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Statistical mechanics treatment of the evolution of dislocation distributions in single crystals
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A statistical mechanics framework for the evolution of the distribution of dislocations in a single crystal is
established. Dislocations on various slip systems are represented by a set of phase-space distributions each of
which depends on an angular phase space coordinate that represents the line sense of dislocations. The
invariance of the integral of the dislocation density tensor over the crystal volume is proved. From the
invariance of this integral, a set of Liouville-type kinetic equations for the phase-space distributions is devel-
oped. The classically known continuity equation for the dislocation density tensor is established as a macro-
scopic transport equation, showing that the geometric and crystallographic notions of dislocations are unified.
A detailed account for the short-range reactions and cross slip of dislocations is presented. In addition to the
nonlinear coupling arising from the long-range interaction between dislocations, the kinetic equations are
quadratically coupled via the short-range reactions and linearly coupled via cross slip. The framework devel-
oped here can be used to derive macroscopic transport-reaction models, which is shown for a special case of
single-slip configuration. The boundary value problem of dislocation dynamics is summarized, and the pros-
pects of development of physical plasticity models for single crystals are discussed.
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I. INTRODUCTION

The plastic straining of a metallic crystal is synonymo
with the transport of dislocation lines in the crystal. Durin
their motion, dislocations interact with each other via lon
range forces in a manner similar to the long-range inter
tions among charged particles. Dislocations also unde
short-range reactions leading to immobilization or destr
tion of the reacting dislocation species. These reactions
strongly dependent on the line direction of dislocations. F
thermore, by the fact that dislocations are continuous cur
linear entities, their motion normally leads to significa
length change or multiplication. The dislocation line dens
in a deforming crystal may increase by several orders
magnitude during deformation. In addition, dislocatio
change their glide planes by cross slipping between crys
lographic planes sharing the same slip direction. This co
plex dynamics is believed to be the origin of the induc
dislocation density and plastic strain heterogeneity in
forming crystals.1,2 Therefore, explicit representation of th
reactions and transport of dislocations is vital to succes
prediction of dislocation and deformation patterns.

Some models dealing with highly idealized dislocati
configurations have been developed.3–10 Such models have
been found too simple to capture the three-dimensional c
acter of transport and reactions of dislocations. Almost th
decades ago it was argued that the framework of statis
mechanics can be applied to develop a dislocation-ba
plasticity theory.11 This argument was based on the fact th
the distribution of dislocations in a crystal is statistical
nature. Two attempts at developing a formal kinetic tre
ment, exploiting the statistical and dynamical nature of
dislocation population in deforming crystals, have be
made.12,13 However, the complex short-range dislocation
teractions and discrete nature of crystallographic slip h
not been accounted for. Relatively recently, the method
dislocation dynamics has been significantly developed.14,15
PRB 610163-1829/2000/61~18!/11956~11!/$15.00
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With explicit representation of the dynamics and interactio
of discrete dislocations, the method is believed to be pro
ising in resolving certain questions related to the origin
strain and dislocation density heterogeneity in crystals at
mesoscale. Even though it deals with discrete disloca
systems, the simulation method is naturally classified a
statistical mechanics approach to dislocation transport
reactions in deforming crystals.

The main objective of the present work is to develop
statistical mechanics framework for the spatiotemporal e
lution of dislocations and, in turn, single-crystal plasticity f
the case of small plastic distortions. As shown later, t
framework can be considered a continuum analog of
method of discrete dislocation dynamics simulation since
accounts for the transport and reactions of dislocations in
otherwise linear elastic crystal. The present development
serves the framework of the classical theory of dislocat
fields which rigorously describes two important aspects
plasticity: the equilibrium of the lattice stress field and co
patibility of the deformation field.

The paper is organized as follows. The mathematical f
mulation of the present framework is presented in Sec. II
set of phase-space distributions is introduced to represen
evolving dislocation populations on all slip systems. The
quirement that the deforming crystal must remain compac
used to define an invariant global quantity which is given
the integral of the dislocation density tensor over the crys
volume. Tensorial Liouville-type equations for the contrib
tions of slip systems to this global invariant are then det
mined. Considering no higher-order spatial correlations, a
of kinetic equations governing the evolution of the sca
phase-space distributions is derived, with source terms
resenting short-range interactions, multiplication, and cr
slip. The continuity equation of the macroscopic dislocati
density tensor is established from the mixed zeroth-veloc
first-angular moment of the kinetic equations. The angu
dependence of the phase-space distributions is brought
11 956 ©2000 The American Physical Society
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account for the line sense of dislocations. In Sec. III
single-slip configuration model is recovered as a spe
case. Section IV includes a summary of the initial-bounda
value problem of dislocation dynamics. A discussion of t
prospects of this approach in formulating macroscopic dis
cation transport-reaction and crystal plasticity models
given in Sec. V.

II. THE STATISTICAL MECHANICS FRAMEWORK

A. The dislocation field

The formulation presented here is based on the no
that, in a deforming crystal, the evolving dislocation field c
be described by the method of statistical mechanics. Th
motivated by the following facts. First, the spatiotempo
evolution of dislocations is governed by quasi-Newton
dynamics where the motion of dislocation elements is
scribed by an equation of motion. Second, the correspon
discrete system has a very large number of degrees of
dom. Third, the evolving dislocation field exhibits veloci
distributions. These facts are well established. For exam
as evident from the computer simulations of discrete dis
cation systems, the dislocation population is distributed
the velocity space and exhibits angular dependence.16

In a deforming crystal, dislocations are naturally categ
rized by the slip direction~or Burgers vector! and the slip
plane normal. Consider a crystal withN slip systems. Fori
51,N, denote byn( i ) and b( i ) the unit normal to the slip
plane and the Burgers vector, respectively. In the case
finite deformation, bothn( i ) and b( i ) must be considered
functions of space and time. Only infinitesimal deformati
is considered here, hencen( i ) andb( i ) are assumed constan
for all slip systems. On a particular slip system, a dislocat
element may have a sense vectort along any direction lying
in its slip plane. The motion byclimb is not considered here
since a climbing dislocation has a line direction that may
lie in its slip plane. The dislocation content of a slip syste
can be conveniently characterized by introducing the dis
bution f ( i )(x,v,t,t). Since all directions in a plane can b
defined by a single scalar parameter—that ist5t(u); u is an
angle in the range@0,2p#)—then, t can be replaced byu.
Hence, f ( i ) can be given the definition
f ( i )(x,v,u,t)dxdvdu is dislocation line length contained i
the phase-space volumedxdvdu at time t on the i th slip
system. It is to be noted that thev is orthogonal tot; that is
v5v„t(u)…. Hence,f ( i ) depends onu both implicitly and
explicitly.

