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Green’s-function Monte Carlo for lattice fermions: Application to the t-J model

C. Stephen Hellberg
Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20305

Efstratios Manousakis
Department of Physics and MARTECH, Florida State University, Tallahassee, Florida 32306-3016

~Received 5 November 1999!

We develop a general numerical method to study the zero-temperature properties of strongly correlated
electron models on large lattices. The technique, which resembles Green’s-function Monte Carlo, projects the
ground-state component from a trial wave function with no approximations. We use this method to determine
the phase diagram of the two-dimensionalt-J model, using the Maxwell construction to investigate electronic
phase separation. The shell effects of fermions on finite-sized periodic lattices are minimized by keeping the
number of electrons fixed at a closed-shell configuration and varying the size of the lattice. Results obtained for
various electron numbers corresponding to different closed shells indicate that the finite-size effects in our
calculation are small. For any value of interaction strength, we find that there is always a value of the electron
density above which the system can lower its energy by forming a two-component phase separated state. Our
results are compared with other calculations on thet-J model. We find that the most accurate results are
consistent with phase separation at all interaction strengths.
d
n
t
d
iti
bl
re
al
ze
Th
b
e

in
,

v
e
th
ly

th

t
o

ith
ith
.
si

ita

u
ou
, i

u-
the
fine

e
er
ies
he
-

e-
ex-

icu-
um
n
ore
ved

in

nal
sta-
for

d
ion

of
ns
he
s
t it
ro-
I. INTRODUCTION

Correlated quantum many-body systems have provide
host of new phenomena such as new states of matter,
forms of ordering transitions, etc. These phenomena are
result of the appearance of fundamentally new relevant
grees of freedom which emerge as a coherent superpos
of the underlying degrees of freedom of the many varia
system. Once one identifies the important degrees of f
dom, these degrees of freedom can be treated by analytic
semianalytical techniques which are variants of generali
perturbation expansions around the defining framework.
problem which arises is that such frameworks cannot
imagined before hand unless there are hints from either
periment or numerical studies of models correctly captur
the dynamics of more basic degrees of freedom which
first sight, seem featureless.

Several such models on a discrete lattice exist and a
riety of numerical techniques are at our disposal to us1

Exact diagonalization techniques suffer from the fact that
dimensionalityNH of the Hilbert space grows exponential
with system sizeNs ~number of sites!. Taking into account
all the symmetries of the problem can reduce the size of
invariant subspaces to smaller sizeNR ~which may be a few
orders of magnitude smaller thanNH). However, the larges
possible size increases only with the logarithm of the ratio
NH /NR . In particular, most interesting quantities scale w
the linear dimension of the system which scales w
@ ln(NH /NR)#1/d whered is the dimensionality of the problem
Renormalization-group approaches, such as the den
matrix renormalization-group technique,2 have been very
successful in one dimension but there are significant lim
tions in higher dimensions.

Attractive alternatives seem to be stochastic methods s
as quantum Monte Carlo which can give information ab
larger size systems. Many interesting problems, however
PRB 610163-1829/2000/61~17!/11787~20!/$15.00
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volve fermionic degrees of freedom. If one attempts a sim
lation of fermions at low temperature one encounters
so-called fermion sign problem. Namely, one needs to de
configurations which carry a phase~a positive or negative
sign! along with their statistical weights, a reflection of th
transformation property of the fermion wave function und
particle permutation. In the computation of many quantit
of interest, such as the energy, the ‘‘positive’’ and t
‘‘negative’’ configurations give nearly opposite contribu
tions, leading to wildly fluctuating weights. The negativ
sign problem causes the statistical fluctuations to diverge
ponentially with increasing system size for fixed density.

The Green’s-function Monte Carlo~GFMC! method has
been successfully applied to lattice spin systems, in part
lar to the square lattice spin-1/2 Heisenberg quant
antiferromagnet.1,3–7 In this case, through the Marshall-sig
transformation, the problem can be mapped to a hard-c
boson problem which presents no sign problem and sol
accurately on large systems.

An approximate method to deal with the sign problem
fermionic systems is the fixed node~FN! approximation.8,9

This approach projects a trial state onto the best variatio
state with the same nodal structure, thus controlling the
tistical fluctuations. The FN approximation has been used
lattice fermion systems also.10–12

The GFMC method for lattice fermions without the fixe
node approximation has been applied to one-dimens
systems.13 In two dimensions it has been applied to thet-J
model in the limits of small numbers of electrons14 or
holes.15,16

In this paper, we present an efficient implementation
GFMC for lattice fermions at arbitrary densities of electro
or holes. We demonstrate the utility of the method in t
case of the two-dimensionalt-J model. The method project
a trial wave function onto the lowest energy eigenstate tha
overlaps. If the trial state overlaps the ground state, the p
11 787 ©2000 The American Physical Society
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11 788 PRB 61C. STEPHEN HELLBERG AND EFSTRATIOS MANOUSAKIS
jection yields the ground state. The projection becomes
tistically more accurate as the ground-state component o
trial state increases relative to the excited-state compone
Results obtained for thet-J model with this method have
been published by the authors.17 In this paper we present th
general method and in addition, our results for thet-J model
are presented in detail and compared with other recent
culations.

The t-J model is thought to contain some important a
pects of the environment in the copper-oxide supercond
ors. For instance, the calculated single-hole spectrum18 is in
agreement with the results of the photoemission data.19 The
model gives rise to a two-hole bound state15 with thedx22y2

symmetry which is the believed symmetry of the superc
ducting state in these materials. In addition, Emery, Kiv
son, and Lin20 ~EKL! suggested that the cuprates are near
electronic phase-separation~PS! instability which is pre-
vented by the long-range part of the Coulomb interaction
the phase-separated state, the holes cluster together w
certain density of electrons, leaving the rest of the system
an antiferromagnetic state with no holes. Phase separatio
the t-J model has been studied by a number of techniq
which seem to be giving conflicting conclusions.17,21–27

High-temperature series expansions23,24 and some studies o
small systems25 indicated that phase separation does not
cur at the physical region for the cuprates, namelyJ/t
;0.3–0.4, while other studies on small systems20,21 found
this region was unstable to phase separation. Using
GFMC method presented in this paper, Hellberg a
Manousakis17 found that thet-J model has a region of phas
separation atall interaction strengths.

In recent work, Calandra, Becca, and Sorella27 ~CBS! em-
phasize that the phase separated region does not ex
below J/t&0.4. In addition, the density-matrix
renormalization-group method has been also applied to
problem by White and Scalapino28,29 ~WS! who find that the
ground state of thet-J model on the square lattice is chara
terized by stripes.

In the last section of this paper, we compare our result
those of CBS and WS, concluding that the physical region
the model is very close to or inside of a PS instabili
Namely, the early conclusions thatthe physical region of the
t-J model is far from the critical Jc for phase separation, are
largely invalid.

II. NUMERICAL METHOD

Even though our formalism is general and can be app
to other lattice fermion models, we shall use the example
the t-J Hamiltonian on a two-dimensional square lattic
This model in itself is a nontrivial extension of the squa
lattice Heisenberg antiferromagnet1 where GFMC was first
applied on a lattice model.

The t-J model is written in the subspace with no doub
occupied sites as

H52t (
^ i , j &s

~cis
† cj s1H.c.!1J(

^ i , j &
S Si•Sj2

ninj

4 D . ~1!

Here ^ i , j & enumerates neighboring sites on a square latt
cis

† creates an electron of spins on sitei, ni5(scis
† cis , and

Si is the spin-12 operator.
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A. Details of the projection

We take a trial wave functionC and project it onto the
ground state by generating a series of increasingly accu
approximants to the ground state labeled by integersum&
5(H2W)muC&. Here H is the Hamiltonian andW is an
appropriately chosen numerical constant.30–33

We may expand the trial state in terms of the exact eig
states:

uC&5a0uF0&1a1uF1&1•••, ~2!

whereuF0& is the ground state,uF1& is the first excited state
and theai ’s are the expansion coefficients. Rewriting th
projected states in this way, we see

um&5~H2W!muC& ~3!

5a0~E02W!muF0&1a1~E12W!muF1&1••• ~4!

}H uF0&1
a1

a0
S E12W

E02WD m

uF1&1•••J , ~5!

where Ei is the energy of thei th eigenstate. Soum& ap-
proaches the ground state for largem provided

uEi .02Wu,uE02Wu ~6!

for all excited state energiesEi .0. The projection can be
formulated in this simple way because eigenvalues of lat
Hamiltonians are bounded from belowand above. Con-
tinuum problems require a different form for the projectio
operator.34,35 In what follows, we assume the offset consta
W is incorporated in the Hamiltonian.

From Eq.~5! we see rate of convergence withm is gov-
erned by the overlap of the trial state with the ground st
and the energy of the lowest excited state overlapping
trial state. In Sec. II D, we describe the steps taken to ins
fast convergence.

To calculate ground-state expectation values of an a
trary operatorA, we take the largem limit of

^F0uAuF0&

^F0uF0&
5 lim

m→`

^muAum&

^mum&
. ~7!

For large values ofm, we cannot evaluateHm directly.
The number of position-space states generated diverges
ponentially with the powerm, so we calculateHm by a sto-
chastic method similar to Neumann-Ulam matrix inversion36

We decomposeH into a product of a transition probability
pab to make a transition from statea to stateb and a re-
sidual weightwab as

Hab5pabwab , ~8!

where

(
b

pab51, pab>0. ~9!

To evaluate
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^a0uHmuam&5 (
a1 , . . . ,am21

^a0uHua1&

3^a1uHua2&•••^am21uHuam& ~10!

stochastically, we average overm-step random walksa0
→a1→•••→am21→am , where eacha i is a position space
state, giving each walk the accumulated weight

W~a0 ,a1 , . . . ,am!5wa0a1
wa1a2

•••wam21am
. ~11!

The probability of the walka0→a1 , . . .→am is

P~a0 ,a1 , . . . ,am!5pa0a1
pa1a2

•••pam21am
. ~12!

Thus it follows that

^a0uHmuam&5 (
a1 , . . . ,am21

W~a0 ,a1 , . . . ,am! ~13!

for a large number of walks guided by the probability~12!.

