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Dynamical coefficients for a Josephson vortex in an anisotropic junction
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The mass per unit length and drag coefficient; for a Josephson vortex moving and aligned parallel to the
plane of an anisotropic Josephson junction are calculated. The tilt angle between the vortex direction and the
crystal uniaxial directions of the superconducting banks is allowed to vary, so that this type of misalignment of
the banks is included. These low-field results are suitable for inclusion in the dynamic mobility of Josephson
vortices. These dynamical coefficients should be applicable to the description of the intergrain motion of
vortices in polycrystals of higii~ superconductors. The extension of the approach for the regime of relativistic
vortex motion is presented.

INTRODUCTION of Mints®® for the lower critical field of an anisotropic junc-
tion. Normally this extension is negligible, except for the

The calculation of dynamical coefficients is of importancecase of lowx (GL parametersuperconductors. The paper of
in describing a wide range of vortex phenomena in superconMK concentrated on finding the Gibbs and Helmholtz free
ductors including radio frequencirf) responsé;? entropy  energies and the resulting mechanical torque on parallel lines
and current flow, and quantum tunnelifd suitable func-  of Josephson vortices.
tion for describing vortex response is the complex-valued Here we assume a Josephson vortex moving at constant
dynamic mobility*>° The mobility can simultaneously in- velocity parallel to the plane of an anisotropic junction and
clude the effects of inertia, pinning, flux flow, and flux creep.focus on the induced electric field. This field energy in turn
A characterization of the vortex drag coefficient is key toyields both the drag coefficient and the electromagnetic con-
quantifying the dissipation due to vortex motion. Knowledgetribution to the vortex mass. We recall that unlike Abrikosov
of the vortex mass is desirable in determining whether tovortices, Josephson vortices lack a core region of suppressed
include an inertial term in the equation of motion. The vortexorder parameter. Therefore the generally much larger core
mobility can be written in the limiting case when the viscouscontribution to the vortex mass is absent for Josephson
drag force vanishes, where inertial effects should bevortices/'*
pronounced:® For many superconducting junctions, typically<\;,

Since the discovery of the highs superconductors, sev- where\ is the geometric mean penetration depth agds
eral studies have examined the drag coefficient and mass ptive Josephson penetration depth, which in turn influences the
unit length of Abrikosov vortices within the framework of relative sizes of the lower critical fields for bulk crystal ver-
the anisotropic Ginzburg-LanddGL) theory®” This theory ~ sus junction penetration. Therefore the flux penetration into
is incomplete and remains an active area of investigation. Otwinned crystals begins with nucleation of Josephson vorti-
the other hand, the anisotropic GL theory treats the supeices at twin planes in superconductors similar to
conductor as continuous and therefore does not take int¥Ba,Cu;0,_s. Given this relation betweeh and A, it
account either the intrinsic layered nature of Gifased should be experimentally possible to operate in the very low-
compounds or the polycrystalline nature of many macrodield regime considered in this paper, where Josephson but
scopic samples. not Abrikosov vortices are present.

This contribution is directed toward the latter subject. We The discussion proceeds from the simpler geometry of an
present dynamical quantities for a Josephson vortex locateahisotropic junction with aligned superconducting banks to
in the barrier region of an anisotropic Josephson junctionthat with misaligned banks. In these two respective sections,
We give results for the vortex drag coefficient and mass pethe vortex speed is assumed to be much less thenthe
unit length in the low-field limit. That is, in this study vortex speed of light in the junction barrier. The succeeding section
interaction is ignored. As for equations governing the gaugeonsiders removing this restriction. Therefore the goal of that
invariant phase difference in the presence of effective massxamination is to present the key ingredients in performing
anisotropy, we rely on a recent derivation by Mints andrelativistically consistent calculations.

