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Dynamical coefficients for a Josephson vortex in an anisotropic junction

Mark W. Coffey
Department of Physics, University of Colorado, Boulder, Colorado 80309

~Received 2 September 1999; revised manuscript received 22 November 1999!

The mass per unit lengthm and drag coefficienth for a Josephson vortex moving and aligned parallel to the
plane of an anisotropic Josephson junction are calculated. The tilt angle between the vortex direction and the
crystal uniaxial directions of the superconducting banks is allowed to vary, so that this type of misalignment of
the banks is included. These low-field results are suitable for inclusion in the dynamic mobility of Josephson
vortices. These dynamical coefficients should be applicable to the description of the intergrain motion of
vortices in polycrystals of high-Tc superconductors. The extension of the approach for the regime of relativistic
vortex motion is presented.
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INTRODUCTION

The calculation of dynamical coefficients is of importan
in describing a wide range of vortex phenomena in superc
ductors including radio frequency~rf! response,1,2 entropy
and current flow, and quantum tunneling.3 A suitable func-
tion for describing vortex response is the complex-valu
dynamic mobility.4,2,5 The mobility can simultaneously in
clude the effects of inertia, pinning, flux flow, and flux cree
A characterization of the vortex drag coefficient is key
quantifying the dissipation due to vortex motion. Knowled
of the vortex mass is desirable in determining whether
include an inertial term in the equation of motion. The vort
mobility can be written in the limiting case when the visco
drag force vanishes, where inertial effects should
pronounced.4,5

Since the discovery of the high-Tc superconductors, sev
eral studies have examined the drag coefficient and mas
unit length of Abrikosov vortices within the framework o
the anisotropic Ginzburg-Landau~GL! theory.6,7 This theory
is incomplete and remains an active area of investigation.
the other hand, the anisotropic GL theory treats the su
conductor as continuous and therefore does not take
account either the intrinsic layered nature of CuO2-based
compounds or the polycrystalline nature of many mac
scopic samples.

This contribution is directed toward the latter subject. W
present dynamical quantities for a Josephson vortex loc
in the barrier region of an anisotropic Josephson juncti
We give results for the vortex drag coefficient and mass
unit length in the low-field limit. That is, in this study vorte
interaction is ignored. As for equations governing the gau
invariant phase difference in the presence of effective m
anisotropy, we rely on a recent derivation by Mints a
Kogan~MK !.8 The principal results of our study are given
the form of a table, where we include the isotropic resu
due to Lebwohl and Stephen~LS! ~Ref. 9! for comparison.

In this discussion of dynamical coefficients, it is impo
tant to account for the nonzero thicknessdi of the insulating
layer in the Josephson junction. In particular, this is nec
sary in considering the electric field induced by the mot
of the vortex. In regard to maintainingdiÞ0, we are thus
able to slightly extend the results of MK and an earlier res
PRB 610163-1829/2000/61~17!/11689~6!/$15.00
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of Mints10 for the lower critical field of an anisotropic junc
tion. Normally this extension is negligible, except for th
case of low-k ~GL parameter! superconductors. The paper o
MK concentrated on finding the Gibbs and Helmholtz fr
energies and the resulting mechanical torque on parallel l
of Josephson vortices.

Here we assume a Josephson vortex moving at cons
velocity parallel to the plane of an anisotropic junction a
focus on the induced electric field. This field energy in tu
yields both the drag coefficient and the electromagnetic c
tribution to the vortex mass. We recall that unlike Abrikos
vortices, Josephson vortices lack a core region of suppre
order parameter. Therefore the generally much larger c
contribution to the vortex mass is absent for Joseph
vortices.7,11

For many superconducting junctions, typicallyl!lJ ,
wherel is the geometric mean penetration depth andlJ is
the Josephson penetration depth, which in turn influences
relative sizes of the lower critical fields for bulk crystal ve
sus junction penetration. Therefore the flux penetration i
twinned crystals begins with nucleation of Josephson vo
ces at twin planes in superconductors similar
YBa2Cu3O72d . Given this relation betweenl and lJ , it
should be experimentally possible to operate in the very lo
field regime considered in this paper, where Josephson
not Abrikosov vortices are present.

