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Green’s-function Monte Carlo for lattice fermions: Application to the t-J model
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We develop a general numerical method to study the zero-temperature properties of strongly correlated
electron models on large lattices. The technique, which resembles Green’s-function Monte Carlo, projects the
ground-state component from a trial wave function with no approximations. We use this method to determine
the phase diagram of the two-dimensiohdl model, using the Maxwell construction to investigate electronic
phase separation. The shell effects of fermions on finite-sized periodic lattices are minimized by keeping the
number of electrons fixed at a closed-shell configuration and varying the size of the lattice. Results obtained for
various electron numbers corresponding to different closed shells indicate that the finite-size effects in our
calculation are small. For any value of interaction strength, we find that there is always a value of the electron
density above which the system can lower its energy by forming a two-component phase separated state. Our
results are compared with other calculations on ttlemodel. We find that the most accurate results are
consistent with phase separation at all interaction strengths.

[. INTRODUCTION volve fermionic degrees of freedom. If one attempts a simu-
lation of fermions at low temperature one encounters the
Correlated quantum many-body systems have provided so-called fermion sign problem. Namely, one needs to define
host of new phenomena such as new states of matter, nesonfigurations which carry a phage positive or negative
forms of ordering transitions, etc. These phenomena are thsign along with their statistical weights, a reflection of the
result of the appearance of fundamentally new relevant detransformation property of the fermion wave function under
grees of freedom which emerge as a coherent superpositigrarticle permutation. In the computation of many quantities
of the underlying degrees of freedom of the many variableof interest, such as the energy, the “positive” and the
system. Once one identifies the important degrees of free‘negative” configurations give nearly opposite contribu-
dom, these degrees of freedom can be treated by analytical tions, leading to wildly fluctuating weights. The negative-
semianalytical techniques which are variants of generalizedign problem causes the statistical fluctuations to diverge ex-
perturbation expansions around the defining framework. Th@onentially with increasing system size for fixed density.
problem which arises is that such frameworks cannot be The Green’'s-function Monte Carl@(GFMC) method has
imagined before hand unless there are hints from either exseen successfully applied to lattice spin systems, in particu-
periment or numerical studies of models correctly capturindar to the square lattice spin-1/2 Heisenberg quantum
the dynamics of more basic degrees of freedom which, aantiferromagnet:®>~" In this case, through the Marshall-sign
first sight, seem featureless. transformation, the problem can be mapped to a hard-core
Several such models on a discrete lattice exist and a vasoson problem which presents no sign problem and solved
riety of numerical techniques are at our disposal to use.accurately on large systems.
Exact diagonalization techniques suffer from the fact that the An approximate method to deal with the sign problem in
dimensionalityN,; of the Hilbert space grows exponentially fermionic systems is the fixed nodEN) approximatiorf°
with system sizeNg (number of sites Taking into account This approach projects a trial state onto the best variational
all the symmetries of the problem can reduce the size of thetate with the same nodal structure, thus controlling the sta-
invariant subspaces to smaller si¥dg (which may be a few tistical fluctuations. The FN approximation has been used for
orders of magnitude smaller th&t,). However, the largest lattice fermion systems alg8:**
possible size increases only with the logarithm of the ratio of The GFMC method for lattice fermions without the fixed
Ny /Ng. In particular, most interesting quantities scale withnode approximation has been applied to one-dimension
the linear dimension of the system which scales withsystems:? In two dimensions it has been applied to thé
[In(Ny/NR) ¥ whered is the dimensionality of the problem. model in the limits of small numbers of electrdfisor

Renormalization-group approaches, such as the densityroles!®®

matrix renormalization-group technigéiehave been very In this paper, we present an efficient implementation of
successful in one dimension but there are significant limitaGFMC for lattice fermions at arbitrary densities of electrons
tions in higher dimensions. or holes. We demonstrate the utility of the method in the

Attractive alternatives seem to be stochastic methods suatase of the two-dimension&l) model. The method projects
as quantum Monte Carlo which can give information abouta trial wave function onto the lowest energy eigenstate that it
larger size systems. Many interesting problems, however, ineverlaps. If the trial state overlaps the ground state, the pro-
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jection yields the ground state. The projection becomes sta- A. Details of the projection
tistically more accurate as the ground-state component of the \y/a take a trial wave functiow and project it onto the

trial state increases relative to the excited-state component@round state by generating a series of increasingly accurate
Results obtained for the-J model with this method have approximants to the ground state labeled by integers
been published by the authdrsin this paper we present the —=(H—W)MW¥). Here H is the Hamiltonian and\’ is an
general method and in addition, our results for tilemodel ppropriately chosen numerical constht?
arelz ?resented in detail and compared with other recent caii- We may expand the trial state in terms of the exact eigen-
culations. .

The t-J model is thought to contain some important as_states.

ects of the environment in the copper-oxide superconduct- _

grs. For instance, the calculated siggle-hole spegﬁumin W) =20|®o) | D)+ - -, @
agreement with the results of the photoemission dane  where|d,) is the ground statd,) is the first excited state,
model gives rise to a two-hole bound stateith thed,2_y2  and thea,’s are the expansion coefficients. Rewriting the
symmetry which is the believed symmetry of the superconprojected states in this way, we see
ducting state in these materials. In addition, Emery, Kivel-

son, and LiR® (EKL) suggested that the cuprates are near an |m)=(H—W)"¥) ©)
electronic phase-separatigi?S instability which is pre-
vented by the long-range part of the Coulomb interaction. In = ag(Eg— W)™ o)+ ag(E;— W)™ ) + - - - (4)

the phase-separated state, the holes cluster together with a

certain density of electrons, leaving the rest of the system in £
an antiferromagnetic state with no holes. Phase separation in xr | o)+ &
the t-J model has been studied by a number of techniques Ao
which seem to be giving conflicting conclusioHg=%’ _ .
High-temperature series expansitifé and some studies on Where E; is the energy of thdth eigenstate. S¢m) ap-
small systen? indicated that phase separation does not ocProaches the ground state for langeprovided

cur at the physical region for the cuprates, namély

~0.3-0.4, while other studies on small systéh$ found |Eis o= WI<[Eo—W| (6)
this region was unstable to phase separation. Using tr;‘e

GFMC method presented in this paper, Hellberg an or all exmt_ed state energies;... The projection can be_
17 , ormulated in this simple way because eigenvalues of lattice
Manousakid’ found that the-J model has a region of phase o
. . . Hamiltonians are bounded from beloand above. Con-
separation aall interaction strengths.

In recent work, Calandra, Becca, and SoRSIEBS) em- tinuum problems require a different form for the projection
phasize that the, phase s’eparateéj region does not extef erator’*%In what follows, we assume the offset constant

below J/t<0.4. In addition, the density-matrix is incorporated in the Hamiltonian. o
o . . From Eq.(5) we see rate of convergence withis gov-
renormalization-group method has been also applied to thi

&rned by the overlap of the trial state with the ground state

roblem by White and Scalapifft’® (WS) who find that the y b , grounc
ground stz:/te of the-J model (E)n the(squ)are lattice is charac- and the energy of the lowest excited state overlapping the
terized by sfripes trial state. In Sec. Il D, we describe the steps taken to insure

In the last section of this paper, we compare our results tcf)alSt convergence.
paper, P To calculate ground-state expectation values of an arbi-

those of CBS and WS, concluding that the physical region o o
the model is very close to or inside of a PS instability. {rary operato, we take the largen limit of
Namely, the early conclusions thiie physical region of the

, 5

W m|<I> +
E—W D

t-J model is far from the critical Jfor phase separatigrare (PolAlPo) = lim (m|A|m)' (7)
largely invalid. (Dol Do) e (M[M)
Il. NUMERICAL METHOD For large values ofn, we cannot evaluatei™ directly.

Jhe number of position-space states generated diverges ex-
Ponentially with the powem, so we calculated™ by a sto-
chastic method similar to Neumann-Ulam matrix inversion.
We decomposéd into a product of a transition probability
P.s to make a transition from state to state and a re-
sidual weightw,; as

Even though our formalism is general and can be applie
to other lattice fermion models, we shall use the example o
the t-J Hamiltonian on a two-dimensional square lattice.
This model in itself is a nontrivial extension of the square
lattice Heisenberg antiferromaghathere GFMC was first
applied on a lattice model.

The t-J model is written in the subspace with no doubly

occupied sites as Hop=PapWags, ®
nn. where
H=—t > (clciptHec)+IX (s-s,-—#). (1)
(‘Do ) 4
Here(i,j) enumerates neighboring sites on a square lattice, 3 Pap=1, Pap=0. ©)
¢/ creates an electron of spinon sitei, n,== ¢/ c;,, and

S is the sping operator. To evaluate
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X(ay|H|ap)- - -(am-1|H|am) (10

(aolHMam)= (aolH|ay)

stochastically, we average ovemstep random walksyg
—a;— - —aq_1—ay, Where eachy; is a position space
state, giving each walk the accumulated weight

W( ap, 01, - - !am):WaOalwalaz' : .Wam—lam' (11)
The probability of the walkeg— a4, ... —ay s
P(aO!all s -am): paoalpalaz' o pam—lam' (12)
Thus it follows that
(aHMam= 2 W(ag,a,....am (19
Ap,y ey A1

for a large number of walks guided by the probabilify?).

B. Importance sampling
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C. An efficient approach

The standard algorithm is inefficient since a random walk
in configuration space of lengtih must be generated for
each term in the sunil8). The details of the intermediate
states are thrown away. The expectation valdgH™|¥)
can be evaluated more efficiently if the generation of the
initial states{a;} is combined with the generation of the
random walks. In the random walk, new states are chosen
with a probability given by Eq(14). After a large number of
steps, these states are distributed with a probability

Quz[ V5T (19
which is derived by solving the “detailed balance” condi-
tion

Qa’pa’B: Qﬁpﬁa ’ (20)
wherep, is the probability to make a transition from con-
figurationa to B8 given by Eq.(14), andQ,, is the probability
to visit a statd «).>” Thus we may use states generated in the
m-step random walk as initial states for nemwstep random

The Monte Carlo sunil3) is evaluated most efficiently walks.
using importance sampling. We cannot use the trial state as a For maximum efficiency, we use every state generated as
guiding function for the random walk, since the guiding the starting point for a new walk, so at each step we calculate
function must be positive for all allowed states. Labeling ourdifferent stages ofm walks simultaneously. We simply gen-

guiding function®©, we let

1¥g
pa,B:Z FHaﬂ7 (14)
where the normalization is simply the local energy:
‘*I"G
B
z,= % FHQB (15)

Defined in this way, Eq(14) satisfies Eq(9), and the re-
sidual weight is

vg
Waﬁ::za_,
B

resulting in the accumulated weight for the-step walk
given by Eq.(11).

