
PHYSICAL REVIEW B 1 MAY 2000-IIVOLUME 61, NUMBER 18
Calculating properties with the polymorphous coherent-potential approximation
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The formulas for calculating properties of an alloy such as the density of states, the charge density, and the
Bloch spectral density function are derived from multiple-scattering theory for the polymorphous coherent-
potential approximation~PCPA!. The chemical shifts obtained for three alloy systems using the PCPA, the
Korringa-Kohn-Rostoker CPA, and the locally self-consistent multiple-scattering method are compared with
experiment. A significant improvement in the treatment of Coulomb effects is achieved using the PCPA with
only a little more computational effort than for the older isomorphous CPA’s.
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I. INTRODUCTION

The one-electron method based on the density-functio
theory and the local-density approximation1 ~DFT-LDA! is
used routinely to calculate the energetics of ordered crys
line solids. These band-theory methods cannot be use
treat disordered solids, even such conceptually simple o
as substitutional solid-solution alloys, because of the lack
long-range order. Faced with this situation, many researc
turn to completely different approaches in their quest to
plain the properties of alloy systems. Some introduce heu
tic models with parameters that are obtained from fitting
observations.2 Others carry out DFT-LDA calculations o
intermetallic compounds having relatively small numbers
atoms in the unit cells with the purpose of interpolating t
energetics of the infinite disordered system from those of
ordered solids.3 Today, the electronic structure for models
disordered solids can be calculated using supercells that
tain thousands of atoms. This has been made possible b
development of order-N methods based on plane-wav
expansions4 or multiple-scattering theory.5 Still, it is useful
for certain applications, and more satisfying philosophica
to have a simple approximate theory that will describe
important features of the electronic structure of alloys. Ex
calculations on one-dimensional and three-dimensional m
els of alloys, as well as more mathematical consideratio6

convinced theorists that the coherent-poten
approximation7 ~CPA! provides such a simple approxima
theory.

The CPA calculations on solvable models of alloys g
qualitative guidance for the interpretation of experiments
real alloys, but to make the predictions quantitative it w
necessary to merge the CPA with th
Korringa-Kohn-Rostoker8 ~KKR! band theory method.9 The
KKR-CPA was later extended to produce self-consist
PRB 610163-1829/2000/61~18!/12005~12!/$15.00
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one-electron potentials.10 Care was taken to insure that the
satisfy the requirement of the DFT-LDA that they are o
tained as functional derivatives of the potential energy w
respect to the local charge densities. The addition of a s
consistency step, however, brings in an aspect of the C
theory that had never been considered before.

In order to understand the difficulties involved with in
cluding charge self-consistency in a CPA, it is necessary
be aware that all of the model calculations and mathemat
studies of the CPA made use of isomorphous models of
loys. An isomorphous model is one in which, for a bina
alloy, theA atoms are all assumed to have identical cha
densitiesrA(r ) and hence potential functionsnA(r ), and the
B atoms all have identicalrB(r ) and nB(r ). In the CPA, a
scattering matrixt̂A(tc) is calculated for anA atom embed-
ded in a lattice with the effectivet matrix tc on all the other
sites. The scattering matrix for anA atom embedded in a
vacuum, which appears int̂A(tc), is calculated in the usua
way from the potentialnA(r ). The scattering matrixt̂B(tc) is
calculated analogously. The desiredt matrix, tc , is obtained
from the null scattering requirement,cAt̂A(tc)1cBt̂B(tc)
50. The assumption of isomorphous models was so ubiq
tous that theorists made it without thinking.

It is known from band-theory calculations on ordered
termetallic compounds that there is a charge transfer betw
the different species of atoms, and this leads to a Madel
contribution to the self-consistent potentials. The net char
on the A and B sites are qA5*rA(r )dr2ZA and qB
5*rB(r )dr2ZB , where the integrals are over the unit ce
and the Z’s are the atomic numbers. The charge se
consistent KKR-CPA method also predicts nonzero
charges, but it contains a curious inconsistency in that th
is no Madelung potential in it. A careful analysis shows th
the derivation of self-consistent potentials in a disorde
12 005 ©2000 The American Physical Society
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alloy subject to the condition that the resulting model m
be isomorphic leads inevitably to the conclusion that
Madelung potentials must be zero. In addition to the ar
ments in the original derivations,10 a way of understanding
this paradoxical result is to note that any distribution
charged atoms will give a different Madelung potential
each site, irrespective of the kind of atom at the site. T
only way for all theA atoms to have the same potential a
all the B atoms to have another, as required by the isom
phous model, is to approximate the Madelung contributio
with zero. It was understood at the time that the isomorph
picture was only an approximation. However, the technolo
to test such ideas had not yet been developed, and it
hoped that the fluctuations about the average charges w
be small.

The isomorphous KKR-CPA was criticized because
Madelung potentials were set equal to zero,11 and efforts
were made to deal with this criticism. These led to two ve
similar methods, the screened-impurity model12 CPA ~SIM-
CPA! and the screened CPA~S-CPA!.13 Both of these mod-
els are isomorphous, and the Madelung potential is ca
lated by placing a shell of charge around each atom a
radius Reff . The total charge on the shell is equal to t
charge on the atom. Using calculations on the screenin
single impurities in an otherwise perfect crystal as a guid14

the effective radius is usually chosen to be equal to radiu
the nearest-neighbor shellR1 . The resulting self-consisten
potentials contain a Madelung term, and there is a Coulo
contribution to the total energy. The charge transfersqA and
qB predicted by the SIM-CPA and S-CPA are different fro
the ones obtained from the KKR-CPA, and they improve
agreement with many experiments. If one accepts the a
ment that the mathematically correct value for the Madelu
potential in an isomorphous model of an alloy is zero,
derived in Ref. 10, the derivations of the isomorphous SI
CPA and S-CPA must contain inconsistencies. There
sense in which the SIM-CPA and S-CPA can be justifi
and that will be explained below.

