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Mean-field theory for Josephson junction arrays with charge frustration

G. Grignani, A. Mattoni, P. Sodano, and A. Trombettoni*
Dipartimento di Fisica, Universita` di Perugia, Via A. Pascoli I-06123 Perugia, Italy

and Unità INFM, Universitàdi Camerino, Camerino, Italy
~Received 12 February 1999; revised manuscript received 23 November 1999!

We derive, using a finite-temperature path integral approach, the equation for the phase boundary between
the insulating and the superconducting phase for quantum Josephson junctions arrays~JJA’s! with offset
charges and general capacitance matrices. We show that—within the mean field theory approximation—a
reentrance in the phase boundary should appear, for systems with a uniform distribution of offset charges, only
when the capacitance matrix is nondiagonal. For a model with nearest-neighbor capacitance matrix and uni-
form offset chargeq/2e51/2, we find reentrant superconductivity even if the intergrain interaction is short
ranged; for this model, we determine the most relevant contributions to the equations for the phase boundary
by explicitly constructing the charge distributions on the lattice corresponding to the lowest-energy states
which provide the leading contributions to the partition function at lowTc .
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I. INTRODUCTION

Josephson junction arrays~JJA’s! and granular supercon
ductors, namely, systems of metallic grains embedded in
insulator, become superconducting in two steps.1 First, at the
bulk critical temperature each grain develops a superc
ducting gap but the phases of the order parameter on di
ent grains are uncorrelated. Then, at a lower temperatureTc ,
the Cooper pair tunneling between grains gives rise t
long-range phase coherence and the system as a whol
hibits a phase transition to a superconducting state.

The phase transition is governed by the competition
tween the Josephson tunneling, characterized by a Josep
coupling energyEJ ,2 and the Coulomb interaction betwee
Cooper pairs, described by a charging energyEC .3,4 In clas-
sical junction arrays the Josephson couplingEJ is dominant,
the transition separates a superconducting low-tempera
phase from a normal high-temperature phase. WhenEC is
comparable toEJ ~small grains! charging effects give rise to
a quantum dynamics. The grain capacitance is small, so
the energy cost of Cooper pair tunneling may be higher t
the energy gained by the formation of a phase-coherent s
Zero point fluctuations of the phase may destroy the lo
range superconducting order even at zero temperature~see,
for example, Ref. 1!.

Within the framework of the BCS theory, Efetov5 derived
an effective quantum Hamiltonian in terms of the phasesw i
of the superconducting order parameter at the graini, and
their conjugate variablesni representing the number of Coo
per pairs. The Hamiltonian for the quantum phase mo
reads

H5
1

2 (
ij

Cij
21QiQj2EJ(̂

ij &
cos~w i2w j !, ~1!

Qi52eni , @w i ,ni#5 id ij ,

whereQi is the excess of charge due to Cooper pairs~charge
2e) on the sitei of a square lattice inD-space dimension an
Cij is the capacitance matrix describing the electrostatic c
PRB 610163-1829/2000/61~17!/11676~13!/$15.00
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pling between Cooper pairs. The diagonal elements of
inverse matrix Cij

21 provide the charging energy:EC

5e2Cii
21/2[e2/2C0, whereC0 is the self-capacitance.

The superconductor-insulator transition depends cruci
on the spatial dimensionalityD. For D51 there may exist
also other phases.6 For D52 the system exhibits a richly
structured phase diagram.7,8 In higher dimensions it is be
lieved that the mean field theory analysis provides qual
tively correct results. It is relevant to clarify how the trans
tion from insulator to superconductor depends on
relevant constitutive parameters—such as the capacita
of, and between, the junctions—as well as on external
rameters such as the temperature, offset charges, and ex
magnetic fields.

Much work has been done to study the phase diagram
quantum JJA’s, in theT/EC-EC /EJ plane.1 The analysis uses
mean field theory5,9–15 as well as the renormalization grou
approach17,18 or the mapping into a spin system.16 There is
the claim that the phase diagram—under suita
circumstances—may exhibit a reentrant character with
superconducting phase existing between upper and lo
critical temperature.9,10,14 In Refs. 9,19 the influence of th
Coulomb energy on the transition temperature was inve
gated for a model with a diagonal capacitance matrix. T
effects of off-diagonal terms in the charging energy we
investigated by several authors within the mean field the
approximation:5,11,12,18,20–22while it is widely believed that
the nearest neighbors interaction enhance the transition
peratureTc by lowering the energy cost for a Cooper pair
tunnel from one neutral grain to another,12 there is still some
dispute on whether there is a reentrance or not for mod
with nondiagonal capacitance matrix.12,21,22

In this paper we shall consider also the effect of a ba
ground of external charges on the superconductor-insul
transition of a quantum JJA’s.7,8,23,24 Such an offset of
charges might arise in physical systems as a result of cha
impurities or by application of a gate voltage between
array and the ground. In the former case offset charges
distributed randomly on the lattice while in the latter case
distribution can be uniform. They might be regarded as
11 676 ©2000 The American Physical Society
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PRB 61 11 677MEAN-FIELD THEORY FOR JOSEPHSON JUNCTION . . .
fective chargesqi on the sites of the lattice. WhenqiÞ2e the
offset charges cannot be eliminated by Cooper pair tun
ing.

