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A statistical mechanics framework for the evolution of the distribution of dislocations in a single crystal is
established. Dislocations on various slip systems are represented by a set of phase-space distributions each of
which depends on an angular phase space coordinate that represents the line sense of dislocations. The
invariance of the integral of the dislocation density tensor over the crystal volume is proved. From the
invariance of this integral, a set of Liouville-type kinetic equations for the phase-space distributions is devel-
oped. The classically known continuity equation for the dislocation density tensor is established as a macro-
scopic transport equation, showing that the geometric and crystallographic notions of dislocations are unified.
A detailed account for the short-range reactions and cross slip of dislocations is presented. In addition to the
nonlinear coupling arising from the long-range interaction between dislocations, the kinetic equations are
quadratically coupled via the short-range reactions and linearly coupled via cross slip. The framework devel-
oped here can be used to derive macroscopic transport-reaction models, which is shown for a special case of
single-slip configuration. The boundary value problem of dislocation dynamics is summarized, and the pros-
pects of development of physical plasticity models for single crystals are discussed.

[. INTRODUCTION With explicit representation of the dynamics and interactions
of discrete dislocations, the method is believed to be prom-
The plastic straining of a metallic crystal is synonymousising in resolving certain questions related to the origin of
with the transport of dislocation lines in the crystal. During strain and dislocation density heterogeneity in crystals at the
their motion, dislocations interact with each other via long-mesoscale. Even though it deals with discrete dislocation
range forces in a manner similar to the long-range interacsystems, the simulation method is naturally classified as a
tions among charged particles. Dislocations also undergsetatistical mechanics approach to dislocation transport and
short-range reactions leading to immobilization or destrucreactions in deforming crystals.
tion of the reacting dislocation species. These reactions are The main objective of the present work is to develop a
strongly dependent on the line direction of dislocations. Furstatistical mechanics framework for the spatiotemporal evo-
thermore, by the fact that dislocations are continuous curvetlition of dislocations and, in turn, single-crystal plasticity for
linear entities, their motion normally leads to significantthe case of small plastic distortions. As shown later, this
length change or multiplication. The dislocation line densityframework can be considered a continuum analog of the
in a deforming crystal may increase by several orders ofnethod of discrete dislocation dynamics simulation since it
magnitude during deformation. In addition, dislocationsaccounts for the transport and reactions of dislocations in an
change their glide planes by cross slipping between crystalbtherwise linear elastic crystal. The present development pre-
lographic planes sharing the same slip direction. This comserves the framework of the classical theory of dislocation
plex dynamics is believed to be the origin of the inducedfields which rigorously describes two important aspects of
dislocation density and plastic strain heterogeneity in deplasticity: the equilibrium of the lattice stress field and com-
forming crystals? Therefore, explicit representation of the patibility of the deformation field.
reactions and transport of dislocations is vital to successful The paper is organized as follows. The mathematical for-
prediction of dislocation and deformation patterns. mulation of the present framework is presented in Sec. Il. A
Some models dealing with highly idealized dislocationset of phase-space distributions is introduced to represent the
configurations have been developed? Such models have evolving dislocation populations on all slip systems. The re-
been found too simple to capture the three-dimensional chaguirement that the deforming crystal must remain compact is
acter of transport and reactions of dislocations. Almost thre@ised to define an invariant global quantity which is given by
decades ago it was argued that the framework of statisticahe integral of the dislocation density tensor over the crystal
mechanics can be applied to develop a dislocation-baseeblume. Tensorial Liouville-type equations for the contribu-
plasticity theory*! This argument was based on the fact thattions of slip systems to this global invariant are then deter-
the distribution of dislocations in a crystal is statistical in mined. Considering no higher-order spatial correlations, a set
nature. Two attempts at developing a formal kinetic treat-of kinetic equations governing the evolution of the scalar
ment, exploiting the statistical and dynamical nature of thephase-space distributions is derived, with source terms rep-
dislocation population in deforming crystals, have beenresenting short-range interactions, multiplication, and cross
made!?!3 However, the complex short-range dislocation in-slip. The continuity equation of the macroscopic dislocation
teractions and discrete nature of crystallographic slip haveensity tensor is established from the mixed zeroth-velocity-
not been accounted for. Relatively recently, the method ofirst-angular moment of the kinetic equations. The angular
dislocation dynamics has been significantly develofiéd. dependence of the phase-space distributions is brought in to
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account for the line sense of dislocations. In Sec. lll, a , o

single-slip configuration model is recovered as a special a(')(X.t)=JJt®b(')¢(')(X,V,9,t) dvde 2
case. Section IV includes a summary of the initial-boundary- v

value problem of dislocation dynamics. A discussion of theand its time rate of change is

prospects of this approach in formulating macroscopic dislo-

cation transport-reaction and crystal plasticity models is . dal) -
given in Sec. V. a(xt)= T:f f tob®p0(x,v,6,t) dvd;
vJ o
Il. THE STATISTICAL MECHANICS FRAMEWORK ('ﬁ(i):(9¢(l) 3

A. The dislocation field

The formulation presented here is based on the notior] '€ reader is refered to Refs. 37, 38, 42, and 43 for a sum-
that, in a deforming crystal, the evolving dislocation field can™&"y of the tensor fields related to dislocations in a distorted

be described by the method of statistical mechanics. This i§TyStal- The dislocation density tensor and its time rate of
motivated by the following facts. First, the spatiotemporalChange are obtained as superposition of the partial density
evolution of dislocations is governed by quasi-NewtoniantensorS and their time rates of change, respectively, that is
dynamics where the motion of dislocation elements is de- N N
scribed by an equation of motion. Second, the correspondin _ i . _ i
discrete syystemqhas a very large number of degreespof freg- a(x’t)_Z‘l a(xt), and a(x't)_i21 (x4
dom. Third, the evolving dislocation field exhibits velocity ] ) ) ) )
distributions. These facts are well established. For examplé,© Perform the summations in E¢d) in three dimensions,
as evident from the computer simulations of discrete dislo-the components of_aII partial density tensors must be referred
cation systems, the dislocation population is distributed irf® the same coordinate system. .
the velocity space and exhibits angular dependéfice. The contantlon to thel dlsllocauon flux tensdby dislo-