The conventional field variables are now derived from
distributionsf ( i ). The scalar dislocation line density in th
crystal is defined as follows:

%~x,t !5(
i 51

N

% ( i )~x,t !, where % ( i )~x,t !

5E
v
E

u
f ( i )~x,v,u,t ! dvdu. ~1!

The contribution by dislocations on thei th slip system to the
dislocation density tensora is given by
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a( i )~x,t !5E
v
E

u
t^ b( i )f ( i )~x,v,u,t ! dvdu ~2!

and its time rate of change is

ȧ( i )~x,t !5
]a( i )

]t
5E

v
E

u
t^ b( i )ḟ ( i )~x,v,u,t ! dvdu;

ḟ ( i )5
]f ( i )

]t
. ~3!

The reader is refered to Refs. 37, 38, 42, and 43 for a s
mary of the tensor fields related to dislocations in a distor
crystal. The dislocation density tensor and its time rate
change are obtained as superposition of the partial den
tensors and their time rates of change, respectively, that

a~x,t !5(
i 51

N

a( i )~x,t !, and ȧ~x,t !5(
i 51

N

ȧ( i )~x,t !. ~4!

To perform the summations in Eq.~4! in three dimensions,
the components of all partial density tensors must be refe
to the same coordinate system.

The contribution to the dislocation flux tensorJ by dislo-
cations on a slip system is given by

J( i )~x,t !5E
v
E

u
t3v^ b( i )f ( i )~x,v,u,t ! dvdu

5n( i )
^ b( i )E

v
E

u
vf ( i )~x,v,u,t ! dvdu, ~5!

where v is the magnitude ofv, and t3v5vn( i ). The flux
tensorJ( i ) is itself the rate of plastic distortion,ḃP( i ), con-
tributed by thei th slip system. The dislocation flux tenso
hence the rate of plastic distortion, is given by

J~x,t !5ḃP~x,t !5(
i 51

N

J( i )~x,t !. ~6!

For a given slip system, it is shown that the dislocation d
sity tensor is given by the zeroth-velocity-first-angular m
ment of the distributionf ( i ), while the dislocation flux tenso
is given by the first mixed moment, see Eqs.~3! and ~5!,
respectively.

B. A system invariant

In dynamical simulations of discrete dislocatio
systems,14 the evolution of the discrete dislocation system
determined by the changes in the position, number, veloc
direction, and length of the dislocation elements, or the g
eralized degress of freedom of the dislocation system
their time rate of change.15 In a phase space, the syste
evolution is studied by investigating the set of distributio
f ( i ); i 51,N. In analogy with particle systems, see for e
ample, Landau and Lifshitz17 and Liboff,18 one aims here a
finding a set of kinetic equations which are satisfied by
distributions f ( i ). Zorski19 formulated a problem which
might be relevant; he considered a set of infinitesim
Somigliana defects.
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11 958 PRB 61A. EL-AZAB
In order to develop the kinetic equations, a fundamen
invariant ~or a conserved quantity! of the evolving disloca-
tion system must be found. For a particle system, for
ample, the total number of particles in the system is invari
regardless of how the particles are distributed in the ph
space. It is this fact which enables the derivation of kine
equations in general, e.g., the plasma kinetic equation of
montovich or its collisionless version of Vlasov.20,21

Consider a large crystal of volumeV which is bounded
by the surface]V with unit normal n. The condition of
compatibility of the total distortion field in the crystal i
written as:a1¹3bP50, see Ref. 37. Upon integrating th
condition over the entire volume, the following result is o
tained

A5E
V

adV1E
V

¹3bPdV50. ~7!

After lengthy algebraic manipulation, see the appendix,
second integral term can be cast in the form

E
V

¹3bPdV

5E
2`

t

dt8E
u
duE

]V
(
i 51

N

t^ b( i )~n• v̄!w ( i )~x,u,t8!dS, ~8!

in which v̄w ( i )(x,u,t8)5*vvf ( i )(x,v,u,t8)dv. It is obvious
that the integrand to the right-hand side of Eq.~8! is the sum
of flux of a at t8 contributed by dislocations of orientationt
on all slip systems. The integral term itself can be viewed
the accumulation of slip traces at the surface. It can be w
ten in the form*]VasdS, whereas5n3bP is known as the
surface dislocation density tensor, or the slip trace tenso22

Geometrically, Eq.~7! implies that a finite crystal under
going plastic distortion has two effective dislocations, a b
dislocation given by the volume integral and a surface dis
cation given by the surface integral. The latter arises du
slip trace formation on the surface. The two effective dis
cations are always of equal and opposite strength, and
vanish only simultaneously. Bulk dislocations are sources
internal stress, are the carriers of plastic distortion, and
they move they change their line length and sense. Sur
dislocations are merely slip traces, once formed they do
move relative to the crystal, their line sense is defined by
contour of the intersection of slip planes and the crystal s
face, and they are not associated with the stress field.

It can be easily argued that for every finite, reasona
large volume of a crystal undergoing astatistically homoge-
neousplastic distortion, the two sides of Eq.~8! vanish. This
also means that the mean curvature of the crystal volu
under consideration vanishes, which is the case consider
the present formulation. The general case, however, is a
tematic extension. Mathematically, then, we consider

A5E
V

adV50, ~9!

which is also a property of a system of closed dislocat
network. Consequently,
l
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dt

5
d

dtEV
adV50. ~10!

The result~7! can be viewed asthe principle of invariance of
the total Burgers vectorof the crystal in the general case
where both bulk and surface dislocations contribute. Ho
ever, when the mean curvature vanishes, it takes the form~9!
or ~10!.

The result~10! is valid for every dislocation population
having the same Burgers vector~e.g., those on colinear slip
systems!, provided that reactions involving various Burge
vectors are not allowed to occur. This can be visualized
considering the fact that, in the absence of reactions, di
cations of the same Burgers vector can exist in either clo
loop ~not necessarily planar! or line ~ending on the surface!
configurations. In reality, however, it is possible that tw
segments of different Burgers vectors react to produce a
ment of a third Burgers vector. These reactions lead to
destruction and creation of scalar dislocation densities.
result~10! can thus be specialized for individual slip system
provided that tensorial balance terms representing react
among various slip systems and cross slip are added. In o
words, for thei th slip system one obtains

d

dtEV
a( i )dV5E

V
( S( i )dV; i 51,N. ~11!