B. Importance sampling

The Monte Carlo sum~13! is evaluated most efficiently
using importance sampling. We cannot use the trial state
guiding function for the random walk, since the guidin
function must be positive for all allowed states. Labeling o
guiding functionCG, we let

pab5
1

za

Cb
G

Ca
G

Hab , ~14!

where the normalization is simply the local energy:

za5(
b

Cb
G

Ca
G

Hab . ~15!

Defined in this way, Eq.~14! satisfies Eq.~9!, and the re-
sidual weight is

wab5za

Ca
G

Cb
G

, ~16!

resulting in the accumulated weight for them-step walk
given by Eq.~11!.

For an antisymmetric trial wave functionCT, the standard
algorithm to evaluate

^CTuHmuCT&5(
a,b

Ca
T* ^auHmub&Cb

T , ~17!

whereCa
T* 5^CTua&, is to generate a set ofM initial states

$a i% with probabilities proportional toQa i
}uCa i

T u2 using

Metropolis sampling as in variational Monte Carlo. At ea
initial stateua i&, we start anm-step random walk, ending in
the stateub i&. For largeM,

^CTuHmuCT&→
1

M (
i 51

M Ca i

T* W~a i , . . . ,b i !Cb i

T

Qa i

. ~18!
a

r

C. An efficient approach

The standard algorithm is inefficient since a random w
in configuration space of lengthm must be generated fo
each term in the sum~18!. The details of the intermediat
states are thrown away. The expectation value^CuHmuC&
can be evaluated more efficiently if the generation of
initial states$a i% is combined with the generation of th
random walks. In the random walk, new states are cho
with a probability given by Eq.~14!. After a large number of
steps, these states are distributed with a probability

Qa}za@Ca
G#2 ~19!

which is derived by solving the ‘‘detailed balance’’ cond
tion

Qapab5Qbpba , ~20!

wherepab is the probability to make a transition from con
figurationa to b given by Eq.~14!, andQa is the probability
to visit a stateua&.37 Thus we may use states generated in
m-step random walk as initial states for newm-step random
walks.

For maximum efficiency, we use every state generated
the starting point for a new walk, so at each step we calcu
different stages ofm walks simultaneously. We simply gen
erate one very long random walk using the probability~14!.
At each step in the walk, we lookm steps into the past to
evaluate an element of Eq.~18!. The computer time neede
to calculate a given number of observations of^Hm& is inde-
pendent ofm. An additional advantage is that since only o
long random walk is generated, we may calculate all diff
ent powersm in parallel. The fundamental observation b
comes

^CTuHmuCT&5
1

M (
i 51

M Ca i 2m

T* W~a i 2m , . . . ,a i !Ca i

T

za i 2m
uCa i 2m

G u2
.

~21!

The method is easily generalized to evaluate the expe
tion value Am[^CuHmAHmuC& for any diagonal operator
A, such as the density or spin structure factorsninj andSi

zSj
z .

At each stage in the walk, we lookm steps into the past to
obtain the expectation value of^A& and 2m steps into the
past to calculate the accumulated weight. By summingM
observations from a walk, we find

Am5
1

M (
i 51

M Cak

T* W~ak , . . . ,a i !Ca i

T

zak
uCak

G u2
^a j uAua j&, ~22!

where j 5 i 2m andk5 i 22m.
The speed of convergence of the procedure with powem

is determined by the ratioR5uE12Wu/uE02Wu,1, where
E1 is the energy of the first excited state overlapping the t
state. Since this gap is caused by the finite size of the sys
we generally calculated powers of the Hamiltonian up
several times the linear system size.
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D. Trial wave functions

Care is needed to choose a trial state with maximal ov
lap with the true ground state. We restrict ourselves to to
spin singlet states with zero momentum and try to write
very arbitrary form yielding a good initial guess througho
the phase diagram.

We use a Jastrow resonating-valence-bond~RVB! wave
function for the trial state, written

CT5 )
i , j ,s,s8

f ~r i ,s2r j ,s8!uRVB&

5 )
i , j ,s,s8

f ~r i ,s2r j ,s8!PN)
k

~uk1vkck↑
† c2k↓

† !u0&,

~23!

where cks
† is the usual Fermion creation operator andPN

projects the state onto the subspace with the number of
ticles fixed to beN.

It is important that the Jastrow factorf correlateall pairs
of particles independent of spin, yielding a correlated st
that is still a total spin singlet. If we allow different Jastro
factors for like and unlike spins, we could usually reduce
ve
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variational energy of the trial state. However, the result
state would be a superposition of many spin states an
general would overlap excited states with nonzero s
closerin energy to the ground state than the lowest spin z
excited state, resulting inslower projection than a single
trial state with higher variational energy.

We write the determinantal part of the trial state in t
usual way.38 The ratio ak[vk /uk is the physical quantity,
and, assumingak5aÀk , we definea(r ) as its Fourier trans-
form:

a~r !5(
k

ak cos~k•r !. ~24!

Then

uRVB&5PN)
k

~uk1vkck↑
† c2k↓

† !u0&

5S (
r i↑ ,r j↓

a~r i↑2r j↓!cr i↑
† cr j↓

† D N/2

u0& ~25!

can be written as the (N/2)3(N/2) determinant
uDu5U a~r1↑2r1↓! a~r1↑2r2↓! ••• a~r1↑2r ~N/2!↓!

a~r2↑2r1↓! a~r2↑2r2↓! ••• a~r2↑2r ~N/2!↓!

A A � A

a~r ~N/2!↑2r1↓! a~r ~N/2!↑2r2↓! ••• a~r ~N/2!↑2r ~N/2!↓!
U ~26!
c-
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in position space.
In this form, uRVB& spans a broad class of Fermion wa

functions. A Fermi-liquid state corresponds to

ak5H 1 kPFermi sea

0 otherwise
~27!

while by allowing other choices forak , the wave function
can describe a pairing state, which may bes wave,d wave,
or something more general.

E. Guiding function

We are tempted to use the magnitude of the trial state
our guiding wave function, but this would be a serious m
take. By construction, the sites of a periodic lattice lie
high-symmetry points, and the nodes of a fermion wa
function also respect these symmetries. One finds^Ca

Tua&
50 for a significant fraction of states in the Hilbert space n
violating the Pauli exclusion principle. Since

^CTuHpuCT&5 (
a0 , . . . ,an

^Ca0

T uHua1&•••^am21uHuCam

T &,

~28!
as
-
t
e

t

where the intermediate sums overa1 ,a2 , . . . ,an21 span the
completeHilbert space, we must guide with a positive fun
tion.

Every guiding function that samples the complete Hilb
space will yield correct results. Our challenge is to pick
function that minimizes the statistical fluctuations of our o
put. The guiding function cannot ameliorate the sign probl
in Eq. ~21!. We can, however, choose a function to redu
the fluctuations inuCTu/uCGu. We define

CG[max$uCTu,cCB%, ~29!

whereCB is a positive function, typically a good variationa
state of the bosonic Hamiltonian. We takeCB to be a spin-
dependent Jastrow function.14 This is similar to a choice used
in continuum problems, but on a discrete lattice, it is n
necessary to match the first derivatives as in the continuu39

We rescalec so the effective number of configuration
contributing to the norm is approximatelyN'1/L for an
L3L system.40 This guiding function is shown schemat
cally in Fig. 1.

For the guiding function, we use the Jastrow-pairing fun
tion
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CB5)
i , j

f ~r i↑2r j↑!)
i , j

f ~r i↓2r j↓!)
i , j

g~r i↑2r j↓!

~30!

of Bose spin-12 particles~i.e., two kinds of bosons: up boson
and down bosons!. We have chosen this function to mim
the physics of the fermion state as closely as possible w
out having nodes. Since it is not important to guide with
spin singlet function, we use a more arbitrary spin-depend
Jastrow factor where like spin particles are correlated dif
ently than opposite spin particles.

F. Walking through the nodes

To evaluate the determinantal wave function, at the beg
ning of the random walk we calculate the determinant,
O(N3) operation for aN3N determinant, and its inverse
also an O(N3) operation. Each kinetic step in the wa
changes either a row or column of the determinant, wh
superexchange changes both a row and column. Cepe
Chester, and Kalos41 showed that the determinant and i
verse may be updated after such moves efficiently inO(N2)
steps. This so called ‘‘inverse update’’ works well for vari
tion Monte Carlo or fixed node Monte Carlo, but it cannot
used directly with GFMC on a lattice since the random w
steps directly on nodes for a significant fraction of steps. I
reasonably dense system, we find as many as 1/3 of the
land on nodes. On a node, the matrix is singular, the de
minant is zero, and the inverse is undefined. Recalcula
the determinant and inverse after walking through a n
will cause the running time to scale asO(N3).

We developed an efficientO(N2) technique to hop ove
nodes without recalculation of the determinant or inver
The essence of the method is this: When the random w
generated by the guiding function hits a state or series
states where the determinant of the trial function vanish
we generate a ‘‘detour’’ walk around the region where t
matrix is singular, rejoining the guiding walk when the d
terminant is nonzero again. We stress that the real ran
walk goes though the node, the detour walk is a fictitious o
which is used only to calculate the determinant and its
verse. It serves only as a calculational tool for the inve
update. The details of this detour-walk approach of evalu
ing the determinant and its inverse when the walk w
through a node are explained in Appendix A.

FIG. 1. Schematic behavior of the guiding function near a no
The squares and diamonds are the trial state and its negative
spectively. The circles are the bosonic state, and the guiding f
tion, CG5max$uCTu,cCB%, is shown by the filled symbols.r repre-
sents a single coordinate of one electron.
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Since we often land on a node where the inverse of
matrix ~26! is not defined, it is difficult to calculate the prob
abilities pab @Eqs. ~14! and ~15!# for the random walk we
defined earlier. When we are on a node withCa

T50, we
need to choose the next step of the walk from the vari
possibleb states. Therefore we need to calculateza with Eq.
~15!. Since we are on the node, calculating eachCb

T requires
a detour walk which in itself takesN2 steps. Thus the calcu
lation of za is anO(N3) process, whereas whenCa

TÞ0 it is
an O(N2) process. Therefore we make the following adju
ments so that each step is anO(N2) process. We define

pab5
1

za
f abHab , ~31!

za5(
b

f abHab , ~32!

where if Ca
TÞ0

f ab5H Cb
G/Ca

G if Cb
TÞ0

c2Ca
BCb

B/uCa
Gu2 if Cb

T50
~33!

and if Ca
T50,

f ab5
Cb

B

Ca
B

. ~34!