For an antisymmetric trial wave functioh', the standard
algorithm to evaluate

(16)

<‘PTIH"“|‘1/T>=C%WZ*<a|Hm|B>wT, 17

erate one very long random walk using the probabilits).

At each step in the walk, we look steps into the past to
evaluate an element of E¢L8). The computer time needed
to calculate a given number of observationgdf") is inde-
pendent ofm. An additional advantage is that since only one
long random walk is generated, we may calculate all differ-
ent powersm in parallel. The fundamental observation be-
comes

Mg W, ..

TrormiarsT 1 @ _m "ai)\PZi
(WTIHTw T =7 > e |2

Z‘)‘i—m

(21)

The method is easily generalized to evaluate the expecta-
tion value A,,=(V|HMAH™|¥) for any diagonal operator
A, such as the density or spin structure factgrs andS,ZSJ-Z.
At each stage in the walk, we loak steps into the past to
obtain the expectation value ¢f) and 2m steps into the
past to calculate the accumulated weight. By sumniihg
observations from a walk, we find

La)W!

1 M \I'I[:W(ak, - a
(ajlAlay), (22

An=17 E
M

whereW* =(¥7|a), is to generate a set o initial states =1 2, ] WG |
{a;} with probabilities proportional toQaioclllfI,J2 using
Metropolis sampling as in variational Monte Carlo. At eachwherej=i—m andk=i—2m.

initial state|«;), we start anim-step random walk, ending in
the statg g;). For largeM,

. vﬁi)\PT.

M \PZ:‘W(ai, - i ( 8)
.2

1
<‘1’TIH”‘|‘I’T>—>MZ}1 o,

The speed of convergence of the procedure with pawer
is determined by the ratiR=|E;—W|/|Eq—W|<1, where
E, is the energy of the first excited state overlapping the trial
state. Since this gap is caused by the finite size of the system,
we generally calculated powers of the Hamiltonian up to
several times the linear system size.
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D. Trial wave functions variational energy of the trial state. However, the resultant

Care is needed to choose a trial state with maximal overState would be a superposition of many spin states and in

lap with the true ground state. We restrict ourselves to totaP€neral would overlap excited states with nonzero spin

spin singlet states with zero momentum and try to write Lloserin energy to the ground state than the lowest spin zero

very arbitrary form yielding a good initial guess throughout €XCited state, resulting islower projection than a singlet
the phase diagram. trial state with higher variational energy.

We use a Jastrow resonating-valence-b@RWB) wave We write the determinantal part of the trial state in the
function for the trial state, written usual way*® The ratioa,=v,/uy is the physical quantity,
and, assuming,=a_,, we definea(r) as its Fourier trans-

form:
\PTZ H f(riyg._rjyo./)|RVB>
i<j,o,0
a(r)=2 a, cogk-r). (24
= H , f(ri,a_rj,o')PNl_kI (uk+UkCIITCtk1)|O>, .
=l Then

(23

where ¢/, is the usual Fermion creation operator aRg
projects the state onto the subspace with the number of par-
ticles fixed to beN.

It is important that the Jastrow factbicorrelateall pairs
of particles independent of spin, yielding a correlated state
that is still a total spin singlet. If we allow different Jastrow
factors for like and unlike spins, we could usually reduce thecan be written as theN/2) X (N/2) determinant

|RVB>=PN];[ (ug+ovel,cty)]0)

N/2
= 2 ari=ref el | o) (29

T !

a(ryp—rq)) a(ryp—ray)) a(ry—rnoz))
a(ry—rq)) a(ry—ry) - alry—rmg))
|D|= ; : ; (26)
a(ring—ray) alrnzr—r2) - alrawzyr— vz
|
in position space. where the intermediate sums over, a5, .. .,a,_, span the
In this form,|RVB) spans a broad class of Fermion wave completeHilbert space, we must guide with a positive func-
functions. A Fermi-liquid state corresponds to tion.
Every guiding function that samples the complete Hilbert
1 keFermisea space will yield correct results. Our challenge is to pick a

(27) function that minimizes the statistical fluctuations of our out-
put. The guiding function cannot ameliorate the sign problem

) ) ) ) in Eq. (21). We can, however, choose a function to reduce
while by allowing other choices foa,, the wave function the fluctuations i W T|/|%¢|. We define

can describe a pairing state, which maydwave,d wave,
or something more general.

a = )
K“10 otherwise

YCe=max|V¥T|,c¥B}, (29
E. Guiding function

We are tempted to use the magnitude of the trial state A% hereWwB

our guiding wave function, but this would be a serious MiS-¢i-te of the bosonic Hamiltonian. We tal® to be a spin-

ta}ke. By construcgon, the sites of a periodic Iatt!ce lie atdependentJastrow functidfThis is similar to a choice used
high-symmetry points, and the nodes of a fermion wave

. . . in continuum problems, but on a discrete lattice, it is not
function also respect these symmetries. One fiMlg| ) . - ; .
- T . . : necessary to match the first derivatives as in the contirtfum.
=0 for a significant fraction of states in the Hilbert space not

violating the Pauli exclusion principle. Since We rescalec so the effective number of configurations
' contributing to the norm is approximateN~1/L for an
LxL system® This guiding function is shown schemati-
PTIHPp T = ¥T |H o lae o |HIWT Y, cally in Fig. 1.
(WIHPT) aO,Z. ,an< “0| laa)--(am-alH] “m> For the guiding function, we use the Jastrow-pairing func-
(28)  tion

is a positive function, typically a good variational
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. Since we often land on a node where the inverse of the
matrix (26) is not defined, it is difficult to calculate the prob-
n . abilities p,z [Egs. (14) and (15)] for the random walk we
00 0B o o ‘Pzr) o . defined earlier. When we are on a node wWit],=0, we
a] ® 00 00 need to choose the next step of the walk from the various
o & possibles states. Therefore we need to calculgtevith Eq.
& (15). Since we are on the node, calculating eﬁcbrequires
S o ' a detour walk which in itself takeld? steps. Thus the calcu-
& o lation of z, is anO(N?) process, whereas Whehzﬁéo it is
o o an O(N?) process. Therefore we make the following adjust-
ments so that each step is @fN?) process. We define
FIG. 1. Schematic behavior of the guiding function near a node.
The squares and diamonds are the trial state and its negative, re-
spectively. The circles are the bosonic state, and the guiding func- paB:Z_faBHaﬁi (31
tion, ¥'¢=max{|¥7|,c¥"}, is shown by the filled symbols.repre- “
sents a single coordinate of one electron.

T T
‘:’ (0] ¥ (rz

Z4=2 fapHap, (32
B
B_ . . s
v _i];-[j f(rlT r”)i];-[j f(rli r”)]i-_,-j[ g(rlT rJL) where If\l,zgéo
30
‘B nd partilesi dinds of b t() ) WEIVE it wi#0 (

of Bose spins particles(i.e., two kinds of bosons: up bosons foup= B Bt Glo e T 33
and down bosonsWe have chosen this function to mimic CEW W/ WSl? if =0
the physics of the fermion state as closely as possible withsq if T =0
out having nodes. Since it is not important to guide with a «
spin singlet function, we use a more arbitrary spin-dependent B
Jastrow factor where like spin particles are correlated differ- faB:—g (34
ently than opposite spin particles. v,

It is easy to show that detailed balance is obeyed by these
definitions. The advantage of using these probabilities is that
To evaluate the determinantal wave function, at the beginif W=0, then calculatingtlfz for all B with H,;#0 not
ning of the random walk we calculate the determinant, anequired. Since we do not have the inverse matrix of the trial
O(N?®) operation for aNxXN determinant, and its inverse, function’s determinant in state, such a calculation would
also anO(N®) operation. Each kinetic step in the walk pe computationally very expensive.
changes either a row or column of the determinant, while Ca|Cu|ating\IfB is a|WayS easy due to the Simp|e form of
superexchange changes both a row and column. Ceperlejq. (30), but \Ifi is more difficult. The kinetic operator
Chester, and Kal4% showed that the determinant an2d In- moves a single electron, 3, may be calculated iO(N)
verse may be updated after such moves efficient(N®) o5 since the inverse need not be updated. The superex-

steps. This so called “inverse update” works well for varia- ;nange operator moves two electrons and changes both a row
tion Monte Carlo or fixed node Monte Carlo, but it cannot be ;4 column of Eq(26). Updating the inverse to calculate

used directly with GFMC on a lattice since the random Walkthis term require©(N?) steps, which would cause the over-

steps directly on nodes for a significant fraction of steps. In g, algorithm to scale a®(N3) for the system. In Appendix

reasonably dense system, we find as many as 1/3 of the ste, Sve derive ar0(N) method of calculating superexchange.
land on nodes. On a node, the matrix is singular, the deter-

minant is zero, and the inverse is undefined. Recalculating
the determinant and inverse after walking through a node
will cause the running time to scale @N3). It is important that we start the GFMC with good trial and
We developed an efficier®(N?) technique to hop over guiding states. In this section, we describe our method for
nodes without recalculation of the determinant or inversepptimizing these functions.
The essence of the method is this: When the random walk In continuum systems, one usually assumes a functional
generated by the guiding function hits a state or series oform for the trial and guiding functions and optimizes a func-
states where the determinant of the trial function vanishedjon of the energy to find the best variational parameters. On
we generate a “detour” walk around the region where thea lattice, there are only a finite number of distancesr
matrix is singular, rejoining the guiding walk when the de- equivalently wave vectork in any given simulation, so we
terminant is nonzero again. We stress that the real randomlow the functions in Eq923) and(30) to have a parameter
walk goes though the node, the detour walk is a fictitious onalescribing each distance or wave vector not related by sym-
which is used only to calculate the determinant and its in-metry.
verse. It serves only as a calculational tool for the inverse For the Jastrow and position space pair factb(s) and
update. The details of this detour-walk approach of evaluatg(r), we apply all rotational and mirror symmetries. Trans-
ing the determinant and its inverse when the walk wentfational symmetry is always assumed. However, we insist
through a node are explained in Appendix A. only on the mirror symmetries about the axes for the Fer-