The discussion proceeds from the simpler geometry of
anisotropic junction with aligned superconducting banks
that with misaligned banks. In these two respective sectio
the vortex speedy is assumed to be much less thanc̄, the
speed of light in the junction barrier. The succeeding sect
considers removing this restriction. Therefore the goal of t
examination is to present the key ingredients in perform
relativistically consistent calculations.

The flux flow resistivity and corresponding drag coef
cient for Josephson vortices aligned and moving paralle
the CuO2 planes have been experimentally determined
Bi2Sr2CaCu2O81y ~Bi2212!.12 The data come from vortex
flow I -V ~current versus voltage! characteristics at 77 K and
have been found to be in quantitative agreement with mod
for vortex motion in layered superconductors.12,13The results
of this paper may provide a basis for further understand
the role of effective mass anisotropy in such layered mod
11 689 ©2000 The American Physical Society
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11 690 PRB 61MARK W. COFFEY
For the superconducting stack models, two-dimensional~2D!
phase difference solutions are required. For these mod
questions concerning the Lorentz invariance of the coup
sine-Gordon equations have arisen.12 This is a separate topi
for future research.

An example of the microwave response of supercond
ing weak links is given in Ref. 14, where the authors cons
ered the dynamics of vortices in long Josephson juncti
subjected to a time-harmonic ac magnetic field. This re
ence numerically examined a range of applied field stren
whereas this paper is mostly restricted to the very small fi
limit. On the other hand, Ref. 14 neglected the capacit
term, which is responsible for the second-order tim
derivative term in the equation of motion of the phase d
ference. This term is important in the consideration of wa
propagation and relativistic effects. The vortex drag coe
cient derived here is related to the damping parameter of
14 in the limit of small applied field. This paper assume
steadily propagating Josephson vortex and then finds
lowest order contribution to the dissipation, while the fram
work of Ref. 14 is appropriate to damped sinusoidal so
tions.

Magnetoabsorption microwave resonances observed
Bi2212 ~Refs. 15 and 16! are an important source of infor
mation for studying the interlayer Josephson coupling
high- Tc superconductors. These experiments allow the
terlayer phase coherence to be quantitatively determined
wide range of magnetic field. An interpretation of the resu
has been made in terms of a Josephson plasma reson
However, an alternative explanation17 invokes a vortex vi-
bration mode, where the vortex inertia is critical.

In addition, the microwave dissipation in Bi2212 has be
measured at 10 GHz, as a function of both temperature
magnetic field applied along thec axis.18 These various ex-
periments likely involve the diffusive motion of pancak
vortices and the dynamics of Josephson strings. Therefo
number of investigations into the appropriate dynamical
efficients for Josephson strings and 2D vortices are ca
for. This paper is concerned with these quantities for a lo
Josephson string. Another area where these results ma
applicable is in the first-order decoupling transition in a la
ered organic superconductor.19

ALIGNED BANKS

We first recall some notation of the anisotropic GL theo
and then specify the geometry of the junction and Joseph
vortex. The penetration depthsl i5lAmi in terms of the
effective massesmi andl5(l1l2l3)1/35(la

2lc)
1/3. Here, a

uniaxial material withla5lb is assumed. The anisotrop
ratio is written ask5Amc /ma5lc /la . For YBCO,k.5.5
and for HgBa2Ca2Cu3O81d , k.27. For the organic super
conductor K-~ET!2Cu@N~CN!2#2Br, the axial direction is the
a axis and thenAma /mc.9.

Let the plane of the junction be thexz plane, with they
axis coincident with theb crystal axis. This section assume
a junction of the same anisotropic material in the two ban
which are exactly aligned. We take the convention of Re
with the vortex along thez axis and the angle betweenẑ and
the crystalc axis denoted byu; see Fig. 1.

In this instance, the gauge invariant phasedifferencew
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across the junction satisfies the sine-Gordon equation

LJ
2w95sinw, ~1!

where 8 denotes differentiation with respect tox, LJ(u)
5lJAmxx(u), lJ5(cf0/16p2lJc)

1/2 is the Josephson pen
etration depth, and

mxx5k22/3sin2u1k1/3cos2u. ~2!

Above,f0 is the flux quantum andJc is the junction critical
current density.