(S( i ) includes all possible tensorial sources, mainly tho
resulting from Burgers vector reactions and cross slip. T
tensorial source due to cross slip, which represents tran
of screw dislocations between colinear systems, must b
opposite sign for the two involved systems. Therefore, t
source can only appear at the slip system level. Also, du
the fact that annihilating species must be of the oppo
sense, the sources associated with these reactions a
only at the level of individual slip systems. The same arg
ment extends to sources associated with reactions leadin
production of segments of new Burgers vector. In oth
words, if Eq.~11! is summed over all slip systems, the tens
source terms cancel each other, and the result~10! is recov-
ered.

C. The evolution in the phase space

The result~11! is now combined with the phase-spa
representation of dislocation densities. A minor notation
justment is made;dV will be replaced bydx. The right-hand
side of Eq.~11! can be written in the form

d

dtEx
a( i )~x,t ! dx5

d

dtEx
E

v
E

u
t^ b( i )f ( i )~x,v,u,t ! dxdvdu,

~12!

in which d/dt is the total time derivative operator. The righ
hand side can be broken into two integrals as below

E
x
E

v
E

u

dt

dt
^ b( i )f ( i ) dxdvdu1E

x
E

v
E

u
t^ b( i )

df ( i )

dt
dxdvdu,

~13!

where the arguments off ( i ) are dropped for simplicity. In
the case of a finite deformation, the operatorsd/dt and *x
may commute only in a material or Lagrangian frame, wh
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will be considered in a future development. As previou
mentioned, only infinitesimal deformation is consider
here. The first integral in Eq.~13! can be evaluated as fo
lows. Definew(u)5*vf

( i )(v,u)dv, therefore,*v*u(dt/dt)
^ b( i )f ( i )dvdu reduces to*u(dt/dt) ^ b( i )w(u)du. Since t
5t(u), then dt/dt5 u̇(]t/]u). In addition, by using
(]t/]u)w5]/]u(tw)2t(]/]u)w, one finally obtains

E
x
E

v
E

u

dt

dt
^ b( i )f ( i ) dxdvdu

52E
x
E

v
E

u
t^ b( i )u̇

]f

]u
( i ) dxdvdu, ~14!

where@ t^ b( i )w(u)#0
2p50 was substituted, and the definitio

of w was reversed. The second integral in Eq.~13! is sys-
tematically found to be

E
x
E

v
E

u
t^ b( i )

df ( i )

dt
dxdvdu5E

x
E

v
E

u
t^ b( i )S ]

]t
1v•¹

1 v̇•¹v1 u̇
]

]u Df ( i ) dxdvdu.

~15!

Substituting Eqs.~14! and ~15! into Eq. ~12!, the latter sim-
plifies to

d

dtEx
a( i )~x,t ! dx5E

x
E

v
E

u
t^ b( i )S ]

]t
1v•¹

1 v̇•¹vDf ( i ) dxdvdu, ~16!

where the terms containingu̇(]/]u) cancel each other. Th
left-hand side of Eq.~12! can also be represented by a pha
space integral of scalar source functions

E
x
( S( i )dx5E

x
E

v
E

u
t^ b( i )( S( i ) dxdvdu. ~17!

By equating the right-hand sides of the last two equati
and removing the integral signs, a partial differential eq
tion for the distributionf ( i )(x,v,u,t) can be rewritten in the
form

S ]

]t
1v•¹1 v̇•¹vDf ( i )5( S( i ); i 51,N. ~18!

in which (S( i ) is a superposition of all possible scal
sources contributing to the time rate of change of the dis
butionf ( i ). This set of equations will be subsequently call
the set of kinetic equations.

The scalar dislocation densities can be created or
stroyed by~1! annihilation reactions of elements of oppos
sense,~2! cross slip of dislocations or annihilation via cro
slip, ~3! reactions between segments on two slip syste
giving rise to a segment with a third different Burgers vect
and ~4! multiplication. Annihilation of elements of opposit
sense which have the same Burgers vector do not appea
tensorial representation, since they cancela priori. Cross slip
and reactions involving different Burgers vectors result
-

s
-

i-

e-

s
,

n a

nonvanishing tensorial contributions. Expressions for
scalar sources are given in Sec. II F.

D. The continuity equation for the dislocation density tensor

The continuity of the total dislocation density tensora,
see Refs. 38, 42, and 43, can be recovered in two st
taking the zeroth-velocity-first-angular moment of the kine
equation~18!, then summing over all slip systems. Multipl
Eq. ~18! by t^ b( i ) and integrate over the phase space,

E
x
E

v
E

u
t^ b( i )S ]

]t
1v•¹1 v̇•¹vDf ( i ) dxdvdu

5E
x
E

v
E

u
t^ b( i )( S( i ) dxdvdu

5E
x
( S( i )dx. ~19!

By definition, the integral over the phase space oft
^ b( i )(]f/]t)( i ) yields ȧ( i ); see Eq.~3!. In order to manipu-
late the second term to the left-hand side of Eq.~19!, the
following identities are used: v•¹f ( i )5¹•(vf ( i ))
2(¹•v)f ( i ); ¹•v50 sincex and v are independent phas
space coordinates;“3@ t3(vf ( i )) ^ b( i )#5t^ b( i )(v•“f ( i ))
2v^ b( i )(t•“f ( i )); t•“f ( i )5“•(tf ( i ))2f ( i )

“•t50; “•t
50, and since dislocation lines are continuous“•(tf ( i ))
50. With this in mind, the second integral term becomes

E
x
E

v
E

u
t^ b( i )v•“f ( i ) dxdvdu

5E
x
E

v
E

u
“3t3v^ b( i )f ( i ) dxdvdu

5E
x
E

v
E

u
“3vn( i )

^ b( i )f ( i ) dxdvdu

5E
x
“3J( i ) dx. ~20!