Offset charges frustrate the attempts of the system
minimize the energy of the charge distribution of the grou
state. Consequently the charging energy of any excitation
smaller compared to the unfrustrated case and supercon
tivity is enhanced: more intuitively, one may view the effe
of offset charges as a reduction of the effective value ofEC
and thus as an enhancement of superconductivity. For a
agonal capacitance matrix and uniform offset charges
magnitudee the states with zero and one Cooper pair on
islands become degenerate in energy and this allows for
perconductivity even for small values ofEJ : as evidenced in
Appendix A the superconducting order parameter is non
nishing forT,Tc and for anyEJ .

For a nondiagonal capacitance matrix, the phase diag
becomes much more complicated as a function of unifo
offset charges.7 With offset charges the Hamiltonian~1! be-
comes

H5
1

2
(
ij

Cij
21~Qi1qi!~Qj1qj !2EJ(̂

ij &
cos~w i2w j !.

~2!

To study the effect of charge frustration on the pha
diagram of a system described by the above Hamiltonian
is one of the purposes of this paper; in the following, w
shall analyze the equation relating the critical temperatur
the ratio EJ /EC and find a reentrant bulge in the pha
boundary between the insulating and superconducting ph
for arrays with a uniform distribution of offset charge
q/2e51/2, even if the capacitive interaction is short rang
For this model, we determine the most relevant contributi
to the equations for the phase boundary by explicitly c
structing the charge distributions on the lattice correspond
to the lowest-energy states which provide the leading con
butions to the partition function at lowTc . The determina-
tion of these configurations allows one to simplify the equ
tion for the phase boundary and to evidence analytically
existence of a reentrant superconductivity. For models wi
diagonal capacitance matrix, a reentrance is absent.

The approach we follow uses the well know
Hubbard-Stratonovich25 representation for the partition func
tion in terms of coarse-grained classical local variablesc i for
which the effective action is computed.20 This method has
been used in previous analyses of the phase diagram of J
in Refs. 20,7.

In deriving our results on reentrant superconductivity
JJA’s, we shall pursue a rather pedagogical approach by
visiting the path integral derivation of the finite temperatu
mean field theory of a system of JJA’s. Our goal is not o
to show that the path integral method is much simpler th
the more conventional self-consistent mean field theory
proach for the analysis of systems of JJA’s with offs
charges and nondiagonal capacitance matrices, but als
evidence that it allows for a systematic analysis of the effe
of the periodicity of the phase variables in the finite tempe
ture theory. The periodicity can be taken into account
introducing a set of integers, so that the partition funct
factorizes as a product of a topological term, depending o
l-
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on this set of integers, and a nontopological term which o
can explicitly compute. The Poisson resummation form
for the topological part of the partition function turns out
be very useful for the derivation of the low critical temper
ture expansion. Our revisitation of the path integral deriv
tion of the equation for the phase boundary between the
sulating and the superconducting phase of a system of J
evidences also that methods used in the analysis of p
transitions in finite temperature gauge theories26 may be used
in the study of condensed matter systems.

In Sec. II we review the self-consistent mean field theo
approximation within the Hamiltonian formalism for quan
tum JJA’s. We study the eigenvalue equation of the me
field Hamiltonian with diagonal capacitance, and unifor
offset chargeqi5e showing explicitly that at zero tempera
ture there is superconductivity for all values ofa
5zEJ/4EC .

In Sec. III we use the coarse grained approach to comp
the Ginzburg-Landau free energy for quantum JJA’s w
charge frustration and a general Coulomb interaction mat
The path integral providing the phase correlator needed
investigate the critical behavior of the system, is explici
computed.

In Sec. IV, from the Ginzburg-Landau free energy, w
derive, within the mean field theory approximation, the an
lytical form of the critical line equation and analyze the ph
nomenon of reentrant superconductivity for a variety of s
tems of JJA’s. The phase boundary is drawn for the mo
with diagonal capacitance matrix for several charge distri
tions and a reentrance is never found. We then analyze
low-temperature limit of a system with nearest-neighbor
teraction matrix. Through the analysis of the charge distri
tion providing the leading contributions to the low
temperature expansion of the partition function, we are a
to establish analytically the existence of a reentrant beha
for a system with a uniform background of external charg
qi5e.