Equation~1! has the single soliton solution

w~x!54 tan21@exp~x/LJ!#, ~3!

which we now use to compute the Josephson vortex d
coefficienth. The power dissipated per unit lengthhy2, with
y the vortex speed, corresponds to the friction force per u
length 2hy. Equating this dissipated power to that arisin
from Ohmic currents generated in the junction barrier by
induced electric field, we have

hy25
1

R8 S \

2eD 2E
2`

` S ]Dg~x,t !

]t D 2

dx, ~4!

whereR85rbdi is the contact resistivity. For speedsy! c̄,
where c̄5cAdi /ed is the speed of light in the junction, w
can takeDg(x,t)5w(x2yt). In the definition ofc̄, e5eb is
the dielectric constant of the barrier andd52l1di is the
magnetic thickness.4

By making use of Eq.~3! in Eq. ~4! we then find the
anisotropy and angular dependence of the drag coefficie

h~u!5
2f0

2

p2c2

1

R8

1

LJ~u!
. ~5!

In this equation, by Eq.~2!, for u→0, mxx(0)5k1/3, and
LJ(0)5lJk

1/6, while for u→p/2, mxx(p/2)5k22/3, and
LJ(p/2)5lJk

21/3. Thereforeh(0)/h(p/2)5k21/2. For k
→1, the isotropic result due to LS is recovered.9

The result~5! is valid for sufficiently small resistivityrb .
A quantitative version of this condition may bebC5RCvp
!1, where R5rbdi /A is the normal resistance,C
5eA/4pdi is the junction capacitance,A is the junction area,

FIG. 1. Geometry of the anisotropic but aligned Josephson ju
tion. Thexz plane is the plane of the junction, which has insula
thicknessdi . The crystalb axis is coincident with they axis. A
Josephson vortex along thez axis makes an angleu with the crystal
c axis, the uniaxial direction of a high-Tc superconductor. The su
perconducting banks are described by effective mass tensorsmab

and mab with respective eigenvaluesmi , i 5a,b,c and 1/Amj , j
5a,c wheremi are the effective masses.
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and vp5 c̄/lb is the angular frequency of longitudina
plasma waves in the insulating barrier. Here,bC is the
McCumber-Stewart parameter.20 When this condition holds
solutions of the time-dependent sine-Gordon equation are
sured to be dominated by wavelike instead of diffusive
havior.

For a general direction of vortex motion, the rate of e
ergy dissipation per length can be written asD5h i j v iv j with
h i j a viscous drag tensor. We have calculatedhxx appropri-
ate to our junction geometry. Then the corresponding fl
flow resistivity r f follows from the expressionr f
5f0B/c2h, whereB is the averaged magnetic flux densit
as

r f~u!5
p2

2

B

f0
R8LJ~u!. ~6!

Putting the vortex kinetic energy per length equal to
induced electric-field energy per length yields the elect
magnetic contribution to the vortex mass per unit lengthm.
This gives, for small vortex velocities,

m5
e

4pv2 E E2~x!d2x, v! c̄, ~7!

whereEy(x,t)5(\/2edi)]Dg(x,t)/]t. Including relativistic
effects, as is done in a succeeding section, we use the
pressionK5(gv21)m c̄2 for the kinetic energy, where th
factor gv51/A12v2/ c̄2. By using the adiabatic approxima
tion for Dg(x,t) as above, we have

m5
e

4p S \

2edi
D 2

diE
2`

` S ]w

]x D 2

dx. ~8!

Evaluation of the integral using Eq.~3!, as above, yields

m~u!5
1

2p3

1

c̄2

f0
2

dLJ~u!
. ~9!

In the isotropic casek51,LJ5lJ , this result is consisten
with that of LS.9

The vortex mobilitym̃v ~Refs. 2,5, and 4! enters the gen-
eral relation between velocityv and driving forcef as v
5m̃vf. The driving force in the vortex equation of motio
may be the Lorentz force, Hall force, or thermal force. As
example of the dynamic mobility, for simple harmonic vo
tex motion,m̃v(v,B,T)5(2 ivm1h1 ikp /v)21, wherev
is the angular frequency andT the temperature. Generall
m5m(T),h5h(B,T), and the pinning force constantkp
5kp(B,T). It is typical at higher temperatures in the supe
conducting state for pinning to become weak, in which c
m̃v→1/h. The generalization of this to a tensor drag force
that the mobility approaches the inverse of the viscous d
tensor when pinning and inertia are negligible. From the m
bility, the complex-valued resistivity associated with vort
motion follows fromr̃v5Bf0m̃v .