It can be easily verified that the third integral ter
to the left-hand side of Eq.~19! vanishes identi-
cally. To show this, first usev̇•¹vf ( i )5¹v•( v̇f ( i )).
Then, t^ b( i )*v¹v•( v̇f ( i ))dv 5 t^ b( i )¹v•*v( v̇f ( i ))dv
5t^ b( i )¹v•(^v̇&w ( i )(u))50, where w ( i )(u)5*vf

( i )dv.
Equation~19! therefore simplifies to

E
x
S ]a

]t
( i )1¹3J( i )Ddx5E

x
S( i )dx, ~21!

for some arbitrary crystal volume. Upon summing over
slip systems, the source terms cancel. Furthermore, by lo
ization one obtains

]a

]t
1“3J50, ~22!

as predicted by the classic theory of dislocation fields. Eq
tion ~22! shows that the local density tensor can only chan
due to the motion of dislocations regardless of the dislo



-
st

on
n

he
nd
f

to

-
d
t

od
nt
c

to
er
es
th
ys

, a

la

ti
s
el

t
in
-
e

is

a
d

of
,
th

, a
-
c.
s-

y

ic
m.

de

of
be

tion
el-

ess
u-

rce

The
n-

ns

A6,
ng

our

ub-
t. A

11 960 PRB 61A. EL-AZAB
tion reactions. Aifantis7 argues that to derive the macro
scopic balance law~22!, various dislocation reactions mu
not be allowed. Mescheryakov and Prockuratova13 have re-
ported a nonvanishing right-hand side for the continuity c
dition ~22!. Anthony and Azirhi23 made the same suggestio
for the case of generation or annihilation reaction, see t
Eq. ~66!. We remark here, without proof, that the right-ha
side of Eq. ~22! must remain zero, i.e., the only way o
introducing additional contribution to the net Burgers vec
contained by a Burgers circuit~fixed onto the crystal! is via
motion of dislocation into this circuit.

E. Driving force and the dislocation equation of motion

Glide of dislocations is determined by the externally im
posed stress, lattice resistance, short-range reactions, an
long-range stress. The intrinsic lattice resistance includes
Peierls resistance and electron and phonon drag. In b
centered-cubic~bcc! crystals, the Peierls barrier is significa
and exhibits strong temperature dependence. In fa
centered-cubic~fcc! crystals, the Peierls barrier gives rise
a small resistance to the dislocation motion. Jogs and en
radiation also result in dragging forces. For a review of th
topics, the reader is referred to Refs. 24–26. Here only
drag mechanism is mentioned, which is relevant to fcc cr
tals. For a test dislocation line of velocityv and line direction
t, the induced drag forcefdt is given by

fdt52Bv52Bvj, ~23!

whereB is a drag coefficient andj5j(u)5v/v5n( i )3t is a
unit vector along the direction of motion.

The long-range stress field of dislocationss̃ is strongly
fluctuating since dislocations are discrete stress sources
it can be approximated by a stochastic~fluctuating! compo-
nent which accounts for the dislocation-dislocation corre
tion sf , superimposed on a slowly varying~mean-field! com-
ponent determined by the dislocation density tensorsa, that
is s̃5sf1sa. This superposition has been previously jus
fied by other authors.27–29 Here, a simplified argument i
used to reveal the origin of the stochastic long-range fi
within the present framework.

A discrete dislocation system can be viewed as a se
lines each of which is a sequence of small segments glid
at discrete velocitiesVk5Vk(t), centered at discrete loca
tionsXk5Xk(t) and having line orientation described by th
angle Qk5Qk(t) in the phase space (x,v,u). Hence, the
phase-space distributions corresponding to a discrete d
cation system has the formf̃ ( i )(x,v,u,t)5% ( i )(kd(x
2Xk)d(v2Vk)d(u2Qk), where% ( i ) can be regarded as
time-dependent normalization factor. These phase-space
tributions must individually satisfy divergence conditions
the form“•@ t(u)f̃ ( i )#50. Obviously, in this representation
the summation must be replaced by a product operation if
spatial dislocation-dislocation correlation is to be effected
was suggested by Kro¨ner11 ~spatial correlations are not con
sidered here!. Following the procedure explained in Se
II B, the following kinetic equation is obtained for the non
mooth functionf̃ ( i )(x,v,u,t)
-

ir

r

the
he
y-

e-

gy
e
e
-

nd

-

-

d

of
g

lo-

is-

e
s

S ]

]t
1v•¹1 v̇̃•¹vD f̃ ( i )5( S( i ); i 51,N, ~24!

in which the accelerationv̇̃ is also a nonsmooth function. B
splitting f̃ ( i ) into its mean~smooth! valuef ( i ) plus a fluctu-

ating termdf ( i ), similarly, writing v̇̃5 v̇1d v̇ and carrying
out ensemble averaging, Eq.~24! can be rewritten in the
form

S ]

]t
1v•¹1 v̇•¹vDf ( i )1^d v̇•¹vdf ( i )&5( S( i ); i 51,N.

~25!

If the dynamics of the system is such thatf̃ ( i ) remains close
to f ( i ) at all times, the quantitŷd v̇•¹vdf ( i )& should iden-
tically vanish for a large volume. In the classical kinet
theory, this quantity gives rise to the so-called collision ter
It can be easily shown that the fluctuating stress fieldsf is
determined by the fluctuationsdf ( i ). Again, ^sf& vanishes
for a large volume iff̃ ( i ) remains close tof ( i ).

Upon ignoring the internal stress fluctuations, the gli
force per unit length of the dislocation linefgt

( i ) is given by the
celebrated Peach-Koehler formula

fgt
( i )5~b( i )

•@s°1sa#•n( i )!j, ~26!

in which s° is the applied stress field. A complete form
the equation of motion for a dislocation line can then
written as follows:

fgt
( i )2Bv2sgn~ fgt

( i )! f Pj1G5F~ v̇,v,g!, ~27!

in which F( v̇,v,g) is a vector function of its arguments,G is
a stochastic force field associated withsf , andg denotes any
other parameters on which the acceleration of disloca
lines might depend. Inverting the last equation for the acc
eration

v̇5C~ fgt
( i ) ,v, f P ,G,g!, ~28!

which provides the connection between the lattice str
field, applied plus long-range, and evolution of the distrub
tions f ( i ) described by the kinetic equations~18!.