It is easy to show that detailed balance is obeyed by th
definitions. The advantage of using these probabilities is
if Ca

T50, then calculatingCb
T for all b with HabÞ0 not

required. Since we do not have the inverse matrix of the t
function’s determinant in statea, such a calculation would
be computationally very expensive.

CalculatingCb
B is always easy due to the simple form

Eq. ~30!, but Cb
T is more difficult. The kinetic operato

moves a single electron, soCb
T may be calculated inO(N)

steps since the inverse need not be updated. The sup
change operator moves two electrons and changes both a
and column of Eq.~26!. Updating the inverse to calculat
this term requiresO(N2) steps, which would cause the ove
all algorithm to scale asO(N3) for the system. In Appendix
B we derive anO(N) method of calculating superexchang

G. Trial state optimization

It is important that we start the GFMC with good trial an
guiding states. In this section, we describe our method
optimizing these functions.

In continuum systems, one usually assumes a functio
form for the trial and guiding functions and optimizes a fun
tion of the energy to find the best variational parameters.
a lattice, there are only a finite number of distancesr or
equivalently wave vectorsk in any given simulation, so we
allow the functions in Eqs.~23! and~30! to have a paramete
describing each distance or wave vector not related by s
metry.

For the Jastrow and position space pair factors,f (r ) and
g(r ), we apply all rotational and mirror symmetries. Tran
lational symmetry is always assumed. However, we in
only on the mirror symmetries about the axes for the F

.
re-
c-
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mion pairing fieldak , so the function may be any linea
combination of ans and dx22y2 pairing state. The mirror
symmetry excludesdxy symmetry. For a 20320 lattice, we
have 172 parameters for the trial state and 192 parameter
the guiding function with the pairing term.

We tried optimizing several functions of the energy, b
found minimizing the variance of the local energy to be t
most robust.42 We generate a set of configuration
$a1 ,a2 , . . . ,am% distributed according to a weightwa i

. The
configurations remain the same throughout the minimiza
procedure. We minimize the function

s25

(
i 51

m

@HCa i

T /Ca i

T 2E#2uCa i

T u2/wa i

(
i 51

m

uCa i

T u2/wa i

, ~35!

whereE is a guess for the ground-state energy that we
termine self-consistently. We use the same function to o
mize both our trial and guiding functions.

With a finite random walk, the calculation of the ener
in Eq. ~35! uses many more states than the calculation of
norm. Occasionally, this created instabilities, which w
cured by deriving another way of calculating the norm us
all the neighbors in the random walk. We may write

^CuC&5(
a

uCau2 ~36!

5(
a

S uCau2~12Aa!1Ba (
bP$Ha%

uCbu2D , ~37!

where$Ha% is the set of all states neighboringua& by appli-
cation of the Hamiltonian. We see Eq.~37! follows from Eq.
~36! if we chooseBa5C andAa5CNa for some constantC,
whereNa is the number of neighbors ofua& whereC does
not vanish. Since this version of the norm is calculated fr
all the states entering the energy, no factors in the numer
of Eq. ~35! are absent from the denominator.

We calculate the effective number of configurations co
tributing to the normalization as

Neff5S (
i 51

m uCa i

T u2

wa i

D 2Y (
i 51

m uCa i

T u4

wa i

2
. ~38!

This quantity approachesn if all states contribute equally to
the integral and drops to 1 as one state begins to domina40

We adjust the length of our random walks soNeff is at least
ten times the number of parameters being optimized.

We found that close to phase separation, the standard
tropolis algorithm develops a small acceptance ratio,
tends to stay in the same configuration for many steps
order to sample more phase space quickly, we choose
configurations using the transition probability~14! where we
takeH to be the off-diagonal part of the Hamiltonian, ensu
ing a new configuration with each move. Thus the config
rations are distributed according to the weightwa i

5za i
uCa i

G u2, whereza i
is given by Eq.~15!.
for
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III. FITTING PROJECTION OUTPUT: INVERSE THEORY

A. Ground-state energy

The Green’s-function Monte Carlo procedure takes a t
state and projects it onto the exact ground state. Its ou
consists of the observables for the energy

E(n)5^CuHnuC&, ~39!

where the trial stateuC& has been normalized. For any op
eratorA which does not commute with the Hamiltonian, u
ing the present Monte Carlo method we calculate

amn5^CuHmAHnuC& ~40!

as functions of powers of the Hamiltonianm andn.
These values converge to their ground-state values, ex

for a normalization factor, for large powersn andm. How-
ever, their statistical errors increase exponentially with
creasing power due to the fermion sign problem.

To extract the most information on the ground state,
use the calculated observable for all powers less than s
maximum powerpmax. By including the highly converged
small powers in the approach, we obtain much more accu
ground-state properties than can be obtained using the l
powers alone. Let us consider the ground-state energy a
example to demonstrate the approach next.

Let us define theT-spectral functionc(E) with respect to
the trial stateuC& as

c~E![
1

p
lim

h→01

Im^Cu
1

Ĥ2E1 ih
uC&

5(
i

u^CuF i&u2d~E2Ei !. ~41!

To show this, one may expand the trial state in the ex
eigenstatesuF i& of Ĥ as

uC&5(
i 50

ai uF i&. ~42!

It is immediately evident from the above that the poles
c(E) and of the exact spectral function are at the same
ergy values for those eigenstatesuF i& which have nonzero
overlap with the trial stateuC&.

In order to proceed we discretize the energy interval us
a fine mesh withDE, thus the energy takes discrete valu
E* m , m51,2, . . . ,M and theT-spectral functionc* (E) is
written as

c* ~E!5 (
m51

M

cm* d~E2E* m!, ~43!

wherecm* >0 are non-negative real numbers. Thus this sp
tral function is thought of as a histogram, where in each fi
slice of the histogram the value of the integral ofc(E) mul-
tiplied by any functionf (E) is simply cm* f (E* m). We have
used a mesh intervalDE smaller than the finite-size ga
between the lowest and the first excited state. Thus the c
tribution of the ground state toc* is accurately represente
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as a single delta-function peak. Namely, up to somem
5m0 , cm,m0

* 50, while cm0
* .0 andcm0,m,m1

* 50 andcm1
*

.0, etc.
Then the moments of theT-spectral functionc* (E) can

be calculated using both Eqs.~41! and ~43! and thus we
obtain

^CuHnuC&5 (
m51

M

cm* E* m
n , ~44!

wheren50,1, . . . ,pmax. Sincepmax,M , because typically
pmax540–60 andM5200–500, we have more unknown
~the cm* ’s! than equations. However, the solution needs
satisfy the constraintcm* >0 which limits the possible solu
tions. The optimal way to find the most likely solution is
minimize thex2.

We gain very large computational savings by calculat
all powers ofH in parallel. However, this results in statistic
correlations between results of different powers which m
be treated accordingly.43

We divide the measurements intoM bins. The covariance
matrix is defined

Ci j 5
1

M21 S 1

M (
k51

M

~Ek
( i )2Ē( i )!~Ek

( j )2Ē( j )!D , ~45!

whereEk
( i ) is the average of thei th power in thekth bin. For

uncorrelated output,C is diagonal. With correlations,x2 is
defined

x25(
i , j

~Ē( i )2E( i )* !Ci j
21~Ē( j )2E( j )* !, ~46!

whereE( i )* is the fitting function given in terms of the co
efficientscm ~which are to be determined by this minimiz
tion! by means of Eq.~44!.

WhenC is diagonal, its inverse is trivial. For more ge
eral C, small errors in its components can result in lar
errors in its inverse, so it is important to calculateC accu-
rately. Increasing the number of bins decreases the statis
error in C but increases the systematic error due to autoc
relations. To balance these two sources of error, we cho
the number of measurements in each bin to ben5Mpmax,
wherepmax is the maximum power of the Hamiltonian.43 We
calculate statistical errors with the bootstrap method.44

Figure 2 gives a typical example for theT-spectral func-
tion c* (E) obtained from the calculation of the two
dimensionalt-J model. The lowest value ofE* where we
have a delta-function peak gives the lowest eigenstate oH
which is not orthogonal to the trial state. The value of t
peak gives the square of the overlap of the lowest ene
state to the trial state.

We have tested our method by comparing our results w
exact results for the 434 size lattice with several electron
In Fig. 3 we show the results for the energy as a function
the iteration for the case of ten electrons. Figure 4 show
larger system.

The energy estimate defined by
o

g

t

cal
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h

f
a

Ep5
^CuHp11uC&

^CuHpuC&
~47!

as a function ofp is shown in Fig. 3 starting from the
Jastrow-RVB value of the energy atm50. Notice that with
the length of the walk in configuration space used for t
calculation, the error~which always grows exponentially!
becomes annoyingly big for values ofp not shown. The
value of the energy obtained by the extrapolation meth
described in previous section is also shown. By using
information contained in all the powers ofH up to pmax
instead of the just the estimates of the energy at or just be
pmax we obtain a much better estimate for the energy.

FIG. 2. TheT-spectral function of the full Hamiltonian. The
lowest energy peak is at the lowest energy eigenstate of the sy
which is nonorthogonal to the trial state. The value of spec
weight is the square of the overlap of the true ground state to
initial trial state.

FIG. 3. The energy for ten electrons in a 434 lattice as a func-
tion of the power of the Hamiltonian. The value of the ener
obtained by the extrapolation method described in this sectio
also shown.
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B. Other operators

For an arbitrary operatorA, we have

^CuHnAHnuC&5(
i , j

~EiEj !
P^CuF i&^F i uAuF j&^F j uC&

5E dEE2pa~E!, ~48!

where the operator overlap functiona(E) is given by

a~E!5(
i , j

d~E1AEiEj !^CuF i&^F i uAuF j&^F j uC&.