F. Walking through the nodes

G. Trial state optimization



11792 C. STEPHEN HELLBERG AND EFSTRATIOS MANOUSAKIS PRB 61

mion pairing fie'dak, so the function may be any linear . FITTING PROJECTION OUTPUT: INVERSE THEORY

combination of ans and d,2_,2 pairing state. Th(_e mirror A. Ground-state energy

symmetry excludesl,, symmetry. For a 2820 lattice, we , ) .

have 172 parameters for the trial state and 192 parameters for 1 ne Green’s-function Monte Carlo procedure takes a trial

the guiding function with the pairing term. state and projects it onto the exact ground state. Its output
We tried optimizing several functions of the energy, butCOnsists of the observables for the energy

found minimizing the variance of the local energy to be the (n_ N

most robusf? We generate a set of configurations EM=(W|H"W), (39

{ay,az, ... an} distributed according to a weight,. The \yhare the trial stat¢¥) has been normalized. For any op-
configurations remain the same throughout the minimizatiorratorA which does not commute with the Hamiltonian, us-
procedure. We minimize the function ing the present Monte Carlo method we calculate

m _ m n

2 [H\PZ-/\PZ-_E]2|TZ.|2/W% Amn <\P|H AH |\P> (40)

02:':1 r; ' ' ' (35) as functions of powers of the Hamiltoniamandn.
o These values converge to their ground-state values, except
; |‘I’ai| /Wuzi for a normalization factor, for large powensand m. How-

ever, their statistical errors increase exponentially with in-

whereE is a guess for the ground-state energy that we decreasing power due to the fermion sign problem.

termine self-consistently. We use the same function to opti- TO extract the most information on the ground state, we

mize both our trial and guiding functions. use the calculated observable for all powers less than some
With a finite random walk, the calculation of the energy Maximum powerpax. By including the highly converged

in Eq. (35) uses many more states than the calculation of thémall powers in the approach, we obtain much more accurate

norm. Occasionally, this created instabilities, which weground-state properties than can be obtained using the large

cured by deriving another way of calculating the norm usingPowers alone. Let us consider the ground-state energy as an

all the neighbors in the random walk. We may write example to demonstrate the approach next.
Let us define th@-spectral functiorc(&) with respect to

the trial statgd V') as

<\If|\1f>=§ | |2 (36)
0(5)5% lim Im<q’|ﬁ|‘lf>
0" - 7]
= (W 21-A)+B, D W2, (37) 7
a Be{Hy)
=Z (W] D)|28(E-E)). (41)

where{H,} is the set of all states neighboring) by appli-
cation of the Hamiltonian. We see E@&7) follows from Eq. ; : ;
(36) if we chooseB, — C andA.,— CN,, for some constart, T.o show this, one may expand the trial state in the exact
whereN,, is the number of neighbors ¢&) wherew does eigenstate$®;) of H as
not vanish. Since this version of the norm is calculated from
all the states entering the energy, no factors in the numerator W)y=" a|d;). (42)
of Eq. (35 are absent from the denominator. i=o

We calculate the effective number of configurations con-

tributing to the normalization as It is immediately evident from the above that the poles of

c(&) and of the exact spectral function are at the same en-
mwT |2\ 2 T |4 ergy values for those eigenstat@s;) which have nonzero
(s @ D @ overlap with the trial stat¢¥).
Neg=1 | _ > (39 i . . .
=1 ow, =1 w? In order to proceed we discretize the energy interval using
: a fine mesh withPAE, thus the energy takes discrete values

This quantity approachesif all states contribute equally to E*m, mM=1,2,... M and theT-spectral functiorc* (E) is

the integral and drops to 1 as one state begins to dorftfiate Written as

We adjust the length of our random walks Ngy is at least

ten times the number of parameters being optimized. e . N
We found that close to phase separation, the standard Me- c*(E) _mel CmO(E—E*m), (43

tropolis algorithm develops a small acceptance ratio, and

tends to stay in the same configuration for many steps. Ivherec’ =0 are non-negative real numbers. Thus this spec-

order to sample more phase space quickly, we choose owfa| function is thought of as a histogram, where in each fine

configurations using the transition probabilii4) where we  sjice of the histogram the value of the integralogE) mul-

takeH to be the off-diagonal part of the Hamiltonian, ensur-tiplied by any functionf (E) is simply cXf(E* ). We have

ing a new configuration with each move. Thus the configused a mesh intervaAE smaller than the finite-size gap

rations are distributed according to the weight,  petween the lowest and the first excited state. Thus the con-

=zai|‘PSi|2, Wherezc,i is given by Eq.(15). tribution of the ground state to* is accurately represented

M
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as a single delta-function peak. Namely, up to some 1.0 ¢
=My, Chem, =0, While ci, >0 andcy, _ - =0 andep,
>0, etc. 08 |

Then the moments of th&-spectral functionc* (E) can
be calculated using both Eg&1) and (43) and thus we

obtain 06
M 0.4
(\P|H”|‘I’)=mE:1 CrE*N (44)
0.2

wheren=0,1, ... Pnax- Sincepnax<M, because typically
Pmax=40-60 andM =200-500, we have more unknowns A
(the c;’s) than equations. However, the solution needs to
satisfy the constraint}y,=0 which limits the possible solu-
tions. The optimal way to find the most likely solution is to
minimize they?.

We gain very large computational savings by calculating
all powers ofH in parallel. However, this results in statistical ~ FIG. 2. TheT-spectral function of the full Hamiltonian. The
correlations between results of different powers which mustowest energy peak is at the lowest energy eigenstate of the system

-7 -1 -15 -14 -13 -12 -1 -10 -9
E/t

be treated accordingf}. which is nonorthogonal to the trial state. The value of spectral
We divide the measurements iftbbins. The covariance Weight is the square of the overlap of the true ground state to the
matrix is defined initial trial state.
1L % OI= O I=0) (W[HPH W)
= — Ey/—E E)/' —E 4 =
CI] M—=1\M e ( k )( k ) y ( 5) Ep <\If|Hp|\If> (47)

whereE{" is the average of thith power in thekth bin. For
uncorrelated outputC is diagonal. With correlationsy? is
defined

as a function ofp is shown in Fig. 3 starting from the
Jastrow-RVB value of the energy at=0. Notice that with
the length of the walk in configuration space used for this
calculation, the errowhich always grows exponentiajly
XZZE (E‘”—E(‘)*)Ci}l(g(j)—E(i)*), (46)  becomes annoyingly big for values @f not shown. The
B value of the energy obtained by the extrapolation method
described in previous section is also shown. By using the
whereE®* s the fitting function given in terms of the co- information contained in all the powers &f up to pyax
efficientsc, (which are to be determined by this minimiza- instead of the just the estimates of the energy at or just below
tion) by means of Eq(44). Pmax We obtain a much better estimate for the energy.
When C is diagonal, its inverse is trivial. For more gen-
eral C, small errors in its components can result in large . . . : : :
errors in its inverse, so it is important to calcul&eaccu-
rately. Increasing the number of bins decreases the statistice ~ ~1525 [ 7
error in C but increases the systematic error due to autocor-

relations. To balance these two sources of error, we choos 154 b o—— 4x4 10 electrons .
A - --- Exact Diagonalization

the number of measurements in each bin tonkeM pax.
wherep .« is the maximum power of the HamiltonidhWe
calculate statistical errors with the bootstrap metffod.
Figure 2 gives a typical example for tfifespectral func-
tion c*(E) obtained from the calculation of the two-
dimensionalt-J model. The lowest value dE* where we
have a delta-function peak gives the lowest eigenstatd of
which is not orthogonal to the trial state. The value of the
peak gives the square of the overlap of the lowest energy
state to the trial state. _16 ) . . . . L
We have tested our method by comparing our results with 0 5 10 5 20 25 >
exact results for the X 4 size lattice with several electrons.
In Fig. 3 we show the results for the energy as a function of F|G. 3. The energy for ten electrons in x4 lattice as a func-
the iteration for the case of ten electrons. Figure 4 shows flon of the power of the Hamiltonian. The value of the energy
larger system. obtained by the extrapolation method described in this section is
The energy estimate defined by also shown.

-15.55

-16.7

Energy (<H"">/<HP>

-15.85 b
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~N)
0.1198 : T
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oo e - S | L
‘E!:I o 3| Exact
~ BT ES =
iA -0.72 IEE_E_} ————— — 9D 01196 |-
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-0.74
01192 Il Il Il 1 Il Il Il 1 Il Il Il - .\.
—0.75 . . ) . A 01 2 3 4 5 6 7 8 9 10 infinity
7o 5 10 15 20 25 oo p

P
FIG. 6. The spin-spin correlation function for ten electrons in a

FIG. 4. The energy for 50 electrons in &B lattice as a func-  4x 4 lattice as a function of the power of the Hamiltonian. The
tion of the power of the Hamiltonian. The value of the energyvalue of the correlation obtained by the extrapolation method de-
obtained by the extrapolation method described in previous sectiogcribed in previous section is also shown.
is also shown.

<

B. Other operators a*(E)=>, S(E—-E")a*. (50)
=0

For an arbitrary operatok, we have
Here the values oE where theT-spectral functiona* (E)
(U|HPAH" W)= (EE;)P(0|D){(D;|A|D ) D) attains peaks are all possible geometric megBE; of all
| the eigenenergies which correspond to eigenstates which
have nonzero overlap wifhW') and they give nonzero matrix
:j dEE?Pa(E), (49 element of A. The lowest energy peak corresponds to the
geometric mean of the ground-state energy with itself, i.e.,
Eo= VEoE,, thus if the ground state is not degenerate it is
uniquely specified. Here we also need to solve for allafhe
given that they obey the following,,.x €quations:

where the operator overlap functi@tE) is given by

""(E):izj S(E+VEE)(W|D;)(Di|AlD)(D)| ).

