 00 0.654 57 0.606 68 0.436 36 0.31087 0.299 59 0.086 48
50% CuZn 5.5000 g Cu 0.33958 0.22599 0.18942 -0.10086 —0.10143 -0.07578
2p Zn —-0.00871 —0.13388 0.046 90 0.100 86 0.10143 0.07578
CuzZnB2 5.5000 2 Cu 0.35000 0.568 69 —0.12589
2p Zn  —0.20000 -—0.28557 0.12589
50% AgPd 7.6100 8Ag -—-050000 -0.47715 -0.57389 -0.53590 0.049 56 0.04863 0.057 24

3d Pd 0.00000 -0.10163 —0.19347 -0.37686 —0.04956 —0.04863 —0.05724
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CuZn is in theB2 (CsC) structure with the same lattice 120
constant as thg8 phase. The 50% AgPd alloy is modeled

with a supercell containing 256 atoms and a fcc Bravais lat-__
tice with a lattice constant of 7.61 a.u. in both the LSMS and & [
PCPA calculations. The same lattice constants are used i 80
the KKR-CPA calculations on all these alloy systems, but, of £ i

w0l ----- Cu50Pd KKR-CPA
i Cu50Pd LSMS

course, supercells are not used in such calculations. The pur2 8o0r
metals Cu, Pd, Ag, and Zn are all taken to be fcc with lattice » !
constants 6.7677, 7.43, 7.2744, and 7.79 a.u. The experimerg 40 -
tal chemical shifts for CuPd are taken from Ref. 42, those for™® .

Cuzn are from Ref. 43, and those for AgPd are from Ref. 44,
The choice of core levels listed in Table Il is dictated by the
existence of well-defined peaks in the energy range that car oe 05 04 w08 02 o1 o
be sampled using AKa or Mg Ka X rays. EE._(Ry)

The first observation that can be made from Table Il is Fermi
that the chemical shifts calculated with the LSMS agree with £ 1. The density of states of a 50% copper-palladium alloy as

the experimental data to within the accuracy of the experiy function of the energy relative to the Fermi energy. The lattice
ments, as pointed out in Ref. 29. It can be concluded fromonstant of the fcc Bravais lattice is 6.9 atomic units. The solid line
this agreement that the prediction of chemical shifts in alloyshows the average of the 256 densities of states calculated with the
is trivial in the sense that an accurate DFT-LDA calculationL.SMS. The dotted line shows the density of states calculated with

will yield them. Overall, the chemical shifts predicted by the the standard KKR-CPA.
PCPA calculations are very good, particularly when it is

taken into account that the computational effort expended iR |inear relation between the Madelung potentials at the sites
obtaining them is a very small fraction of that required for o 5 alloyV' and the net charges on the sitgs This qV
the LSMS numbers. The effort required to calculate chemicag|ation is not trivial because it is only true for the charges
shifts with the KKR-CPA is even less, but the agreemenicaiculated in the final stage of a self-consistent calculation,
with experiment is further reduced. _ while such simple conditions as charge neutrality hold at
The agreement between the LSMS calculations and ©Xavery iteration. It can be seen from Fig. 2 that Weandq
periment for such a sensitive property as the chemical shiff.oy 4 PCPA calculation on the 50% CuPd alloy fall on lines
increases the confidence that can be placed in that theonf,a¢ are as straight as the ones determined by the LSMS data.
For this reason, it is disturbing that the KKR-CPA predic- The sjopes are not identical. For copper sites, the slope from

tions for the average charges on the constituent atomgpe pcpA data is-1.3738 Ryle|, compared with—1.1955
shown in Table I, differ considerably from the predictions fom the LSMS data. For thé Pd sites, the slopes are

of the LSMS. This is particularly noticeable for the CuPd _1 2767 and—1.1826. Thus. the PCPA not only gives an
alloys. If one takes the conventional view that chemicalyccyrate value for the average net charge on the atomic sites,

shifts are a measure of charge transfer, it is surprising thalg can be seen from Table II, but also it gives a very good
the chemical shifts given by the KKR-CPA are as accurate agegcription of the distribution of the charges on the sites.

they are. The PCPA gives values for the average charges that gince the computer codes used for the present calculations

agree with the LSMS to within a few percent. This is ex- are hased on the LSMS codes, it is not difficult to extend
pected, because the PCPA includes Coulomb effects as well

as they can be within the level of a single-site approximation.