~49!

Following the approach for the energyT-spectral function,
we can define a discrete overlap function

FIG. 4. The energy for 50 electrons in a 738 lattice as a func-
tion of the power of the Hamiltonian. The value of the ener
obtained by the extrapolation method described in previous sec
is also shown.

FIG. 5. The T-spectral function associated with the spi
structure function. Notice that the lowest energy peak is at the s
energy as that of the energyT-spectral function. The value of spec
tral weight is related to the spin-structure function in a simple w
a* ~E!5(
i 50

M

d~E2Ei* !ai* . ~50!

Here the values ofE where theT-spectral functiona* (E)
attains peaks are all possible geometric meansAEiEj of all
the eigenenergies which correspond to eigenstates w
have nonzero overlap withuC& and they give nonzero matrix
element ofA. The lowest energy peak corresponds to t
geometric mean of the ground-state energy with itself, i
E05AE0E0, thus if the ground state is not degenerate it
uniquely specified. Here we also need to solve for all theai*
given that they obey the followingpmax equations:

^CuAuC&5(
i 50

M

ai* ,

^CuHAHuC&5(
i 50

M

~Ei* !2ai* ,

A

^CuHpAHpuC&5(
i 50

M

~Ei* !2pai* . ~51!

Figure 5 gives a typical example for the spectral functi
a* (E) obtained for the spin-structure functionS(p/2,p/2)
from the calculation of the two-dimensional thet-J model.
Notice that the energy of the lowest peak is the energy of
lowest energy state having nonzero overlap with the t
state and which has nonzero matrix elements with the op
tor A. For the value of the peak, which isai* , the expectation
value ofA can be calculated in a straightforward manner

In principle, we can also extract information about t
excited states along with the ground state. This possibilit
indicated by the fact that we can see higher energy peak
these spectral functions.

In Fig. 6 we compare our results for the spin-spin cor
lation function with that obtained by exact diagonalization
the 434 size system with ten electrons. Notice the fine sc
used to be able to distinguish the difference between e
and extrapolated correlation functions.

on

e

.

FIG. 6. The spin-spin correlation function for ten electrons in
434 lattice as a function of the power of the Hamiltonian. T
value of the correlation obtained by the extrapolation method
scribed in previous section is also shown.
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IV. RESULTS FOR THE TWO-DIMENSIONAL t-J MODEL

A. Maxwell construction: Phase separation

A number of methods to determine the phase separa
boundary numerically have been used. In one-dimensio
systems the divergence of the density structure factor at
wavelengths has been used.13 Divergence of the compress
ibility as determined from the second derivative of the e
ergy with respect to electron or hole density was used s
cessfully on the one-dimensionalt-J model by calculating
the energy for three differing densities.45 In the one-
dimensional model, phase separation occurs between tw
gimes, one with no electrons while the other contains so
electrons and some holes. For a finite system, electrons
tunnel through the vacuum, lowering the ground-state
ergy. For this reason, the inverse compressibility actu
passes through zero and becomes slightly negative. Thi
fect is a surface effect and vanishes in the limit of infin
system size.

In the one-dimensionalt-J model, the compressibility di-
verges continuously at the transition point in contrast to
discontinuous transition in two dimensions.24,45The behavior
of the energy derivatives across the phase-separation bo
ary is discussed in Appendix C. We have verified that in o
dimension, the Maxwell construction yields the same pha
separation boundary as that calculated using the inv
compressibility.

In the two-dimensionalt-J model, the situation is more
complicated. The Fermi surface can change dramatic
with electron density for a given system size. These str
shell effects make accurate comparisons of energies ca
lated with different numbers of electrons impossible.

Many of the previous studies used a vanishing inve
compressibility as the criterion for the onset of pha

FIG. 7. The ground-state energy per site atJ52.5t for 32 elec-
trons. For clarity, the energies are shifted by a linear fact
2eHne . The circles with error bars show the energies calculated
lattices of dimensions 636, 736, . . . , 28328. A sixth-order
polynomial fit to the data is shown as the solid line, which is e
tended to the Heisenberg energy, the square at energy zero in
shifted plot. The dashed line shows the ground-state energy o
infinite system in the phase-separated region. We find the ons
phase separation occurs atnps50.29660.004, while the inverse
compressibility vanishes atncomp50.5260.10.
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separation.24,25 The compressibility, however, is not th
proper observable to find the phase-separation boundar
the two-dimensionalt-J model, where the transition is firs
order. It is true that the compressibility diverges in the reg
of phase separation, but it jumps discontinuously at
boundary with the uniform phase. Numerically, this disco
tinuity is difficult to see in even large finite systems due
the surface energy of the two coexisting phases. When on
in the region of the phase diagram where phase separa
exists, then, the compressibility suffers strong finite-size
fects because of the rather large surface energy of the
coexisting phases.

The ground-state energy as a function of electron den
at J52.5t for 32 electrons on a variety of system sizes
shown in Fig. 7. These finite systems necessarily const
the electron density to be uniform on the length scales of
system size. We fit the discrete data to a polynomiale(ne),
shown as the solid curve, in order to treat the energy a
continuous function of density. The dashed line,eps(ne), is a
linear function that intersects the Heisenberg energy,eH at
electron densityne51 and intersectse(ne) tangentially at a
density labelednps .

It is straightforward to show that the ground state of t
infinite system at a densityne.nps cannot be a uniform
phase, because the energy of the uniform phase,e(ne), is
higher thaneps(ne) at the same density. This latter energ
corresponds to the energy of a mixture of two phases, on
electron densitynA51 and the other at electron densitynB

5nps . Therefore the infinite system phase separates into
regions with densitiesnA and nB , and its ground-state en
ergy is given byeps(ne), the value of the dashed line at th
average density of the system. This is known as the Maxw
construction.20

The energy of the infinite system is given by the solid li
in Fig. 7 for ne,nps and by the dashed line forne.nps . A
difference between the Maxwell construction in Fig. 7 a
that commonly used is that the density of one of the const
ent phases, the Heisenberg phase atne51, lies at an extreme
limit of the allowed density range. It is not possible to a
electrons to the Heisenberg solid, which has one electron
every site, so while the dashed line is tangent to the fitt
curve atne5nps , it is not at ne51. If the t-J model did
allow electron densitiesne.1, then the intersection point o
the solid and dashed lines would be shifted to higher de
ties where the curves could intersect tangentially. The das
line might intersect the solid curve tangentially at the high
density point in this region. At any electron density in th
rangenps,ne,1, the system can reduce its energy from th
of the uniform phase approximated by the fitting polynom
in Fig. 7, by separating into two regions with densitiesnA
5nps andnB51, resulting in an energy given by the dash
line at the average density.

In order to be stable, the energy of the infinite syste
must be concave everywhere. Given the solid line in Fig
and the allowed density range of thet-J model, the dashed
line drawn in the figure is the only line possible to make t
energy of the infinite system globally concave. This ene
is given by the solid line forne,nps and the dashed line fo
ne.nps .
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We never examined systems with densitiesne*0.94, so
we cannot exclude the re-entrance of a homogeneous p
in this region. For such a phase to be stabilized, the s
curve in Fig. 7 would have to drop back below the dash
line in this density range. We never saw any indication
this possibility at any interaction strength. If a reentrant h
mogeneous phase did exist, the phase-separated re
would persist at densitiesne&0.94. The new Maxwell line
would lie slightly below the one drawn and would be tange
to the solid curve at both intersections, but the pha
separated region would persist at densitiesne&0.94. We
never saw any indication of this possibility at any interacti
strength.

In the infinite system, the energy is a concave function
density with continuous first derivative. In the phas
separated regime, the energy linearly interpolates betw
the energies of the two constituent phases. The inverse c
pressibility, the second derivative of the energy with resp
to density, is positive in the uniform phase and zero wh
the system phase separates in the phase-separated regim
a finite lattice, the surface effects of phase separation r
the energy, and we find the inverse compressibility cal
lated from different system sizes obtained from a fit to
discrete data remains positive even where the system is
stable to phase separation. For electron densityne , the com-
pletely phase-separated energy per site,evar5eHne , is a
variational upper bound to the phase-separated energy a
given by the completely phase-separated energy per
evar5eHne . To show that, letNe be the total number o
electrons on a square lattice ofN sites (ne5Ne /N,1).
Then, the total energy of the system is less or equal toeHNe

plus corrections which are negligible compared to this te
in the thermodynamic limit. Let one constrain all the ele
trons to be close packed in one region of the lattice so
only the interaction term in Eq.~1! is operative. If the system

FIG. 8. The ground-state energy per site atJ5t for Ne542
electrons andNs549,56,64,72,81,90 sites~bottom curve! Ne550
andNs556,64,72,81,90~second from the bottom!, andNe560 and
Ns564,72,81,90,100,110,121 sites~top curve!. Each curve has
been shifted upwards with respect to the previous by 0.025 in o
to distinguish them.
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chooses not to do that, it means that the energy of any o
chosen state is lower than the energy of this artificially i
posed state. Thus the energy per site of the unconstra
system is lower thaneHne . The system is definitely unstabl
to phase separation at least where this variational energ
lower than the calculated energy per site of a finite syste

We fit the calculated energies in the uniform phase t
low-order polynomial. The energies in the uniform pha
where there is no surface energy, suffer much smaller fin
size effects than energies in the phase-separated regime
extrapolate the tangent of the fitting function to electron d
sity ne51. At the phase-separation boundary, the tangen
the curve e(ne) extrapolates to the Heisenberg energ
e(ne51)5eH . This construction ensures that the resulti
infinite-system energy is concave everywhere. This is
only possible construction that ensures the resulting infin
system energy is concave everywhere.