The environment for developing theories of allo
changed dramatically with the advent of the order-N calcu-
lations mentioned above.4,5 Using a technique called the lo
cally self-consistent multiple-scattering method~LSMS!,15

first-principles DFT-LDA calculations on models of alloy
using supercells that contain hundreds or even thousand
atoms have been carried out.16–18 Figure 1 of Ref. 18 shows
the distribution of atomic chargesqi for a 50% copper-zinc
alloy on a fcc Bravais lattice calculated with a supercell co
taining 500 atoms. It is seen that there is quite a broad
tribution of charges on the sites, and the numerical out
shows that theqi are different for every sitei. Of course,q
falls within one range of values if there is anA atom on site
i, and another range if there is aB atom there. It follows that
an alloy is more properly described by a polymorpho
model in which the charge densityr i(r ) on every site is
unique. This result was anticipated to some extent in Ref.
although those authors deduced from their calculations
supercells containing 4–12 atoms that the number of p
sible charges that a given kind of atom can have is small
depends only on the occupation of the sites in the near
neighbor shell. It is shown in Fig. 2 of Ref. 17 that th
Madelung potential at any lattice site is not screened at
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nearest-neighbor shell radius. Instead, the contributions
this potential from succeeding shells diminish very slowly.
is demonstrated in that same reference that a part of
Coulomb energy has a contributionuC1 that depends only on
the average charge transfer, as would be anticipated from
isomorphous CPA, but it is also demonstrated that there
contributionuC2 that is not determined by the average char
transfer but depends on the distribution of the charges ab
the average.

Isomorphous CPA models have been remarkably succ
ful in explaining many interesting properties of alloys,6 and
some of the reasons for that are given in Ref. 18. Ev
though the Madelung potentials are set equal to zero in
KKR-CPA, that approximation gives surprisingly good va
ues for the free energy of mixing. Another curve in Fig. 2
Ref. 17 shows that the average of the Madelung potent
for all the A sites orB sites in the alloy is short range a
assumed in the SIM-CPA and S-CPA. The parameterReff
turns out to be approximately equal toR1 , and this explains
the successes that these isomorphous CPA’s have had
the other hand, locating the screening charge on a she
clearly an approximation, and definingReff to be R1 makes
the SIM-CPA and S-CPA theories precise but removes
possibility for improving them by treatingReff as an adjust-
able parameter. In addition, it has been shown that the f
for the total Coulomb energy that arises naturally in the m
els is unsatisfactory. In the SIM-CPA, the expression is m
tiplied by an adjustable parameterb that cannot be obtained
from within the theory.19 It is even more disturbing that thi
parameter multiplies the Coulomb energy, but it does
occur in the one-electron potential. This violates the requ
ment of the DFT-LDA that the one-electron potential is t
functional derivative of the energy with respect to the cha
density. The parameterb can be understood as an effort
emulate the contributionuC2 to the Coulomb energy within
the limitations of an isomorphous CPA.20

Because of the theoretical objections to isomorpho
models, it was suggested in Ref. 18 that Coulomb effe
could be included better at the level of the coherent-poten
approximation with a polymorphous CPA~PCPA! than with
any isomorphous CPA. The PCPA will generate charge d
sities rA,i(r ) and rB,i(r ) and hence potential function
nAi(r ) andnBi(r ) that are different for every site in the alloy
as found from the first-principles LSMS calculations. T
theory of the PCPA was deduced from a careful study of
results of order-N calculations, so it is necessary to descri
some of the inner workings of the order-N methods in more
detail.

The LSMS makes use of the principle of near-sightedn
that has been espoused by Kohn21 insofar as the continuity of
the wave functions is concerned. Infinitely many atoms
included in the calculation, with supercells containingN at-
oms being reproduced periodically to fill all space. T
multiple-scattering equations are solved completely for
the atoms in a local interaction zone~LIZ ! surrounding a
given atom. Thet matrices for the sites outside the LIZ a
set equal to zero. This process is repeated for LIZ’s cente
on each atom in the supercell, which makes the calcula
order-N. The principle of near-sightedness is not used in
Coulomb part of the calculation. The Madelung potential
each site is calculated exactly with the contributions from
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full infinity of atomic charges, not just the ones in the LI
being included. It could be said that the multiple-scatter
part of the calculation is order-N, but the Coulomb part is
not. The Madelung potentials for solids with periodic boun
ary conditions are easy to calculate with the Ewald metho22

so that does not slow down the overall procedure.
A locally self-consistent Greens function~LSGF! method

has been suggested,23 which was influenced by the success
the LSMS. In the LSGF, the LIZ’s are made smaller
putting an effective scatterer on the sites outside the L
rather than zero as in the LSMS. A reasonable choice,
though not the only choice, for this scattering matrix is
CPA t matrix tc .24 As is the case in the LSMS the Madelun
potentials are calculated exactly, the sums including the
finity of atomic charges. Placing the effective scatterers
the sites of a Bravais lattice outside the LIZ limits the LSG
to systems for which the atomic sites are periodic, while
LSMS can be applied to systems in which the atoms h
arbitrary atomic positions, such as bulk amorphous solid25

The LSMS must also be used for systems for which a hom
geneous alloy is a poor reference medium, such as mag
multilayers and interfaces,26 and magnetic noncollinearity.27

The LSGF is clearly the best method for the study of dis
dered substitutional alloys, and it predicts the same e
tronic structure as the LSMS if both methods are converg
In particular, the model of an alloy produced by a LSG
calculation is also polymorphous, and this holds for LSG
calculations in which the LIZ is chosen to contain only o
atom. As pointed out in Ref. 18, it is the authors position t
the particular kind of LSGF calculation in which the effe
tive scatterer is determined by the CPA condition and
LIZ contains one atom has the shape that is needed f
PCPA. The originators of the LSGF did not have the co
struction of a PCPA as one of their goals because, am
other things, they are also the originators of t
SIM-CPA.23,24,12

It is reasonable for an expert in the CPA to worry th
while the PCPA should lead to an improved treatment
Coulomb effects and give a physically more correct pict
of the alloy, all of the other desirable features of the CP
that have been so useful in applications over many years
be lost. The main purpose of this paper is to develop a m
ematical formalism which leads to the PCPA and from wh
the site-diagonal and non-site-diagonal average Gre
functions are obtained. These Green’s functions are diffe
from the ones derived for the isomorphous CPA beca
charge correlations are built into them, but they can be u
equally well to calculate the properties of alloys. A rath
subtle point that comes from the formalism is that full p
tentials ~i.e., not muffin-tin! can be used in PCPA calcula
tions, while they cannot in isomorphous CPA calculation

The formulas for calculating properties of an alloy such
the density of states, the charge density, and the Bloch s
tral density function with an isomorphous CPA were deriv
from multiple-scattering theory in a paper that will be r
ferred to as FS.28 In the following section, the analogou
formulas will be derived for the PCPA. The differences b
tween the two sets of formulas for the non-site-diago
Green’s function and the Bloch spectral density funct
AB(E,k) are particularly interesting. It is demonstrated th
the manipulation of the DFT-LDA Green’s function for a
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alloy under the class of restrictions that define a CPA le
to the PCPA. If the additional restriction that the resulti
model must be isomorphous is invoked, the result is
KKR-CPA. The S-CPA and SIM-CPA do not fit into thi
chain of approximations, although, as mentioned above, t
are useful approximations.