In a deforming crystal, dislocations are naturally catego-cations on a slip system is given by
rized by the slip directiorfor Burgers vectgrand the slip
plane normal. Consider a crystal willhslip systems. For J(i)(x,t):f f txveb® g (x,v,6,t) dvde
=1N, denote byn) and b the unit normal to the slip vlo
plane and the Burgers vector, respectively. In the case of
finite deformation, bothn® and b must be considered =n(‘)®b(‘)f f vO(x,v,0,t) dvde,  (5)
functions of space and time. Only infinitesimal deformation vJo
is considered here, heno#) andb() are assumed constant . . 0
for all slip systems. On a particular slip system, a dislocation’N€"€ v IS the magnitude oW, andtxv=pn’. The flux
element may have a sense vedtaiong any direction lying tensorJ®) is itself the rate of plastic distortio8”®), con-
in its slip plane. The motion bylimb is not considered here tributed by theith slip system. The dislocation flux tensor,
since a climbing dislocation has a line direction that may nof'ence the rate of plastic distortion, is given by
lie in its slip plane. The dislocation content of a slip system
can be conveniently characterized by introducing the distri-
bution ¢()(x,v,t,t). Since all directions in a plane can be
defined by a single scalar parameter—thatis(6); 6 is an
ang|e in the rangéo,zﬂ-])_then,t can be rep|aced bﬁ For a given Sllp system, it is shown that the dislocation den-
Hence, ¢ can be given the definition: Sity tensor is given by the zeroth-velocity-first-angular mo-
0 (x,v,0,t)dxdvdd is dislocation line length contained in ment of the distributiors™, while the dislocation flux tensor
the phase-space volumixdvdé at timet on theith slip  is given by the first mixed moment, see E¢8) and (5),
system. It is to be noted that tieis orthogonal ta; that is ~ respectively.
v=v(t(0)). Hence, () depends or¥ both implicitly and
explicitly. B. A system invariant

The conventional field variables are now derived from the
distributions (). The scalar dislocation line density in the
crystal is defined as follows:

N
J(x,t)=BP(x,t)=Zl JD(x,t). (6)

In dynamical simulations of discrete dislocation
systems: the evolution of the discrete dislocation system is
determined by the changes in the position, number, velocity,
direction, and length of the dislocation elements, or the gen-
N eralized degress of freedom of the dislocation system and
e(x,t)=2>, oM(x,t), where p@(x,t) their time rate of chang®. In a phase space, the system
=1 evolution is studied by investigating the set of distributions
¢@:i=1N. In analogy with particle systems, see for ex-
=f f &M (x,v,0,t) dvdé. (1)  ample, Landau and LifshitZand Liboff® one aims here at
vJo finding a set of kinetic equations which are satisfied by the
distributions ¢(. Zorski® formulated a problem which
The contribution by dislocations on thh slip system to the might be relevant; he considered a set of infinitesimal
dislocation density tensax is given by Somigliana defects.
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In order to develop the kinetic equations, a fundamental d4d d
invariant (or a conserved quantiyof the evolving disloca- FTERT, ()adﬂ:o- (10
tion system must be found. For a particle system, for ex-
ample, the total number of particles in the system is invarianThe result(7) can be viewed athe principle of invariance of
regardless of how the particles are distributed in the phasthe total Burgers vectoof the crystal in the general case,
space. It is this fact which enables the derivation of kineticwhere both bulk and surface dislocations contribute. How-
equations in general, e.g., the plasma kinetic equation of Kliever, when the mean curvature vanishes, it takes the (®rm
montovich or its collisionless version of Vlasé¥?! or (10).
Consider a large crystal of volum@ which is bounded The result(10) is valid for every dislocation population
by the surfacedQ) with unit normaln. The condition of having the same Burgers vect@.g., those on colinear slip
compatibility of the total distortion field in the crystal is systems provided that reactions involving various Burgers
written as:a+ V X B°=0, see Ref. 37. Upon integrating this vectors are not allowed to occur. This can be visualized by
condition over the entire volume, the following result is ob- considering the fact that, in the absence of reactions, dislo-
tained cations of the same Burgers vector can exist in either closed
loop (not necessarily planaor line (ending on the surfage
configurations. In reality, however, it is possible that two
segments of different Burgers vectors react to produce a seg-
ment of a third Burgers vector. These reactions lead to the
After lengthy algebraic manipulation, see the appendix, thelestruction and creation of scalar dislocation densities. The
second integral term can be cast in the form result(10) can thus be specialized for individual slip systems
provided that tensorial balance terms representing reactions
o among various slip systems and cross slip are added. In other
fQVXB dQ words, for theith slip system one obtains

A= ad9+f V x gPdQ=0. (7)
Q Q

d _ _
— d0 = NdO: =
dtJQ“ do LE) shdq: i=1N. (11)

5" includes all possible tensorial sources, mainly those
resulting from Burgers vector reactions and cross slip. The
that the integrand to the right-hand side of E}.is the sum tensorial source _due to cross sllp,. which represents transfer
, : : i ; . of screw dislocations between colinear systems, must be of
of flux of @ att’ contributed by dislocations of orientatidn o . .
. . . . opposite sign for the two involved systems. Therefore, this
on all slip systems. The integral term itself can be viewed as

the accumulation of slip traces at the surface. It can be writoUree can only appear at the slip system level. Also, due to

. : the fact that annihilating species must be of the opposite
— P

ten in the_formf@a/sds, \{vhereas—nXB IS _known as the sense, the sources associated with these reactions appear

surface dislocation density tensor, or the slip trace teffsor.