B. Results atJÄt

Using the Maxwell construction we have determined t
boundary for phase separation of thet-J model. In these
calculations we minimize the shell effects when varying t
electron density by keeping the number of electrons fixed
a closed-shell configuration and changing the size of the
tice. In addition, we also choose the number of electrons
correspond to a closed-shell configuration. This choice eli
nates possible degeneracies of states at the Fermi level.
degeneracies might favor flatness of the energy as a func
of density which might be mistaken for phase separati
When one varies the number of electrons keeping the sys
size fixed when adding an electron to a closed-shell confi
ration the kinetic energy goes up by a finite amount wh
leads to oscillatory behavior of the energy per site ver
density. An additional~technical reason! for wanting to keep
closed-shell configurations is that on a finite lattice it leads
an energy gap between the ground state and the first ex
state which helps our projection method to converge.

In Fig. 8 we study the size dependence of the criti
value of electron densitynps for phase separation. The valu
of nps is determined by making a cubic polynomial fit t
each curve and using the corresponding energy for the la
full of electrons calculated for the same number of electro
and the same boundary conditions. This latter energy ma
estimated from the GFMC results obtained for various s
lattices for the square-lattice spin-1/2 Heisenberg antife
magnet and using the extrapolation1

E/N5e01lN23/2, ~52!

whereN is the total number of electrons.
The ground-state energy per site atJ5t for fixed number

of electronsNe and for various number of sitesNs can be
grouped together. The bottom curve in Fig. 8 gives the
ergy per site as a function of densityne5Ne /Ns for Ne
542 and Ns549(737), 56(738), 64(838), 72~839!,
81~939!, and 90~9310!. The second from the top gives th
energy per site shifted by a constant amount of 0.025

er



p

a
a
w

by
f
o
el
er

ing
on

ts
lin
ty

-
ing
e

ts

-

2,
xi-
The
the
the

ing
ged
s of

is
ame
em-
nal
-

rgy

e

ize

o
er
ro

PRB 61 11 797GREEN’S-FUNCTION MONTE CARLO FOR LATTICE . . .
Ne550 andNs556, 64, 72, 81, 90. The third from the to
gives the energy per site shifted by an 0.05 forNe560 and
Ns564, 72, 81, 90, 100, 110, 121. The unshifted energies
given in Table I. If we plot these curves on the same sc
without a shift, they all fall on almost the same curve. Ho
ever, there are small deviations which are shell effects.

Also shown in Table I is the lowest energy obtained
diagonalizing within the subspace spanned by a subset o
3, or 4 different powers. This is similar to the Lanczos alg
rithm for quantum Monte Carlo data introduced by Caffar
Gadea, and Ceperley.46 The energies obtained are upp
bounds to the ground-state energy.

We can greatly eliminate the shell effects by examin
several size lattices but keeping the number of electr
fixed. We first fit each curve generated for fixedNe with a
quartic spline. Next from the pointe(ne51) on the graph,
we construct the tangent to the spline which fits our poin
The value of the density at which the tangent and the sp
meet gives us an estimate of the phase-separation densi

TABLE I. The energy per site forJ/t51 and for various elec-
trons densities and size lattices. The extrapolation energy is
tained by the procedure described in Sec. III A. The Lanczos en
is the lowest obtained by diagonalization within a subspace of p
jection powers.

Ne Ns ne EExtrap /Ns ELanc /Ns

32 100 0.32 -0.9019~12! -0.9008~7!

81 0.395 -1.0204~34! -1.0197~47!

72 0.444 -1.0767~12! -1.0750~15!

64 0.5 -1.1249~48! -1.1220~27!

56 0.571 -1.1727~48! -1.1760~72!

49 0.653 -1.1828~44! -1.1840~35!

42 0.762 -1.1853~57! -1.1801~18!

36 0.889 -1.1637~40! -1.1681~29!

42 121 0.347 -0.9463~13! -0.9448~5!

100 0.42 -1.0583~38! -1.0548~39!

81 0.519 -1.1335~37! -1.1383~41!

72 0.583 -1.1562~34! -1.1548~15!

64 0.656 -1.1695~18! -1.1662~22!

56 0.75 -1.1768~32! -1.1765~24!

49 0.857 -1.1674~33! -1.1656~16!

50 121 0.413 -1.0229~36! -1.0192~8!

100 0.5 -1.1080~38! -1.1022~35!

90 0.556 -1.1408~49! -1.1338~32!

81 0.617 -1.1566~39! -1.1612~63!

72 0.694 -1.1766~58! -1.1741~37!

64 0.781 -1.1787~89! -1.1663~38!

56 0.893 -1.1633~38! -1.1606~30!

60 110 0.545 -1.1451~40! -1.1442~35!

100 0.6 -1.1601~36! -1.1602~18!

90 0.667 -1.1698~34! -1.1697~23!

81 0.741 -1.1769~28! -1.1759~41!

72 0.833 -1.1771~37! -1.1710~35!

64 0.938 -1.1628~18! -1.1612~15!
re
le
-

2,
-
,

s

.
e
for

the given value ofJ/t. Individually, each number of elec
trons is consistent with a solution where a line beginn
from the no-hole limit (ne51) and being tangent on th
polynomial ~that fits the data points! near ne50.745 ~see
Fig. 8!. Therefore we conclude that the finite-size effec
are small in our method of determiningnps and the
phase-separation density forJ/t51 is nps50.74560.015.

Emery, Kivelson, and Lin20 calculated the phase
separation density using the energy per hole,

eh~x!5
E~Nh!2E~0!

Nh
, ~53!

whereE(Nh) is the total energy of theNs-site system with
Nh holes, andx5Nh /Ns is the hole density. In Fig. 9 the
energy per hole is plotted for all the points calculated for 4
50, and 60 electrons. The cubic fits attain minima at appro
mately the same values as the tangent constructions.
energies in Fig. 9 are not shifted as they are in Fig. 8, and
shell effects are obvious. For each number of electrons,
energy is a smooth function of the density. However, tak
all electron numbers together, the energy is a very jag
function: The shell effects systematically bias the energie
systems with a given number of electrons. Therefore it
essential to compare the energies of systems with the s
number of electrons, thus canceling the unavoidable syst
atic errors. Many previous studies of the two-dimensio
~2D! t-J model suffered from shell effects. A different dem
onstration of shell effects is given in Ref. 21.

C. Results in theJËt region

The ground-state energy per site atJ50.5t for fixed num-
ber of electronsNe and for various number of sitesNs can be
grouped together. The top curve in Fig. 10 gives the ene
per site as a function of densityne5Ne /Ns for Ne532 and
Ns536(636), 49~737!, 56~738!, 64~838!, 72~839!,
81~939!, and 90~9310!. The second from the top gives th
energy per site shifted by a constant amount of 0.05 forNe

FIG. 9. The energy per hole atJ5t for Ne542 ~open dia-
monds!, Ne550 ~solid squares!, and Ne560 ~solid circles!. The
shell effects have nonmonotonic influence on the scaling with s
of the energy per hole.
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542 andNs549, 56, 64, 72, 81, 90. The third from the to
gives the energy per site shifted by an 0.1 forNe550 and
Ns556, 64, 72, 81, 90. The bottom curve gives the ene
per site shifted by 0.15 forNe560 andNs549, 56, 64, 72,
81, 90, 100~10310!, 110~11310!. The unshifted energies ar
given in Table II.

Here again, we can greatly eliminate the shell effects
examining several size lattices but keeping the numbe
electrons fixed. We first fit each curve generated for fixedNe
with a cubic spline where the Heisenberg point has b
excluded from the fit. Next we find the point on the grap
whereeH(Ne) is the energy per electron for the Heisenbe
antiferromagnet calculated on a finite-size system with
same number of electronsNe ~as discussed previously!. Next
we construct the tangent to the spline which fits our poin
The value of the density at which the line is tangent to
spline gives us an estimate of the phase-separation de
for this value ofJ/t. These values extracted from the diffe
ent sets of energies which correspond to the same numb
electrons are given in Table III. Individually, each number
electrons is consistent with a value ofnps nearne50.84~see
Fig. 10!. Clearly the 42 electron data do not prove that th
is a clear tangent at this value ofne , but the data are con
sistent with this value. Therefore we conclude that the fin
size effects are small in our method of determiningnps and
the phase-separation density forJ/t50.5 is nps50.843
60.015.

We wish to demonstrate the significance of shell effec
Let us select from our results of Table II forJ/t50.5 those
which correspond to the same size lattice 838 for Ne
532,42,50,60. They are shown in Fig. 11. Notice that ev
though these data also give the same phase-separation
sity within error bars as that determined by our method
scribed before, the shell effects are large. Such deviat
from a smooth curve could lead to drawing the wrong co
clusions about phase-separation boundaries.

FIG. 10. The ground-state energy per site atJ50.5t for Ne

532 electrons andNs536,49,56,64,72,81,90 sites~top curve!, Ne

542 andNs549,56,64,72,81,90~second from the top!, Ne550 and
Ns556,64,72,81,90~third from the top!, and Ne560 and Ns

549,56,64,72,81,90,100,110 sites~bottom curve!. Each curve has
been shifted downward with the respect to the previous by 0.0
order to distinguish them.
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For completeness in Fig. 12 the energy per hole is giv
for all the points calculated for 32, 42, 50, and 60 electro
The curve attains a minimum at approximately the sa
value as that determined by the tangent construction at
cubic polynomial fit of the energy per size for a given num
ber of electrons. Notice, again, the shell effects.

D. Results nearJc
B

Boninsegni and Manousakis15 ~BM! found a critical value
Jc

B.0.27t of J/t below which there is no two-holed-wave
bound state. This value ofJc

B was determined by calculatin
the binding energy for two holes on lattices up to 838. BM
noticed that because the bound-state wave function de
exponentially with distance the finite-size effects were rat
small. They did, however, pursued a finite-size analysis fr
which they determinedJc

B . Nevertheless their calculate
value of the two-hole binding energy atJ/t50.7 wasD/t
50.31(03), and atJ/t50.4, D/t50.12(04). Thus we choos
the J/t50.3 to examine the question of phase separat
believing that this value is very close to the critical valueJc

B .

in

TABLE II. The energy per site forJ/t50.5 and for various
electrons densities and size lattices.

Ne Ns ne Eextrap/Ns Elanc /Ns

32 64 0.500 -1.0102~19! -1.0111~18!

56 0.571 -1.0151~24! -1.0147~14!