Kogan(MK).8 The principal results of our study are givenin  The flux flow resistivity and corresponding drag coeffi-
the form of a table, where we include the isotropic resultscient for Josephson vortices aligned and moving parallel to
due to Lebwohl and StephehS) (Ref. 9 for comparison.  the CuQ planes have been experimentally determined for

In this discussion of dynamical coefficients, it is impor- Bi,Sr,CaCyOg (Bi2212.1? The data come from vortex
tant to account for the nonzero thicknekf the insulating  flow |-V (current versus voltageharacteristics at 77 K and
layer in the Josephson junction. In particular, this is neceshave been found to be in quantitative agreement with models
sary in considering the electric field induced by the motionfor vortex motion in layered superconductdfs3The results
of the vortex. In regard to maintainingd; # 0, we are thus of this paper may provide a basis for further understanding
able to slightly extend the results of MK and an earlier resultthe role of effective mass anisotropy in such layered models.
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For the superconducting stack models, two-dimensi2ia)
phase difference solutions are required. For these models,
guestions concerning the Lorentz invariance of the coupled
sine-Gordon equations have ariséiThis is a separate topic
for future research.

An example of the microwave response of superconduct- Rty
ing weak links is given in Ref. 14, where the authors consid-
ered the dynamics of vortices in long Josephson junctions
subjected to a time-harmonic ac magnetic field. This refer- _’/di A
ence numerically examined a range of applied field strength, , . ) ,
whereas this paper is mostly restricted to the very small field, FIG. 1. Geometry of the anisotropic bUt. ahgnec_i Joseph_son junc-
limit. On the other hand, Ref. 14 neglected the capacitivd!": Thexzplane is the plane of the junction, which has insulator
term, which is responsible for the second-order time_thlcknessdi. The crystalb ax!s is coincident Wlth_ they axis. A
derivative term in the equation of motion of the phase dif_Josephson vortex along tkexis makes an angléwith the crystal

- . . . . c axis, the uniaxial direction of a high; superconductor. The su-
ference. This term is important in the consideration of WaVe . conducting banks are described by effective mass tensgys

p_ropacgl;at]onda;]nd r_elatl\lnsng effehctsCi The_ vortex drag cofefﬂ- nd 2.5 With respective eigenvaluas; , i=a,b,c and A, |
cient derived here is related to the damping parameter of Ret. , wherem, are the effective masses.

14 in the limit of small applied field. This paper assumes a
steadily propagating Josephson vortex and then finds thgeross the junction satisfies the sine-Gordon equation
lowest order contribution to the dissipation, while the frame-

work of Ref. 14 is appropriate to damped sinusoidal solu- Aﬁcp”=sin<p, (1)
tions. ) o )

Magnetoabsorption microwave resonances observed iyhere ' denotes d|fferent|a2t|on ‘l’)’z'th respect tq A;(0)
Bi2212 (Refs. 15 and 1Bare an important source of infor- =X\3Vixx(6), Ay=(Ceho/16m°N\Jc)"* is the Josephson pen-
mation for studying the interlayer Josephson coupling inétration depth, and
high- T, superconductors. These experiments allow the in- o 173
terlayer phase coherence to be quantitatively determined in a Pro= K™ 2SirE O+ kicos'd. @

wide range of magnetic field. An interpretation of the resultspbove, ¢, is the flux quantum and, is the junction critical
has been made in terms of a Josephson plasma resonanggsrent density.

»
»>
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-
o
4
E

However, an alternative explanatidrinvokes a vortex vi- Equation(1) has the single soliton solution
bration mode, where the vortex inertia is critical.
In addition, the microwave dissipation in Bi2212 has been o(x)=4tan Lexpx/A;)], 3)

measured at 10 GHz, as a function of both temperature anvc\i/hiCh we now use to compute the Josephson vortex dra
magnetic field applied along theaxis® These various ex- b P 9

. . . . . 2 .
periments likely involve the diffusive motion of pancake coefficients. The power dissipated per unit lengg”, with

vortices and the dynamics of Josephson strings. Therefore léthe vortex speed., corrgqunds to the friction force pgr_unit
number of investigations into the appropriate dynamical Co_length —7v. Equating this dissipated power to that arising

efficients for Josephson strings and 2D vortices are caIIeErf1 %Tcggrgllgciﬁ::r%reﬂlz gvigerzgtlid in the junction barrier by the
for. This paper is concerned with these quantities for a Iond '