Geometrically, Eq(7) implies that a finite crystal under- only at the level of individual slip systems. The same argu-

going plastic distortion has two effective dislocations, a bulkment extends to sources associated with reactions leading to

dislocation given by the volume integral and a surface dislo-‘“-)mduc'[Ion of segments of new Burgers vector. In other

cation given by the surface integral. The latter arises due twords, It Bq.(11) is summed over all slip systems, the tensor

slip trace formation on the surface. The two effective dislo—gouéce terms cancel each other, and the rég0jtis recov-

cations are always of equal and opposite strength, and can
vanish only simultaneously. Bulk dislocations are sources of
internal stress, are the carriers of plastic distortion, and as
they move they change their line length and sense. Surface The result(11) is now combined with the phase-space
dislocations are merely slip traces, once formed they do natepresentation of dislocation densities. A minor notation ad-
move relative to the crystal, their line sense is defined by th§ustment is madedQ will be replaced bydx. The right-hand
contour of the intersection of slip planes and the crystal surside of Eq.(11) can be written in the form
face, and they are not associated with the stress field. g d
It can be easily argued that for every finite, reasonably i _ 0N (i
large volume of a crystal undergoingstatistically homoge- &Ld( (1) dx= Efxf\,f(,t@b( "¢ (xv,6,0) dxdvds,
neousplastic distortion, the two sides of E() vanish. This (12
also means that the mean curvature of the crystal volume
under consideration vanishes, which is the case considered i
the present formulation. The general case, however, is a sy a
tematic extension. Mathematically, then, we consider dt
fx fv fﬁdt
)

N
=ft dt’Jda > tob®(n-v)eM(x,6,t")dS, (8)
—® 0

i i=1

in which ve(x,0,t")= [ veM(x,v,6,t")dv. It is obvious

C. The evolution in the phase space

which d/dt is the total time derivative operator. The right-
nd side can be broken into two integrals as below

o .dd)(i)
®b")¢(')dxdvd0+ffft@b(')—dxdvdﬁ,
xJvJ o dt
(13

where the arguments a$() are dropped for simplicity. In
which is also a property of a system of closed dislocatiornthe case of a finite deformation, the operatdtdt and [
network. Consequently, may commute only in a material or Lagrangian frame, which

A=J ad() =0, (9
Q
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will be considered in a future development. As previouslynonvanishing tensorial contributions. Expressions for the
mentioned, only infinitesimal deformation is consideredscalar sources are given in Sec. Il F.

here. The first integral in Eq13) can be evaluated as fol-

lows. Define ¢(6)=[,¢"(v,8)dv, therefore, [, [ ,(dt/dt) D. The continuity equation for the dislocation density tensor

@b ¢dvde reduces tof ,(dt/dt)@bPe(6)d6. Sincet

: " i The continuity of the total dislocation density tenser
=t(6), then dt/dt=6(dt/d6). In addition, by using

see Refs. 38, 42, and 43, can be recovered in two steps;

(9t/96) p=0196(tp) —1(d/96) ¢, one finally obtains taking the zeroth-velocity-first-angular moment of the kinetic
dt equation(18), then summing over all slip systems. Multiply
f f fa@)b(i)(ﬁ(i) dxdvd e Eq. (18) by t® b() and integrate over the phase space,
xJvJ 6
0 . )
e t®b(')(—+v-V+v-V O dxdvd e
—ffft@b(')a—d)(')dxdvda, (14) LLL at o)
xJvJ o a0
where[t@ b ¢(6)]57=0 was substituted, and the definition =f f f tob®> SO dxdvd e
xJvJ o

of ¢ was reversed. The second integral in Eff) is sys-

tematically found to be
oM N
[ [ 1502 s [ [ [ sor(2 N
xJv xJvlo y definition, the integral over the phase space to
ot By definit the integral the ph tof
. 9 @bM(aplat)M yields a'; see Eq(3). In order to manipu-
+v.V,+ 9—) ¢ dxdvd 6. late the second term to the left-hand side of EP), the
990 following identites are used: v-Vg"=V.(vg®)
(15  —(V-v)¢; V-v=0 sincex andv are independent phase

- : . space coordinates] X [tX (vpM) @b ]=te bV (v. V"
Substituting Eqs(14) and (15) into Eq. (12), the latter sim- _pv® b(‘)(t-VI¢>“))'¥c~V[cj)(igigﬁv)(tcﬁ“))]— ¢(‘)V-§\;O'd)v-2[

S 19

+v-V

plifies to =0, and since dislocation lines are continudds(t¢()
d ' Ny =0. With this in mind, the second integral term becomes
—f a(x,t) dx=f fft@b(') —+v-V
dt X xJvJ 6 at . .
fjft@b(')v'vﬁ')dxdvda
xJvJ o
v VU) ¢ dxdvd, (16)

. :jijxtxwgb(‘)qS“)dxdvde
where the terms containing(d/d6) cancel each other. The xJvJeo

left-hand side of Eq(12) can also be represented by a phase-
space integral of scalar source functions = j f f Vxon®Web® ¢ dxdvde
xJvJ o

LE Shdx= LLLt@b“)E S dxdvdg.  (17)