Section V is devoted to some concluding remarks. T
appendixes contain the derivation of some relevant formu
of the main text and are introduced to keep the text s
contained.

II. SELF-CONSISTENT MEAN FIELD THEORY
IN THE HAMILTONIAN APPROACH

Mean field theory for quantum JJA’s with diagonal c
pacitance matrix was first used by Sima´nek.9 The approxi-
mation consists in replacing the Josephson coupling of
phase on a given islandi to its neighbors by an averag
coupling so that

EJ(̂
ij &

cos~w i2w j !5zEJ^cosw&(
i

cosw i . ~3!

In Eq. ~3! z is the coordination number; it is assumed al
that ^cosw& does not depend on the island indexi and the
choice ^sinwi&50, which provides a real order paramete
has been made.

Within the mean field approximation the Hamiltonian~1!
becomes
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HMF5
1

2 (
ij

Cij
21QiQj2zEJ^cosw&(

i
cosw i ~4!

and the order parameter^cosw& is evaluated self-consistentl
from Eq. ~4!. For a diagonal capacitance matrix (Cij
5C0d ij ) mean field theory computation are very simp
since Eq.~4! describes on each site a quantum particle i
periodic potential coswi .

9 The eigenfunction of the array is
product of eigenfunctionscn(w) describing the individual
islands and satisfying the Mathieu equation27

S 2
d2

dw2
2

zEJ

4EC
^cosw&cosw D cn~w!5

En

4EC
cn~w! ~5!

with periodic boundary conditionscn(w)5cn(w12p).
It is well known that the Mathieu equation admits al

antiperiodic solutions,cn(w)52cn(w12p) ~see Appendix
A!. If both periodic and antiperiodic solutions are used,
general solution of Eq.~5! does not have a definite periodic
ity and, consequently, the chargesni take continuous eigen
values. Such continuous eigenvalues are expected to be
evant in the description of continuous flows of currents d
for example, to ohmic shunt resistances.28,29 Although the
superposition of both periodic and antiperiodic solutio
yields to a reentrant behavior even in the unfrustrated di
pationless diagonal model,10,11,31this superposition is not al
lowed in describing physical situations in which the on
excitations are Cooper pairs of charge 2e.5,12,7 Thus the use
of both periodic and antiperiodic solutions does not ha
physical significance in the models considered in this pa

The mean field self-consistency condition gives

^cosw&5

(
n

e2bEn^cnucoswucn&

(
n

e2bEn

~6!

with b51/kBT. For high temperatures or lowEJ only the
solution^cosw&50 exists and there is not superconductivi
For low temperatures or highEJ ^cosw&Þ0 and the system
as a whole behaves as a superconductor.

From Eq. ~6! one gets the equation for the critic
temperature9

a5

(
n52`

1`

e2(4/y)n2

(
n52`

1`
1

124n2
e2(4/y)n2

~7!

with y5kB Tc/EC anda5zEJ/4EC . In Fig. 1 we plotTc as
a function ofa.

If one considers a diagonal capacitance matrix and u
form offset charges of magnitudee on each site (qi/2e
51/2), the Hamiltonian reads

Hd5
1

2C0
(

i
~Qi1qi!~Qi1qi!2EJ(̂

ij &
cos~w i2w j !.

~8!
a

e

el-
,

s
i-

e
r.

.

i-

Mean field theory of this model leads to a Schro¨dinger equa-
tion of the form

F2
d2

dw2
22i

q

2e

d

dw
1S q

2eD 2

2a^cosw&coswGcn~w!

5
En

4EC
cn~w!. ~9!

Redefining the phase of the wave function as

cn~w!5e2 i (q/2e)wrn~w!,

Eq. ~9! reduces to a Mathieu equation forrn(w)

d2rn

dw2
1S l

4
2

v
2

cosw D rn50 ~10!

with ln5En /EC andv52zEJ^cosw&/2EC . Equations~8!–
~10! lead to the following modification of Eq.~7! @see Ap-
pendix A#:

a5

e21/y1 (
n51

1`

e2(4/y)(n11/2)2

41y

4y
e21/y1 (

n51

1`
1

124~n11/2!2
e2(4/y)(n11/2)2

~11!

which—at variance with the unfrustrated model—exhib
superconductivity even for infinitesimal values ofa. This
feature is shown in Fig. 2 which also shows the absence
reentrant behavior at lowT. From Fig. 2 one sees also ho
the presence of offset charges improves the supercondu
ity of the array.