49 0.653 -0.9811~27! -0.9802~15!

42 0.762 -0.8890~33! -0.8893~32!

36 0.889 -0.7272~11! -0.7277~17!

42 100 0.420 -0.9695~22! -0.9698~21!

81 0.519 -1.0158~31! -1.0143~22!

72 0.583 -1.0115~50! -1.0030~15!

64 0.656 -0.9734~32! -0.9734~22!

56 0.750 -0.8918~39! -0.8851~5!

49 0.857 -0.7715~24! -0.7733~22!

50 100 0.500 -1.0015~37! -0.9925~11!

90 0.556 -0.9975~42! -1.0009~29!

81 0.617 -0.9898~54! -0.9887~68!

72 0.694 -0.9310~24! -0.9340~36!

64 0.781 -0.8594~37! -0.8565~59!

56 0.893 -0.7232~22! -0.7242~15!

52 100 0.520 -1.0090~40! -1.0102~44!

90 0.578 -1.0020~58! -1.0032~80!

81 0.642 -0.9791~46! -0.9774~42!

72 0.722 -0.9110~44! -0.9107~62!

64 0.812 -0.8158~29! -0.8153~20!

56 0.929 -0.6688~31! -0.6642~6!

60 110 0.545 -1.0069~33! -1.0041~15!

100 0.600 -0.9929~24! -0.9911~20!

90 0.667 -0.9676~32! -0.9687~42!

81 0.741 -0.8938~11! -0.8940~12!

72 0.833 -0.7947~31! -0.7918~18!

64 0.938 -0.6623~25! -0.6605~31!
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In Fig. 13 we give the ground-state energy as a funct
of the electron density for 50, 52, and 60 electrons forJ/t
50.3 as three shifted curves~see Table IV!. Notice that the
values ofJc /t determined from the these sets of data
very close. We obtainne50.87760.010. ForJ/t50.3 in
Fig. 14 there is a minimum atxps50.12 which agrees very
well with the value obtained from the tangent constructio

There are no published GFMC results for the two-h
case forJ/t50.3. We can obtain an estimate for the sing
hole energy by fitting the calculated values for that as a fu
tion of J/t to a form E5E01aJ2/3. The two-hole binding
energy for J/t50.3 can be estimated using the formu
which was used by Boninsegni and Manousakis15 to obtain
the critical value ofJc

B . Thus, assuming that holes are bou
in pairs and they form a dilute gas of hole pairs, we c
obtain a value for the energy per hole in such a case. T
value of this energy is higher than the value of the energy
hole at the minimum of our curve in Fig. 14. This is anoth
indication that there is more binding energy gained due
the phase separation of the pairs of holes from the elect
in an antiferromagnetically ordered state.

E. Results belowJc
B

Here we examine the situation below the critical valueJc
B

for two-hole d-wave bound state in the 2Dt-J model. We
shall examine the energy atJ/t50.2. First of all the ground-
state energy per site forNe550 andNe560 and for various

TABLE III. The phase-separation density atJ/t50.5 deter-
mined by keeping the electron number fixed and varying the lat
size.

n s Ne

0.831 782 0.003 096 39 32
0.838 086 0.013 686 7 42
0.840 684 0.002 381 98 50
0.847 915 0.002 335 89 52
0.857 529 0.009 138 04 60

FIG. 11. The energy per site atJ50.5t for an 838 lattice for
32, 42, 50, and 60 electrons.
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size lattices is shown in Fig. 15 and is given in Table
Notice again that the values ofJc /t determined from the two
sets of data are very close, we find:nps50.90960.008.

Below Jc
B where there is no two-holed-wave bound state

~assuming there are no bound states in other channels!, if
there is no phase separation the minimum energy per
should be the single hole energy at zero hole density.
J/t50.2 the single hole energy was also calculated by B
insegni and Manousakis for an 838 and 10310 size lattices.
This value of the energy is shown if Fig. 16 and it is clea
higher than the minimum of the energy per hole curve wh
occurs at approximately hole density ofx50.09.

V. PHASE DIAGRAM OF THE t-J MODEL

In Fig. 17 we present as a function ofJ/t the minimum
energy per hole~solid line! ~the minimum of the energy pe
hole versus density for a given value ofJ/t). We also plot
the single hole energy~obtained by Boninsegni and

e

FIG. 12. The energy per hole atJ50.5t for 32, 42, 50, and 60
electrons.

FIG. 13. The ground-state energy per site atJ50.3t for 50, 52,
and 60 electrons and lattices of sizesNs556,64,72,81,90,Ns

556,64,72,81,90, andNs564,72,81,90, respectively.
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TABLE IV. The energy per site forJ/t50.3 and for various
electrons densities and size lattices.

Ne Ns ne Eextrap/Ns Elanc /Ns

50 90 0.556 -0.9494~28! -0.9469~25!
81 0.617 -0.9199~37! -0.9174~23!
72 0.694 -0.8469~25! -0.8482~25!
64 0.781 -0.7381~42! -0.7419~48!
56 0.893 -0.5510~13! -0.5523~15!

52 90 0.578 -0.9407~31! -0.9372~38!
81 0.642 -0.9064~41! -0.9099~48!
72 0.722 -0.8110~38! -0.8095~29!
64 0.812 -0.6881~34! -0.6852~49!
56 0.929 -0.4806~18! -0.4777~9!

60 90 0.667 -0.8814~11! -0.8815~13!
81 0.741 -0.8010~13! -0.7976~23!
72 0.833 -0.6538~34! -0.6496~13!
64 0.938 -0.4640~23! -0.4615~9!

FIG. 14. The energy per hole atJ50.3t for 50, 52, and 60
electrons.

FIG. 15. The ground-state energy per site atJ50.2t for 50 and
60 electrons and lattices with sizesNs556,64,72,81,90 andNs

564,72,81,90, respectively.
TABLE V. The energy per site forJ/t50.2 and for various
electrons densities and size lattices.

Ne Ns ne Eextrap/Ns Elanc /Ns

50 90 0.556 -0.9246~35! -0.9211~54!
81 0.617 -0.8905~34! -0.8822~15!
72 0.694 -0.8103~28! -0.8098~32!
64 0.781 -0.6825~23! -0.6826~27!
56 0.893 -0.4681~18! -0.4717~23!

60 90 0.667 -0.8426~32! -0.8414~14!
81 0.741 -0.7419~24! -0.7432~17!
72 0.833 -0.5857~23! -0.5853~31!
64 0.938 -0.3701~17! -0.3693~7!

FIG. 16. The energy per hole atJ50.2t for 50 and 60 electrons
The single hole energy as obtained from Boninsegni and M
ousakis is also plotted for 838 and 10310 size lattices.

FIG. 17. The energy per hole at the density where the pha
separation separation minimum occurs as a function ofJ/t ~solid
line!. This is compared to the energy per hole obtained from
single hole calculation of Boninsegni and Manousakis~1992!
~dashed line! and to the energy per hole obtained from the two-h
calculation of Boninsegni and Manousakis~1993!.
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Manousakis16! as a function ofJ/t which is the energy pe
hole in the case of isolated noninteracting holes in the sys
~dashed line!. In addition, the energy per hole is compar
with the energy per hole obtained by Boninsegni a
Manousakis15 from calculation of two holes in thet-J model.
The energy per hole in this latter calculation gives the ene
per hole in the case of isolated bound hole pairs~dotted line!.
Notice that while the dashed line and the dotted line mee
J/t;0.3, the minimum at the phase-separation density
the dotted line do not meet. Notice that the additional ene
gained to phase separation decreases with decreasingJ/t as
expected.

In Fig. 18 we show the phase-separation boundary
tained for all values ofJ/t using the method described in th
present paper and the Maxwell construction. In Table VI
give the phase-separation boundary as determined for
ous values ofJ/t from the various size lattices and number
electrons.

A more complete phase diagram for the 2Dt-J model as
a function ofJ/t and doping was given in Fig. 3 of Ref. 17
That phase diagram is also accurate in the low-density re
where exact calculations can be done.14

VI. COMPARISON WITH OTHER CALCULATIONS

In Fig. 19, our phase diagram is compared to the rec
fixed node Monte Carlo calculations of Callandra, Bec
and Sorella27 ~CBS! and to the high-temperature series e
pansion calculations of Putikka, Luchini, and Rice.24 Notice
that our phase diagram and that of CBS are very close ex
in the delicate physical region of smallJ/t. Therefore we can
draw a relatively strong conclusion from this compariso
The findings drawn from the early studies of thet-J model
that the physical region of the model is safely away from
phase-separation boundary are not correct. What our w
and the work of CBS find is that the interesting region ofJ/t
is either next to the phase-separation boundary or inside
phase separated region. In both cases phase-separation
tuations could play an important role in the mechanism
superconductivity in the copper oxides.

FIG. 18. The phase-separation boundary as calculated usin
present method and the Maxwell construction.
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There is an important difference between our results
those of CBS. Our results indicate that phase separatio
the t-J model is present for allJ/t, while the conclusion of
CBS is that there is a finite value ofJ.0.4t below which
there is no phase separation. The reason for this disag
ment is that this region requires a very high degree of ac
racy in the numerical results. We would like to discuss t
results of CBS where they claim that atJ/t50.4 there is no
phase separation for lattices of sizeNs598. In Fig. 20 we
plot the results of CBS for this value ofJ/t for 50 sites~solid
circles! and 98 sites~open squares!. The result for the lowest
value of x for the 98-site system was not included in th
original publication by CBS. CBS were kind enough to ca
culate it at our request and to communicate it to us. With
using that point, CBS concluded that the fact that we fou
PS atJ/t50.4 was a finite-size effect because the energy
site in their largest size system had no minimum. With t
most recently calculated point for the 98-site system,eh(x)
has a minimum atxc'0.072. This is close to our value o
aboutxc'0.1 for J/t50.4.

the

TABLE VI. The phase-separation boundary as calculated us
the present method. The last value withn50 is derived analytically
in Ref. 14.