= f Vv xJM dx. (20)
X

By equating the right-hand sides of the last two equations ) . .
and removing the integral signs, a partial differential equalt ¢an be easily verified that the third integral term
tion for the distribution((x,v, 6,t) can be rewritten in the 0 the left-hand side of Eq.(19) vanishes identi-
form cally. To show this, first usev-V, ¢"=V_.(ve®).
; Then,  tobW[,V,-(v¢)dv = tabVV,- [ (v¢V)dv
(—+v-v+{/-vv) sN=3 s j=1N. (18 =tobWV, (v)e'(0)=0, where ¢"(0)=/,¢"dv.
ot Equation(19) therefore simplifies to
in which =S is a superposition of all possible scalar e
sources contributing to the time rate of change of the distri- f (_(i)+v><3(i)
bution ¢, This set of equations will be subsequently called x| ot
the set of kinetic equations
The scalar dislocation densities can be created or d
stroyed by(1) annihilation reactions of elements of opposite
sense(?2) cross slip of dislocations or annihilation via cross
slip, (3) reactions between segments on two slip systems Ja
giving rise to a segment with a third different Burgers vector, st VxJ=0, (22)
and (4) multiplication. Annihilation of elements of opposite
sense which have the same Burgers vector do not appear inaa predicted by the classic theory of dislocation fields. Equa-
tensorial representation, since they caracptiori. Cross slip  tion (22) shows that the local density tensor can only change
and reactions involving different Burgers vectors result indue to the motion of dislocations regardless of the disloca-

dx= J Shdyx, (21)

for some arbitrary crystal volume. Upon summing over all
esllp systems, the source terms cancel. Furthermore, by local-
ization one obtains
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tion reactions. Aifantis argues that to derive the macro-
scopic balance law22), various dislocation reactions must
not be allowed. Mescheryakov and Prockuratd\zave re-
ported a nonvanishing right-hand side for the continuity con
dition (22). Anthony and Azirh?® made the same suggestion
for the case of generation or annihilation reaction, see thei ) o )
Eq. (66). We remark here, without proof, that the right-hand ating term 8¢®, similarly, writing v=v+ év and carrying
side of Eq.(22) must remain zero, i.e., the only way of out ensemble averaging, E(R4) can be rewritten in the
introducing additional contribution to the net Burgers vectorform

contained by a Burgers circuifixed onto the crystalis via
motion of dislocation into this circuit.

ot

J < ~ )
—+V~V+V~VU)¢(')=Z S, i=1N, (24

in which the acceleration is also a nonsmooth function. By
splitting #' into its mean(smooth value ¢ plus a fluctu-

dD+(ov-V,8¢0)=> sD; i=1N.
(25

J .
—4+v-V+v-
Pl V+v-V,

E. Driving force and the dislocation equation of motion
. . . . . . i i i) i
Glide of dislocations is determined by the externally im- T the dynamics of the system is such thelt) remains close

posed stress, lattice resistance, short-range reactions, and e at all times, the quantityév-V,5¢™) should iden-
long-range stress. The intrinsic lattice resistance includes thiécally vanish for a large volume. In the classical kinetic
Peierls resistance and electron and phonon drag. In bodybeory, this quantity gives rise to the so-called collision term.
centered-cubi¢bcg crystals, the Peierls barrier is significant It can be easily shown that the fluctuating stress fields
and exhibits strong temperature dependence. In faceletermined by the fluctuationss(). Again, (o') vanishes
centered-cubicfcc) crystals, the Peierls barrier gives rise to for a large volume if¢") remains close ta(.

a small resistance to the dislocation motion. Jogs and energy Upon ignoring the internal stress fluctuations, the glide
radiation also result in dragging forces. For a review of thesgorce per unit length of the dislocation Iirﬁg) is given by the
topics, the reader is referred to Refs. 24—26. Here only theelebrated Peach-Koehler formula

drag mechanism is mentioned, which is relevant to fcc crys- , . _

tals. For a test dislocation line of velocityand line direction =W -[o°+67]-nV)¢, (26)

t, the induced drag forcgy is given b . _ . . '
g Buis g 4 in which o° is the applied stress field. A complete form of

the equation of motion for a dislocation line can then be
fg= —Bv=—Buv§, (23)  written as follows:

I I —

whereB is a drag coefficient ang= £(6) =v/iv=nxt is a fgl —Bv—sgrify) fpé+ P=d(v,v,7), @7
unit vector along the direction of motion. in which ®(v,v, y) is a vector function of its argumentE,is

The long-range stress field of dislocatioasis strongly  a stochastic force field associated with andy denotes any
fluctuating since dislocations are discrete stress sources, apther parameters on which the acceleration of dislocation
it can be approximated by a stochagdfiictuating compo-  |ines might depend. Inverting the last equation for the accel-
nent which accounts for the dislocation-dislocation correlaeration
tion ¢', superimposed on a slowly varyifimean-field com-
ponent determined by the dislocation density tens®rthat V= \p(fgt),
is o= o'+ . This superposition has been previously justi-
fied by other author¥/~2° Here, a simplified argument is
used to reveal the origin of the stochastic long-range fieIJ
within the present framework. t

A discrete dislocation system can be viewed as a set of
lines each of which is a sequence of small segments gliding F. Scalar source terms

at discrete velocitied/,=V,(t), centered at discrete loca-  To demonstrate how various contributions to the source
tions X, = X,(t) and having line orientation described by the term to the right-hand side of equati¢b8) are formulated,
angle ®,=0,(t) in the phase spacexv,f). Hence, the the primary slip systems in an fcc crystal are considered. The
phase-space distributions corresponding to a discrete disleptation of Schmid and Bodis used here, see also Fran-
cation system has the formp)(x,v,0,t)=0"%8(x  coisi and Zaou?! The slip planes (11),(111),(1L1),(111)
—X)8(v=V,)8(6—0,), whereo() can be regarded as a are labeled A, B, C, and D, and the slip directions
time-dependent normalization factor. These phase-space di[5011] [OTl] [101] [TOl] [TlO] [110] are labeled 1, 2, 3
tributions must individually satisfy divergence conditions of 4 & "Jnq 6 }espec'tively.’The 12 slip systems are A2 A3 A6
the formV -[t(6) #)]=0. Obviously, in this representation, B2, B4, B5, C1, C3, C5, D1, D4, D6. Slip systems sharing
the summation must be replaced by a product operatlon if thﬁje same Burgers vector are Ca|mﬂinear, and those shar-
spatial dislocation-dislocation correlation is to be effected, asng the same slip plane are calledplanar Therefore, in fcc
was suggested by Kner' (spatial correlations are not con- crystals, there are six pairs of colinear systems, and four
sidered here Following the procedure explained in Sec. triplets of coplanar systems.