FIG. 1. Phase diagram for the diagonal model without cha
frustration.
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For frustrated models with nondiagonal capacitance m
trix, the self-consistent mean-field theory approximation
comes very cumbersome and it turns convenient to reso
the more powerful functional approach. Without offs
charges, a reentrance at lowTc is expected at least when th
interaction between grains is long-ranged.23,19

III. GINZBURG-LANDAU FREE ENERGY

The partition function for the frustrated off-diagon
model is given by

Z5Tr e2bH5(
n

^cnue2bHucn&, ~12!

whereH is given in Eq.~2! and the sum is extended only t
states of charge 2e and thus with definite periodicity. In the
functional approachZ reads

Z5E )
i

Dw i expH 2E
0

b

dtLES w i~t!,
dw i

dt
~t! D J , ~13!

where the Euclidean LagrangianLE can be derived from

L5
1

2 S \

2eD 2

(
ij

Cij

dw i

dt

dw j

dt
2S \

2eD(
i

dw i

dt
qi

1EJ(̂
ij &

cos~w i2w j ! ~14!

by replacingi t /\→t. The path integral that one should com
pute is then given by

FIG. 2. Phase diagram of the diagonal model with half-inte
charge frustration.
-
-
to
t

Z5E )
i

Dw i expH E
0

b

dtF2
1

2 (
ij

Cij

ẇ i

2e

ẇ j

2e
1 i(

i
qi

ẇ i

2e

1
EJ

2 (
ij

eiw ig ije
2 iw jG J , ~15!

where 2`,w i,1`, w i(0)5w i(b)12pni , and g ij 51 if
i,j are nearest neighbors and equals zero otherwise. Th
tegersni appearing in this boundary condition take into a
count the 2p periodicity of the statescn appearing in Eq.
~12!.

In order to derive the Ginzburg-Landau free energy
the order parameter, it is convenient to carry out the integ
tion over the phase variables by means of the Hubba
Stratonovich trick:25 using the identity

eJ1GJ5
detG21

pN E )
i

D2c ie
2c1G21c2J1c2c1J ~16!

the partition function may be rewritten as

Z5E )
i

Dc iDc i* e*0
bdt[ 2(2/EJ)( ij c i* g ij

21c j ]e2Seff[c] .

~17!

where the effective action for the auxiliary Hubbar
Stratonovich fieldc i , Seff@c#, is given by

Seff@c#52 lnH E )
i

Dw i expH E
0

b

dtF2
1

2 (
ij

Cij

ẇ i

2e

ẇ j

2e

1 i(
i

S qi

ẇ i

2e
2c ie

iw i2c i* e2 iw iD G J J . ~18!

The Hubbard-Stratonovich fieldc i may be regarded as th
order parameter for the insulator-superconductor phase t
sition since it turns out to be proportional to^eiw i&, as it can
be easily seen from the classical equations of motion. Fr
Eq. ~18! the Ginzburg-Landau free-energy may be deriv
by integrating out the phase fieldw i .

Since the phase transition is second order,30 close to the
onset of superconductivity, the order parameterc i is small.
One may then expand the effective action up to the sec
order inc i , getting

Seff@c#5Seff@0#1E
0

b

dtE
0

b

dt8Grs~t,t8!c r~t!cs* ~t8!

1•••, ~19!

whereGrs is the phase correlator

Grs~t,t8!5
d2Seff@c#

dc r~t!dcs~t8!
U

c,c* 50

5^eiwr(t)2 iws(t8)&0 .

~20!

The partition function~17!, can be written as

Z5E )
i

dc idc i* e2F[c] , ~21!

r
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whereF@c# is the Ginzburg-Landau free energy; due to E
~18!,~19!, up to the second order inc i , one has

F@c#5E
0

b

dtE
0

b

dt8(
ij

c i* ~t!@g ij
21d~t2t8!

2Gij ~t,t8!#c j~t8!. ~22!

We shall now compute the phase correlatorGrs by evalu-
ating the expectation value in Eq.~21! by means of the path
integral over the phase variablesw i(t). In performing this
integration one should take into account that the field c
figurations satisfy

w i~b!2w i~0!52pni . ~23!
he

nc
.