F. Scalar source terms

To demonstrate how various contributions to the sou
term to the right-hand side of equation~18! are formulated,
the primary slip systems in an fcc crystal are considered.
notation of Schmid and Boas30 is used here, see also Fra
coisi and Zaoui.31 The slip planes (1̄11),(111),(1̄1̄1),(11̄1)
are labeled A, B, C, and D, and the slip directio

@011#,@01̄1#,@101#,@ 1̄01#,@ 1̄10#,@110# are labeled 1, 2, 3,
4, 5, and 6, respectively. The 12 slip systems are A2, A3,
B2, B4, B5, C1, C3, C5, D1, D4, D6. Slip systems shari
the same Burgers vector are calledcolinear, and those shar-
ing the same slip plane are calledcoplanar. Therefore, in fcc
crystals, there are six pairs of colinear systems, and f
triplets of coplanar systems.

Throughout this subsection, the source terms will be s
scripted by the initial letters of the process they represen
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constantR, with this subscript, along with a probabilit
~cross-section-like! functions are used as proportionality c
efficients. These coefficients can be obtained by mode
the behavior of individual dislocations. Hirth and Lothe32

give a detailed account of dislocation-dislocation reaction
short range. Due to the size of this paper, only the ma
ematical form of reaction rate terms is shown, and formu
for these rate coefficients are kept for a future publicatio

Cross slip: Cross slip is a process by which a screw d
location changes its glide plane. According to Devincre33

the probability rate for cross slip, per unit length of a sing
screw dislocation, is given bypcse

2Q(t)/kBT, wherepcs is a
normalization factor,Q(t) is an activation energy which is
function of the resolved shear stresst on the cross slip plane
kB is the Boltzmann constant, andT is the absolute tempera
ture. With a phase-space representation of the disloca
species, cross slip from thei th to the j th slip system gives
rise to the source term

Scs
( i )~v,u!52Rcse

2Q(t( j ))/kBTd~u2ucs!f
( i )~v,ucs!,

~29!

where d(u) is the Dirac delta distribution. The angleucs
defines the line sense for cross slip; that ist(u)•b( i )561,
which is satisfied by two values ofu. On thej th slip system,
the source term is also localized at the cross slip angle.
given by

Scs
( j )~v,u!5Rcse

2Q(t( j ))/kBTd~u2ucs!

3E
v8

f ~v,v8!f ( i )~v8,ucs! dv8, ~30!

in which f (v,v8) refers to the probability that a cross-slippe
element has velocityv, and the integration overv8 takes into
account all cross slipping dislocation elements. Thus, cr
slip results in linear coupling of the set of equations~18!.
Satisfaction of a cross slip criterion can be imposed for cr
slip to occur from a particular slip system to another; s
Ref. 33.

Annihilation reactions: Two dislocation elements can an
nihilate each other if they have the opposite sense and
same Burgers vector. Dislocations on colinear~cross slip!
systems annihilate if they are of screw character. If glide is
control this process, the two annihilating elements m
move on their respective planes until they coincide with
line of intersection of these planes. In reality, cross slip c
expedite the annihilation process. An annihilation rate te
due to cross slip can be formulated as follows:

Sacs
( i ) ~v,u!52Racsd~u2ucs!f

( i )~v,ucs!E
v8

f ( j )~v8,ucs!dv8.

~31!

The expression remains the same if the superscripts~i! and
~j! are switched. The line sense of the annihilating dislo
tions is determined byt(ucs

( i ))•t(ucs
( j ))521. It is also clear

that t(ucs
( i )1p)•t(ucs

( j )1p)521.
Dislocation elements of the same Burgers vector wh

share the same glide plane annihilate by glide for all val
of u. A rate term representing this process can be cast in
form
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Sagl
( i ) ~v,u!52Raglf

( i )~v,u!E
v8

f ( i )~v8,u1p!dv8,

~32!

where the velocity integral has been previously explain
Dislocations on parallel glide planes can also annihilate
they are of pure edge or screw character, two edge elem
can annihilate by climb, and two screw elements can ann
late by cross slip. For edge-type dislocation elements,
climb annihilation rate is

Sacl
( i ) ~v,u!52Racld~u2ucl!f

( i )~v,ucl!

3E
v8

f ( i )~v8,ucl1p!dv8. ~33!

Within the same slip system, the cross-slip-assisted annih
tion of screw dislocations is expressed by a rate term of
form

Sacs
( i ) ~v,u!52Racsd~u2ucs!f

( i )~v,ucs!

3E
v8

f ( i )~v8,ucs1p!dv8. ~34!

Reactions forming glissile segments: Based on experimen
tal observations, dislocations in a deformed crystal fo
three-dimensional networks. In such networks, the inters
tions are in the form of junctions of variable length. Mor
over, the junction can be either sessile or glissile. A deta
list of possible reactions in fcc crystals, determined by us
the linear elasticity theory, was developed by Hirth.34

In fcc crystals, see Schmid and Boas notation abo
(B2,B4)→B5, (B2,B5)→B4, and (B4,B5)→B2 are pos-
sible glissile-junction-forming reactions. However, for the
reactions to occur, the reacting segments must be aligne
such a way that these reactions areenergeticallyfavorable.
Ideally speaking, two parallel segments are in the most
vorable configuration, but small deviations from this situ
tion may not influence the outcome. Denote by the sup
scripts~i! and ~j! the reacting species and by the supersc
~k! the product species. For every orientation on thei th spe-
cies, letQg j

j be the range of orientation of dislocations onj th
slip system within which glissile junction reactions withi th
slip system is possible. Source terms associated with
reaction are represented as follows. For thekth slip system,

Sg j
(k)~v,u!5Rg jp~u!E

Qg j
i ,Qg j

j
du8du9

3E
v8
E

v9
gf ( i )~v8,u8!f ( j )~v9,u9!dv8dv9,

~35!

in which p(u) defines the orientation of the resulting se
ment andg5g(v,v8,v9) is a measure of the probability tha
the reaction product comes out with velocityv. For the i th
and j th slip systems,

Sg j
( i )~v,u!52Rg jf

( i )~v,u!E
Qg j

j Ev8
f ( j )~v8,u8!dv8du8
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Sg j
( j )~v,u!52Rg jf

( j )~v,u!E
Qg j

i Ev8
f ( i )~v8,u8!dv8du8.

~36!

Noncoplanar systems such as pairs~B5,A2! and~B4,A2! can
also interact in a similar fashion to produce glissile se
ments. It is also possible that the product segment diss
ates, which can be easily accounted for.