Calculations of various alloy parameters have been c
ried out with the LSGF within the tight-binding linea
muffin-tin orbital~TB-LMTO! method, and the LIZ was cho
sen to contain one atom in some of these. Calculations ba
on the multiple-scattering theory, which is the natural la
guage of the CPA method, will be shown in this paper. T
use of this method makes it easier to compare with LS
and KKR-CPA results. In Sec. III, some of the details of t
computational methods are described. In a previous pap29

it was shown that the chemical shifts in alloys are a parti
larly sensitive measure of the Coulomb effects. The chem
shifts obtained from the KKR-CPA, PCPA, and LSMS a
compared with experiment in Sec. IV. The atomic charg
predicted by the three theories in real alloy systems are
compared with each other. In the last section, the argume
made that the PCPA gives useful results with only a lit
more effort than the older isomorphous CPA’s, and oth
aspects of the theory are discussed.

II. CALCULATING PROPERTIES WITH THE PCPA

A. The Green’s function for alloys

The DFT-LDA Schro¨dinger equation for a collection ofN
atoms can be written as

F2¹21(
i 51

N

n i~r !Gc~r !5Ec~r !, ~1!

where the one-electron potentials will be assumed to h
the muffin-tin form. Multiple-scattering theory can deal wi
more general potentials, such as atomic-sphere approx
tion ~ASA! potentials or even full potentials, but the notatio
becomes complex. The atomic potentialnn(rn), where rn
5r2Rn , is spherically symmetric whenr is within a sphere
centered on the lattice siteRn , and is zero otherwise. On
way to write the corresponding Green’s function was sho
in FS to be

G~E,r ,r 8!5 (
L,L8

ZL
n~E,rn!tLL8

nn ZL8
n

~E,rn8!

2(
L

ZL
n~E,rn!JL

n~E,rn8!. ~2!

In this equation,ZL
n(E,r ) is the solution of

@2¹21nn~r !2E#ZL
n~r !50, ~3!

that is regular at the origin and equals

ZL
n~E,r !5YL~r ! j l~kr !ml

n~E!2 ikYL~r !hl~kr !, ~4!

whenr is greater than the radius of thenth muffin-tin sphere.
It is assumed in Eq.~2! thatr n8.r n . The matrixmn(E) is the
inverse of thet matrix tn that describes the scattering fro
the potentialnn(r ). Sincetn is diagonal for muffin-tin poten-
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tials, its inverse is as well, andml
n is a diagonal element o

that matrix. The functionsj l(kr ) and hl(kr ) are Bessel
functions, andk is the square root of the energy. Followin
FS, the spherical harmonicsYL(r ) are chosen to be real. Th
functionJL

n(E,r ) is the solution of Eq.~1! that is not regular
at the origin and approachesYL(r ) j l(kr ) when r is greater
than the radius of thenth muffin-tin sphere. The coefficient
tLL8

nm are elements of the scattering-path matrix defined
low. This form of the Green’s function is valid whenr and
r 8 are inside thenth muffin-tin sphere or in the interstitia
region between the muffin-tin spheres, where the potentia
zero.

The same Green’s function can be written in a differe
way whenr is in thenth muffin-tin sphere andr 8 is in the
mth sphere, or they are in the interstitial region. For t
case, the Green’s function is

G~E,r ,r 8!5 (
L,L8

ZL
n~E,rn!tLL8

nm ZL8
m

~E,rm8 !. ~5!

The expressions for the Green’s functions in Eqs.~2! and~5!
have been used in a wide range of calculations, and are
able. Clearly, the convergence of the sums becomes a p
lem if the magnitudes of the position vectors are too larg

The elements of the scattering-path matrix,tLL8
nm (E), are

most easily obtained by taking the inverse of the matrix

MLL8
nm

5ml
ndLL8dnm2gLL8

nm . ~6!

That is to say,

tLL8
nm

5@M21#LL8
nm . ~7!

The functions gLL8
nm are components of the free-electro

Green’s functions that describe propagation from lattice s
Rn to Rm , and are zero whenn5m. The elements of the
inverse of thet matrix on siteRn , ml

n , were defined above

B. The averaging process

A theory of the electronic states in a disordered alloy m
have a statistical as well as a quantum-mechanical as
because the knowledge about the structure of such a sy
will, of necessity, be incomplete. In the ideal random allo
which is considered here, the atoms are distributed on
sites of a Bravais lattice. The probability of anA or B atom
occupying a site iscA or cB . In more realistic models, the
Warren-Cowley short-range order coefficients measure
deviation from a random distribution.

A major difference between the isomorphous CPA a
the PCPA is the nature of the averaging process used in
statistical stage. It was natural in FS to use an ensem
averaging process, the ensemble being the set ofNA
1NB)!/NA!NB! alloys that can be formed by distributin
NAA atoms andNBB atoms on the lattice sites, and the
passing to the limit thatNA andNB approach infinity. In the
PCPA, the average is over the sites of one infinitely la
sample. The reason for this type of averaging is that the o
reliable way to calculate the Madelung potential at a site is
include the contributions from the charges on all the ot
sites. This is the lesson that has been learned from
LSMS, the LSGF, and other order-N techniques, as was de
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scribed in the previous section. This point will be made ev
more clearly in Sec. II D, where the calculation of the se
consistent potential in the PCPA is discussed in more de
The difference between the variousA andB atoms is due to
their spatial correlation with all of the other atoms, and
formation about this spatial correlation is lost in the kind
ensemble-averaging process used in FS. The site-aver
Green’s function will be seen to be periodic, as it should

Since the properties of interest are self-averaging,
ensemble- and site-averaging processes lead to the sam
sults when applied to the same model. The concept of s
averaging is used frequently in modern discussions of sta
tical physics, but it first appeared in alloy theory in th
writings of Lifshitz.30 The argument was made in FS that t
ensemble-averaged quantities should represent the prope
of a single real crystal because of self-averaging. For
PCPA, it is necessary to argue that average values for p
erties can be found from one large sample because
self-averaging.31 It will be shown in the following that for-
mulas derived with the site-averaging process become id
tical to those derived with ensemble averaging when
model is taken to be isomorphous.