-

For this purpose it turns out very convenient to untwist t
boundary conditions by decomposing the phase field in te
of a periodic fieldf i(t) and a term linear int which takes
into account the boundary conditions~23!; namely, one sets

w i~t!5f i~t!1
2p

b
nit, ~24!

with f i(b)5f i(0). Summing over all the phasesw i(t)
amounts then to integrate over the periodic fieldf i and to
sum over the integersni . As a result the phase correlato
factorizes as the product of a topological term depending
the integersni and a nontopological one; namely,
tion
Grs~t;t8!5

E Df ie
ifr(t)2 ifs(t8) expH E

0

b

dtS 2
1

2
Cij

f i

2e
˙

f j

2e
˙ D J

E Df i expH E
0

b

dtS 2
1

2
Cij

f i

2e
˙

f j

2e
˙ D J

3

(
[ni]

ei (2p/b)(nrt2nst8)expH 2(
ij

p2

2be2
Cijninj1(

i
2ip

qi

2e
niJ

(
[ni]

expH 2(
ij

p2

2be2
Cijninj1(

i
2ipb

qi

2e
niJ . ~25!

After a lengthy computation, the first~nontopological! factor appearing in the left-hand side of equation~25! has the following
simple expression@see Appendix B#:

d rs expH 22e2Crr
21S ut2t8u2

~t2t8!2

b D J . ~26!

The sum over the integers in the topological factor in Eq.~25! is done by means of the well known Poisson resumma
formula

udetGu1/2(
[ni]

e2p(n2a) iGij (n2a) j5(
[mi]

e2pmi(G
21) ij mj22p imiai.

Thus Eq.~25! becomes

Grs~t,t8!5d rse
22e2Crr

21ut2t8u
(
[ni]

expH 2(
ij

2e2bCij
21S ni1

qi

2eD S nj1
qj

2eD2(
i

4e2Cri
21S ni1

qi

2eD ~t2t8!J
(
[ni]

expH 2(
ij

2be2Cij
21S ni1

qi

2eD S nj1
qj

2eD J ~27!
with ni assuming all integer values and( [ni]
being a sum

over all the configurations.
By means of a Euclidean-time Fourier transform, t

fields c i are written as

c i~t!5
1

b (
m

c i~vm!eivmt,

wherevm are the Matsubara frequencies. As a conseque
the phase correlatorGij can be expressed as
e,

Gij ~t;t8!5
1

b (
mm8

Gij ~vm ;vm8!e
ivmteivm8t8. ~28!

From Eq.~27! one can show thatGrs(vm ;vm8 ) is diagonal in
the Matsubara frequencies and can be written as

Grs~vm ;vm8 !5Gr~vm!•d rs•d~vm1vm8! ~29!

with
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Gr~vm!

5
1

2Ec
•(

[ni]

expH 2
4

y (
ij

U ij

U00
S ni1

qi

2eD S nj1
qj

2eD J
124F(

j

U rj

U00
S ni1

qi

2eD2 ivmG2

1

Z0
.

~30!

In Eq. ~31! Z0 is given by

Z05(
[ni]

expH 2
4

y (
ij

U ij

U00
S ni1

qi

2eD S nj1
qi

2eD J .

with U ij 5Cij
21 , EC5e2Crr

21/2, andy5kBTc /EC . In terms
of Matsubara frequencies the Ginzburg-Landau free ene
~22! becomes

F@c#5
1

b (
m ij

c i* ~vm!F 2

EJ
g ij

212Gi~vm!d ij Gc j~vm!.

~31!

This equation was first derived in Ref. 7 by means o
cumulant expansion and it is the starting point for any ana
sis of the phase boundary between the insulating and
superconducting phases in JJA’s with arbitrary capacita
matrix and with charge frustration.

IV. MEAN FIELD THEORY ANALYSIS OF REENTRANT
SUPERCONDUCTIVITY IN JJA’S

In the following we shall derive the equation determini
the phase boundary in the plane (a,KBTc /EC), in mean field
theory and for a system with arbitrary capacitance matrix
a uniform distribution of off-set charges. For this purpose
is convenient to expand the fieldsc i(vm) and Gi(vm) in
terms of the vectors of the reciprocal latticeq. One has

c i~vm!5
1

N (
q

cq~vm!eiq• i, ~32!

Gi~vm!5
1

N (
q

Gq~vm!eiq• i. ~33!

Moreover

g ij
215

1

N (
q

gq
21eiq•( i2 j ), ~34!

where gq
21 is the inverse of the Fourier transform of th

Josephson coupling strengthg ij which equals 1 fori,j nearest
neighbors and 0 otherwise. As a consequence

gq
215

1

(
p

e2 iq•p
,

wherep is a vector connecting two nearest neighbors si
Expanding inq one gets
gy

a
-

he
e

d
t

s.

gq
215

1

z
1

q2a2

z2
1•••, ~35!

wherea is the lattice spacing andz the coordination number
The first term in Eq.~35! provides the mean field theor
approximation which, as expected, is exact in the limit
large coordination number.