Josephson string. Another area where these results may be 1(h\2 (= [aAy(xt))\2
applicable is in the first-order decoupling transition in a lay- mﬂz—,(—) f (—) dx, (4)
ered organic superconductor. R'\2e/ ] ot

whereR’ = p,d; is the contact resistivity. For speeds<c,
ALIGNED BANKS wherec=c+/d;/ed is the speed of light in the junction, we
can takeA y(x,t) = ¢(x—vt). In the definition ofc, e= ¢ is

We first recall some notation of the anisotropic GL theory,[he dielectric constant of the barrier agd=2\ +d; is the

and then specify the geometry of the junction and Josephsoﬁagnetic thickness
vortex. The penetration depths=X\m; in terms of the By making use of Eq(3) in Eq. (4) we then find the

H _ 1/3_ 2 1/3
effective massesy; andA = (A1A2h3)""=(ANc) ™" Here, @ gpisotropy and angular dependence of the drag coefficient,
uniaxial material with\ ;=\, is assumed. The anisotropy

ratio is written ask=+m./m,=\./\,. For YBCO,k=5.5 2¢§ 1 1
and for HgBaCa,CuOg. 5, k=27. For the organic super- n(6)= TER A0) )
conductor K¢ET),CUN(CN),],Br, the axial direction is the J
a axis and then/m,/m,=9. In this equation, by Eq(2), for 6—0, u.,(0)=k3, and

Let the plane of the junction be the plane, with they ~ A,(0)=\,kY8, while for 6— /2, wu,(7/2)=k %3 and
axis coincident with thé crystal axis. This section assumes A ;(7/2)=\ k™. Therefore 5(0)/5(7/2)=k Y2 For k
a junction of the same anisotropic material in the two banks;— 1, the isotropic result due to LS is recovered.
which are exactly aligned. We take the convention of Ref. 8 The result(5) is valid for sufficiently small resistivityy, .
with the vortex along the axis and the angle betwe@rand A quantitative version of this condition may =R Cuw),
the crystalc axis denoted by; see Fig. 1. <1, where R=pyd;/A is the normal resistanceC

In this instance, the gauge invariant phabterence ¢ = eAl4md; is the junction capacitancé,is the junction area,
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and w,=c/\, is the angular frequency of longitudinal we consider two different angle ,i =1, 2 of rotation of the
plasma waves in the insulating barrier. Heg@; is the a andc axes on the two junction sides. It turns out that the
McCumber-Stewart paramet&When this condition holds, 1D sine-Gordon equation still governs the gauge invariant
solutions of the time-dependent sine-Gordon equation are efphase differenc® However, in order to describe that result
sured to be dominated by wavelike instead of diffusive bewe need to recall the pertinent effective mass tensors.

havior. These are symmetric tensarg,; and w;; given by
For a general direction of vortex motion, the rate of en- .
ergy dissipation per length can be writtenlas: 7;jvv; with Myx= M, COS 6, + M, Sir? 6,
7;; @ viscous drag tensor. We have calculaigd appropri- .
ate to our junction geometry. Then the corresponding flux M= M, Sir? 6;+m cos 6, ,
flow resistivity p; follows from the expressionp;s
= ¢oBI/c?y, whereB is the averaged magnetic flux density, m,,=(M,—m,)Ccosé; sind;, my,=m;, (10
as
1 1
2 .
m? B Uyy=——=CO0S O+ —sir? 6,,
pi(0)=— %R/AJ( 0). (6) o m, boyme '
Putting the vortex kinetic energy per length equal to the _ 2 1 2
induced electric-field energy per length yields the electro- Mzz_\/m—5| Oi+ \/m_co O
magnetic contribution to the vortex mass per unit length a ¢
This gives, for small vortex velocities, 1 1
=| —— —/c0s¥;siné, . (11

p gz | B0, v, U
Then the appropriate sine-Gordon equatich is
whereE(x,t) = (#/2ed;) A y(x,t)/t. Including relativistic

effects, as is done in a succeeding section, we use the ex- A§X¢"=Singo, (12
pressionK = (y,—1)uc? for the kinetic energy, where the
factor y,=1/\/1—v?/c?. By using the adiabatic approxima-

tion for Ay(x,t) as above, we have

where

2qXX
A2 =NF—. 13
oz )2d ) (a(,, L ® o et -
=—/|=— d — | dx.
4 2ed/ ') | dx Theq,z tensor is given from Eqg10) and(11) by way of