II B, the following kinetic equation is obtained for the nons-  Throughout this subsection, the source terms will be sub-
mooth functiong®(x,v, 6,t) scripted by the initial letters of the process they represent. A

v,fp.1,7), (28)

which provides the connection between the lattice stress
ield, applied plus long-range, and evolution of the distrubu-
ions ¢() described by the kinetic equatiofik8).
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constantR, with this subscript, along with a probability , , _

(cross-section-likefunctions are used as proportionality co- SV, 0)= = Ragip (v, 9)f PO 0+ m)dv’,

efficients. These coefficients can be obtained by modeling Y (32)

the behavior of individual dislocations. Hirth and Lothe

give a detailed account of dislocation-dislocation reaction awhere the velocity integral has been previously explained.

short range. Due to the size of this paper, only the mathDislocations on parallel glide planes can also annihilate if

ematical form of reaction rate terms is shown, and formulaghey are of pure edge or screw character, two edge elements

for these rate coefficients are kept for a future publication. can annihilate by climb, and two screw elements can annihi-
Cross slip Cross slip is a process by which a screw dis-late by cross slip. For edge-type dislocation elements, the

location changes its glide plane. According to Devintre, climb annihilation rate is

the probability rate for cross slip, per unit length of a single

screw dislocation, is given bg..e~ *("’keT wherep, is a SUU(V, 0) = = Rai8( 60— 6) (v, 0y

normalization factorQ(7) is an activation energy which is a

function of the resolved shear stresen the cross slip plane, X f DV, 0+ m)dv'. (33
VI

kg is the Boltzmann constant, afdis the absolute tempera-

ture. With a phase-space representation of the dislocatiofitin the same slip system, the cross-slip-assisted annihila-

species, cross slip from thiéh to thejth slip system gives  yjon of screw dislocations is expressed by a rate term of the
rise to the source term form

i —o(D i . .
S8V, 6) = —Ree™ AT (0 0.9 4OV, bco), 9 SE2V, 6) =~ Racsd( 6= 6c9) 1) (V, 6co)

where 8(6) is the Dirac delta distribution. The angk. xf AV, 0ot m)dV'. (34)
defines the line sense for cross slip; that(ig) -b()=+1, v
which is satisfied by two values & On thejth slip system,

the source term is also localized at the cross slip angle. It i?al
given by

Reactions forming glissile segmerBased on experimen-
observations, dislocations in a deformed crystal form
three-dimensional networks. In such networks, the intersec-
tions are in the form of junctions of variable length. More-
over, the junction can be either sessile or glissile. A detailed
list of possible reactions in fcc crystals, determined by using
xf f(v,v) (V' 0.0 dv’, (30)  the linear elasticity theory, was developed by Hitth.

v In fcc crystals, see Schmid and Boas notation above,
in which f(v,v’) refers to the probability that a cross-slipped (B2,B4)—B5, (B2,B5)-B4, and (B4,B5)-B2 are pos-
element has velocity, and the integration over takes into ~ Sible glissile-junction-forming reactions. However, for these
account all cross slipping dislocation elements. Thus, crosiactions to occur, the reacting segments must be aligned in
slip results in linear coupling of the set of equatioii®).  Such a way that these reactions areergeticallyfavorable.
Satisfaction of a cross slip criterion can be imposed for crosédeally speaking, two parallel segments are in the most fa-
S||p to occur from a particu|ar S||p system to another; Seélorable Configuration, but small deviations from this situa-
Ref. 33. tion may not influence the outcome. Denote by the super-

Annihilation reactions Two dislocation elements can an- SCripts(i) and(j) the reacting species and by the superscript
nihilate each other if they have the opposite sense and thH&) the product species. For every orientation onithespe-
same Burgers vector. Dislocations on colin¢amss slip  cies, let®}; be the range of orientation of dislocationsjah
systems annihilate if they are of screw character. If glide is tslip system within which glissile junction reactions wittn
control this process, the two annihilating elements musslip system is possible. Source terms associated with this
move on their respective planes until they coincide with thereaction are represented as follows. For kiie slip system,
line of intersection of these planes. In reality, cross slip can

i —o(,
SEIS)(V, 0)=R.& A )/kBT‘S( 60— 0cs)

expedite the annihilation process. An annihilation rate term _ .
due to cross slip can be formulated as follows: Sj (Vi 0)=Rq;p(6) o o _da dé
9]’ 9]
SULY,0) =~ Racsd(0- 0 00, 0) | 90 0,0 <[, ] osrav mavar,
V/ VI V/I
@31

(35
The expression remains the same if the superscfipt@nd
(j) are switched. The line sense of the annihilating disloca

i i i Y. +(p)y= — i
Ilr?antst (I;(i?ft;mt'(n ;(?) ff_r()ejs) i( fes)=—1. Itis also clear the reaction product comes out with velocity For theith
cs . cs -+ i i
Dislocation elements of the same Burgers vector whichanthh slip systems,
share the same glide plane annihilate by glide for all values _ _ _
of 6. A rate term representing this process can be cast in the  S{)(v,6)=—Ry;¢"(v, e)f j f dWO(v',0")dv'de’
form ol Jv

in which p(6) defines the orientation of the resulting seg-
ment andg=g(v,v’,v") is a measure of the probability that
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0 , _ The final form of the system of kinetic equatio(t8) is
S (v,0)=—=Rg;¢ (v, 0) f@i fv, O(Vv',6")dv'do’. expressed as follows:
9]

(36) ]
—+v-V+W.V, | o0=YO(g); i=1N, (39
Noncoplanar systems such as p&B§,A2) and(B4,A2) can at Y v| ¢ 2 (39

also interact in a similar fashion to produce glissile seg-

. . . in which ¢ is the set of phase-space distributions, and
ments. It is also possible that the product segment dlssocy(i)(@ is a functional of¢® and the subset ofb contrib-
ates, which can be easily accounted for.