The Ginzburg-Landau free energy~31!, reads

F@c#5
1

bN (
mqq8

cq~vm!* Fgq
21dqq82

Gq2q8~vm!

N Gcq8~vm!.

Using Eq.~35! and keeping only terms of zeroth order invm
andq one obtains the mean field theory approximation to
coefficient of the quadratic term ofF

.
1

bN (
qm

F 2

EJz
2G0~0!1•••G ucq~vm!u2. ~36!

The equation for the phase boundary line then reads as

15z
EJ

2
G0~0! ~37!

with

G0~0!5
1

N (
r

Gr~0!. ~38!

Equation~37! determines the relation betweenTc and a at
the phase boundary.

For a uniform distribution of offset charges Eq.~37! sim-
plifies further since in Eq.~38! Gr does not depend onr . As
a consequence, the phase boundary equation becomes

15a•(
[ni]

expH 2
4

y (
ij

U ij

U00
S ni1

q

2eD S nj1
q

2eD J
124F(

j

U0j

U00
S nj1

q

2eD G2

1

Z0

~39!

with

a5
zEJ

4Ec

and

Z05(
[ni]

expH 2
4

y (
ij

U ij

U00
S ni1

q

2eD S nj1
q

2eD J .

In the following we shall derive the physical implications
Eq. ~39! in a variety of models describing JJA’s.
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A. Self-charging model

For a diagonal capacitance matrix,U ij 5d ijU0 , one
singles out only the self-interaction of plaquettes. This c
was already analyzed in Sec. II within the approach of s
consistent mean field theory. As a check of the path inte
approach we shall show that one is able to reproduce
same results from Eq.~39!.

In the diagonal case Eq.~39! becomes

15aS (
n

expH 2
4

y S n1
q

2eD 2J 1

124~n1q/2e!2

(
m

expH 2
4

y S m1
q

2eD 2J D .

~40!

Sincen is an integer~40! is invariant under the shiftq/2e
→q/2e11. Forq50 Eq. ~40! reduces to Eq.~7!. From Fig.
1 one readily sees that there is no superconductivity foa
,1. Due to the periodicity of Eq.~40! this holds for any
integerq. Forq/2e equal to 1/2 one gets Eq.~11!. From Fig.
2 one sees that superconductivity is attained for all the va
of a, due to the effect of offset charges; the superconduc
order parameter at zero temperature is different from ze

For the self-charging model the system exhibits superc
ductivity for all the values ofa also if the distribution of
offset charges is such that integer and half-integer cha
coexist on the lattice. If one denotes byf 0 the fraction of
integer charges and byf 1/2512 f 0 the fraction of half-
integer charges, Eq.~40! implies that

FIG. 3. Phase diagram for several values off 1/2.
e
f-
al
e

es
g
.
n-

es

a5S f 0

(
n

e2(4/y)n2 1

124n2

(
m

e2(4/y)m2

1 f 1/2

(
n

e2(4/y)(n11/2)2
1

124~n11/2!2

(
m

e2(4/y)(m11/2)2 D 21

.

In Fig. 3 we plotTc as a function ofa for several values of
f 0. As expected superconductivity is enhanced asf 1/2 in-
creases.

B. Models with nondiagonal capacitance matrix

In Ref. 21 Fishman and Stroud, using a low temperat
expansion, determinedTc as a function ofa for models with
nondiagonal interaction matrix without considering the effe
of offset charges. They did not find signs of normal sta
reentrance for nearest-neighbor interaction matrix model
which only the diagonal interaction matrix elementU00 and
the nearest-neighbor interaction matrix elementU0p5uU00
are nonzero. This can be seen from the expansion of
critical line Eq. ~39! for q50 and small critical tempera
tures:

a511F8

3
12zS 12

1

124u2D Ge24/y1•••.

Reentrant behavior is possible12 for u.uc51/A413z when
the coefficient of the exponentiale24/y is negative; in fact,
the phase boundary linea5a(Tc) first bends to the left due
to the negative coefficient ofe24/y and finally, when the
critical temperature is high enough, bends to the right, fav
ing the insulating phase.

As evidenced by Fishman and Stroud,21 the regime of
physical interest isu,1/z; namely, when the capacitanc
matrix is invertible. Reentrance is possible only in one
mension (uc51/A10,1/z51/2); in higher dimensions re-
entrance occurs only when the electrostatic interaction
long ranged.21

FIG. 4. Ground state.
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If there are half-integer offset charges on the sites of a square lattice, our analysis shows that the equation for th
line is

a5(
[ni]

e2 4/y ( ij ~U ij /U00!(ni1 1/2)(nj11/2)Y (
[ni]

exp~2 4/y! ( ij ~U ij /U00! ~ni1 1/2!~nj1 1/2!