MISALIGNED BANKS

We consider here a certain misalignment of the two
perconducting banks, assuming the two banks are mad
the same material. With theb axis common to both banks
n-
-

-
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e
-

x-

n

-
e

s
g
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-
of

we consider two different anglesu i ,i 51, 2 of rotation of the
a andc axes on the two junction sides. It turns out that t
1D sine-Gordon equation still governs the gauge invari
phase difference.8 However, in order to describe that resu
we need to recall the pertinent effective mass tensors.

These are symmetric tensorsmab andm i j given by

mxx5ma cos2 u i1mc sin2 u i ,

mzz5ma sin2 u i1mc cos2 u i ,

mxz5~mc2ma!cosu i sinu i , myy5ma , ~10!

mxx5
1

Ama

cos2 u i1
1

Amc

sin2 u i ,

mzz5
1

Ama

sin2 u i1
1

Amc

cos2 u i ,

mxz5S 1

Amc

2
1

Ama
D cosu i sinu i . ~11!

Then the appropriate sine-Gordon equation is8

Lxx
2 w95sinw, ~12!

where

Lxx
2 5lJ

2 2qxx

det~qab!
. ~13!

The qab tensor is given from Eqs.~10! and ~11! by way of

qmn52ema$mabmbg%egn , ~14!

whereemn is the 2D unit antisymmetric tensor defined by

emn50 if m5n

51 if m,n

521 if m.n. ~15!

In Eq. ~14!, $¯% denotes the sum of a quantity taken on t
two junction sides. In particular for Eq.~13!, we note that

qxx5$mzxmxz1mzzmzz%5Ama~sin2 u11sin2 u2!

1Amc~cos2 u11cos2 u2!. ~16!

Various explicit relations between the components of
tensorsqab52eagpgb andpgb are recorded in the Appen
dix.

Similar to the calculations above, we can employ t
single soliton solutionw(x)54 tan21@exp(x/Lxx)# and obtain
expressions for the drag coefficient and inertial mass per
length in the nonrelativistic limit. The results are, respe
tively,

h~u1 ,u2!5
2f0

2

p2c2

1

R8

1

Lxx~u1 ,u2!
, ~17!
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TABLE I. Summary of nonrelativistic calculations.

Anisotropic banks
Quantity Isotropic banks Aligned Misaligned References

m 1

2p3

f0
2

c̄2dlJ

1

2p3

f0
2

c̄2dLJ~u!

1

2p3

f0
2

c̄2dLxx~u1,u2!

9, Eqs.~9!, ~18!

h 2

p2

f0
2

c2R8lJ l

2

p2

f0
2

c2R8LJ~u!

2

p2

f0
2

c2R8xx~u1,u2!

9, Eqs.~5!, ~17!

Hc1J 2

p2

f0

dlJ

2

p2

f0

dbLJ~u!
A k

cos2 g1k sin2 g

9, 10
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m~u1 ,u2!5
1

2p3

1

c̄2

f0
2

dLxx~u1 ,u2!
. ~18!

For the general situation of an arbitrary vortex orientat
in the xz plane and misaligned banks, a 2D solution for t
phase difference is required. The governing equation is8

Lxx
2 ]2w

]x2 12Lxz
2 ]2w

]x]z
1Lxx

2 ]2w

]z2 5sinw, ~19!

where

Lab
2 5lJ

2 2qab

det~qab!
. ~20!

By a linear change of coordinates, the mixed derivative te
]x]xw can be eliminated. Then known solutions of the 2
sine-Gordon equation~e.g., Refs. 21 and 22! can be applied.
It is also possible to directly find families of solutions of E
~19!, but this idea is not pursued here.

The main results of the above nonrelativistic calculatio
are summarized in Table I. The right-most column gives
respective references for the entries of that row. The th
isotropic results for the Josephson vortex mass per
length, drag coefficient, and lower critical field are due
LS.9 The numbers in parentheses in the fifth column refe
equations of this paper. The Mints result for the lower cr
cal field of a junction with anisotropic but aligned banks10

has been slightly extended with the introduction of the m
netic length in theb direction ~perpendicular to the junction
plane! db52lb1di . While in the isotropic case the vorte
mass is directly proportional to the junction lower critic
field, m5f0Hc1J/4p c̄2, this no longer holds for anisotropi
banks. For anisotropic but aligned banks, the angleg such
that tang5(tanu)/k gives the angle between the magne
field H and thec axis. In this case, the vortex axisẑ andH
are not coincident directions. In fact, the angleb between
these vectors is given by10

tanb52
~k21!tanu

k1tan2 u
. ~21!