C. Averaging the Green’s function for the site-diagonal case

Using the site-averaging process, the average of
Green’s function defined in Eq.~2! over all theN sites in a
volumeV of the large sample is

^G~E,r ,r 8!&5
1

N (
i 51
i ,V

N F (
L,L8

ZL
i ~E,r !tLL8

i i ZL8
i

~E,r 8!

2(
L

ZL
i ~E,r !JL

i ~E,r 8!G . ~8!

In each term in the sum overi, the origin of the coordinate
system is moved to the lattice positionRi . The limit of this
process is reached asN and henceV increase without bound
It should be clear that this averaged Green’s function is
riodic, ^G(E,r ,r 8)&5^G(E,r1Rn ,r 81Rn)&, because the
sum is unchanged.

Approximating this averaged Green’s function using t
philosophy of the coherent-potential approximation enta
simplifying the scattering-path matrix elements in a spec
way. As was discussed in FS, the single-site approxima
to the scattering-path matrix leads to a redefinition of
matrix elementstLL8

i i so that they are given by the inverse
a matrixM c

i whose elements are given by

M c
i ,i i 5mi for n5 i , m5 i ,

M c
i ,nm5mcdnm2gnm for nÞ i , or mÞ i , ~9!

in a block-matrix notation that eliminates the angular m
mentum indices. The matrixmi is the inverse of thet matrix
that defines scattering from the potentialn i(r ), and the ma-
trix mc is the inverse of the effective scatterertc . Another
way to write this scattering-path operator is

t i i →tc
i ,005Ditc

005tc
00D̃i , ~10!

where
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Di5@ I 1tc
00~mn2mc!#21. ~11!

As discussed in Sec. I, the CPA averaged Green’s func
describes a periodic system with the scattering matrixtc on
every site. The matrixtc

nm is the scattering-path matrix fo
this system, and is obtained from the inverse of the ma
M c with elements

M c
nm5mcdnm2gnm for all n and m. ~12!

Since this system is periodic,tc
ii 5tc

j j 5tc
00.

The site-diagonal average Green’s function in the sing
site approximation is then

GSD~E,r ,r 8!5
1

N (
i 51
i ,V

N F (
L,L8

ZL
i ~E,r !tc,LL8

i ,00 ZL8
i

~E,r 8!

2(
L

ZL
i ~E,r !JL

i ~E,r 8!G . ~13!

The average density of states per site for the alloy is
example of a site-diagonal property, and it can be found fr
this Green’s function by

^n~E!&52
1

p
Im E

V
GSD~E,r ,r !dv, ~14!

whereV is the volume of the central unit cell. Clearly, th
density of states associated with any site in the effec
crystal is the average of that quantity for the individual
oms inV

^n~E!&5
1

N (
i 51

N

ni~E!, ~15!

where

ni~E!52
1

p
ImF (

L,L8
E

V
ZL

i ~E,r !ZL8
i

~E,r !drtLL8
i ,00G .

~16!

The charge density on a site in the effective crystal is si
larly

^r~r !&5
1

N (
i 51

N

r i~r !, ~17!

where

r i~r !52
1

p E
2`

EF
ImF (

L,L8
ZL

i ~E,r !ZL8
l

~E,r !tLL8
i ,00

~E!GdE.

~18!

The term in Eq.~13! that includes the singular solutio
JL

i (E,r ) normally does not appear in formulas for propert
because it is real.

As stated above, Eq.~13! should become identical with
the corresponding KKR-CPA equation when it is applied
an isomorphous model. For that case, the functions of p
tion ZL

i (E,r ) andJL
i (E,r ) are allZL

A(E,r ) andJL
A(E,r ) when

there is anA atom on thei th site orZL
B(E,r ) and JL

B(E,r )
when aB atom is there. This is equivalent to the assumpt
n

ix

-

n

e
-

i-

i-

n

that the potentials on all theA or B sites arenA(r ) or nB(r ),
and hence thet matrices aretA or tB. The resulting equation
is

Giso
SD~E,r ,r 8!5 (

L,L8
@cAZL

A~E,r !tLL8
A,00ZL8

A
~E,r 8!

1cBZL
B~E,r !tLL8

B,00ZL8
B

~E,r 8!#

2(
L

@cAZL
A~E,r !JL

A~E,r 8!

1cBZL
B~E,r !JL

B~E,r 8!#, ~19!

which is identical with Eq.~2.33! of FS. The most obvious
difference between the Eqs.~13! and~19! is that in the PCPA
all the atoms are assumed to be unique, and hence their
centrations are just 1/N. The formulas that are the analog o
Eqs.~15! and ~17! are

^n~E!&5cAnA~E!1cBnB~E! ~20!

and

^r~r !&5cArA~r !1cBrB~r !. ~21!

The Green’s functions defined in Eqs.~13! and ~19! are pe-
riodic, as they should be,Giso

SD(E,r ,r 8)5Giso
SD(E,r1Rn ,r 8

1Rn).

D. The PCPA condition and self-consistency

To this point, the single-site approximation has been us
but nothing has been said about the definition of the effec
scattering matrixtc . The relation that definestc in the iso-
morphous CPA appears in Eq.~5.24! of FS as

cAtc
A,001cBtc

B,005tc
00, ~22!

wheretA,00 is obtained from Eqs.~9! by putting the inverse
of the scattering matrix for the potentialnA(r ) on the central
site andtB,00 is obtained similarly. This is just the conve
sion of the original definition of the CPA~Ref. 7! into the
language of the multiple-scattering theory.32 The extension
of this relation that defines the effective scattering matrix
the PCPA is

1

N (
i 51

N

tc
i ,005tc

00, ~23!

where the scattering-path matrices are defined in Eq.~10!.
The information necessary for calculating self-consist

potentials and total energies in the PCPA is contained in
site-diagonal Green’s functions in Eq.~13!. As in any other
system in which there is charge transfer, the local part of
DFT-LDA potentialn i(r ) is calculated from the charge den
sity r i(r ) defined in Eq.~18!. The Madelung contribution is
defined using the net chargesqj5*r j (r )dr2Zj for all j
Þ i , whereZj5ZA if there is an A atom on thej th site, and
Zj5ZB if there is aB atom on the site. This is the same wa
that n i(r ) is calculated in the LSMS or the LSGF.