M
(49) (V|A|®)=> aF,
i=0
Following the approach for the ener@yspectral function, M
we can define a discrete overlap function (WIHAH|P) = (E*)%a*
i=0
0.12 -
M
0.10 2pa*
(WIHPAHP|W)= 2, (E})*af . (51)
008 Figure 5 gives a typical example for the spectral function
a* (E) obtained for the spin-structure functi®(=/2,7/2)
‘e 0.06 from the calculation of the two-dimensional the] model.
a(E) Notice that the energy of the lowest peak is the energy of the
0.04 & lowest energy state having nonzero overlap with the trial
state and which has nonzero matrix elements with the opera-
0.02 | tor A. For the value of the peak, whicha§ , the expectation
value ofA can be calculated in a straightforward manner.
/
0.00 J A In principle, we can also extract information about the
excited states along with the ground state. This possibility is
‘ indicated by the fact that we can see higher energy peaks in

-7 16 15 14 43 12 11 10 -9 these spectral functions.
E/t In Fig. 6 we compare our results for the spin-spin corre-
FIG. 5. The T-spectral function associated with the spin- lation function with that obtained by exact diagonalization of
structure function. Notice that the lowest energy peak is at the sam#ée 4x 4 size system with ten electrons. Notice the fine scale
energy as that of the energyspectral function. The value of spec- used to be able to distinguish the difference between exact
tral weight is related to the spin-structure function in a simple way.and extrapolated correlation functions.
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0.1 . . . separatiorf*?® The compressibility, however, is not the
proper observable to find the phase-separation boundary in
the two-dimensionat-J model, where the transition is first
order. It is true that the compressibility diverges in the region
of phase separation, but it jumps discontinuously at the
boundary with the uniform phase. Numerically, this discon-
tinuity is difficult to see in even large finite systems due to
the surface energy of the two coexisting phases. When one is
in the region of the phase diagram where phase separation
exists, then, the compressibility suffers strong finite-size ef-
fects because of the rather large surface energy of the two
coexisting phases.

The ground-state energy as a function of electron density
00 02 oz 08 08 10 at J=2.5 for 32 electrons on a variety of system sizes is
Electron Density n, shown in Fig. 7. These finite systems necessarily constrain

the electron density to be uniform on the length scales of the

FIG. 7. The ground-state energy per site)at2.5 for 32 elec-  system size. We fit the discrete data to a polynora(al,),
trons. For clgnty, tht_e energies are shifted by g linear factor shown as the solid curve, in order to treat the energy as a
—eyne . The circles with error bars show the energies calculated O ontinuous function of density. The dashed Iie@s(ne), is a

lattices of dimensions 86, 7X6, ..., 28<28. A sixth-order i f fi that int ts the Hei b ¢
polynomial fit to the data is shown as the solid line, which is ex- inear function that INtersects the Heisenberg eneegya

tended to the Heisenberg energy, the square at energy zero in “ﬁéectron densityn,=1 and intersectg(n) tangentially at a
shifted plot. The dashed line shows the ground-state energy of th@ensity labeleds.
infinite system in the phase-separated region. We find the onset of It is straightforward to show that the ground state of the
phase separation occurs @g,=0.296+0.004, while the inverse infinite system at a densitp.>n,s cannot be a uniform
compressibility vanishes ai;,,,=0.52+0.10. phase, because the energy of the uniform phege,), is
higher thane,4(n,) at the same density. This latter energy
IV. RESULTS FOR THE TWO-DIMENSIONAL t-J MODEL corresponds to the energy of a mixture of two phases, one at
electron densityn,=1 and the other at electron density
=n,s. Therefore the infinite system phase separates into two
A number of methods to determine the phase separatioregions with densitiem, andng, and its ground-state en-
boundary numerically have been used. In one-dimensionargy is given bye,s(n.), the value of the dashed line at the
systems the divergence of the density structure factor at longverage density of the system. This is known as the Maxwell
wavelengths has been usEdDivergence of the compress- constructiort®
ibility as determined from the second deriyative of the en- The energy of the infinite system is given by the solid line
ergy with respect to elt.actron.or hole density was usgd UG Fig. 7 for ne<n,s and by the dashed line for,>n,. A
cessfully on the one-dimensiongl) model by calculating gifference between the Maxwell construction in Fig. 7 and
the energy for three differing densiti€s.in the one- 5 commonly used is that the density of one of the constitu-
d!mensmnal model, phase separation occurs between two r&nt phases, the Heisenberg phase,at1, lies at an extreme

fimit of the allowed density range. It is not possible to add

electrons and some holes. For a finite system, electrons Maectrons to the Heisenberg solid, which has one electron on
tunnel through the vacuum, lowering the ground-state en- 9 :

>}avery site, so while the dashed line is tangent to the fitting

passes through zero and becomes slightly negative. This efUVe atNe=Nps, it is not atne=1. If the t-J model did

fect is a surface effect and vanishes in the limit of infinite @/10W electron densities.> 1, then the intersection point of
system size. the solid and dashed lines would be shifted to higher densi-

In the one-dimensionat] model, the compressibility di- ties where the curves could intersect tangentially. The dashed

verges continuously at the transition point in contrast to thdine might intersect the solid curve tangentially at the higher
discontinuous transition in two dimensioff$!® The behavior ~density point in this region. At any electron density in the
of the energy derivatives across the phase-separation bound@ngen,s<n.<1, the system can reduce its energy from that
ary is discussed in Appendix C. We have verified that in oneof the uniform phase approximated by the fitting polynomial
dimension, the Maxwell construction yields the same phasein Fig. 7, by separating into two regions with densitigs
separation boundary as that calculated using the inverse nysandng=1, resulting in an energy given by the dashed
compressibility. line at the average density.

In the two-dimensionat-J model, the situation is more In order to be stable, the energy of the infinite system
complicated. The Fermi surface can change dramaticallynust be concave everywhere. Given the solid line in Fig. 7
with electron density for a given system size. These strongnd the allowed density range of thel model, the dashed
shell effects make accurate comparisons of energies calcline drawn in the figure is the only line possible to make the
lated with different numbers of electrons impossible. energy of the infinite system globally concave. This energy

Many of the previous studies used a vanishing inversés given by the solid line fon,<n,s and the dashed line for
compressibility as the criterion for the onset of phasens>ns.

(e-en)/t

A. Maxwell construction: Phase separation
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We never examined systems with densitigs0.94, so  chooses not to do that, it means that the energy of any other
we cannot exclude the re-entrance of a homogeneous phaskosen state is lower than the energy of this artificially im-
in this region. For such a phase to be stabilized, the soligposed state. Thus the energy per site of the unconstrained
curve in Fig. 7 would have to drop back below the dashedystem is lower thaen.. The system is definitely unstable
line in this density range. We never saw any indication ofto phase separation at least where this variational energy is
this possibility at any interaction strength. If a reentrant holower than the calculated energy per site of a finite system.
mogeneous phase did exist, the phase-separated region\We fit the calcu[ated energies in t_he unlform phase to a
would persist at densities,<0.94. The new Maxwell line 0w-order polynomial. The energies in the uniform phase,
would lie slightly below the one drawn and would be tangentVhere there is no surface energy, suffer much smaller finite-
to the solid curve at both intersections, but the phase—Slze effects than energies in the_phase-s_eparated regime. We
separated region would persist at densitiess0.94. We extrapolate the tangent of the fitting function to electron den-

never saw any indication of this possibility at any interactionS'ty Ne=1. At the phase-separation bound_ary, the tangent to
strength. the curve e(n,) extrapolates to the Heisenberg energy,

In the infinite system, the energy is a concave function ofe(ne: 1)=ey. This construction ensures that the resulting
densit ith yt ’ first dgy_ i n th h infinite-system energy is concave everywhere. This is the
ensity with - continuous first- derivative. in thé p ase'only possible construction that ensures the resulting infinite-
separated regime, the energy linearly interpolates bet""eeé‘ystem energy is concave everywhere.
the energies of the two constituent phases. The inverse com-
pressibility, the second derivative of the energy with respect
to density, is positive in the uniform phase and zero where B. Results atJ=t
the_ s_ystem_phase separates in the phase-separated regime. OIEJsing the Maxwell construction we have determined the
a finite lattice, the surface effects of phase separation raise .
the energy, and we find the inverse compressibility calcu- oundary for pha_sg separation of thd model. In th_ese
’ calculations we minimize the shell effects when varying the

lated from different system sizes obtained from a fit to theelectron density by keeping the number of electrons fixed at

discrete data remains positive even where the system is UQ-cjnseqd-shell configuration and changing the size of the lat-
stable to phase separation. For electron demgifythe com-  jice |n addition, we also choose the number of electrons to
pletely phase-separated energy per séfg,=e€nNe, iS @  correspond to a closed-shell configuration. This choice elimi-
variational upper bound to the phase-separated energy anddgtes possible degeneracies of states at the Fermi level. Such
given by the completely phase-separated energy per sitgegeneracies might favor flatness of the energy as a function
€yar=€nxNe. TO show that, letN, be the total number of of density which might be mistaken for phase separation.
electrons on a square lattice of sites fe=N/N<1).  When one varies the number of electrons keeping the system
Then, the total energy of the system is less or equaltd,  size fixed when adding an electron to a closed-shell configu-
plus corrections which are negligible compared to this ternration the kinetic energy goes up by a finite amount which
in the thermodynamic limit. Let one constrain all the elec-leads to oscillatory behavior of the energy per site versus
trons to be close packed in one region of the lattice so tha@iensity. An additionaltechnical reasorfor wanting to keep
only the interaction term in Edq1) is operative. If the system closed-shell configurations is that on a finite lattice it leads to
an energy gap between the ground state and the first excited
state which helps our projection method to converge.

-1.05 — . . T In Fig. 8 we study the size dependence of the critical
value of electron density,¢ for phase separation. The value
®N.=60 of nys is determined by making a cubic polynomial fit to
® N,=50 Ji=1 each curve and using the corresponding energy for the lattice
full of electrons calculated for the same number of electrons
o N2 I and the same boundary conditions. This latter energy may be
) I\\\ L estimated from the GFMC results obtained for various size
3 . II I~ 2 J lattices for the square-lattice spin-1/2 Heisenberg antiferro-
g \I\\ BT R, magnet and using the extrapolatton
145 | \\‘\E-___ R Ty
1
I S e -4 E/N=ey+AN"32 (52
12 6o 070 0.60 0.90 1.00

whereN is the total number of electrons.