J n s

0.1 0.9484 0.017
0.2 0.909 0.008
0.3 0.877 0.010
0.5 0.845 0.015
1.0 0.730 0.016
1.25 0.624 0.010
1.5 0.568 0.027
2.0 0.439 0.008
2.5 0.296 0.004
3.0 0.145 0.0016
3.25 0.0662 0.0006
3.4367 0 0

FIG. 19. Comparison of our phase-separation boundary w
that of Putikkaet al. ~Ref. 24! and of CBS~Ref. 27!.
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Let us now examine more specifically the results in F
20. We have labeled by 2, 4, and 6 the points which co
spond to 2, 4, and 6 holes in the 50- and 98-site lattic
Notice that the energy of four holes is the same within er
bars in both lattices. The same is true for the six hole ca
Thus the energy for 2, 4, and 6 holesseemsto be indepen-
dent of the size of the lattice within error bars. This can b
either~i! a genuine characteristic of presence of phase s
ration where the two, four, and six hole bubbles in a mu
larger system do not feel the size effects because they
self bound at a characteristic size much smaller than the
system or~ii ! a result of shell-effects which we have di
cussed and are minimized in our calculation or~iii ! the cal-
culation of CBS has larger systematic or statistical err
than those reflected by their error bars.

White and Scalapino~WS! calculated the energy per ho
on systems with cylindrical boundary conditions, that is, s
tems with open boundaries in one direction of the lattice a
periodic in the other.28,29,47 They estimate the energy pe
hole, Eq.~53!, by comparing the energy of a system wi
holes to the energy of the same system with no holes. In
47, WS argue that their approach is more accurate than
obtained by other methods simply because it gives a lo
energy per hole. However, the energy per hole calculate
this way on systems with open boundary conditions is
variational and, as shown below, can artificiallyunderesti-
matethe energy per hole.

Systems with open boundary conditions can be m
from fully periodic systems by removing a row of bond
Clearly this process disrupts the periodic ground state
raises the energy.48 Both the energy of the system withNh
holes,E(Nh), and the energy of the system with no hole
E(0), increase with open boundary conditions, but genera
not by the same amount. The system with holes has m
degrees of freedom than the no-hole system, allowing i
respond more effectively to the broken bonds. For exam
a system with holes has freedom to twist the antiferrom
netic order parameter at the boundary required by cer

FIG. 20. Quadratic fits of the results obtained by CBS~Ref. 27!
for systems with 50 sites~solid circles! and 98 sites~open squares!
to a quadratic polynomial. The result for the lowest value ofx for
the 98-site system was not included in the original publicat
by CBS.
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phase separated states. An example of such a state is a s
‘‘stripe’’ shown in Fig. 21. In this example, a striped o
structured phase separated state is stabilized in the midd
the system.

Thus one expects that the energy per hole obtained w
open boundary conditions~using as a reference state the n
hole energy with open boundary conditions! can be lower
than the exact energy per hole obtained with periodic bou
ary conditions~using as a reference state the no-hole ene
with periodic boundary conditions!.

In Fig. 22, we compare the results of various calculatio
on similar size lattices for the energy per hole for 1, 2,
holes and at our phase-separation minimum. The results
one and two holes are taken from the work of Boninse
and Manousakis~BM!.16,15The finite-size effects are smalle
than the size of the symbols. In addition, the result for t
holes for a 50-site cluster reported by CBS~Ref. 27! for
J/t50.4 is shown as an open square. Notice the agreem
between BM and CBS~both used periodic boundary cond
tions!. The value for the single hole energy obtained by W
is systematically lower than the value for the periodic lattic
The cylindrical boundary conditions used by WS frustra
the no-hole state, and, as a result, the energy of the no-
state obtained by WS is much higher than that used by
and CBS. WS’s calculation gives a total energy ofE(0)5
235.66~in units of t and hereJ/t50.5) for the no-hole state
on the 838 lattice, while for a periodic 838 lattice the
energy which we~and CBS! use is much lower,E(0)5
237.56. WS’s total energy for four electrons in a 838 lat-
tice is E(4)5241.02860.075, while we find E(4)5
242.2360.12 on a periodic lattice. Thus WS obtain a val
for the energy per holeeh(4)521.34, while our result cor-
responds toeh(4)521.1760.03.

Qualitatively similar conclusions can be drawn for th
case of a single hole. The results of BM for a single a
shown by the dashed line in Fig. 22. Clearly, WS’s sing
hole energies are below those also. This lowering of the
ergy can only be understood by the frustrating effect of op
boundary on the antiferromagnetic state.

n

FIG. 21. A two-dimensional stripe-type phase separated st
State~b! has a pi-phase shift which accommodates the hole mo
along the stripe but frustrates the antiferromagnetic order in the
of periodic boundary conditions. In state~b! this twist of the order
parameter has no magnetic energy cost with open boundary co
tions along thex direction. Thus periodic BC conditions in this cas
frustrate either the hole motion along the ‘‘stripe’’@state~a!# or the
antiferromagnetic state@state~b!# along the boundary bonds.
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Finally notice the very small difference between the e
ergy per hole in the two hole case and in the four hole c
obtained by WS atJ/t50.35. They findeh(2)521.72 and
energy per hole for a stripe21.737 at the optimum doping
of four holes per stripe. The difference is very small a
suggests that the WS striped state is only a manifestatio
frustrated phase separation.

VII. CONCLUSIONS

We have developed an efficient Green’s-function Mo
Carlo method for fermions on a lattice that iterative
projects out the ground state with no approximations. Fer
onic minus-sign fluctuations are controlled by using all po
ers of the projection operator up to some maximum and
trapolating to infinite power. Starting from a good initi
state allows us to converge before the statistical errors
come too large. This technique comes also with solution
a number of other technical problems such as~i! enabling the
guided random walk to walk through the nodes with
O(N2) algorithm using the idea of a ‘‘detour walk;’’~ii !
using a single walker to compute all the desired powers
the projection operator (H2W)m, where m
50,1, . . . ,pmax, simultaneously.

This technique is applied to the two-dimensionalt-J
model to investigate its phase diagram. It is found, contr
to many previous studies that there is phase separation~PS!
at all interaction strengths of thet-J model. The signal for
phase separation is clear when one overcomes the follow
difficulties.

First, the Maxwell construction is the cleanest and str
gest signal for PS because it suffers the least from finite-

FIG. 22. Comparison of the energy per holeeh(Nh) at Nh51, 2,
and 4 holes and at the phase-separation minimum. The das
dotted, and solid lines are polynomial fits toeh(Nh51) from BM,
eh(Nh52) from BM, andeh at the phase-separation minimum fro
HM. Notice that because of the cylindrical boundary conditio
which frustrates the no-hole state, WS tend to get more lowerin
the energy when they introduce holes. For these size lattices
finite-size effects on the one and two hole calculations are sm
than the symbol size. For comparison we have also placed the r
of CBS for two holes in a 50-site lattice which is available forJ/t
50.4. Notice that the CBS and BM results are nearly identical.
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effects. Second the shell effects can mask the signal bec
the energy as a function of density of different numbers
electrons on a fixed lattice is not a smooth curve. The kine
energy jumps discontinuously as electrons are added to
cessive shells. Therefore we have chosen to keep the ele
number fixed at a closed-shell configuration and to cha
the size of the lattice. The number of electrons which fo
closed-shell configurations depends on the boundary co
tions. To generate as many as possible ‘‘magic numbers’
closed-shell configurations we have used four types
boundary conditions. Periodic with 0 orp phase shifts at the
boundary in each of thex̂ and ŷ directions.

We find that for any value ofJ/t the energy per sitee(ne)
as a function of electron densityne for finite-size lattices
does not remain a concave function at high electron dens
There is a value of the densitynps(J/t) where a straight line
starting from the no-hole energy per site is tangent to
curve e(ne) at ne5nps . While the energye(ne,nps) does
not change significantly with system size, the energy o
finite system in the phase-separated regimee(ne.nps)
changes with system size and approaches this tangent lin
the infinite-size limit. We interpret this as evidence for pha
separation at all values ofJ/t. The fact that the function
e(ne) does not remain concave in our calculation abo
nps(J/t) can be explained by the energy cost of forming
interface between the two phases in our finite system.

Our results have been compared to the most works
Calandra, Becca, and Sorella,27 and we find very close agree
ment. These comparisons indicate that the early conclus
that the criticalJc /t for phase separation is far away fro
the physical value ofJ/t are largely invalid. This comparison
also indicates thatJc /t is very small and may vanish. W
discuss recent comparison by White and Scalapino47 ~WS! of
our numerical results to theirs. In that comparison, WS
the variational principle to argue that their results are m
accurate because the energy per hole in lower. However
demonstrate that one should expect the exact energy per
on periodic latticesto be higher than that obtained with th
cylindrical boundary conditionsused by WS. Thus on suc
different systems, a lower energy cannot be used as a c
rion for the accuracy of an approach. In addition, we int
pret the results of WS as evidence for phase separation
the appearance of stripes in thet-J model as a finite-size
effect.
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APPENDIX A: INVERSE UPDATE THROUGH NODES

To evaluate the determinant in the trial state, we use
usual ‘‘inverse update’’ trick first applied to condense
matter systems by Ceperley, Chester, and Kalos.41 We cal-
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culate the determinant and inverse of the matrix~26! together
at the start of each run, an operation takingO(N3) steps for
a N3N determinant. Then with each single-particle move
the random walk, we update the determinant inO(N) steps
and the inverse inO(N2) steps.

Starting with the matrixD and its inverseI , suppose we
change rowl of the matrix toDl j →r j . Since the inverse is
the transpose of the matrix of cofactors normalized by
determinant

I i j 5cofj i ~D!/uDu, ~A1!

the ratio of the determinant ofD before and after the chang
is

q[
uD8u
uDu

5(
j

r j I j l . ~A2!

The new inverse matrix is given by

I i j8 5I i j S 11
1

q
d l j D2

1

q
I il (

k
r kI k j , ~A3!

and one can easily confirm( jDi j8 I jk8 5d ik . Changing one
column of the matrix results in a similar update for the
verse.