It is important to notice that annihilation or glissile
junction-forming reactions yield binary collision sourc
terms, leading to quadratic coupling of the system of kine
equations~18!. These reactions lead to destruction of t
reacting species as opposed to just a change in velocity

Sessile junctions: Dislocation on slip system pairs such
~B5,A3! can form locks, a form of sessile junction, whic
can be destroyed if the stress acting on a junction arm
ceeds a certain value. The formation of locks reduces
velocities of the reacting species to zero without annihilat
them. If the i th and j th species form sessile junctions, th
source term can be written as follows:

Ss j
( i )~v,u!52Rs jf

( i )~v,u!E
Qs j

j Ev8
f ( j )~v8,u8!dv8du8

1Rs jkd~v!f ( i )~v,u!E
Qs j

j Ev8
f ( j )~v8,u8!dv8du8,

~37!

in which k is an adjustible coefficient andQs j
j is the orien-

tation range within which a sessile junction formation is po
sible. The first term to the right-hand side of equation~37!
expresses reduction at all other velocities, and the sec
expresses the density increase atv50, noticed(v). A similar
term can be written for thej th slip system.

Multiplication: At small strains, which is the case consi
ered here, the increase in the scalar dislocation density
curs mainly due to operation of Frank-Read sources.
density of these sources is essentially proportional to
amount of strain or the area swept by gliding dislocation35

A multiplication source term can be written in the form

Sm
( i )~v,u!5Rmq~v!E

v8
E

u
v8f ( i )~v8,u8!dv8du8, ~38!

in which the functionq(v) determines the velocity distribu
tion of the source. This source term is considered here to
isotropic with respect tou. In a bcc crystal deforming at low
temperature, the Frank-Read source is anisotropic, leadin
forming more screw dislocation lines than edge-type lin
This anisotropy can be easily accounted for using a sim
geometric argument.

G. The kinetic equations

In the system~18!, the dependence on the angular varia
u is both implicit and explicit. In the left-hand side, no pa
tial derivatives with respect tou appear, butv and v̇ depend
on u. The source terms~29! through~38! bring in the angular
dependence explicitly. In particular, the terms~35!, ~36!,
~37!, and~38! involve integrals with respect tou. The system
~18! is thus an integro-differential equation system.
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The final form of the system of kinetic equations~18! is
expressed as follows:

S ]

]t
1v•¹1C•¹vDf ( i )5Y ( i )~f!; i 51,N, ~39!

in which f is the set of phase-space distributions, a
Y( i )(f) is a functional off ( i ) and the subset off contrib-
uting to its source, and the expression~28! for the accelera-
tion has been used. The set of kinetic equations~39! is non-
linear since the driving force for dislocation motion is
functional of all phase-space distributions. Further detai
investigation is needed to determine the functionalF ~or C)
and the stochastic force termG.

III. A SPECIAL CASE

The excercise presented in this section shows how m
roscopic transport equations can be derived from the kin
equations developed in Sec. II. A formal treatment of t
three-dimensional case will be published in the future.

Aiming at investigating the effect of the long-range natu
and the spatial angular dependence of the interaction fo
between dislocations, Groma36 used some statistical physic
concepts to develop a model of a system of parallel e
dislocations in a single slip configuration. In doing so,
focused on the spatial correlation between dislocations, u
the two-dislocation correlation, without consideration of v
locity dependence. In this section, the final results of
model are recovered as a special case.

A Cartesian frame with basis (ex ,ey ,ez) is considered.
The slip plane is thezx2plane, with normaln5ey . The
Burgers vector isb5bex . Two groups of edge-type disloca
tions extending along thez axis with line vectorst15ez and
t252ez are considered. Dislocations are assumed to be
domly distributed in thexy plane. In this case, the only avai
able distribution function f(x,v,u,t) and its source
S(x,v,u,t) are written as follows:

f~x,v,u,t !5f1~x,v,t !d~u2p/2!1f2~x,v,t !d~u23p/2!,

S~x,v,u,t !5S1~x,v,t !d~u2p/2!1S2~x,v,t !d~u23p/2!,
~40!

indicating two distributions and two sources localized on
angular coordinate. In this representationu is measured
clockwise, relative to thex axis, in the slip plane when
viewed downward they axis. The kinetic equation system
~18! reduces to

S ]

]t
1v•¹1 v̇•¹vDf~x,v,u,t !5S~x,v,u,t !. ~41!

The governing equations for the two distributionsf1 andf2,
in terms of their respective sourcesS1 andS2, can be devel-
oped by integrating equation~41! with respect tou twice
over arbitrary intervals enclosingu5p/2 andu53p/2, and
using the filtering property of the Dirac delta function. Th
leads to separation of the two populations. The govern
equations are found to be

S ]

]t
1v•¹1 v̇•¹vDf1~x,v,t !5S1~x,v,t !,
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S ]

]t
1v•¹1 v̇•¹vDf2~x,v,t !5S2~x,v,t !. ~42!

Multiplying the above two equations bydv and integrating
with respect tov, we arrive at

]%1~x,t !

]t
1¹•„v̄1%1~x,t !…5g1~x,t !,

]%2~x,t !

]t
1¹•„v̄2%2~x,t !…5g2~x,t !, ~43!

where% i(x,t)5*vf i(x,v,t)dv, gi(x,t)5*vSi(x,v,t)dv, and
v̄i(x,t)5*vvf i(x,v,t)dv/*vf i(x,v,t)dv; i 51,2. v̄1 and v̄2
are the mean velocities. A linear velocity law of the for
~23! is used to bring the resolved shear stress~Peach-Koehler
force! into the above equations. Furthermore, upon add
and subtracting the these two equations, the governing e
tions for the sum and difference are found to be

]%~x,t !

]t
1b

]

]x
~t~x,t !z~x,t !!5g%~x,t !,

]z~x,t !

]t
1b

]

]x
~t~x,t !%~x,t !!5gz~x,t !, ~44!

in which %5%11%2 , z5%12%2 , g%5g11g2 , gz5g1

2g2, and the substitutionsv̄15vex , v̄252vex , v5bBt
were made. The timet is replaced byBt, and only]/]x is
considered since the dislocation motion is restricted to b
the slip plane. The shear stresst is given byt5ut°1tzu; t°
is externally applied andtz is obtained in terms of the dis
location density tensora5(%12%2)ez^ bex5zez^ bex , see
Eq. ~2!. As shown in Sec. II F, for the present special ca
the source terms include annihilation via glide and climb a
production. The set of equations~44!, with an equation gov-
erning the long-range stress,37 constitute the final set of equa
tions of the model summarized in Ref. 36. The linear sta
ity analysis conducted by Groma shows that ifdg% /d% is
positive, a homogeneous stationary solution is unstable
density perturbations grow, leading to pattern formation.
enforcing certain simplifications about the problem dime
sionality and the characteristics of the dislocation syste
other models such as those developed by Aifantis,7,8 Wal-
graef and Aifantis,9 and Kratochvil and co-workers10 are
readily recoverable as special cases.