In practical applications of the PCPA, the charge densi
r i(r ) and potentialsn i(r ) cannot be calculated forN equal to
infinity, so it is necessary to make a supercell approximati
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In this approximation, the configuration of atoms in the ce
tral supercell is reproduced periodically to fill all space. Th
same approximation is made in order-N methods, such as th
LSMS and LSGF. The use of supercells does not interf
with the periodicity of the Green’s functions demonstrated
the previous paragraph. The calculation of the Madelung
tential for all the sites in the supercell takes very little tim
when the Ewald~Ref. 22! method is used. As a practica
matter, calculations of interesting properties using superc
of various sizes have shown that the supercell approxima
is not serious as long as the cells contain some hundred
atoms. One reason for this is that the Madelung sums are
seriously affected if the actual contents of the adjoining
percells in the large sample are replaced with replicas of
central cell. Another is that the properties of interest in
calculations are self-averaging.

It may seem contradictory to talk about an effective cr
tal that is periodic, and at the same time talk about
charges on the sites. A similar contradiction occurs in
isomorphous CPA, because one usesrA(r ) andrB(r ) to cal-
culate the DFT-LDA potential in spite of the fact that th
effective scatterers on all the sites are the same. Ensuring
does not lead to a contradiction is the purpose of the C
condition. The major point of FS is that this is a necess
part of the formalism. A quantity like the total density o
states does not require knowledge of the wave functions
can be calculated from the periodic effective crystal withtc
on every site using Lloyd’s formula.33 Information about in-
dividual sites must be used in the calculation of a prope
that requires wave functions, such as the potentials, bec
there is no average wave function in an alloy, only an av
age Green’s function.

E. Averaging the Green’s function for the non-site-diagonal
case

The most interesting non-site-diagonal properties are
lated to the Bloch spectral density function. The PCPA, l
the isomorphous CPA, leads to an effective Green’s func
that is periodic. This means that Bloch vectorsk should play
a role in the theory, even though they are not good quan
numbers. TheE vs k relation of ordinary band theory i
replaced in alloy theory with the Bloch spectral densi
which is the density of states ink space. The formulas for th
Bloch spectral density function derived in FS and display
in Eqs.~4.8! and ~4.9! of that paper are

AB~E,k!52~1/p!Im G~E,k,k!, ~24!

where

G~E,k,k!5(
n

eik•RnE
V

G~E,r ,r1Rn!dr . ~25!

In Eq. ~25!, the sum is over all Bravais lattice vectorsRn ,
and the integral is over the central unit cell. It should
noted thatG(E,k,k) is not the Fourier transform of th
Green’s function, as is used, e.g., in the analysis of posi
annihilation experiments.

The Green’s function that must be used inAB(E,k) is
obtained from Eq.~5! by means of the site-averaging proce
-
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^G~E,r ,r1Rn!&5
1

N (
i 51

N

(
L,L8

ZL
i ~r !tLL8

i j ZL8
j

~r !. ~26!

The sum is only over sitei, because the sitej is related to site
i by Rj5Ri1Rn . It is shown in Eq.~2.43! in FS that the
single-site approximation to the scattering-path matrix in t
equation is

t i j 5Ditc
i j D̃j , ~27!

wheretc
i j is the scattering path matrix for a periodic lattic

that has the PCPA scattering matrixtc on every site. This
matrix is found from the inverse of the matrixM c defined in
Eq. ~12!, and depends only on the separation between siti
and j

tc
i j 5tc~Ri j !5@Mc

21# i j . ~28!

The matrix Di is given in Eq. ~11!. Thus, the non-site-
diagonal averaged Green’s function is

GNSD~E,r ,r1Rn!

5
1

N (
i 51

N

(
L1 ,L2

(
L,L8

ZL1

i ~r !DL1L
i tc,LL8

i j D̃L8L2

j ZL2

j ~r !.

~29!

Inserting this in Eq.~25! leads to the expression for the a
eraged Green’s function in thek representation

G~E,k,k!5E
V

GSD~E,r ,r !dr

1 (
n

RnÞ0

eik•Rn(
LL8

FLL8~Rn!tc,LL8~Rn!,

~30!

whereGSD(E,r ,r 8… is defined in Eq.~13!. In Eq. ~30!,

FLL8~Rn!5
1

N (
i 51

N

(
L1 ,L2

E
V

ZL1

i ~r !ZL2

j ~r !drDL1L
i DL2L8

j ,

~31!

which depends onRn becauseRj5Ri1Rn . The matrix
F(Rn) has weight one in the sense that it is the sum ofN
integrals, but divided byN.

Specializing to the isomophous case, for whichZL
i (r )

5ZL
A(r ) with probability cA and ZL

i (r )5ZL
B(r ) with prob-

ability cB ,FLL8 (Rn) becomes

FLL8
cc

5cA
2 (

L1 ,L2

E
V

ZL1

A ~r !ZL2

A ~r !drDL1L
A DL2L8

A

1cAcB (
L1 ,L2

E
V

ZL1

A ~r !ZL2

B ~r !drDL1L
A DL2L8

B

1cBcA (
L1 ,L2

E
V

ZL1

B ~r !ZL2

A ~r !drDL1L
B DL2L8

A

1cB
2 (

L1 ,L2

E
V

ZL1

A ~r !ZL2

B ~r !drDL1L
A DL2L8

B , ~32!



t

it
h

e

n
tra

th
d

e
b

en
o
er
-

d
iti
he

i

uc
b
m

tio
on

e
r
s.
ica
rt

ith
f i
re
A

d
ev

re

ho
t-
ll
ig

at

sen
nge
but

ites
no
ase.
ss of
x-
p-
ice.
eri-
nt.
is-
the

-

the

ms
a-
sing
tal
on-

es
per-

ith
ly
he

n
d
g
ic-
ua-
ad-

d in
cor-
ces-

is

or
,
r-
d
ns
the
is

ms
te-

g
ed
er-

ting
ra-
w-
of

PRB 61 12 011CALCULATING PROPERTIES WITH THE . . .
which does not depend onRn . The resulting formula for
G(E,k,k) is identical to Eq.~4.10! of FS, which means tha
the Bloch spectral densities will be the same.