The algorithm is straight forward, and has been used
many GFMC studies in the continuum and in variation
Monte Carlo on a lattice.However, it cannot be used directl
with GFMC on a lattice since the random walk steps direc
on nodes for a significant fraction of steps.When the matrix
becomes singular, its inverse is undefined, and the algor
breaks down.

One way around this problem is to recalculate the de
minant and inverse after walking through a node. Howev
in a reasonably dense system, a large faction of steps
land on nodes, and the running time will scale asO(N3).

We developed a differentO(N2) technique to hop ove
nodes without recalculation of the determinant or inver
The essence of the method is this: Let us suppose tha
random walk visits a node; namely, the particles were i
configuration RW 5(rW1↑ ,rW2↑ , . . . ,rWN/2↑ ,rW1↓ ,rW2↓ , . . . ,rWN/2↓)
and by moving a particle, say the first up-spin particle fro
position rW1↑ to rW1↑8 the determinant defined by Eq.~26! is

zero for the new configuration RW 8

5(rW1↑8 ,rW2↑ , . . . ,rWN/2↑ ,rW1↓ ,rW2↓ , . . . ,rWN/2↓). That is a prob-
lem for the application of the inverse update. In order
move to the next configuration, say where particle 2 is po
tioned at rW2↑8 and this corresponds to a new configurati

RW 95(rW1↑8 ,rW2↑8 , . . . ,rWN/2↑ ,rW1↓ ,rW2↓ , . . . ,rWN↓), we need the in-

verse matrixI5I (R¢ 8) for the configurationRW 8 and this does
not exist because the determinantD(RW 8)50. The nonexist-
ence of the inverse is no problem for the physics becaus
we need for computing the observables is the determin
not the inverse; the inverse matrix is only a tool which sa
us from having to recalculate the full determinant at ea
step. We have been able to use the inverse update techn
by making a ‘‘detour’’ around the node as follows. The re
motion of the random walk wasRW →RW 8→RW 9 and because
D(RW 8)50 we cannot update the inverse to findI (RW 8) which
e

in
l

m

r-
r,
ill

.
he
a

i-

all
t,
s
h
ue

l

we need in order to calculateD(RW 9). However, all we need
is D(RW 9) and I (RW 9) independently of how the random wal
got there. Let us consider the configurationRW 28

5(rW1↑ ,rW2↑8 , . . . ,rWN/2↑ ,rW1↓ ,rW2↓ , . . . ,rWN↓), which is obtained

from RW by imagining that we moved~without actually doing
it! particle 2 with spin-up torW2↑8 and let us assume tha

D(RW 28)Þ0. SinceRW 9 can be obtained fromRW 28 by moving

particle 1 torW1↑8 , D(RW 9) andI (RW 9) can be obtained by imag

ining that the walk went throughRW 28 to get toRW 9. Thus, in

order to calculateD(RW 9) and I (RW 9) we only need to calcu-
late D(RW 28) and I (RW 28) which both exist.

When the random walk generated by the guiding funct
hits a state or series of states where the determinant of
trial function vanishes, we generate a ‘‘detour’’ walk arou
the region where the matrix is singular, rejoining the guidi
walk when the determinant is nonzero again.

To choose the detour walk, we simply delay any mo
causing the determinant to vanish and place the particle n
ber and its future site at the beginning of a list of moves
make. For any subsequent move of a particle of the sa
spin, we try to move the first particle in the list to that site.
that move yields a nonzero determinant, we accept it
attempt to move the next particle in the list in the sam
manner. We repeat the process until either all moves g
zero determinant or the list is empty, in which case the t
determinant is not zero.

Obviously, the procedure will not produce a nonzero d
terminant when the true determinant is zero. However, i
important to prove that the detour rejoins the guiding walk
the first step with nonzero determinant.

We represent the rows of the matrix~26! by D
5$ur1),ur2), . . . ,urn)% whereurW i) represents the row

urW i)5@a~rW i↑2rW1↓!,a~rW i↑2rW2↓!, . . . ,a~rW i↑2rWN/2↓!#
~A4!

which is labeled byrW i . Suppose moving the first up particl
to a new site, changing the first row label tor1→s, yields a
zero determinant. Then

us)5a2ur2)1a3ur3)1•••1anurn) ~A5!

for some coefficientsa2 ,a3 , . . . ,an . Let the next random
walk step move the second particle, changing rowr2→t.
Simply by checking if the matrixD85$ut),ur2), . . . ,urn)%
has zero determinant, we can determine if the true ma
D95$us),ut),ur3), . . . ,urn)% is singular. If uD8uÞ0, we ac-
cept the move, swap the particles, and try to move the
particle again. IfuD8u50,

ut)5b2ur2)1b3ur3)1•••1bnurn) ~A6!

for certain coefficientsb2 ,b3 , . . . ,bn . Combining Eqs.
~A5! and ~A6! to eliminater2, we see thatuD8u50 implies
uD9u50. Thus by simply checking single-particle moves, w
can verify that the determinant of the matrix two steps aw
is zero. The argument is easily generalized to any numbe
delayed moves.
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For a Fermi-liquid state, Eq.~26! may be expanded into
the product of two Slater determinants, and this algorit
suffices as it stands. However, with a pairing trial state, t
decomposition is not possible, we must consider moves
opposite spin electrons causing the determinant to vanis

Suppose we find moving either the first up partic
changing the first row toD1 j→r j , or the first down particle,
changing the first column toDi1→ci , results in a zero de
terminant for matrix~26!.

If I 11Þ0 we move the first row with the first elemen
shifted by 1/I 11, noting

uD8u5U r 11
1

I 11
r 2 ••• r n

D21 D22 ••• D2n

A A � A

Dn1 Dn2 ••• Dnn

U5uDu. ~A7!

We then try to change the first column in the standard m
ner. We have artificially changed the upper-left element
the determinant, but since this element will be changed ag
before we finish the detour walk, the change will not affe
the true determinant.

If I 1150, this modified step is no longer possible, and
need to prove that the true determinant,

uD9u5U x r2 ••• r n

c2 D22 ••• D2n

A A � A

cn Dn2 ••• Dnn

U50, ~A8!

vanishes. Herex is the upper-left element after both move
We know there exist coefficientsa2 ,a3 , . . . ,an such

thatr j5( i>2a idi j for all j. Since the inverse is related to th
matrix of cofactors by Eq.~A1!, cof11(D)50, and there are
other coefficientsb2 ,b3 , . . . ,bn such that 05( i>2b idi j for
all j >2. If ( i>2b ici50, then uD9u50 trivially. Otherwise
let g i5a i1lb i where

l5S x2(
i>2

a ici D Y (
i>2

b ici . ~A9!

Then x5( i>2g ici and r j5( i>2g idi j for all j >2, so uD9u
50.

Again, this argument can be extended to any numbe
delayed moves. By combining the two types of moves
scribed in this section, we are able to keep track of the t
determinant without recalculating the inverse from scratc

APPENDIX B: O„N… CALCULATION
OF SUPEREXCHANGE

For a determinantal function, the kinetic terms in Eq.~33!
requireO(N) steps per particle, so it scales asO(N2) for the
system. The superexchange term in thet-J model,
(^ i , j &Si

1Sj
2 , exchanges two particles, changing both a r

and a column of the determinant~26!. In this section, we
show how the amplitude of swapping two particles may
calculated inO(N) steps.
is
of

,

-
f
in
t

of
-
e

e

Suppose we swap themth up electron with thenth down
electron. We will modify both rowm and columnn in the
determinant. We write the new elements asDm j→r j and
Din→ci . Naturally, r n5cm . One can show the ratio of th
determinant before and after the swap is

uD8u
uDu

5S (
i

r i I imD S (
j

I n jcj D 1I nmcm2I nm(
i , j

r i I i j cj .

~B1!

Direct evaluation of the sumS5( i , j r i I i j cj takesO(N2)
per pair of neighboring particles. For this reason, many
searchers evaluate the superexchange term only eveN
Monte Carlo steps.38

Our trick is to evaluateS once when a pair of particle
become nearest neighbors, and then to update it inO(N)
steps for any move not disrupting the pair. Suppose thel th
up electron moves (lÞm), altering rowl in the determinant
~26!, so Dl j →sj . The inverseI is updated according to Eq
~A3! andcl→cl8 takes a new value.

We can write the new sumS8 in terms of the old sum and
extra factors as

S85(
i , j

r i I i j8 cj8

5(
i , j

r iXI i j S 11
1

g l
d l j D2

1

g l
I i l (

k
skI k jCcj8

5S1
1

g l
S (

i
r i I i l D S cl82(

j
g j cj D , ~B2!

whereg j5(kskI k j is used in the inverse update. This calc
lation requires onlyO(N) steps, so the local superexchan
energy of the system may be evaluated inO(N2) time.

APPENDIX C: ENERGY AT THE PHASE-SEPARATION
BOUNDARY

In the phase-separated state, thet-J model separates into
two phases, one with all electrons~no holes! and the other
with some electrons and some holes. The transition is c
tinuous: AsJ is increased in the phase-separated regime,
electron density in the low-electron-density phase decrea
while the proportion of Heisenberg phase increases. The
ergy in the partially phase separated regime is simply
weighted sum of the two constituent energies. Specifica
the energy of the phase separated state is given by

Eps~n,J!5
12n

12nps
Eu~nps ,J!1

n2nps

12nps
EHJ, ~C1!

whereEu(n,J) is the energy of the uniform density phase
a function of electron density and interaction strength,EHJ
is the energy of the Heisenberg phase, andnps(J) is the
density of the onset of phase separation.

Across the phase-separation boundary, the energy is
tinuous as is its first derivative with respect to density. Us
this fact, we can show that the derivative of the energy in
phase-separated regime with respect toJ is given by
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]Eps~n,J!

]J
5

12n

12nps

]Eu~nps ,J!

]J
1

n2nps

12nps
EH ~C2!

so the first derivative of the energy with respect toJ is con-
tinuous at the phase-separation point,n5nps(J). All terms
M

n

-

a

tt.
of the form ]nps(J)/]J are canceled from this expressio
Note that for J.Jc , where Jc is the critical interaction
strength for complete phase separation,nps(J>Jc)50 and
Eu(n50,J)50.
g
ct-
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tt.
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