The ground-state energy per siteJatt for fixed number
FIG. 8. The ground-state energy per siteJatt for N,=42  Of electronsN, and for various number of siteds can be
electrons andNy=49,56,64,72,81,90 siteottom curveé N,=50  grouped together. The bottom curve in Fig. 8 gives the en-

andN.=56,64,72,81,90second from the bottomandN,=60 and ~ €rgy per site as a function of density,=N./Ng for N
Ns=64,72,81,90,100,110,121 sitétop curvd. Each curve has =42 and Ny=49(7X7), 56(7x8), 64(8x8), 72A8X9),
been shifted upwards with respect to the previous by 0.025 in ordeB1(9%9), and 909X 10). The second from the top gives the
to distinguish them. energy per site shifted by a constant amount of 0.025 for

Electron Density n,
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Ne=50 andN¢=56, 64, 72, 81, 90. The third from the top the given value ofJ/t. Individually, each number of elec-
gives the energy per site shifted by an 0.05Ky=60 and trons is consistent with a solution where a line beginning
N,=64, 72, 81, 90, 100, 110, 121. The unshifted energies arfom the no-hole limit G.=1) and being tangent on the
given in Table I. If we plot these curves on the same scal@olynomial (that fits the data pointsnear n.=0.745 (see
without a shift, they all fall on almost the same curve. How-Fig. 8). Therefore we conclude that the finite-size effects
ever, there are small deviations which are shell effects. are small in our method of determining,s and the
Also shown in Table | is the lowest energy obtained byPhase-separation density féft=1 is n,=0.745+0.015.
diagonalizing within the subspace spanned by a subset of 2, Emery, Kivelson, and Liff calculated the phase-
3, or 4 different powers. This is similar to the Lanczos algo-S€Paration density using the energy per hole,
rithm for quantum Monte Carlo data introduced by Caffarel,
Gadea, and Ceperlé§. The energies obtained are upper en(X)= E(Nn) —E(0)
bounds to the ground-state energy. Np, ’
We can greatly eliminate the shell effects by examining
several size lattices but keeping the number of electron

fixed. We first fit each curve generated for fixid with a energy per hole is plotted for all the points calculated for 42
quartic spline. Next from the poiré(n.=1) on the graph, 50, and 60 electrons. The cubic fits attain minima at approxi-

we construct the tangent to the spline which fits our pomts.mately the same values as the tangent constructions. The

The value of the density at which the tangent and the spllnenergies in Fig. 9 are not shifted as they are in Fig. 8, and the

meet gives us an estimate of the phase-separation density sreII effects are obvious. For each number of electrons, the

energy is a smooth function of the density. However, taking
TABLE I. The energy per site fod/t=1 and for various elec-  all electron numbers together, the energy is a very jagged
trons densities and size lattices. The extrapolation energy is obfunction: The shell effects systematically bias the energies of
tained by the procedure described in Sec. lll A. The Lanczos energ¥ystems with a given number of electrons. Therefore it is
?s the lowest obtained by diagonalization within a subspace of propgsential to compare the energies of systems with the same
Jection powers. number of electrons, thus canceling the unavoidable system-
atic errors. Many previous studies of the two-dimensional

(53

hereE(N;,) is the total energy of thé&ls-site system with
n holes, andx=N,,/N; is the hole density. In Fig. 9 the

Ne Ns Ne Eextrap/Ns Eanc/Ns (2D) t-J model suffered from shell effects. A different dem-
32 100 0.32 -0.90122) -0.90087) onstration of shell effects is given in Ref. 21.

81 0.395 -1.02084) -1.019747)

72 0.444 -1.076(12) -1.075@15) C. Results in theJ<t region

64 0.5 -1.124818) -1.122027) The ground-state energy per siteJat0.5 for fixed num-

56 0.571 -1.1728) -1.176472) ber of electron®N, and for various number of sitéé; can be

49 0.653 -1.182814) -1.184439) grouped together. The top curve in Fig. 10 gives the energy

42 0.762 -1.185%7) -1.180118) per site as a function of density.=No/N for N,=32 and

3 0889  -1163A0  -1.168129 Ny=36(6X6), 497X7), 567x8), 648X8), 72A8X9),
81(9x9), and 9@9x10). The second from the top gives the

42 121 0.347 -0.94633) -0.94485) energy per site shifted by a constant amount of 0.03\fpr
100 0.42 -1.058@98) -1.054839)
81 0.519 -1.13387) -1.138341) 0.4
72 0.583 -1.156@34) -1.154815)
64 0.656 -1.16948.8) -1.166222)
56 0.75 -1.176682) -1.176524) 0.3 - 7
49 0.857 -1.16783) -1.165616)

3

50 121 0.413 -1.02296) -1.01928) s 02r 1
100 0.5 -1.108(B8) -1.102235) g
90 0.556 -1.140@19) -1.133832) 5 | |
81 0.617 -1.156@9) -1.161263) E 01
72 0.694 -1.1766:98) -1.174137)
64 0.781 -1.178(89) -1.166339) ol |
56 0.893 -1.16339) -1.160630)

60 110 0.545 -1.14540) -1.144235) Yy - — - .
100 0.6 -1.160(36) -1.160218) 0 0. Hole"bensityo-f’ 0: 0.
90 0.667 -1.16984) -1.169723)
81 0.741 -1.176@28) -1.175941) FIG. 9. The energy per hole a=t for N,=42 (open dia-
72 0.833 -1.177B7) -1.171G35) monds, N.=50 (solid squares and N.=60 (solid circles. The
64 0.938 -1.16289) -1.161215) shell effects have nonmonotonic influence on the scaling with size

of the energy per hole.
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-0.55 T T TABLE Il. The energy per site fod/t=0.5 and for various
electrons densities and size lattices.
-0.65 | & N_=32
o N=42 JN=0.5 Ne Ns Ne Eextrap/Ns Elanc/NS
L o PN 32 64 0.500 -1.01029) -1.011119)
P ot 56 0.571 -1.015@4) -1.014714)
Q 08y ] 49 0653  -0.981R7)  -0.980215)
S oss | Pl v 42 0.762 -0.889(33) -0.889332)
g e 36 0.889 -0.727@1) -0.727717)
“ T =l ]
105k, T T ® o 1
e e il 42 100 0.420 -0.96922) -0.969821)
i X I 81 0.519 -1.01581) -1.014322)
BTN SRS 1 .
N 72 0.583 -1.011%0) -1.003@15)
s , . oy 64 0.656 -0.973®2) -0.973422)
0.5 0.6 0.7 0.8 0.9 1 56 0.750 -0.89189) -0.88515)
Electron Density n, 49 0.857 -0.77184) -0.773322)
FIG. 10. The ground-state energy per siteJat0.5 for Ng
=32 electrons antN = 36,49,56,64,72,81,90 sité®p curve, N, 20 100 0.500 -1.00187) -0.992511)
=42 andN¢=49,56,64,72,81,90econd from the topN,= 50 and 90 0.556 -0.997&2) -1.000929)
N =56,64,72,81,90(third from the top, and N,=60 and N 81 0.617 -0.989%4) -0.988768)
=49,56,64,72,81,90,100,110 sitdsottom curve. Each curve has 72 0.694 -0.931@4) -0.934@36)
been shifted downward with the respect to the previous by 0.05 in 64 0.781 -0.859@87) -0.856559)
order to distinguish them. 56 0.893 -0.723@2) -0.724215)
=42 andN¢=49, 56, 64, 72, 81, 90. The third from the top 52 100 0.520 -1.009@0) -1.010244)
gives the energy per site shifted by an 0.1 ky=50 and 920 0.578 -1.002(58) -1.003280)
Ns=56, 64, 72, 81, 90. The bottom curve gives the energy 81 0.642 -0.97916) -0.977442)
per site shifted by 0.15 foN.=60 andNs=49, 56, 64, 72, 72 0.722 -0.911@14) -0.910762)
81, 90, 10010x10), 11011x10). The unshifted energies are 64 0.812 -0.815@9) -0.815320)
given in Table II. 56 0.929 -0.668@1) -0.66426)
Here again, we can greatly eliminate the shell effects by
examining several size lattices but keeping the number of, 110 0.545 -1.00683) -1.004115)
electrons fixed. We first fit each curve generated for fiXgd 100 0.600 -0.99224) -0.991120)
with a cubic spline where the Heisenberg point has been 90 0.667 -0.96762) -0.968742)
excluded from the fit. Next we find the point on the graph, 81 0.741 -0.89381) -0.894G12)
whgreeH(Ne) is the energy per elgc_tron 'for the Heisepberg . 01833 _0'794(31) _0'791&18)
antiferromagnet calculated on a finite-size system with the 64 0.938 0.662@5) 10.660531)

same number of electrom, (as discussed previouglyNext

we construct the tangent to the spline which fits our points.

spline gives us an estimate of the phase-separation densifyr a|| the points calculated for 32, 42, 50, and 60 electrons.
for thIS Value OfJ/t These Va|ueS eXtI‘aCted from the d|ﬁer' The curve attains a minimum at approximate'y the same
ent sets of energies which correspond to the same number ghjye as that determined by the tangent construction at the
electrons are given in Table lIl. Individually, each number of cypic polynomial fit of the energy per size for a given num-

electrons is consistent with a valuemfs nearn,=0.84(see  per of electrons. Notice, again, the shell effects.
Fig. 10. Clearly the 42 electron data do not prove that there

is a clear tangent at this value nf, but the data are con-
sistent with this value. Therefore we conclude that the finite-

size effects are small in our method of determinimg and 5 _ _
the phase-separation density fd/t=0.5 is n,s=0.843 Je=0.27 of J/t below which there is no two-hold-wave

+0.015. bound state. This value df was determined by calculating
We wish to demonstrate the significance of shell effectsthe binding energy for two holes on lattices up t5 8. BM
Let us select from our results of Table Il fdft=0.5 those noticed that because the bound-state wave function decays
which correspond to the same size latticex 8 for Ng exponentially with distance the finite-size effects were rather
=32,42,50,60. They are shown in Fig. 11. Notice that eversmall. They did, however, pursued a finite-size analysis from
though these data also give the same phase-separation davhich they determined)®. Nevertheless their calculated
sity within error bars as that determined by our method devalue of the two-hole binding energy aft=0.7 wasA/t
scribed before, the shell effects are large. Such deviations 0.31(03), and al/t=0.4, A/t=0.12(04). Thus we choose
from a smooth curve could lead to drawing the wrong con-the J/t=0.3 to examine the question of phase separation
clusions about phase-separation boundaries. believing that this value is very close to the critical vallfe

D. Results nearJ®?

Boninsegni and ManousakisBM) found a critical value
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TABLE lll. The phase-separation density att=0.5 deter- -0.8 : : .
mined by keeping the electron number fixed and varying the lattice %=

. A N,=32, N=36,42,49,56,64
Slze. < N,=42, N=49,56,64,72,81 =
09 0 N,=50, N,=56,64,72,90
n o N O N,=60,N_=64,72,81,90,100,110 o
e
0.831782 0.003 096 39 32 3 U105
s 15 =0.
0.838 086 0.0136867 42 T
0.840 684 0.002 38198 50 &
0.847 915 0.002 33589 52 S 4]
0.857529 0.00913804 60 ]
) ) ) 12}

In Fig. 13 we give the ground-state energy as a function
of the electron density for 50, 52, and 60 electrons Xar
=0.3 as three shifted curvésee Table IV. Notice that the 13 : .

values ofJ./t determined from the these sets of data are 0 0.1 02 03 0.4 0.5
very close. We obtaim,=0.877+0.010. ForJ/t=0.3 in Hole Density
Fig. 14 there is a minimum at,=0.12 which agrees very FIG. 12. The energy per hole at& 0.5 for 32, 42, 50, and 60
well with the value obtained from the tangent construction. electrons.