It is reassuring that the formulas forFLL8
cc and AB(E,k)

obtained with the site-averaging process are identical w
the ones obtained with the ensemble-averaging process w
the former are applied to an isomorphous model. When
semble averaging is used, the sum in Eq.~26! is over sitesi
andj independently. Since the functionFLL8

cc in Eq. ~32! does
not depend onRn , it can be factored out of the integral i
Eq. ~30!. This makes the expression for the Bloch spec
density for the isomorphous case, Eq.~4.15! of FS, consid-
erably easier to deal with computationally.

F. Beyond the PCPA

There are three steps in the derivations given above;
site-averaging process, the single-site approximation, and
fining the effective scattering matrixtc as the one given by
Eq. ~23!. It should be observed that these steps are indep
dent, and that different levels of theory can be obtained
truncating the derivation after step one or making differ
choices in step 3. In particular, after a LSMS calculation
a supercell has been carried out, the results can be ins
into Eqs. ~8! and ~26! to get site-diagonal and non-site
diagonal averaged Green’s functions. These can be use
rectly to obtain such quantities as the Bloch spectral dens
without making a single-site or a CPA approximation. T
process of averaging reduces the amount of information
the LSMS results, but there are situations in which this
desirable. Experience with order-N calculations like the
LSMS has demonstrated that there is frequently too m
information in the results. The averaging process may
helpful in resolving the more important physical effects fro
the mass of computed data. The averaged Green’s func
could also provide a good standard by which approximati
like the PCPA can be tested.

It should also be noted that the site-averaging proc
may be applied to supercells that have short-range orde
displacements of the atoms from their average lattice site
will have to be seen if these capabilities are of any pract
use. LSMS calculations on copper-zinc alloys with sho
range order have been published,5 and it would be interesting
to see the degree to which these could be reproduced w
PCPA that contains such order. There has been a lot o
terest in the inclusion of displacements in alloy theories
cently, and this is a proposal for including them in a CP
level theory.

III. COMPUTATIONAL METHODS

The computer codes used for the PCPA calculations
scribed in this paper are based on the ones that were d
oped for the implementation of the LSMS method.5,15 The
supercell is first generated for the underlying face cente
cubic ~fcc! or body centered cubic~bcc! Bravais lattice. For
bcc alloys, the dimensions of the supercell are normally c
sen to be 53535 lattice spacings, and it contains 250 a
oms. For fcc alloys, the supercell dimensions are typica
43434, and contain 256 atoms. The next step is to ass
atoms to the lattice sites using a random number gener
h
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with the constraint that the alloy model must have the cho
concentration. The computer code can build in short-ra
order as measured by the Warren-Cowley coefficients,
that capability was not used in the present work.

Ignoring static displacements of the atoms from the s
of the Bravais lattice is an approximation, but there is
reason to expect it to be a serious one for the present c
From the sharpness of the Bragg peaks and the smallne
the static Debye-Waller factors observed in diffraction e
periments on metallic alloys, it is clear that, to a first a
proximation, the atoms fall on the sites of the average latt
This conclusion is corroborated by the most recent exp
mental studies.34 Thermal displacements are also importa
At room temperature, the rms average of the thermal d
placements is 3–4 times larger than the rms average of
static displacements,35 even for alloys with a large size mis
match.

Initial guesses are made for the atomic potentials, and
t matrices are calculated. The PCPA equations in Eq.~23!
are solved iteratively, using a generalization of the progra
that were originally developed for use in KKR-CPA calcul
tions. The new charge densities for each site are found u
Eq. ~18!, and the whole process is repeated until the to
energy and potentials have converged. It has been dem
strated computationally36 that the muffin-tin approximation
introduces no significant error in calculations like the on
discussed here. Even for the most extreme case, the cop
palladium alloy system, the heats of mixing calculated w
muffin-tin and non-muffin-tin methods are not significant
different. That is, calculations on copper-palladium in t
L12 structure with the muffin-tin LSMS method give26.6
mRy, while the non-muffin-tin Viennaab initio simulation
package37 ~VASP! gives 26.8 mRy. It has been reported i
the literature38 that the non-muffin-tin linear augmente
plane-wave method gives26.3 mRy. The advantage in usin
the muffin-tin approximation, as compared with an atom
sphere approximation, is that the multiple-scattering eq
tions are exact. Questions of convergence that must be
dressed when full-potential methods are used are avoide
the present approach, although such methods will be in
porated in later calculations when they are deemed ne
sary. As emphasized earlier, the Madelung contribution
calculated without approximation.

It might be thought that the solution of the equation f
the effective scattering matrixtc for the N-atom PCPA case
Eq. ~23!, would be much more difficult than for the isomo
phous CPA, Eq.~22!. It turns out that, using the standar
method described in Ref. 28, only twice as many iteratio
were needed to solve the equation for the PCPA than for
KKR-CPA. This is due to the fact that, although the charge
different on every atom, the scattering matrices for the ato
of a given species are quite similar. The Brillouin zone in
grations required when calculatingtc

00 were performed using
the prism method39 with 36 directions in the irreducible
wedge of the Brillouin zone, which insures milli-Rydber
accuracy. All the calculations reported here were perform
with the Cray T3E-900 512-processor supercomputer op
ated by the National Energy Research Scientific Compu
Center located at the Lawrence Berkeley National Labo
tory. It is, of course, always desirable to use the most po
erful computing facilities that are available. However, one



er-zinc

12 012 PRB 61UJFALUSSY, FAULKNER, MOGHADAM, STOCKS, AND WANG
TABLE I. Convergence test of the total energy, Fermi energy, and charge transfer for a 50% copp
alloy.

Supercell size 16 54 128 250

Total energy~Rv! 23 414.465 156 23 414.465 272 23 414.465 129 23 414.465 064
Fermi energy~Rv! 0.660 9 0.660 9 0.660 9 0.660 9
Charge transfer~e! 0.103 26 0.105 36 0.102 64 0.101 43
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the major thrusts of our future program development is
simplify the PCPA calculations so that they can be carr
out on small workstations or microcomputers.

Tests were made on the dependence of the PCPA re
on N, the number of atoms in the supercell. It was found t
surprisingly small samples give quite acceptable predicti
for such self-averaging quantities as the total energy
atom and the charge transfer. This is illustrated by the ca
lations on a bcc 50% CuZn alloy with a lattice constant of
5 Bohr radii that are shown in Table I. The total energ
calculated with supercells containing 16 and 250 atoms
fer by only 92 micro-Rydbergs, and the charge trans
changes by 0.0018 electron charges. All of these super
used in these calculations were generated randomly. Thi
at the same time, a test of the sensitivity of the energy to
arrangement of the atoms in the supercell, since th
samples have nothing in common except for their concen
tion. The Warren-Cowley short-range order paramet
other than the first, are small for these samples, which in
cates that they are random. The distributions of Warr
Cowley parameters for some larger supercells are show
Fig. 15 of Ref. 17. It is expected that unwanted order is m
likely to appear in a randomly generated supercell whenN is
small. Such small supercells will rarely be used beca
PCPA calculations on large supercells are not significa
more time consuming, since the calculation of Madelung
tentials with the Ewald method takes very little time.