124F(
j

U0j

U00
S nj1

1

2
D G 2 , ~41!

where

E@ni#5(
i j

U ij

U00
S ni1

1

2D S nj1
1

2D ~42!

is the electrostatic energy of any charge distribution on the lattice.
Denoting withni

0 andni
1 the charge distributions of the two lowest lying energy states and withE0 andE1 the correspond-

ing energies, the low temperature expansion of Eq.~41! yields

a5

(
[n0]

e2 ~4/y! E0
1(

[n1]

e2 ~4/y! E1
1•••

(
[n0]

H e2 ~4/y! E0YH124F(
j

U0j

U00
S nj

01
1

2D G2J J 1(
[n1]

H e2 ~4/y! E1YH124F(
j

U0j

U00
S nj

11
1

2D G J J 2

1•••

. ~43!
n
u
st-

rg
ve
is
,

th

ic
s

Eq.
-

ith

ity
n-

lso
-

ap-
m-
of
trix

the
Independently on the explicit form ofU ij , E@ni# reaches
its minimum value when (ni

01 1
2 )56 1

2 (21)i 11 i 21•••1 i D

with i j ( j 51, . . . ,D) the components of the lattice positio
vector i in units of the lattice spacing. This charge config
ration is exhibited in Fig. 4. For models with neare
neighbor interaction, i.e.,U ij 5d ij 1u(pd i1p,j with (p denot-
ing summation over nearest neighbors, the cha
configuration corresponding to the first excited state is gi
in Fig. 5. The energy of the charge distribution of Fig. 5
E@ni

1#5E@ni
0#1zu, whereE@ni

0#, the ground state energy

is given by( i
1
4 (12zu).

With the above values ofE@ni
0# and E@ni

1# and keeping
only the leading order term inTc , Eq. ~43! becomes@see
Appendix C#

a5@12~12zu!2#H 11F S 12
12~12zu!2

12~11zu!2D
1zS 12

12~12zu!2

12@12~z22!u#2D Ge2(4/y)zu1•••J .

~44!

Reentrant behavior at low temperature occurs when
coefficient of the exponential is negative, namely, when

a1[S 12
12~12zu!2

12~11zu!2D 1zS 12
12~12zu!2

12@12~z22!u#2D ,0.

~45!

In Appendix C we compute also the coefficientsa2 anda3 of
the higher order exponentials in the expansion~44!. In Fig. 6
we plot the coefficientsa1 , a2, anda3 as a function ofu for
z56, i.e., for a three-dimensional array on a square latt
One sees that the inequality~45! can be satisfied for value
of u consistent with the physical constraintu,1/z51/6.
-

e
n

e

e.

In Fig. 7 we plotTc versusa for u50.05 andz56. In
this plot we keep into account also the next two orders of
~44! with coefficientsa2 and a3. The resulting diagram ex
hibits reentrance in the insulating phase even for models w
nearest neighbors interaction.

In Fig. 8 we plota05a(Tc50) as a function ofu for q
integer andq half-integer and forz56. The plot shows that
half-integer offset charges always favor superconductiv
and that—at variance with the self-charging model—for no
diagonal interaction matrix there is always a range ofa in
which the system behaves as an insulator. The plot a
shows that forq/2e51/2 andT50 the size of the supercon
ducting region in the phase diagram depends onu.

V. DISCUSSION

In this paper we investigated—using the path integral
proach to finite temperature mean field theory—the pheno
enon of reentrant superconductivity in a variety of models
JJA’s. For a model with nearest-neighbor capacitance ma
and uniform offset chargeq51/2 ~in units of 2e), following
the analysis developed in Ref. 21, we determined, in

FIG. 5. First excited state.
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low-temperature expansion, the most relevant contributi
to the equation for the phase boundary. For this purpose
explicitly constructed the charge distributions on the latt
corresponding to the lowest energies. Confirming the res
of the numerical analysis of Ref. 8, we evidenced the app
ance of reentrant superconductivity even when the capac
interaction is short ranged. Our analysis extends the res

FIG. 6. Expansion coefficients ofa as a function of nearest
neighbor interactionu.

FIG. 7. Phase diagram for small critical temperatures withz
56 andu50.05.
s
e

e
lts
r-

ve
lts

found in Ref. 21 to the situation in which offset charges a
present and provides a physical picture of the states con
uting to the reentrant behavior.