It is important to notice that annihilation or glissile- uting to its source, and the expressi@) for the accelera-

. . . : . . - tion has been used. The set of kinetic equati@® is non-
junction-forming reactions yield binary collision source | ' - . : L
linear since the driving force for dislocation motion is a

terms, leading to quadratic coupling of the system of I(metlcfunctional of all phase-space distributions. Further detailed

equations(18). These reactions lead to destruction of the. L ; .
reacting species as opposed to just a change in velocity. Investigation Is ngeded to determine the functichslor ¥)
and the stochastic force terlh

Sessile junctiondDislocation on slip system pairs such as
(B5,A3) can form locks, a form of sessile junction, which
can be destroyed if the stress acting on a junction arm ex- ll. A SPECIAL CASE
ceeds a certain value. The formation of locks reduces the Tne excercise presented in this section shows how mac-

source term can be written as follows: three-dimensional case will be published in the future.
Aiming at investigating the effect of the long-range nature
Sgij)(v, 0)= _stqs(i)(v, e)f _ f s, 6" )dv'do’ and the spatial qngular dependence of the _int.eraction _force
ol Jv between dislocations, Grorffaused some statistical physics

concepts to develop a model of a system of parallel edge

+RSJK5(V)¢5(i)(V, a)f _ J s ,6")dv'de’, dislocations in a smgle slip c_onf|gurat|0n. I_n dom_g so, he
oL Jv focused on the spatial correlation between dislocations, up to

3 the two-dislocation correlation, without consideration of ve-

(37) locity dependence. In this section, the final results of his

in which « is an adjustible coefficient an@; is the orien- ~ model are recovered as a special case. _

tation range within which a sessile junction formation is pos- A Cartesian frame with basise(,ey,e,) is considered.

sible. The first term to the right-hand side of equatig@  The slip plane is thex—plane, with normain=g,. The

expresses reduction at all other velocities, and the secorfdurgers vector id=be,. Two groups of edge-type disloca-

expresses the density increaseat0, notice (v). A similar ~ tions extending along theaxis with line vectord; =e, and

term can be written for th¢th slip system. t,= —e, are considered. Dislocations are assumed to be ran-
Multiplication: At small strains, which is the case consid- domly distributed in they plane. In this case, the only avail-

ered here, the increase in the scalar dislocation density o@ble distribution function ¢(x,v,6,t) and its source

curs mainly due to operation of Frank-Read sources. Th&(X,v,,t) are written as follows:

density of these sources is essentially proportional to the

amount of strain or the area swept by gliding dislocatihs. @04V, 6,8 =1(X,v,1) 8(6—7/2) + do(X,v,1) (6 — 3m/2),

A multiplication source term can be written in the form
Hitiplication sou writen | SOV, 0,8) = S,V 1) 86— 7/2) + Sy(x,v,1) 86— 377/2),

(40)

indicating two distributions and two sources localized on the
angular coordinate. In this representationis measured

in which the functionq(v) determines the velocity distribu- clockwise, relative to thex axis, in the slip plane when
tion of the source. This source term is considered here to bgiewed downward the/ axis. The kinetic equation system
isotropic with respect t@. In a bcc crystal deforming at low (18) reduces to

temperature, the Frank-Read source is anisotropic, leading to

forming more screw dislocation lines than edge-type lines. d :
This anisotropy can be easily accounted for using a simple (a_tJrV'V’LV'Vv) XV, 0,t)=S(x,v,0,1). (41
geometric argument.

Sg)(v,0)=qu(v)f’J’au’¢>(‘)(v’,0’)dv’d0’, (39

The governing equations for the two distributiafps and ¢,
in terms of their respective sourc8g andS,, can be devel-
oped by integrating equatio1) with respect tod twice

In the systen{18), the dependence on the angular variablegver arbitrary intervals enclosing= /2 and §=3/2, and
0 is both implicit and explicit. In the left-hand side, no par- using the filtering property of the Dirac delta function. This
tial derivatives with respect t@ appear, buv andv depend leads to separation of the two populations. The governing
on 6. The source term&9) through(38) bring in the angular  equations are found to be
dependence explicitly. In particular, the terr5), (36),
(37), and(38) involve integrals with respect t6. The system
(18) is thus an integro-differential equation system.

G. The kinetic equations

d .
—+v-V+v.V,

at ¢1(X,V,t)=Sl(X,V,t),
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9 . A crystal can be subjected to either stress or displacement
E+V‘V+V'Vv) Bha(X,V,1) = Sy(x,V,1). (42 boundary condition, or botfmixed). When stress boundary
conditions are applied, the total stress field is computed as a
Multiplying the above two equations byv and integrating superposition of the applied stress and the long-range stress.
with respect tov, we arrive at The former satisfies the applied boundary condition while
the latter satisfies traction-free boundary condition. In satis-
fying a displacement boundary condition, however, both the

901X | o ouxt)=gy(x.b).

ot elastic and plastic distortions must be combined to match the
boundary displacement. Here, remarks are given on convert-
d02(X,t) — ing the displacementor mixed boundary value problem
o TV (v2ea(x, ) =ga(x.1), (43 into a stress boundary value problem. The latter is then sum-
marized in more detail in the following subsection.
whereg;(x,t)=[yi(x,v,t)dv, gi(x,t)=[,S(x,v,t)dv, and Consider a crystal volum@ with boundarysQ which is