There are no published GFMC results for the two-hole
case forJ/t=0.3. We can obtain an estimate for the single-size lattices is shown in Fig. 15 and is given in Table V.
hole energy by fitting the calculated values for that as a funcNotice again that the values df/t determined from the two
tion of J/t to a form E=E,+aJ?3. The two-hole binding sets of data are very close, we fint;s=0.909+0.008.
energy forJ/t=0.3 can be estimated using the formula  Below JZ where there is no two-holé-wave bound state
which was used by Boninsegni and Manousdkie obtain  (assuming there are no bound states in other chapriéls
the critical value of)®. Thus, assuming that holes are boundthere is no phase separation the minimum energy per hole
in pairs and they form a dilute gas of hole pairs, we canshould be the single hole energy at zero hole density. At
obtain a value for the energy per hole in such a case. Thig/t=0.2 the single hole energy was also calculated by Bon-
value of this energy is higher than the value of the energy peihsegni and Manousakis for ark8 and 10< 10 size lattices.
hole at the minimum of our curve in Fig. 14. This is anotherThis value of the energy is shown if Fig. 16 and it is clearly
indication that there is more binding energy gained due tcigher than the minimum of the energy per hole curve which

the phase separation of the pairs of holes from the electronsccurs at approximately hole density o 0.09.
in an antiferromagnetically ordered state.

V. PHASE DIAGRAM OF THE t-J MODEL
E. Results belowJd®?

In Fig. 17 we present as a function &ft the minimum
energy per holésolid line) (the minimum of the energy per
hole versus density for a given value &ft). We also plot
the single hole energy(obtained by Boninsegni and

Here we examine the situation below the critical valfe
for two-hole d-wave bound state in the 2BJ model. We
shall examine the energy att=0.2. First of all the ground-
state energy per site foi,=50 andN.=60 and for various

-0.2 T T
-04 T T
Jt=03
05 - i
_ 04+
-0.6 | o Ji=0.5, 8x8 %
3 2 B
s 07 g P
a -0.8 - /,’ b w //x/,/ E 4
& e g e
£ 09 1 g T m
e 08 - T = 5 N,=50,N,=56,64,72,81,90 1
Ago----"77 4 w7 o N,=52, N,=56,64,72,81,90
. j P 0 N,=60, N,=64,72,81,90
4t | i |
12 ‘ , , ‘ T 08 0.7 0.8 0.9 1
0.5 0.6 0.7 0.8 0.9 1 Electron Density n,

Electron Density n,

FIG. 13. The ground-state energy per siteddat0.3 for 50, 52,
and 60 electrons and lattices of sizbg=56,64,72,81,90,N,
=56,64,72,81,90, anN;=64,72,81,90, respectively.

FIG. 11. The energy per site dt=0.5 for an 8x 8 lattice for
32, 42, 50, and 60 electrons.
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TABLE V. The energy per site fod/t=0.2 and for various

electrons densities and size lattices.

Ne NS ne Eextrap/Ns Elanc/Ns Ne NS ne Eextrap/Ns Elanc/Ns
50 90 0.556 -0.94928) -0.946925) 50 90 0.556 -0.92485) -0.921154)
81 0.617 -0.919@®7) -0.917423) 81 0.617 -0.89034) -0.882215)
72 0.694 -0.846@5) -0.848225) 72 0.694 -0.810@8) -0.809832)
64 0.781 -0.738M2) -0.741949) 64 0.781 -0.68223) -0.682627)
56 0.893 -0.551@3) -0.552315) 56 0.893 -0.468118) -0.471723)
52 90 0.578 -0.94Q031) -0.937239) 60 90 0.667 -0.84282) -0.841414)
81 0.642 -0.906411) -0.909948) 81 0.741 -0.741@24) -0.743217)
72 0.722 -0.811(39) -0.809529) 72 0.833 -0.58523) -0.585331)
64 0.812 -0.68814) -0.685249) 64 0.938 -0.370aL7) -0.36937)
56 0.929 -0.480@.9) -0.47779)
60 90 0.667 -0.88141) -0.881513) 14 . . .
81 0.741 -0.801@3) -0.797623)
72 0.833 -0.65384) -0.649613)
64 0.938 -0.464(23) -0.461%9) -1.6 [ | ASingle Hole Energy (BM) .
®N_=60, N_=64,72,81,90
® N_=50,N_=56,64,72,81,90 -
_1 .3 T T T T ﬁ
/ o -1.8 | - ]
14| |® N=50,N,=56647281 /I 1 g
& N_=52,N =56,64,72,81,90 / 3
u N,=60, N,=64,72,81,90 - s -2 .
-15 | S . 5
N - 1
:? 16 :;/:I: | _2'2_A__ Ji=0.2 i
4 *.
3 -17 ;‘:// ]
8 \\ - _2 4 1 1 1
w ~Io K3 3 “o 0.1 0.2 0.4 05
-18r \‘_‘I | hole density
® -J/t=0.3
-1.9 g FIG. 16. The energy per hole &t 0.2 for 50 and 60 electrons.
The single hole energy as obtained from Boninsegni and Man-
5 . . . . ousakis is also plotted for>88 and 10< 10 size lattices.
0 0.1 0.2 0.3 0.4 05
Hole Density
0.5 T T T 1,
FIG. 14. The energy per hole @=0.3 for 50, 52, and 60 & 1 hole (BM 92) i
electrons. 02 holes (BM 93) E 4
or  Minimum at PS
-0.2 . . . . -0.15
T 05} 1
-03 -0.25 )
~ IO
04} N,=60 -0.35 5 1
= 3
s -05¢ -0.45 @
7 e W 15 .
e 06} s 4 -0.55
g o7t T 4 -0.65 27 ]
I} s = \
_08 | ///////,/ b _075 25 \ i | 1 1 1 1 L 1
et 0 01 02 03 04 05 06 07 08 09 1
-09 4 -0.85 It
.
i .
—10_55 0.65 0.75 0.65 0.95 -0.95 FIG. 17. The energy per hole at the density where the phase-

FIG. 15. The ground-state energy per sitddat0.2t for 50 and
60 electrons and lattices with sizé&=56,64,72,81,90 andN
=64,72,81,90,

Electron Density n,

respectively.

separation separation minimum occurs as a functiod/bf(solid
line). This is compared to the energy per hole obtained from the
single hole calculation of Boninsegni and Manousaki®92
(dashed lingand to the energy per hole obtained from the two-hole
calculation of Boninsegni and Manousaki993.
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Manousaki&®) as a function ofJ/t which is the energy per
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TABLE VI. The phase-separation boundary as calculated using

hole in the case of isolated noninteracting holes in the systerifie present method. The last value witi 0 is derived analytically
(dashed ling In addition, the energy per hole is comparedin Ref. 14.

with the energy per hole obtained by Boninsegni and

Manousaki&® from calculation of two holes in theJ model. J n g
The energy per hole in this latter calculation gives the energy 0.1 0.9484 0.017
per hole in the case of isolated bound hole péaictted ling. 0.2 0.909 0.008
Notice that while the dashed line and the dotted line meet at 0.3 0.877 0010
J/It~0.3, the minimum at the phase-separation density and 05 0.845 0015
the dotted line do not meet. Notice that the additional energy 1'0 0'730 0'016
gained té) phase separation decreases with decrediiras 1'25 0'624 0'010
expected. ' ' '

In Fig. 18 we show the phase-separation boundary ob- L5 0.568 0.027
tained for all values o8/t using the method described in the 2.0 0.439 0.008
present paper and the Maxwell construction. In Table VI we 2.5 0.296 0.004
give the phase-separation boundary as determined for vari- 3.0 0.145 0.0016
ous values ofi/t from the various size lattices and number of 2.421267 %-0662 8-0006

electrons.

A more complete phase diagram for the 20 model as
a function ofJ/t and doping was given in Fig. 3 of Ref. 17.

That phase diagram is also accurate in the low-density region There is an important difference between our results and

where exact calculations can be ddfie.

those of CBS. Our results indicate that phase separation in

the t-J model is present for all/t, while the conclusion of
CBS is that there is a finite value d&=0.4t below which

VI. COMPARISON WITH OTHER CALCULATIONS

there is no phase separation. The reason for this disagree-

In Fig. 19, our phase diagram is compared to the recenment is that this region requires a very high degree of accu-
fixed node Monte Carlo calculations of Callandra, Beccafacy in the numerical results. We would like to discuss the
and Sorelld (CBS) and to the high-temperature series ex-results of CBS where they claim that Ht = 0.4 there is no

pansion calculations of Putikka, Luchini, and RféeNotice

phase separation for lattices of sikg=98. In Fig. 20 we

that our phase diagram and that of CBS are very close exceptot the results of CBS for this value dft for 50 sites(solid
in the delicate physical region of smallt. Therefore we can circles and 98 sitegopen squargsThe result for the lowest

draw a relatively strong conclusion from this comparison:value of x for the 98-site system was not included in the
The findings drawn from the early studies of thd model  original publication by CBS. CBS were kind enough to cal-
that the physical region of the model is safely away from theculate it at our request and to communicate it to us. Without
phase-separation boundary are not correct. What our worltsing that point, CBS concluded that the fact that we found
and the work of CBS find is that the interesting regiotif ~ PS atd/t=0.4 was a finite-size effect because the energy per
is either next to the phase-separation boundary or inside thgite in their largest size system had no minimum. With the
phase separated region. In both cases phase-separation flowest recently calculated point for the 98-site systeqtx)
tuations could play an important role in the mechanism forhas a minimum ak.~0.072. This is close to our value of
superconductivity in the copper oxides. aboutx.~0.1 for J/t=0.4.