IV. ANALYSIS OF CALCULATIONS

In Table II, experimental chemical shifts in coppe
palladium, copper-zinc, and silver-palladium alloys are co
pared with the results of calculations using the LSM
o
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PCPA, and KKR-CPA. The LSMS calculations appeared
a previous publication.29 The charge transfers predicted b
the three theories are also shown. In the following, the r
sons for focusing on chemical shifts rather than the dens
of states that can be measured with ultraviolet photoemis
spectroscopy, as was conventional in earlier evaluation
alloy theories, will be made clear.

The chemical shifts are defined as follows. In the DF
LDA, the binding energy of a core levelEn,l

A,i(c) of an A
atom on sitei in an A-B alloy with a concentrationc is the
negative of the one-electron core-level energy measured
tive to the Fermi energy. The binding energy for theA atoms
En,l

A (c) is the average of theEn,l
A,i(c) over all theA sites. The

binding energy for theB atomsEn,l
B (c) is defined similarly.

The chemical shifts for atoms in an alloy,dEn,l
A (c) or

dEn,l
B (c), are the change in the binding energy relative to

pure A or B metal. It is well understood that there are si
nificant differences between the Koopman approximation
the binding energy and the measured binding energy o
core electron, due to the relaxation of the electrons aro
the core hole.40 It has been proposed that the many-bo
relaxation corrections are approximately independent
concentration,41 so they are not expected to be very impo
tant in measurements of chemical shifts.

The LSMS and PCPA calculations for the CuPd allo
shown in Table II use supercells containing 256 atoms ba
on fcc Bravais lattices, the lattice constant for the 50% al
being 6.9 atomic units~au! and for the 80% alloy being 7.1
a.u. The disordered 50% CuZn alloy is in theb phase~bcc!
with a lattice constant of 5.5 a.u. The supercell used with
LSMS calculations contains 432 atoms, while the one for
PCPA calculations contains 256. The orderedb8 phase of
with the

48

8

TABLE II. Experimental and theoretical values for the chemical shifts in various alloy systems. Net atomic charges calculated
indicated theories.

Alloy

a
alloy

Bohr radii
atom
level

Exp
shift
~eV!

LSMS
shift
~eV!

PCPA
shift
~eV!

KKR-
CPA
shift
~eV!

LSMS
charge
~ueu!

PCPA
charge
~ueu!

KKR-
CPA

charge
~ueu!

50% CuPd 7.1000 2p Cu 20.700 00 20.716 88 20.856 03 20.931 02 20.176 09 20.160 84 20.043 34
3d Pd 0.260 00 0.337 97 0.232 02 20.006 29 0.176 09 0.160 84 0.043 84

80% CuPd 6.9000 2p Cu 20.250 00 20.268 17 20.295 92 20.323 44 20.077 21 20.074 53 20.021 62
3d Pd 0.700 00 0.654 57 0.606 68 0.436 36 0.310 87 0.299 59 0.086

50% CuZn 5.5000 2p Cu 0.339 58 0.225 99 0.189 42 20.100 86 20.101 43 20.075 78
2p Zn 20.008 71 20.133 88 0.046 90 0.100 86 0.101 43 0.075 7

CuZn B2 5.5000 2p Cu 0.350 00 0.568 69 20.125 89
2p Zn 20.200 00 20.285 57 0.125 89

50% AgPd 7.6100 3d Ag 20.500 00 20.477 15 20.573 89 20.535 90 0.049 56 0.048 63 0.057 24
3d Pd 0.000 00 20.101 63 20.193 47 20.376 86 20.049 56 20.048 63 20.057 24
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CuZn is in theB2 ~CsCl! structure with the same lattic
constant as theb phase. The 50% AgPd alloy is modele
with a supercell containing 256 atoms and a fcc Bravais
tice with a lattice constant of 7.61 a.u. in both the LSMS a
PCPA calculations. The same lattice constants are use
the KKR-CPA calculations on all these alloy systems, but
course, supercells are not used in such calculations. The
metals Cu, Pd, Ag, and Zn are all taken to be fcc with latt
constants 6.7677, 7.43, 7.2744, and 7.79 a.u. The experim
tal chemical shifts for CuPd are taken from Ref. 42, those
CuZn are from Ref. 43, and those for AgPd are from Ref.
The choice of core levels listed in Table II is dictated by t
existence of well-defined peaks in the energy range that
be sampled using AlKa or Mg Ka x rays.

The first observation that can be made from Table II
that the chemical shifts calculated with the LSMS agree w
the experimental data to within the accuracy of the exp
ments, as pointed out in Ref. 29. It can be concluded fr
this agreement that the prediction of chemical shifts in allo
is trivial in the sense that an accurate DFT-LDA calculati
will yield them. Overall, the chemical shifts predicted by t
PCPA calculations are very good, particularly when it
taken into account that the computational effort expende
obtaining them is a very small fraction of that required f
the LSMS numbers. The effort required to calculate chem
shifts with the KKR-CPA is even less, but the agreem
with experiment is further reduced.

The agreement between the LSMS calculations and
periment for such a sensitive property as the chemical s
increases the confidence that can be placed in that the
For this reason, it is disturbing that the KKR-CPA pred
tions for the average charges on the constituent ato
shown in Table II, differ considerably from the prediction
of the LSMS. This is particularly noticeable for the CuP
alloys. If one takes the conventional view that chemi
shifts are a measure of charge transfer, it is surprising
the chemical shifts given by the KKR-CPA are as accurate
they are. The PCPA gives values for the average charges
agree with the LSMS to within a few percent. This is e
pected, because the PCPA includes Coulomb effects as
as they can be within the level of a single-site approximati

In Fig. 1, calculations of the density of states for the 50
CuPd alloy are shown. The LSMS curve is obtained by
eraging the densities of states calculated for the 256 site
the supercell. The average density of states given by
KKR-CPA is clearly different from the LSMS prediction, bu
it would be difficult to see differences of this magnitude
experiments. One might have expected that the differe
would have been greater, given the fact that the KKR-C
prediction of the charge transfer is only one fourth of t
LSMS value. There are 10 electrons in thed bands, and the
charge transfer is only 2% of that. Thus, the difference
tween the positions of the Fermi energies does not appe
be very large on the scale of the drawing. This explains
early successes that the KKR-CPA had in predicting the
sults of photoemission spectroscopy experiments, and
the reason that charge transfer and chemical shifts provi
more sensitive test of the ability of an alloy theory to tre
Coulomb effects correctly.