Evaluation of the integral using E¢B), as above, yields = — € Magtip )€ (14)

(6)= 11 b5 ©) wheree,,, is the 2D unit antisymmetric tensor defined by
M= 23 G2 dAL(6) .
e,,=0 if u=v
In the isotropic cas&=1,A;=\j, this result is consistent

with that of LS? =1 if p<v
The vortex mobilityz, (Refs. 2,5, and ¥enters the gen-
eral relation between velocity and driving forcef asv ——1 if u>w (15)

=7u,f. The driving force in the vortex equation of motion

may be the Lorentz force, Hall force, or thermal force. As anin Eq. (14), {---} denotes the sum of a quantity taken on the
example of the dynamic mobility, for simple harmonic vor- two junction sides. In particular for E¢13), we note that

tex motion, i, (w,B,T) = (—iwu+ n+iky/w) ", wherew

is the angular frequency antl the temperature. Generally Oxx={ Mty Mty = \/Fa(sin2 61+ sir? 6,)

u=pu(T),n=7n(B,T), and the pinning force constant,
= kp(B,T). Itis typical at higher temperatures in the super- +\me(cos 6;+cos 6,). (16)

conducting state for pinning to become weak, in which casg;4jous explicit relations between the components of the

f1,— 1/n. The generalization of this to a tensor drag force is;on g0y ——e and are recorded in the Appen-
that the mobility approaches the inverse of the viscous drag;, Sap arPyp Py PP

tensor when pinning and inertia are negligible. From the mo-
bility, the complex-valued resistivity associated with vortex
motion follows fromp,=B¢oxt, -

Similar to the calculations above, we can employ the
single soliton solutionp(x) =4 tan {expf/A,,)] and obtain
expressions for the drag coefficient and inertial mass per unit
length in the nonrelativistic limit. The results are, respec-
MISALIGNED BANKS tively,

We consider here a certain misalignment of the two su- 242 1 1
perconducting banks, assuming the two banks are made of (61,0,)= 0 -

. . . mvy,02 2.2 R A 0..6,)’

the same material. With thie axis common to both banks, 7C w01, 602)

(17
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TABLE |. Summary of nonrelativistic calculations.

Anisotropic banks

Quantity Isotropic banks Aligned Misaligned References
M 1 ¢ 1 & 1 & 9, Egs.(9), (18
27 ¢, 27° CdAy(6) 27 CdA(01,67)
Y 2 ¢ 2 2 & 9, Egs.(5), (17)
™ RGN ™ CRIAL6) ™ PR o 61,0)
Heis 2 ¢ 2 & W 9,10
72 d\, 7 dpAy(6) V coS y+ksirty
1 1 ¢§ by making the replacemem ;(6)— A, (6,,6,). This is
p(01,02)= 53 FTNNT AR (18  possible because the 1D sine-Gordon equation still governs
m C wx( 01,62)

the space-time evolution of the phase difference.

For the general situation of an arbitrary vortex orientation 1he time-dependent extension of K@) is
in the xz plane and misaligned banks, a 2D solution for the

phase difference is required. The governing equatidn is ASe"—wy?p=sing, (22
, o , Po L, Pe where * denotes differentiation with respect to time adgl
Mooz 20550t Mgz =sing, (19 =¢/A,. We are now interested in the covariant single soli-
ton solution

where

e(x,H)=4tan ‘[expy,(x—vt)/A,)], (23
A2 —y2 2das_ (20)
“B " det(q,p) where y,=/1—v?/c?, which exhibits Lorentz contraction.