1

u) T T \ T
09 | i \\
0.8 | 0.9 1 I
Non-Uniform Phase

0.7 -
- 0.8 - B
3 06| g
& &
o ) o
c 05 Uniform Phase c 0.7 1
5 5
8 o4l 8 N
w W6 - A ]

0.3 - - \\

(OCalandra et al. 98 AN
02 « HM 97 and this work « HM "97 and this work AN
HM '97 05 | ___ Pputikka et al. '92
0.1 - ——— HM97
0 L Il L 1 0.4 1 1
0 0.5 1 1.5 2 25 3 3.5 0 05 1 1.5 2 25

Jit

Jit

FIG. 18. The phase-separation boundary as calculated using the FIG. 19. Comparison of our phase-separation boundary with
present method and the Maxwell construction.

that of Putikkaet al. (Ref. 24 and of CBS(Ref. 27.
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FIG. 21. A two-dimensional stripe-type phase separated state.
-1.57 ' ‘ : ‘ State(b) has a pi-phase shift which accommodates the hole motion
0 0.05 Hgl';DenS“y 0.15 0.2 along the stripe but frustrates the antiferromagnetic order in the case

of periodic boundary conditions. In stafl®) this twist of the order

FIG. 20. Quadratic fits of the results obtained by CB®f. 27  Pparameter has no magnetic energy cost with open boundary condi-
for systems with 50 sitegsolid circles and 98 siteopen squarés tions along thecx direction. Thus periodic BC conditions in this case
to a quadratic polynomial. The result for the lowest valuexér ~ frustrate either the hole motion along the “stripgstate(a)] or the
the 98-site system was not included in the original publicationantiferromagnetic statestate(b)] along the boundary bonds.
by CBS.

phase separated states. An example of such a state is a single

Let us now examine more specifically the results in Fig.“stripe” shown in Fig. 21. In this example, a striped or
20. We have labeled by 2, 4, and 6 the points which correstructured phase separated state is stabilized in the middle of
spond to 2, 4, and 6 holes in the 50- and 98-site latticesthe system.
Notice that the energy of four holes is the same within error Thus one expects that the energy per hole obtained with
bars in both lattices. The same is true for the six hole cas@pen boundary condition@sing as a reference state the no-
Thus the energy for 2, 4, and 6 holssemdo be indepen- hole energy with open boundary conditiorzan be lower
dent of the size of the lattice within error bars. This can be dhan the exact energy per hole obtained with periodic bound-
either (i) a genuine characteristic of presence of phase separy conditions(using as a reference state the no-hole energy
ration where the two, four, and six hole bubbles in a muchwith periodic boundary conditions
larger system do not feel the size effects because they are In Fig. 22, we compare the results of various calculations
self bound at a characteristic size much smaller than the tot&in similar size lattices for the energy per hole for 1, 2, 4
system or(ii) a result of shell-effects which we have dis- holes and at our phase-separation minimum. The results for
cussed and are minimized in our calculation(iin the cal- one and two holes are taken from the work of Boninsegni
culation of CBS has larger systematic or statistical errorgind ManousakisBM).'®*>The finite-size effects are smaller
than those reflected by their error bars. than the size of the symbols. In addition, the result for two

White and Scalapinéws) calculated the energy per hole holes for a 50-site cluster reported by CBRef. 27 for
on systems with cylindrical boundary conditions, that is, sys-J/t=0.4 is shown as an open square. Notice the agreement
tems with open boundaries in one direction of the lattice andetween BM and CB$both used periodic boundary condi-
periodic in the othef®?®4’” They estimate the energy per tions). The value for the single hole energy obtained by WS
hole, Eq.(53), by comparing the energy of a system with is systematically lower than the value for the periodic lattice.
holes to the energy of the same system with no holes. In Reflhe cylindrical boundary conditions used by WS frustrate
47, WS argue that their approach is more accurate than th#te no-hole state, and, as a result, the energy of the no-hole
obtained by other methods simply because it gives a lowestate obtained by WS is much higher than that used by HM
energy per hole. However, the energy per hole calculated iand CBS. WS’s calculation gives a total energyE{0)=
this way on systems with open boundary conditions is not-35.66(in units oft and herel/t=0.5) for the no-hole state
variational and, as shown below, can artificiallpderesti- on the 8<8 lattice, while for a periodic &8 lattice the
matethe energy per hole. energy which we(and CBS use is much lowerE(0)=

Systems with open boundary conditions can be made-37.56. WS’s total energy for four electrons in 8 lat-
from fully periodic systems by removing a row of bonds. tice is E(4)=—41.028-0.075, while we find E(4)=
Clearly this process disrupts the periodic ground state ane-42.23+0.12 on a periodic lattice. Thus WS obtain a value
raises the enerdtf. Both the energy of the system with,  for the energy per hole,(4)= —1.34, while our result cor-
holes,E(N;), and the energy of the system with no holes,responds te,(4)=—1.17+0.03.
E(0), increase with open boundary conditions, but generally Qualitatively similar conclusions can be drawn for the
not by the same amount. The system with holes has morease of a single hole. The results of BM for a single are
degrees of freedom than the no-hole system, allowing it tehown by the dashed line in Fig. 22. Clearly, WS'’s single-
respond more effectively to the broken bonds. For examplehole energies are below those also. This lowering of the en-
a system with holes has freedom to twist the antiferromagergy can only be understood by the frustrating effect of open
netic order parameter at the boundary required by certaiboundary on the antiferromagnetic state.
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—o5fF ' ' ' ' ' T & effects. Second the shell effects can mask the signal because
A1 hole-BM e the energy as a function of density of different numbers of
;;:;':s-_"éa ’” electrons on a fixed lattice is not a smooth curve. The kinetic
02 holes—CBS energy jumps discontinuously as electrons are added to suc-
+ 2holes-WS cessive shells. Therefore we have chosen to keep the electron

@ Minimum at PS-HM
¥4 holes-WS

|
-

T

N
\

. number fixed at a closed-shell configuration and to change
the size of the lattice. The number of electrons which form
closed-shell configurations depends on the boundary condi-
tions. To generate as many as possible “magic numbers” of
closed-shell configurations we have used four types of
T boundary conditions. Periodic with 0 ar phase shifts at the

boundary in each of the andy directions.
We find that for any value ai/t the energy per site(ng)
as a function of electron density, for finite-size lattices
) ) ) X X X ) ) does not remain a concave function at high electron density.
035 04 045 05 055 06 065 07 There is a value of the density,(J/t) where a straight line
Jn starting from the no-hole energy per site is tangent to the

FIG. 22. Comparison of the energy per hel¢N,) atN,=1,2,  CUrve€e(ne) atne=nys. While the energye(ne<nps) does
and 4 holes and at the phase-separation minimum. The dashe@t change significantly with system size, the energy of a
dotted, and solid lines are polynomial fitség(N,,=1) from BM,  finite system in the phase-separated regig{@.>nys)
en(N,=2) from BM, ande, at the phase-separation minimum from changes with system size and approaches this tangent line in
HM. Notice that because of the cylindrical boundary conditionsthe infinite-size limit. We interpret this as evidence for phase
which frustrates the no-hole state, WS tend to get more lowering oseparation at all values af/t. The fact that the function
the energy when they introduce holes. For these size lattices the(n.,) does not remain concave in our calculation above
finite-size effects on the one and two hole calculations are smallen,4(J/t) can be explained by the energy cost of forming an
than the symbol size. For comparison we have also placed the resufiterface between the two phases in our finite system.
of CBS for two holes in a 50-site lattice which is available ot Our results have been compared to the most works of
=0.4. Notice that the CBS and BM results are nearly identical. Calandra, Becca, and Sore%and we find very close agree-
ment. These comparisons indicate that the early conclusions
Finally notice the very small difference between the en-that the criticald./t for phase separation is far away from
ergy per hole in the two hole case and in the four hole casehe physical value ad/t are largely invalid. This comparison
obtained by WS afi/t=0.35. They finde,(2)=—1.72 and  also indicates thaf./t is very small and may vanish. We
energy per hole for a stripe 1.737 at the optimum doping discuss recent comparison by White and ScaldBitws) of
of four holes per stripe. The difference is very small andour numerical results to theirs. In that comparison, WS use
suggests that the WS striped state is only a manifestation afe variational principle to argue that their results are more

Energy Per Hole / t

1
-
3]

frustrated phase separation. accurate because the energy per hole in lower. However, we
demonstrate that one should expect the exact energy per hole
VIl. CONCLUSIONS on periodic latticesto be higher than that obtained with the

cylindrical boundary conditionsised by WS. Thus on such
We have developed an efficient Green’s-function Montedifferent systems, a lower energy cannot be used as a crite-
Carlo method for fermions on a lattice that iteratively rion for the accuracy of an approach. In addition, we inter-
projects out the ground state with no approximations. Fermipret the results of WS as evidence for phase separation and
onic minus-sign fluctuations are controlled by using all pow-the appearance of stripes in thel model as a finite-size
ers of the projection operator up to some maximum and exeffect.
trapolating to infinite power. Starting from a good initial
state allows us to converge before the statistical errors be-
come too large. This technique comes also with solutions to
a number of other technical problems suchiagnabling the We thank F. Becca, N. E. Bonesteel, M. Calandra, Y. C.
guided random walk to walk through the nodes with anChen, R. Eder, V. J. Emery, S. A. Kivelson, T. K. Lee, P.
O(N?) algorithm using the idea of a “detour walk;{ii) Monthoux, W. O. Putikka, A. W. Sandvik, C. T. Shih, S.
using a single walker to compute all the desired powers oSorella, P. B. Stark, and S. R. White for useful conversa-
the  projection operator H-W)™, ~where m tions. This work was supported by the National Research
=0,1, ... Pmax, Simultaneously. Council and the Office of Naval Research. Computational
This technique is applied to the two-dimensiorial ~ work was performed at the Department of Defense Major
model to investigate its phase diagram. It is found, contranShared Resource Center ASCWP.
to many previous studies that there is phase separ&®n
at all interaction strengths of theJ model. The signal for
phase separation is clear when one overcomes the following
difficulties. To evaluate the determinant in the trial state, we use the
First, the Maxwell construction is the cleanest and stronusual “inverse update” trick first applied to condensed-
gest signal for PS because it suffers the least from finite-sizenatter systems by Ceperley, Chester, and K&ioae cal-
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culate the determinant and inverse of the ma(ii;’ﬁb together  \we need in order to calcula@(R"). However, all we need
at the start of gach run, an o_perann t_akmg\l ) _steps for . is D(ﬁ”) andl(ﬁ”) independently of how the random walk
aNXN determinant. Then with each single-particle move in ¢ th Let id th i OB,
the random walk, we update the determinanOifN) steps got. Sre. e ui c:)n5| er . € c'on |'gura '0_ 2
and the inverse iO(N?) steps. =(rap.Tap, Mz sFagsFap -+ - oFyg), Which is obtained
Starting with the matriX® and its inversd, suppose we from R by imagining that we move(ithout actually doing
change row of the matrix toD;—r;. Since the inverse is jt) particle 2 with spin-up tor} and let us assume that

the transpose of the matrix of cofactors normalized by theD(Ii’)#O SinceR” can be obtained froni. by moving
2 . 2

determinant i -, - - i i
particle 1 tor;;, D(R") andl(R") can be obtained by imag-

li;=cof;;(D)/|D], (A1)  ining that the walk went througR} to get toR”. Thus, in
the ratio of the determinant @ before and after the change order to calculat®(R") and(R") we only need to calcu-
is late D(R3) andI(R;) which both exist.