An interesting observation that was made on the basi
data from LSMS calculations16 is that the DFT-LDA predicts
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a linear relation between the Madelung potentials at the s
of an alloyVi and the net charges on the sitesqi . This qV
relation is not trivial because it is only true for the charg
calculated in the final stage of a self-consistent calculati
while such simple conditions as charge neutrality hold
every iteration. It can be seen from Fig. 2 that theVi andqi

from a PCPA calculation on the 50% CuPd alloy fall on lin
that are as straight as the ones determined by the LSMS d
The slopes are not identical. For copper sites, the slope f
the PCPA data is21.3738 Ry/ueu, compared with21.1955
from the LSMS data. For the Pd sites, the slopes
21.2767 and21.1826. Thus, the PCPA not only gives a
accurate value for the average net charge on the atomic s
as can be seen from Table II, but also it gives a very go
description of the distribution of the charges on the sites

Since the computer codes used for the present calculat
are based on the LSMS codes, it is not difficult to exte

FIG. 1. The density of states of a 50% copper-palladium alloy
a function of the energy relative to the Fermi energy. The latt
constant of the fcc Bravais lattice is 6.9 atomic units. The solid l
shows the average of the 256 densities of states calculated with
LSMS. The dotted line shows the density of states calculated w
the standard KKR-CPA.

FIG. 2. The Coulomb potential at the lattice sites as a funct
of the net charge on the lattice sites for a 50% copper-pallad
alloy. The lattice constant of the fcc Bravais lattice is 6.9 atom
units. The straight lines are the result of fits to the data. The s
convention for the charges is opposite to the one used in Table
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them to treat LIZ’s larger than one. Such LSGF calculatio
on the 50% CuPd alloy have been carried out with a L
containing 19 atoms or two nearest-neighbor shells. Th
calculations differ from the ones in Ref. 19 in that th
multiple-scattering method is used. The improvement of
LSGF charges over the PCPA charges is not as grea
might have been expected. The average net charge on th
atoms predicted by the calculations usingNLIZ519 is
20.161 53ueu, only 0.4% larger than the one from the PCP
calculations. TheqV relations for this alloy obtained from
the LSMS and PCPA are shown in Fig. 2. The calculat
usingNLIZ519 gives straight lines like the ones in the figur
The slope of the line for Cu is21.3161 Ry/ueu, and for Pd it
is 21.2420 Ry/ueu. These values are 3–4 % smaller than t
ones predicted by the PCPA, and are about a third of
correction that is needed to obtain values that agree with
LSMS slopes.

V. DISCUSSION

It can be concluded that a CPA level theory that tre
Coulomb effects without significant approximation exis
There are several advantages in the PCPA approach. The
is that it predicts a continuous distribution of charges ab
the mean for theA and B atoms, and this is in accordanc
with reality. The second is that there are no adjustable
rameters in the theory, and this is an improvement over
isomorphous alloy theories that attempt to include nonz
Madelung potentials. The third advantage is that the inc
sion of the exact form for the Madelung potentials is conc
tually simpler than the approximations that have been p
posed, and requires only slightly more computational eff
We emphasize that the changes to the predictions of the e
tronic structure obtained from other self-consistent C
theories are quantitative but not qualitative. Those meth
have had great success in explaining many properties o
loys. In hindsight, it is clear that the derivation of the Mad
lung potential in the KKR-CPA~Ref. 10! is logically and
mathematically sound. The reason it led to a null result w
the belief, generally held at that time, that the isomorph
alloy model is a necessary precondition for such derivatio

Site averaging with only the CPA conditions leads to t
polymorphous PCPA. The addition of the condition that t
potentials and wave functions correspond to the isomorph
model leads to the isomorphous KKR-CPA, in which t
Madelung potential is zero. The isomorphous S-CPA a
SIM-CPA do not fall within the algebraic sequence, althou
they are useful approximations. Of course, the ordeN
LSMS and LSGF theories give more accurate description
the electronic states than any CPA, but many theoret
studies do not require so much detail.

The polymorphous nature of the PCPA leads to some
teresting consequences, not all of which are explored in
s
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paper. Not only does the PCPA give a more accurate desc
tion of the average charge transfer, it also includes fluct
tions about the average. These charge fluctuations modify
density of states and the Bloch spectral density function
particular the effects on the Bloch spectral function have
potential to change the width of peaks and, therefore, to a
electron lifetimes. This will affect calculations of such pro
erties as the residual resistivity45 and ordering temperature
for Fermi surface driven long period ordered structures.46 A
major problem with the isomorphous KKR-CPA is that the
is no clear pathway to make the theory full potential beca
of difficulties with continuity of the charge density at the ce
boundaries, even if one allows nonspherical corrections
the scattering. In the PCPA the fact that the Coulomb effe
are treated using a supercell means that charge densi
well defined throughout all space. Unfortunately, it will n
be precisely continuous at the cell boundary since the m
tiple scattering equations are still solved in a single site
proximation. How severe a restriction this imposes rema
to be investigated numerically.

The development of the PCPA is only beginning, a
there are many extensions that need to be carried ou
comparison of the binding energies of alloys calculated w
the LSMS and KKR-CPA is given in Ref. 18. The PCP
binding energies should be added to this comparison.
formulas forG(E,k,k) and hence the Bloch spectral dens
function AB(E,k) derived in Sec. II E should be utilized fo
calculations on some real alloys as soon as possible.
LSGF with LIZ’s containing more than one atom also lea
to an effective scattering matrix,tc . We do not consider tha
to be a PCPA because it is more difficult to fit it into th
single-site picture, and it presupposes that one is prepare
do more time-consuming calculations. It would be intere
ing to compare the average Green’s functions obtained u
the LSGF and PCPA effective scattering matrices. The
isting programs, which are based on the LSMS codes, sh
be simplified so that PCPA calculations can be carried
with readily available microcomputers and workstations.
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