In Fig. 1, calculations of the density of states for the 50% s ‘ ! ! !
CuPd alloy are shown. The LSMS curve is obtained by av-
eraging the densities of states calculated for the 256 sites il el ]
the supercell. The average density of states given by the o1l |

KKR-CPA is clearly different from the LSMS prediction, but
it would be difficult to see differences of this magnitude in 2 a6 |-
experiments. One might have expected that the difference< '

would have been greater, given the fact that the KKR-CPA

prediction of the charge transfer is only one fourth of the Bl 1
LSMS value. There are 10 electrons in tthéands, and the sl =% -V Cu PCPA |
charge transfer is only 2% of that. Thus, the difference be- ' = 2V PO RCRA

tween the positions of the Fermi energies does not appear t 03 , , , ‘ ‘ , ,

be very large on the scale of the drawing. This explains the 04 -03 -02 -01 00 01 02 03 04
early successes that the KKR-CPA had in predicting the re-
sults of photoemission spectroscopy experiments, and alsu
the reason that charge transfer and chemical shifts provide a FiG. 2. The Coulomb potential at the lattice sites as a function
more sensitive test of the ability of an alloy theory to treatof the net charge on the lattice sites for a 50% copper-palladium
Coulomb effects correctly. alloy. The lattice constant of the fcc Bravais lattice is 6.9 atomic
An interesting observation that was made on the basis ajinits. The straight lines are the result of fits to the data. The sign
data from LSMS calculation8is that the DFT-LDA predicts  convention for the charges is opposite to the one used in Table II.

q (e)
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them to treat LIZ’s larger than one. Such LSGF calculationgpaper. Not only does the PCPA give a more accurate descrip-
on the 50% CuPd alloy have been carried out with a LIZtion of the average charge transfer, it also includes fluctua-
containing 19 atoms or two nearest-neighbor shells. Thestons about the average. These charge fluctuations modify the
calculations differ from the ones in Ref. 19 in that the density of states and the Bloch spectral density function. In
multiple-scattering method is used. The improvement of thearticular the effects on the Bloch spectral function have the
LSGF charges over the PCPA charges is not as great gmtential to change the width of peaks and, therefore, to alter
might have been expected. The average net charge on the @lectron lifetimes. This will affect calculations of such prop-
atoms predicted by the calculations usimgj ;=19 is erties as the residual resistiiyand ordering temperatures
—0.16153|¢], only 0.4% larger than the one from the PCPA for Fermi surface driven long period ordered structdfes.
calculations. ThegV relations for this alloy obtained from major problem with the isomorphous KKR-CPA is that there
the LSMS and PCPA are shown in Fig. 2. The calculationis no clear pathway to make the theory full potential because
usingN;z =19 gives straight lines like the ones in the figure. of difficulties with continuity of the charge density at the cell
The slope of the line for Cu is-1.3161 Ryle|, and for Pd it boundaries, even if one allows nonspherical corrections to
is —1.2420 Ryle|. These values are 3—4 % smaller than thethe scattering. In the PCPA the fact that the Coulomb effects
ones predicted by the PCPA, and are about a third of thare treated using a supercell means that charge density is
correction that is needed to obtain values that agree with theell defined throughout all space. Unfortunately, it will not
LSMS slopes. be precisely continuous at the cell boundary since the mul-
tiple scattering equations are still solved in a single site ap-
V. DISCUSSION proximation. How severe a restriction this imposes remains
to be investigated numerically.

It can be concluded that a CPA level theory that treats The development of the PCPA is only beginning, and
Coulomb effects without significant approximation exists.there are many extensions that need to be carried out. A
There are several advantages in the PCPA approach. The fiiggmparison of the binding energies of alloys calculated with
is that it predicts a continuous distribution of charges abouthe LSMS and KKR-CPA is given in Ref. 18. The PCPA
the mean for theA and B atoms, and this is in accordance pinding energies should be added to this comparison. The
with reality. The second is that there are no adjustable pafprmulas forG(E,k,k) and hence the Bloch spectral density
rameters in the theory, and this is an improvement over th@nction AB(E, k) derived in Sec. Il E should be utilized for
isomorphous alloy theories that attempt to include nonzer@gajculations on some real alloys as soon as possible. The
Madelung potentials. The third advantage is that the inclu{ SGF with LIZ’s containing more than one atom also leads
sion of the exact form for the Madelung potentials is conceptg an effective scattering matrik, . We do not consider that
tually simpler than the approximations that have been protg he a PCPA because it is more difficult to fit it into the
posed, and requires only slightly more computational effortsingle-site picture, and it presupposes that one is prepared to
We emphasize that the changes to the predictions of the elegn more time-consuming calculations. It would be interest-
tronic structure Obta]ned from Other Self-ConSIStent CPA|ng to Compare the average Green’s functions Obtained using
theories are quantitative but not qualitative. Those methodge | SGF and PCPA effective scattering matrices. The ex-
have had great success in explaining many properties of ajsting programs, which are based on the LSMS codes, should
loys. In hindsight, it is clear that the derivation of the Made-pe simplified so that PCPA calculations can be carried out

lung potential in the KKR-CPARef. 10 is logically and  ith readily available microcomputers and workstations.
mathematically sound. The reason it led to a null result was

the belief, generally held at that time, that the isomorphous
alloy model is anecessary precondition fo_r'such derivations. ACKNOWLEDGMENTS
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