By a linear change of coordinates, the mixed derivative term Wwe §|mpl|fy the qalculat!on Of and » by ignoring the
9.0 can be eliminated. Then known solutions of the 2Dproductlon of radiation. This phenomenon has been treated
X¥X " 1

sine-Gordon equatiofe.g., Refs. 21 and 2Zan be applied. n Ref_. 23 by means of a Green S'fF”?Ct_'O” approach. In any
. . i : . . experimental situation where relativistic Josephson vortex
It is also possible to directly find families of solutions of Eq.

g . velocities are approached, there will be an acceleration stage

(19), but this idea is not pursued here. when radiation will occur. Similarly, whenever a vortex de-
The main results of the above nonrelativistic CalCUIationscelerates from relativistic: o low )s/ eeds there is radiation
are summarized in Table I. The right-most column gives the ~ .~ o . P '
: . Wwhich is specifically outside the scope of the present treat-
respective references for the entries of that row. The thre}an ent

isotropic results for the Josephson vortex mass per unit : . I
. . ) In calculating the electromagnetic contribution to the vor-
length, drag coefficient, and lower critical field are due to : SR
tex mass per unit length, we put the relativistic kinetic en-

LS.’ The numbers in parentheses in the fifth column refer to K= (v —1)yc2 | to the electric-field .
equations of this paper. The Mints result for the lower criti- €'Y = (7~ 1)uc® equal to the electric-field energy:
cal field of a junction with anisotropic but aligned battks

has been slightly extended with the introduction of the mag- (y,—1)uc :if E2(x)d?x. (24)

netic length in theb direction (perpendicular to the junction 8m

plane d,=2\,+d;. While in the isotropic case the vortex . . -
mass is directly proportional to the junction lower critical ASSUMING that the relation between the electric-field compo-

field, 1= doHe1,/47C2, this no longer holds for anisotropic N€Nt across the junctiod, and ¢ holds as before, and car-
banks. For anisotropic but aligned banks, the anguch  'Ying out Eq.(24) with the vortex solution(23) yields a
that tany=(tan6)/k gives the angle between the magnetic VE!OCity-dependent mass per unit length,

field H and thec axis. In this case, the vortex axasandH

2
are not coincident directions. In fact, the anglebetween (0.0)= 11 45 y? (25
these vectors is given By O™ 4736 dAy(0) (7, 1)
_ (k=1)tan6 As v—0, this becomes the nonrelativistic res(gj.
tang=-— k+tarf 6 (21) In special relativity, the velocity is not the spatial part of

a four vector, buty,v is, which is a reflection of the fact that
time and proper time are related byt/dr= vy, . In addition,
the Newtonian forcé; is related to the Minkowski forc;

Here we describe the main ingredients of a relativisticby a factor ofy, , Fi=K;/vy,. Therefore it appears that the
calculation of the Josephson vortex mass and drag coefficiestalar power dissipatioR-v is unchanged fromyu? when
for the case of aligned banks. As seen in detail above, thedbe drag force is— nv. This result may be particular to this
results can be extended to the situation of misaligned bank®rm of the drag force.

RELATIVISTIC CONSIDERATIONS
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Taking 7v? as the dissipated power, we can then straighttion z and the crystal uniaxial directiong) of the banks are
forwardly use the covariant solutid@3) in Eq. (4), with the  parameters, so that a simple misalignment of the banks is
result included.

) Results have been presented for both the nonrelativistic
0.0)= ﬂi Yo and relativistic limits of vortex motion. For junctions made
77( ,U)— ’772C2 R’ AJ(@)

of barriers with large dielectric constant and superconducting
. . . . banks with large penetration depth, the latter regime begins
Th'.s expression has a relatively simple dependence upon vy o yer vortex speeds. The nonrelativistic results are encap-
locity, reducing to Eq(5) whenv—0. Asv approaches, g jated in Table I, while Eqg23)—(29) are relevant to the
the drag coefficient becomes infinite which appears qualit zelativistic treatment.
tively acceptable. As mentioned above, our simple approach rq |\ magnetic-field results obtained here can be used
breaks down when the dissipation becomes sufficiently 1arg&y, the yortex dynamic mobility. Applications of this function