Vi(x,t) = Ve (v, ) dv/ [ i(x,v,t)dv; i=1,2. v; andv,  subjected to a displacemeuntt(x,t);xe dQ for all t. Hence,
are the mean velocities. A linear velocity law of the form the surface displacement gradiengu®=nxVuP, with six
(23) is used to bring the resolved shear stig&sach-Koehler independent components, is known. It can be easily shown
force) into the above equations. Furthermore, upon addinghatnx VuP=nx(B°+ 6B+ 6B°), in which g° is the elas-
and subtracting the these two equations, the governing equée distortion associated with the boundary traction, @gi

tions for the sum and difference are found to be and 8B° are the changes in the elastic distortion due to dis-
locations and the plastic distortion, respectively, over time
do(x,t) 4 By using 8°=C"':¢®°, one may write

o T (T(X DY) =g,(X,1),

NXC Lg°=VuP—nx 68— nx5B°; xedQ, (45
af(xt 4 _ in which ¢° is the boundary value of the stress field equiva-
ot +bﬁx(r(x,t)g(x,t))—gg(x,t), (4 lent to the traction needed to sustain the boundary displace-
. . ment field u®(x,t) in the presence of evolving dislocation
in-which @=@1+02, {=01702, 9,=01%02, 0;=01  field. The ternmx 6 is the accumulated change in then-
—0a, and the substitutions;=ve,, V,=—ve, v=bB7  jntegrable elastic surface displacement gradient, consistent
were made. The timeis replaced byBt, and onlyd/dx is  ith the long-range stress of dislocations, from the onset of
considered since the dislocation motion is restricted to be ifoading to timet. It is dependent only on the initial and final
the slip plane. The shear stresis given byr=[7°+ 7¢|; 7°  states of the dislocation field. Similarlgx 88" is the accu-
is externally applied and* is obtained in terms of the dis- mulated change in th@onintegrablg plastic surface gradi-
location density tenso= (2, 0,)e,®be,=e,®be, see  ent over the same period of time. It depends on the history of
Eq. (2). As shown in Sec. IIF, for the present special casethe dislocation flux at the boundary. From Hd5), the six
the source terms include annihilation via glide and climb andyiven components of (u° can be used to determine the six

production. The set of equatiof4), with an equation gov-  components oi® or, rather, the equivalent boundary trac-
erning the long-range stredsconstitute the final set of equa- tjon

tions of the model summarized in Ref. 36. The linear stabil-
ity analysis conducted by Groma shows thatd,/dg is t°=n-o°. (46)
positive, a homogeneous stationary solution is unstable anﬁj1 what follows the stress boundary value problem is stated

densﬂy perturbatlons grow, _Ieadlng to pattern formatlo_n. Byand, for simplicity, the lattice inertia is ignored.
enforcing certain simplifications about the problem dimen-

sionality and the characteristics of the dislocation system,
other models such as those developed by Aifaftisyal-
graef and Aifanti$, and Kratochvil and co-workets are

B. The dislocation-dynamics boundary value problem:
Traction boundary condition

readily recoverable as special cases. Upon loading, the crystal responds elastically until dislo-
cations start to move somewhere in the crystal. However,
IV. THE INITIAL-BOUNDARY-VALUE PROBLEM unless the density of dislocations is nonzero, the local plastic

_ - distortion rate remains zero. Hence, for a nontrivial plastic

A. The mechanical boundary conditions disortion rate, the following conditions must be simulta-

The kinetic behavior of a dislocation system in a deform-neously satisfied:
ing crystal is analogous to the behavior of ion-electron plas- '
mas. One important aspect of similarity is that, for both sys- fg>R: and ¢ (xv,0,0>0, (47)
tems, the kinetic equations describing the evolution in thgn which R, includes all resistive forces. It is obvious that if
phase space must be complemented by another set of equfy dislocations are present, the stress alone cannot cause
tions describing the long-range interactions and the backp|asticity.
ground force field. In the case of a plasma, the kinetic equa- The applied stress boundary value problefine applied
tions are complemented by the famous set of Maxwell'sstress field is the solution to the following boundary value
equations in free space. In the case of dislocations, the lattiggroblem:
stress field is obtained by solving the stress equilibrium
equations. V.o°(x,1))=0; xeQ forall t,
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n-o°(x,t)=t°(x,t); xedQ forall t, (48) oD (x,v,0,00=58(v) o (x,0); i=1N. (54)

wheret°®(x,t) is the prescribed boundary traction. Obviously, the distributiong") are periodic with respect to
The long-range stress boundary value problem a 4. For first-order partial differential equations of the form
bounded crystal, the nonfluctuating component of the long¢52), boundary condition may or may not be specified. In a

range stress field* is given by bounded crystal, if dislocation emission is not permitted at
N . its surface, neither the flux nor scalar density of dislocation
o'=0"ta, (49 needs to be specified on the boundary. If the crystal space is

whered® is the field of dislocations whefl is embedded in & representative volume element of a large crystal undergo-
an infinite medium, and’ is the image field. For an infinite iNg statistically homogeneous plastic distortion, the inward
crystal, the long-range stress field has only one componen@lislocation flux must be specifi€d.

0-5, which is genera”y nonvanishing prior to |Oading_ The The plaStiC distortion and Sl|p trace field¥he rate of
stress fields® is the solution to the following boundary value pIaTtic distortion is given by Eqg5) and (6). Its time inte-
problem: gral,

V-o%(x,t)=0; xeQ forall t ,BP=ft Brdt, (55

o3(x,t)—0; as |x|—x forall t, is needed to determine the boundary traction, see @&s.
and (46), the long-range stress field, see E@0) and (51),
and the intensity of slip trace formation on the surfaag,

=C:(p~-p°), =V, 50 P
in which B° is the total distortion in the unloaded dislocated
crystal, andu® is a corresponding displacement field. It can V. DISCUSSION
be easily verified that the solution fo® depends only on the o . . .
dislocation state in the crystal, i.e., 81 87, but not ong? A kinetic framework for the evolution of the dislocation

itself 3 When the crystal is finite the image field' is density and plastic distortion fields in a single crystal is for-

needed to satisfy the traction-free boundary condition for thénulated. The formulation is based on two aspects of the
overall long-range stress field. This field is found by solvingdislocation system, the statistics and dynamics, which gener-
the boundary value problem ally suffice to apply the statistical mechanics concepts. Dis-

locations are viewed as reacting-diffusing-multiplying spe-
V.o'(x,t)=0; xeQ forall t, cies in an otherwise linear elastic crystal, which is consistent