IV. THE INITIAL-BOUNDARY-VALUE PROBLEM

A. The mechanical boundary conditions

The kinetic behavior of a dislocation system in a defor
ing crystal is analogous to the behavior of ion-electron pl
mas. One important aspect of similarity is that, for both s
tems, the kinetic equations describing the evolution in
phase space must be complemented by another set of e
tions describing the long-range interactions and the ba
ground force field. In the case of a plasma, the kinetic eq
tions are complemented by the famous set of Maxwe
equations in free space. In the case of dislocations, the la
stress field is obtained by solving the stress equilibri
equations.
g
a-

in

,
d

l-

nd
y
-
,

-
-
-
e
ua-
k-
a-
s
ce

A crystal can be subjected to either stress or displacem
boundary condition, or both~mixed!. When stress boundar
conditions are applied, the total stress field is computed
superposition of the applied stress and the long-range st
The former satisfies the applied boundary condition wh
the latter satisfies traction-free boundary condition. In sa
fying a displacement boundary condition, however, both
elastic and plastic distortions must be combined to match
boundary displacement. Here, remarks are given on conv
ing the displacement~or mixed! boundary value problem
into a stress boundary value problem. The latter is then s
marized in more detail in the following subsection.

Consider a crystal volumeV with boundary]V which is
subjected to a displacementub(x,t);xP]V for all t. Hence,
the surface displacement gradient¹su

b5n3¹ub, with six
independent components, is known. It can be easily sho
that n3¹ub5n3(b°1db1dbP), in which b° is the elas-
tic distortion associated with the boundary traction, anddb
anddbP are the changes in the elastic distortion due to d
locations and the plastic distortion, respectively, over timt.
By usingb°5C21:s°, one may write

n3C21:s°5¹su
b2n3db2n3dbP; xP]V, ~45!

in which s° is the boundary value of the stress field equiv
lent to the traction needed to sustain the boundary displa
ment field ub(x,t) in the presence of evolving dislocatio
field. The termn3db is the accumulated change in the~non-
integrable! elastic surface displacement gradient, consist
with the long-range stress of dislocations, from the onse
loading to timet. It is dependent only on the initial and fina
states of the dislocation field. Similarly,n3dbP is the accu-
mulated change in the~nonintegrable! plastic surface gradi-
ent over the same period of time. It depends on the histor
the dislocation flux at the boundary. From Eq.~45!, the six
given components of¹su

b can be used to determine the s
components ofs° or, rather, the equivalent boundary tra
tion

t°5n•s°. ~46!

In what follows the stress boundary value problem is sta
and, for simplicity, the lattice inertia is ignored.

B. The dislocation-dynamics boundary value problem:
Traction boundary condition

Upon loading, the crystal responds elastically until dis
cations start to move somewhere in the crystal. Howev
unless the density of dislocations is nonzero, the local pla
distortion rate remains zero. Hence, for a nontrivial plas
disortion rate, the following conditions must be simult
neously satisfied:

fgt.Rt and f ( i )~x,v,u,t !.0, ~47!

in which Rt includes all resistive forces. It is obvious that
no dislocations are present, the stress alone cannot c
plasticity.

The applied stress boundary value problem. The applied
stress field is the solution to the following boundary val
problem:

¹•s°~x,t !50; xPV for all t,
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n•s°~x,t !5t°~x,t !; xP]V for all t, ~48!

wheret°(x,t) is the prescribed boundary traction.
The long-range stress boundary value problem. In a

bounded crystal, the nonfluctuating component of the lo
range stress fieldsa is given by

sa5ss1si , ~49!

wheress is the field of dislocations whenV is embedded in
an infinite medium, andsi is the image field. For an infinite
crystal, the long-range stress field has only one compon
ss, which is generally nonvanishing prior to loading. Th
stress fieldss is the solution to the following boundary valu
problem:

¹•ss~x,t !50; xPV for all t

ss~x,t !→0; as uxu→` for all t,

ss5C:~bs2bP!, bs5¹us, ~50!

in which bs is the total distortion in the unloaded dislocat
crystal, andus is a corresponding displacement field. It c
be easily verified that the solution forss depends only on the
dislocation state in the crystal, i.e., on¹3bP, but not onbP

itself.38 When the crystal is finite the image fieldsi is
needed to satisfy the traction-free boundary condition for
overall long-range stress field. This field is found by solvi
the boundary value problem

¹•s i~x,t !50; xPV for all t,

n•s i~x,t !52n•ss~x,t !; xP]V for all t. ~51!

The image fields i is also dependent on the dislocation sta
in the crystal.

The dislocation field: kinetic equations. The evolving dis-
location field satisfies the set of kinetic equations

S ]

]t
1v•¹1C•¹vDf ( i )5Y~f!; i 51,N. ~52!

The short-range interactions determine the functionalY(f),
see Sec. IV F. Rules for cross slip, short-range interactio
and internal stress fluctuations~or stochastic force field! can
be specified. As previously mentioned, the set~52! consists
of nonlinearly coupled integrodifferential equations.

The dislocation field: equation of motion. The equation of
motion

fgt
( i )2Bv2sgn~ fgt

( i )! f Pj1G5F~ v̇,v,g!, ~53!

couples the elastic stress field with the evolution of distrib
tionsf ( i ). Ignoring the crystal inertia, in a sense, implies th
the dislocation acceleration may be ignored. Thus, the eq
tion of motion~53! can be used to determine the velocity
dislocations in terms of the local mean force field. Also, t
term v̇•¹vf ( i ) drops from the kinetic equation.

The dislocation field: initial and boundary condition.
Prior to loading, the initial dislocation system is under m
chanical equilibrium, and the initial phase-space densi
can be expressed as follows:
-

nt,

e

s,

-
t
a-

-
s

f ( i )~x,v,u,0!5d~v!w ( i )~x,u!; i 51,N. ~54!