Whenv becomes comparable the sine-Gordon equation .y de the description of the microwave response of Joseph-

should be modified to explicitly incorporate the effect of theson vortices. In particular, the drag coefficient is needed to

frictional force and then an improved approach to finding the.p 5 acterize the energy dissipation due to vortex motion and

power dissipated is called for. thus impacts the surface resistance. Relevant to radio fre-
We conclude this section by indicating how the mass PeHuency response may then be E€. and (17) for single

unit length and drag coefficient can be computed for a 1B/ortices and Eq(28) for a 1D array of vortices.
array of Josephson vortices. In this case, the appropriate The gescription developed here should be applicable to
phase difference solution of E(R2) is the polycrystalline nature of many samples of highsuper-
— 9 cin-1 _ conductors. In particular, when vortices first penetrate along

eOL =2 sin H{st y, (X—v /KA T}, @7 twin planes, they are expected to be of the Josephson type.
where O<k=1 is the modulus of the Jacobi elliptic function The present approach should be applicable to either the mo-
sn. Since the magnetic-field componéty varies asde/dx  tion of Josephson vortices along twin boundaries or the in-
and the function dnu has real period R(k), tergrain motion in granular samples.
2(A;1y,)kK(K) is the distance between adjacent vortices.

(26)

Here,K (k) is the complete elliptic integral of the first kind. APPENDIX
In Eqg. (27), the function sn oscillates betweenl and 1. o
When the modulu&— 1, K(k)—, and we have the weak- Here we explicitly evaluate the tensopg (6, ,6,) and

field limit. In this limit, sn can be approximated by tafth. das(01,62) by using Egs.(10-(11) and (14)—(15). This
On the other hand, fok—0, K(0)==/2 and we have the SuPplies many useful relations for the case of misaligned
strong-field limit. superconducting banks. From the tengoy; we have the

By using the relatons %srfu=crfu, dsru/du  components of the magnetic fiehtl, ,a =X,z in terms of the
—cnudnu, and f4driwdw=E(u|m) between Jacobi elliptic 92uge invariant phase differengeas
functions we can apply Ed4) to the solution(27) to give D bo
Y4

H (X)= 17— =—— o (X), Al
245 1 E(k) y, 28 0 |Pagl 2m ¢ (AD
77(9,1))_ ﬂ_ZCZ? k AJ(Q)I ( )
H _ Pzx ¢0 , A2
where E(k) is the complete elliptic integral of the second AX)= |paB| 2mn? (%), (A2)

kind. This result is larger than the relativistic resi@6) for a , ) o .
single vortex by the factdE(k)/k. We haveE(0)= /2 and where ' denotes differentiation with respect toand ||

E(1)=1, so that Eq(26) is properly recovered in the weak- denotes determinant.
field limit. For the tensor

Similarly, applying Eq.(27) in Eq. (24) we find for the P P
mass per unit length of a 1D Josephson vortex array moving Pap=| XZ} (A3a)
uniformly in the junction barrier Pzx  Pzz
. 1 1EK ¢ yov? ’o we find that
#O0)= rE G dA5(6) (y,—1)° 29 Pux=— (\/Me— Vm,)(sin 6; cos6; + sin 6, coSb,),
A3b
This electromagnetic contribution to the vortex mass is in- (A3b)
creased over Eq25) by the factorE(k)/k. Py, = VM (co 61+ co 6,) + m.(Sir? 6, +sir? 6,),
(A3c)
SUMMARY
=— in? 6,+ i 6,) — & 6, +cos 6,),
In summary, the mass per unit lengthand drag coeffi- P2x=~ V(S 3+ Sirf 6) — Jimg(cos’ 6, + co %A?Sd)
cient  for a Josephson vortex moving and aligned parallel to
the plane of an anisotropic Josephson junction have been Py~ — Pyx- (A3e)
derived. The anisotropy of the superconducting banks is de-
scribed by effective mass tensors, Eqs0) and (11). In For use in equations such as E¢s1) and(A2) we have

these equations, the tilt angl@s between the vortex direc- the determinant



11 694

|Papl = (Ma+Me)[1—(81S,+C1C,)?]
+ MM [2(81€,+5,C5) %+ (2 +53) %+ (ci+¢3)?],
(A4)

where s;=sin 6, ,¢c;=cosé, i=1, 2. When the aligned but
anisotropic banks case holds,= 6,= 6, Eq. (A.4) properly

MARK W. COFFEY

PRB 61

gives 4/mym.. In regard to Eq.(13), we have|q,,|
=|p,,| becausd—e,,|=1. Since
Uxx ~ Pzx _pzz}

qxz} B {
qZX qu pXX pXZ

the squared IengthAiB(al,Gz) of Eq. (20) are explicitly
determined.
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