RELATIVISTIC CONSIDERATIONS

Here we describe the main ingredients of a relativis
calculation of the Josephson vortex mass and drag coeffic
for the case of aligned banks. As seen in detail above, th
results can be extended to the situation of misaligned ba
s
e
e
it

o
-

-

c
nt
se
ks

by making the replacementLJ(u)→Lxx(u1 ,u2). This is
possible because the 1D sine-Gordon equation still gove
the space-time evolution of the phase difference.

The time-dependent extension of Eq.~1! is

LJ
2w92vJ

22ẅ5sinw, ~22!

where • denotes differentiation with respect to time andvJ
[ c̄/LJ . We are now interested in the covariant single so
ton solution

w~x,t !54 tan21@expgv~x2vt !/LJ!], ~23!

wheregv[A12v2/ c̄2, which exhibits Lorentz contraction.
We simplify the calculation ofm and h by ignoring the

production of radiation. This phenomenon has been trea
in Ref. 23 by means of a Green’s-function approach. In a
experimental situation where relativistic Josephson vor
velocities are approached, there will be an acceleration s
when radiation will occur. Similarly, whenever a vortex d
celerates from relativistic to low speeds there is radiati
which is specifically outside the scope of the present tre
ment.

In calculating the electromagnetic contribution to the vo
tex mass per unit length, we put the relativistic kinetic e
ergy K5(gv21)m c̄2 equal to the electric-field energy:

~gv21!m c̄25
e

8p E E2~x!d2x. ~24!

Assuming that the relation between the electric-field com
nent across the junctionEy and ẇ holds as before, and car
rying out Eq. ~24! with the vortex solution~23! yields a
velocity-dependent mass per unit length,

m~u,v !5
1

4p3

1

c̄4

f0
2

dLJ~u!

gvv2

~gv21!
. ~25!

As v→0, this becomes the nonrelativistic result~9!.
In special relativity, the velocityv is not the spatial part of

a four vector, butgvv is, which is a reflection of the fact tha
time and proper timet are related by]t/]t5gv . In addition,
the Newtonian forceFi is related to the Minkowski forceKi
by a factor ofgv , Fi5Ki /gv . Therefore it appears that th
scalar power dissipationF•v is unchanged fromhv2 when
the drag force is2hv. This result may be particular to thi
form of the drag force.
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Takinghv2 as the dissipated power, we can then straig
forwardly use the covariant solution~23! in Eq. ~4!, with the
result

h~u,v !5
2f0

2

p2c2

1

R8

gv

LJ~u!
. ~26!

This expression has a relatively simple dependence upon
locity, reducing to Eq.~5! when v→0. As v approachesc̄,
the drag coefficient becomes infinite which appears qua
tively acceptable. As mentioned above, our simple appro
breaks down when the dissipation becomes sufficiently la
Whenv becomes comparable toc̄ the sine-Gordon equatio
should be modified to explicitly incorporate the effect of t
frictional force and then an improved approach to finding
power dissipated is called for.

We conclude this section by indicating how the mass
unit length and drag coefficient can be computed for a
array of Josephson vortices. In this case, the approp
phase difference solution of Eq.~22! is

w~x,t !52 sin21$sn@gv~x2vt !/kLJ#%1p, ~27!

where 0<k<1 is the modulus of the Jacobi elliptic functio
sn. Since the magnetic-field componentHz varies as]w/]x
and the function dn u has real period 2K(k),
2(LJ /gv)kK(k) is the distance between adjacent vortic
Here,K(k) is the complete elliptic integral of the first kind
In Eq. ~27!, the function sn oscillates between21 and 1.
When the modulusk→1, K(k)→`, and we have the weak
field limit. In this limit, sn can be approximated by tanh.24

On the other hand, fork→0, K(0)5p/2 and we have the
strong-field limit.