Obviously, the distributionsf ( i ) are periodic with respect to
u. For first-order partial differential equations of the for
~52!, boundary condition may or may not be specified. In
bounded crystal, if dislocation emission is not permitted
its surface, neither the flux nor scalar density of dislocat
needs to be specified on the boundary. If the crystal spac
a representative volume element of a large crystal unde
ing statistically homogeneous plastic distortion, the inwa
dislocation flux must be specified.22

The plastic distortion and slip trace fields. The rate of
plastic distortion is given by Eqs.~5! and ~6!. Its time inte-
gral,

bP5E
2`

t

ḃPdt, ~55!

is needed to determine the boundary traction, see Eqs.~45!
and ~46!, the long-range stress field, see Eqs.~50! and ~51!,
and the intensity of slip trace formation on the surface,as

5n3bP.

V. DISCUSSION

A kinetic framework for the evolution of the dislocatio
density and plastic distortion fields in a single crystal is fo
mulated. The formulation is based on two aspects of
dislocation system, the statistics and dynamics, which ge
ally suffice to apply the statistical mechanics concepts. D
locations are viewed as reacting-diffusing-multiplying sp
cies in an otherwise linear elastic crystal, which is consist
with the notion of multiple natural configurations introduce
and elaborated in Refs. 39–41. This notion is also implied
computer simulation models.14,15The integral of the disloca-
tion density tensor over the crystal volume is found to be
conserved quantity. From the invariance of this integral,
set of kinetic equations governing the evolution of the pha
space distributions is derived. The kinetic equations
strongly nonlinear. This nonlinearity arises in two way
through the quadratic reaction terms and through the dep
dence of the long-range stress field~driving force for motion!
on the overall dislocation density in the crystal. The plas
distortion, defining the irreversible plastic strain and latti
rotation, is readily determined from the transport of the d
locations in the crystal, Eqs.~5! and ~6!.

The kinetic formulation presented here represents an
portant step in developing further theoretical formulatio
for the problem of crystal plasticity. For example, similar
the development of fluid models of plasmas or the Navi
Stokes equations of fluids, a systematic development of
macroscopic transport equations should lead to defining
properties of single crystals which are relevant to plastic
formation. These properties will appear naturally as coe
cients in the macroscopic transport equations and can be
veniently computed via numerical treatment of the kine
equations, for example, by a lattice Boltzmann or a kine
Monte Carlo technique. The transport properties norma
embody the characteristic length and time scales for the
tiotemporal evolution of the dislocation field in the crysta

Certain aspects of the role of plastic strain gradients
crystal plasticity may also be investigated through the kine
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treatment presented here. A single dislocation line repres
the gradient of plastic distortion in its immediate neighb
hood. Hence, integrals of the formw ( i )5*vf

( i )dv are angu-
larly dependent shear strain gradients on various crystal
systems. In a macroscopic transport framework, the Or
an’s equation for the shear strain rate on a particular
system becomesġ ( i )(x,t)5b( i )*uv̄w ( i )(x,u,t) du, in which

v̄5 v̄(u) is the mean glide velocity at orientationu. This
representation asserts that the rate of plastic distortion is
early depedent on the shear strain gradient.

Other theoretical developments can be made possib
the present formulation is extended to deal with finite def
mation cases. Under such situations, the difference betw
the Eulerian~spatial! and Lagrangian~material! form of the
kinetic equations will become significant and the deform
tion kinematics must be introduced into the formulatio
Also, at high dislocation densities, it will be required to a
count for the dislocation-dislocation correlations in order
capture the effects of dislocation multipoles. Some of th
issues are currently under investigation.
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APPENDIX

Referring to Eqs.~5! and ~6!, the rate of the plastic dis
tortion can be rewritten in the form

ḃP5(
i 51

N E
u
t3 v̄^ b( i )w ( i )~x,u,t !du, ~A1!

where v̄ is the mean velocity at orientationu which is de-
fined by

v̄5

E
v
vf ( i )~x,v,u,t !dv

E
v
f ( i )~x,v,u,t !dv

. ~A2!

In the right-hand side of Eq.~A2!, the denominator is itsel
w ( i )(x,u,t). By taking the curl of Eq.~A1! and integrating
over the volume, one obtains

E
V

¹3ḃP~x,t !dV5E
V

dV(
i 51

N E
u
¹3 j ( i )~x,u,t !du,

~A3!
ts
-

lip
-

ip

n-

if
-
en

-
.

e

d
,
e
-
y
-
,
al,
ra
k

in which the partial flux tensorj ( i ) is defined byt3( v̄w ( i ))
^ b( i ). The following identity can be easily verified:

¹3 j ( i )5¹3@ t3~ v̄w ( i )! ^ b( i )#

5~ t^ b( i )!„j•¹~ v̄w ( i )!…2~j^ b( i )!„t•¹~ v̄w ( i )!…,

~A4!

wherej is a unit vector alongv̄, that is v̄5 v̄j. After using
the following identities:

j•¹~ v̄w ( i )!5
]~ v̄w ( i )!

]j
,

j•¹~ v̄w ( i )!5¹•~jv̄w ( i )!2~ v̄w ( i )!¹•j5¹•~jv̄w ( i )!,

¹•j50,

¹•~jv̄w ( i )!5
]~ v̄w ( i )!

]j
1

]~ v̄w ( i )!

]t
1

]~ v̄w ( i )!

]n( i )
,

]~ v̄w ( i )!

]t
505t•¹~ v̄w ( i )!, ~no flux alongt!,

]~ v̄w ( i )!

]n( i )
50, ~no climb flux!. ~A5!

“3 j ( i ) reduces to“•( v̄w ( i ))t^ b( i ). In the above, (t,j,n( i ))
form a right-handed orthogonal set of unit vectors. Equat
~A3! can be recast in the form

E
V

¹3ḃP~x,t !dV5E
V

dV(
i 51

N E
u
¹•„v̄w ( i )~x,u,t !…t

^ b( i )du. ~A6!

By integrating with respect to time and applying the Gau
theorem, Eq.~A6! can be rewritten as follows:

E
V

¹3bPdV5E
2`

t

dt8E
u
duE

]V
(
i 51

N

t

^ b( i )~n• v̄!w ( i )~x,u,t8!dS, ~A7!

which is Eq.~8! of Sec. II B.
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