When the random walk generated by the guiding function
_ || -3 hits a state or series of states where the determinant of the
a= D] 4 il (A2) il function vanishes, we generate a “detour” walk around
the region where the matrix is singular, rejoining the guiding
The new inverse matrix is given by walk when the determinant is nonzero again.
To choose the detour walk, we simply delay any move
1+ l(sl_) _ EI- E ol (A3) causing t_he determi.nant to vanish ar_1d place t.he particle num-
Hoog it Kk ber and its future site at the beginning of a list of moves to
) i L _ make. For any subsequent move of a particle of the same
and one can easily confirmDj;lj, = 5y Changing one  gpin we try to move the first particle in the list to that site. If
column of the matrix results in a similar update for the in-inat move yields a nonzero determinant, we accept it and
Verse. _ _ _ “attempt to move the next particle in the list in the same
The algorithm is straight forward, and has been used ifanner. We repeat the process until either all moves give
many GFMC studies in the continuum and in variationalzerg determinant or the list is empty, in which case the true
Monte Carlo on a latticeHowever, it cannot be used directly geterminant is not zero.
with GFMC on a lattice since the random walk steps directly Obviously, the procedure will not produce a nonzero de-
on nodes for a significant fraction of stehen the matrix terminant when the true determinant is zero. However, it is
becomes singular, its inverse is undefined, and the algorlthrpnportant to prove that the detour rejoins the guiding walk at

breaks down. _ . the first step with nonzero determinant.
One way around this problem is to recalculate the deter- \ye represent the rows of the matrik26) by D

minant and inverse after walking through a node. However,_

in a reasonably dense system, a large faction of steps will

land on nodes, and the running time will scaleG(\®). . . . I
We developed a differer®(N?) technique to hop over Iri)=[a(rij—ry),ari;—rz), ... alri;—rg)]

nodes without recalculation of the determinant or inverse.

The essence of the method is this: Let us suppose that the - ) . )

random walk visits a node; namely, the particles were in avhich is labeled by ;. Suppose moving the first up particle

configuration R=(Fy;.Far, ... Fyai oFa oy Frp) 0 BNEW site, changing the first row labelrtp—s, yields a
and by moving a particle, say the first up-spin particle from?#€° determinant. Then

position r} to r} the determinant defined by E(6) is
zero for the new configuration R’
=(F{1\Tars -« Tz oT1y T2, - - - Tizy). That is a prob-  for some coefficientsy,, e, . . . a,. Let the next random
lem for the application of the inverse update. In order towalk step move the second particle, changing now-t.
move to the next configuration, say where particle 2 is posiSimply by checking if the matriXD’ ={|t),|r), ... |r,)}
tioned atr}T and this corresponds to a new configurationhflils zero determinant, we can determine ,if the true matrix
A GIRIT 'JFN’ZT TREIEETS ’FNl)Lwe need the in- Ee;{tlri)a’ |rtr2c,)|\:g) swap| rt??e}: ;)Zr?ilglgeila;ng |tIrDy |t§ (r)r;ov\\//: t{;: first
verse matrix =1(R’) for the configuratiorR’ and this does ' '

_ : - _ particle again. IffD’|=0,
not exist because the determind{R’)=0. The nonexist-

r_
=1

{Ir).Ir2), ... |rn)} wherelr,) represents the row

|9) = a|ro) + aslrg) + - - -+ ag|ry) (A5)

ence of the inverse is no problem for the physics because all _

: , ) t)=B,|r5) + Bs|r3) +- - -+ Bulr A6
we need for computing the observables is the determinant, [0=Falr2) + Balra) Prlro) (A6)
not the inverse; the inverse matrix is only a tool which savegyr certain coefficientsg,, Bs B,. Combining Egs

H il R el 0 I .

us from having to recalculate the full determinant at eaCh(AS) and (A6) to eliminater,, we see thatD’'|=0 implies
step. We have been able to use the inverse update techniqr.@,| —0. Thus by simply checking single-particle moves, we

by maklng a “detour” around th% noij,e a§ITOIIOWS' The real can verify that the determinant of the matrix two steps away
motion of the random walk waR—R’—R" and because s zero. The argument is easily generalized to any number of
D(R’)=0 we cannot update the inverse to fi{R') which  delayed moves.
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For a Fermi-liquid state, Eq26) may be expanded into Suppose we swap thath up electron with theth down
the product of two Slater determinants, and this algorithmelectron. We will modify both romm and columnn in the
suffices as it stands. However, with a pairing trial state, thigleterminant. We write the new elements @g;—r; and
decomposition is not possible, we must consider moves oD;,—c;. Naturally,r,=c,,. One can show the ratio of the
opposite spin electrons causing the determinant to vanish. determinant before and after the swap is

Suppose we find moving either the first up particle,
changing the first row t®q;—r;, or the first down particle, |D’|
changing the first column t®;;—c¢;, results in a zero de- ﬁZ(
terminant for matrix(26).

+|nmCm_|nm2 rIIIJ

i ]

> ri'm)

; IniCj

If 1,,#0 we move the first row with the first element (B1)
shifted by 1f3,, noting Direct evaluation of the surB==, ;r;l;;c; takesO(N?)
1 per pair of neighboring particles. For this reason, many re-
ri+— Ty -+ Iy searchers evaluate the superexchange term only eMery
l11 Monte Carlo stepg®
Our trick is to evaluateéS once when a pair of particles

D[= =[Dl. (A7)

become nearest neighbors, and then to update @(N)
steps for any move not disrupting the pair. Supposel the
Dni Dnz -+ Dm up electron movesl ¢ m), altering rowl in the determinant
(26), soD|j—s;. The inversd is updated according to Eq.
We then try to change the first column in the standard man¢A3) and c,—c/ takes a new value.
ner. We have artificially changed the upper-left element of \wWe can write the new sur®’ in terms of the old sum and
the determinant, but since this element will be changed agaigxtra factors as
before we finish the detour walk, the change will not affect
the true determinant.

If 1,,=0, this modified step is no longer possible, and we S IZ ril IJcJ
need to prove that the true determinant, b

1 1
X Tz -+ Ty =2 ri(lij(1+75li)_7lilz Sklkj)ci,
[N I | k
C2 Dz -+ Doy
|D"|= : : .. : =0, (A8) 1
: H . H =S+ —

Cnh DnZ Dnn Y

> riI”)(c{—; yjcj), (B2)

wherey;=X,s,ly; is used in the inverse update. This calcu-
lation requires onlyO(N) steps, so the local superexchange
energy of the system may be evaluatedifN?) time.

vanishes. Here is the upper-left element after both moves.

We know there exist coefficienta,,as, ... ,a, such
thatrj==;-,«;d;; for all j. Since the inverse is related to the
matrix of cofactors by Eq(Al), cof;4(D)=0, and there are
other coefficientss, B, . . . 8, such that 6-3,_,8,d; for ~ APPENDIX C: ENERGY AT THE PHASE-SEPARATION
all j=2. If ,-,8;c;=0, then|D"|=0 trivially. Otherwise BOUNDARY

let y;= a;+\B; where In the phase-separated state, themodel separates into

two phases, one with all electrofiso holes and the other
=(x— aici) E BiCi . (A9) with some electrons and some holes. The transition is con-

i=2 =2 tinuous: AsJis increased in the phase-separated regime, the

=S =S A . " electron density in the low-electron-density phase decreases
'I;hoenx Zi=2iGi andrj=2ipyd; for all j=2, so|b’| while the proportion of Heisenberg phase increases. The en-
rgy in the partially phase separated regime is simply the
weighted sum of the two constituent energies. Specifically,

éhe energy of the phase separated state is given by

Again, this argument can be extended to any number of
delayed moves. By combining the two types of moves de-
scribed in this section, we are able to keep track of the tru
determinant without recalculating the inverse from scratch.

Eps(nn]) =T _A
APPENDIX B: O(N) CALCULATION 1-

OF SUPEREXCHANGE

u(npS,J)—i— EHJ (C1)

whereE(n,J) is the energy of the uniform density phase as

For a determinantal function, the kinetic terms in E28)  a function of electron density and interaction strendth,)
requireO(N) steps per particle, so it scales@gN?) for the is the energy of the Heisenberg phase, and(J) is the
system. The superexchange term in thel model, density of the onset of phase separation.
E<i,j>Sﬁ+S-’, exchanges two particles, changing both a row Across the phase-separation boundary, the energy is con-
and a column of the determinaf26). In this section, we tinuous as is its first derivative with respect to density. Using
show how the amplitude of swapping two particles may bethis fact, we can show that the derivative of the energy in the
calculated inO(N) steps. phase-separated regime with respeci te given by
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JE,s(n,J) _ 1-n 9Ey(Nys,d)
dJd 1-ny dJd

n_
1-nps

Nps

Env (C2

so the first derivative of the energy with respectltis con-
tinuous at the phase-separation poimt n,4(J). All terms

C. STEPHEN HELLBERG AND EFSTRATIOS MANOUSAKIS
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of the form dn,(J)/3J are canceled from this expression.
Note that forJ>J., whereJ. is the critical interaction
strength for complete phase separatiopy(J=J;)=0 and
E,(n=0J)=0.
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