By using the relations 12sn2u5cn2u, dsnu/du
5cnudnu, and*0

udn2wdw5E(uum) between Jacobi elliptic
functions we can apply Eq.~4! to the solution~27! to give

h~u,v !5
2f0

2

p2c2

1

R8

E~k!

k

gv

LJ~u!
, ~28!

where E(k) is the complete elliptic integral of the secon
kind. This result is larger than the relativistic result~26! for a
single vortex by the factorE(k)/k. We haveE(0)5p/2 and
E(1)51, so that Eq.~26! is properly recovered in the weak
field limit.

Similarly, applying Eq.~27! in Eq. ~24! we find for the
mass per unit length of a 1D Josephson vortex array mov
uniformly in the junction barrier

m~u,v !5
1

4p3

1

c̄4

E~k!

k

f0
2

dLJ~u!

gvv2

~gv21!
. ~29!

This electromagnetic contribution to the vortex mass is
creased over Eq.~25! by the factorE(k)/k.

SUMMARY

In summary, the mass per unit lengthm and drag coeffi-
cienth for a Josephson vortex moving and aligned paralle
the plane of an anisotropic Josephson junction have b
derived. The anisotropy of the superconducting banks is
scribed by effective mass tensors, Eqs.~10! and ~11!. In
these equations, the tilt anglesu i between the vortex direc
t-

e-

-
h

e.

e

r

te

.

g

-

o
en
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tion ẑ and the crystal uniaxial directions (ĉ) of the banks are
parameters, so that a simple misalignment of the bank
included.

Results have been presented for both the nonrelativ
and relativistic limits of vortex motion. For junctions mad
of barriers with large dielectric constant and superconduc
banks with large penetration depth, the latter regime beg
at lower vortex speeds. The nonrelativistic results are enc
sulated in Table I, while Eqs.~23!–~29! are relevant to the
relativistic treatment.

The low magnetic-field results obtained here can be u
in the vortex dynamic mobility. Applications of this functio
include the description of the microwave response of Jose
son vortices. In particular, the drag coefficient is needed
characterize the energy dissipation due to vortex motion
thus impacts the surface resistance. Relevant to radio
quency response may then be Eqs.~5! and ~17! for single
vortices and Eq.~28! for a 1D array of vortices.

The description developed here should be applicable
the polycrystalline nature of many samples of high-Tc super-
conductors. In particular, when vortices first penetrate alo
twin planes, they are expected to be of the Josephson t
The present approach should be applicable to either the
tion of Josephson vortices along twin boundaries or the
tergrain motion in granular samples.

APPENDIX

Here we explicitly evaluate the tensorspab(u1 ,u2) and
qab(u1 ,u2) by using Eqs.~10!–~11! and ~14!–~15!. This
supplies many useful relations for the case of misalign
superconducting banks. From the tensorpab we have the
components of the magnetic fieldHa ,a5x,z in terms of the
gauge invariant phase differencew as

Hx~x!5
pzz

upabu
f0

2pl
w8~x!, ~A1!

Hz~x!52
pzx

upabu
f0

2pl
w8~x!, ~A2!

where 8 denotes differentiation with respect tox and u¯u
denotes determinant.

For the tensor

pab5Fpxx pxz

pzx pzz
G ~A3a!

we find that

pxx52~Amc2Ama!~sinu1 cosu11sinu2 cosu2!,
~A3b!

pxz5Ama~cos2 u11cos2 u2!1Amc~sin2 u11sin2 u2!,
~A3c!

pzx52Ama~sin2 u11sin2 u2!2Amc~cos2 u11cos2 u2!,
~A3d!

pzz52pxx . ~A3e!

For use in equations such as Eqs.~A1! and~A2! we have
the determinant
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upabu5~ma1mc!@12~s1s21c1c2!2#

1Amamc@2~s1c11s2c2!21~s1
21s2

2!21~c1
21c2

2!2#,

~A4!

where si[sinui ,ci[cosui , i 51, 2. When the aligned bu
anisotropic banks case holds,u15u25u, Eq. ~A.4! properly
v

et
gives 4Amamc. In regard to Eq.~13!, we have uqmnu
5upanu becauseu2emau51. Since

Fqxx qxz

qzx qzz
G5F2pzx 2pzz

pxx pxz
G , ~A5!

the squared lengthsLab
2 (u1 ,u2) of Eq. ~20! are explicitly

determined.
ys.
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