A with the notion of multiple natural configurations introduced
n-o'(x,t)=—n-o3x,t); xedQ forall t. (51) and elaborated in Refs. 39—41. This notion is also implied in

. ' P : : computer simulation modefé:*® The integral of the disloca-
i-l;]hteh;mgggtglemf is also dependent on the dislocation Statetion density tensor over the crystal volume is found to be a

) L . . . conserved quantity. From the invariance of this integral, the

The dlglocatlo_n f|eld. Kinetic quatu_)n‘ﬁhe e\_/olvmg dis- set of kinetic equations governing the evolution of the phase-
location field satisfies the set of kinetic equations space distributions is derived. The kinetic equations are
P strongly nonlinear. This nonlinearity arises in two ways,
—+v-V+\If~VU) dD=Y(¢); i=1N. (520  through the quadratic reaction terms and through the depen-
Jt dence of the long-range stress fiédtliving force for motion
The short-range interactions determine the functidf@p),  On the overall dislocation density in the crystal. The plastic
see Sec. IVF. Rules for cross S”p’ Short_range interactiongistortion, deﬁning the irreversible p|aStiC strain and lattice
and internal stress fluctuatiogsr stochastic force fiejdcan ~ rotation, is readily determined from the transport of the dis-
be specified. As previously mentioned, the &) consists locations in the crystal, Eq$5) and (6).

of nonlinearly coupled integrodifferential equations. The kinetic formulation presented here represents an im-
The dislocation field: equation of motiofihe equation of ~Portant step in developing further theoretical formulations
motion for the problem of crystal plasticity. For example, similar to
the development of fluid models of plasmas or the Navier-

f§)—Bv—sgr(f)) fpé+ I=d(v,v, ), (53  Stokes equations of fluids, a systematic development of the

macroscopic transport equations should lead to defining the
Couples the elastic stress field with the evolution of distribu-properties of Sing|e Crysta|s which are relevant to p|astic de-
tions ¢, Ignoring the crystal inertia, in a sense, implies thatformation. These properties will appear naturally as coeffi-
the dislocation acceleration may be ignored. Thus, the equaients in the macroscopic transport equations and can be con-
tion of motion(53) can be used to determine the velocity of yeniently computed via numerical treatment of the kinetic
dislocations in terms of the local mean force field. AlSO, theequationS’ for examp|e’ by a lattice Boltzmann or a kinetic
termv-V,¢(" drops from the kinetic equation. Monte Carlo technique. The transport properties normally
The dislocation field: initial and boundary conditians embody the characteristic length and time scales for the spa-
Prior to loading, the initial dislocation system is under me-tiotemporal evolution of the dislocation field in the crystal.
chanical equilibrium, and the initial phase-space densities Certain aspects of the role of plastic strain gradients in
can be expressed as follows: crystal plasticity may also be investigated through the kinetic
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treatment presented here. A single dislocation line representg which the partial flux tensoj) is defined bytx (ve)
the gradient of plastic distortion in its immediate neighbor-g h() The following identity can be easily verified:

hood. Hence, integrals of the forgi" = f,¢)dv are angu-
larly dependent shear strain gradients on various crystal slip

systems. In a macroscopic transport framework, the Orow- v j(i)=y x[tx (ve®)@b1]

an’s equation for the shear strain rate on a particular slip - -
system becomes " (x,t)=b® [ o (x,6,t) d, in which =(tobM) (& V(veM)—(£2bD)(t- V(v eM)),
v=v(6) is the mean glide velocity at orientation This (Ad)

representation asserts that the rate of plastic distortion is lin-

early depedent on the shear strain gradient. . o
Other theoretical developments can be made possible ifthere £ is a unit vector along, that isv=uv&. After using

the present formulation is extended to deal with finite deforthe following identities:

mation cases. Under such situations, the difference between

the Eulerian(spatia) and Lagrangiarimateria) form of the

kinetic equations will become significant and the deforma-

I
tion kinematics must be introduced into the formulation. £V (0eW)= ‘9("“’())’
Also, at high dislocation densities, it will be required to ac- 23
count for the dislocation-dislocation correlations in order to
capture the effects of dislocation multipoles. Some of these
issues are currently under investigation. EVe) =V - (&)= (veMV. =V (& M),
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WZO, (no climb flux). (A5)

=0=t-V(ve"), (no flux alongt),

ot

APPENDIX

Referring to Eqs(5) and (6), the rate of the plastic dis-

i (vo® (M ()
tortion can be rewritten in the form VX" reduces 1V - (ve™)t@ b In the above, {£n"™)

form a right-handed orthogonal set of unit vectors. Equation

N (A3) can be recast in the form
B°=2> | txvebWei)(x,0,t)de, (A1)
i=1J6
N
wherev is the mean velocity at orientatiof which is de- f Vx'ﬁ"(x,t)dﬂzf d0>, | V- (veW(x,6,t)t
fined by @ a i=1Je
®bWde. (A6)
qub(i)(x,v,H,t)dv
v= . . (A2) By integrating with respect to time and applying the Gauss
f o (x,v,0,t)dv theorem, Eq(A6) can be rewritten as follows:
\

In the right-hand side of EqA2), the denominator is itself

N
oW(x,6,1). By taking the curl of Eq(Al) and integrating f VX BPdO = Jt dtrJ do| St
over the volume, one obtains Q —o 0 0 =1

, N @b(n-v)eM(x,6,t')dS, (A7)
fQVXﬁP(x,t)dQ=deQzl v xji(x,6,t)de,
i= [

(A3)  which is Eq.(8) of Sec. IIB.
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