For a model with diagonal capacitance matrix our analy
confirms the absence of reentrant behavior for the phys
situation where the phase variable is 2p periodic. The diag-
onal model with offset chargeq51/2 exhibits superconduc
tivity for all the values ofa5zEJ/4EC , since in this case the
superconducting order parameter is different from zero
zero temperature; this is evidenced by Eq.~53! in Appendix
A. An offset chargeq51/2 tends to decrease the chargi
energy and thus favors the superconducting behavior e
for small Josephson energyEJ .

The search for reliable theoretical approaches to estab
the existence of a reentrant bulge in the phase boundar
quantum Josephson junctions arrays is strongly encoura
by the evidence of low temperature instabilities found e
perimentally in Josephson junctions arrays,32 ultrathin amor-
phous films,33 granular superconductors,34 and multiphase
high-Tc systems.35 Our analysis not only clarifies issues st
open for quantum phase models with a diagonal capacita
matrix and uniform offset charges, but also predicts the
pearance of a reentrant bulge—even if the interaction am
grains is short ranged—for quantum Josephson junction
rays with non diagonal capacitance matrix and uniform o
set charges.

It would be interesting to investigate the superconducti
insulating behavior in quantum JJA’s in lower dimension
models, where mean field theory is not expected to prov
accurate results, as well as in models in which offset char
are randomly distributed. ForD51 there is evidence6 for a
new phase separating the superconducting and the insul
phase. The analysis of the phase diagram for this case sh

FIG. 8. Broadening of the superconducting phase atT50 with
z56 and nearest-neighbor interaction.
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be carried out with different methods such as the renorm
ization group15,17 or strong coupling expansion.6

Note added.After completion of this paper we becam
aware of the paper by T. K. Kopec and J. V. Jose´, cond-mat/
9903222, analyzing the functional approach for quantum
at zero temperature.36
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APPENDIX A: DERIVATION OF THE
SELF-CONSISTENCY EQUATION „11…

With a uniform charge frustrationq the pertinent Mathieu
equation is given by

F2
d2

dw2
22i

q

2e

d

dw
1S q

2eD 2

2a^cosw&coswGcn~w!

5
En

4EC
cn~w!. ~A1!

Upon defining

cn~w!5e2 i (q/2e)wrn~w! ~A2!

Eq. ~A1! becomes

d2rn

dw2
1S l

4
2

v
2

cosw D rn50 ~A3!

with l5En /EC and v52zEJ^cosw&/2EC . Equation~A3!
yields the canonical form of the Mathieu equations27

d2y

dx2
1~l22v cos 2x!y50, ~A4!

if one putsw52x e cn5y.
The Mathieu equation has the well known period

solutions27

ce2n~x,v ! even solutions with periodp

with eigenvaluesa2n~v !,

se2n12~x,v ! odd solutions with periodp

with eigenvaluesb2n12~v !,

ce2n11~x,v ! even solutions with period 2p

with eigenvaluesa2n11~v !,

se2n11~x,v ! odd solutions with period 2p

with eigenvaluesb2n11~v !,

n50,1,2, . . . .
l-

A

s-

p-

If q/2e is integer, the periodic boundary conditionscn(w
50)5cn(w52p) singles out only the 2p-periodic Mathieu
eigenfunctionsce2n ,se2n . With these eigenfunctions on
may derive Eq.~7!.10 If q/2e is half-integer, the periodic
boundary conditions together with Eq.~A3! single out the
p-anti-periodic Mathieu eigenfunctions~i.e., rn is antiperi-
odic of 2p and periodic of 4p). These are the Mathieu
eigenfunctionsce2n11 andse2n11.

Since, near the critical temperatureTc , the order param-
eter ^cosw& and v are small, apart from the phase fact
e2 iw/2 ~important only for the periodicity!, to first order inv,
Eq. ~A1! has the solutions

c1
e5

1

Ap
S cos

w

2
2

v
8

cos
3w

2 D ,

c1
o5

1

Ap
S sin

w

2
2

v
8

sin
3w

2 D ,

c2n11
e 5

1

Ap
H cos

~2n11!w

2
2vF cos

~2n13!w

2

4~2n12!

2

cos
~2n21!w

2

8n
G J , ~A5!

c2n11
o 5

1

Ap
H sin

~2n11!w

2
2vF sin

~2n13!w

2

4~2n12!

2

sin
~2n21!w

2

8n
G J ,

~n51,2, . . .!,

with the corresponding eigenvalues given by

E1
e5EC~11q!,

E1
o5EC~12q!,

~A6!

E2n11
e 5E2n11

o 5EC~2n11!2,

~n51,2, . . .!.

The expectation values of the superconducting order par
eter on the eigenfunctions~A5! are given by

^cnucoswucn&5E
0

2p

dw coswucn~w!u2. ~A7!

Using Eq.~A5!, to the first order inv one gets
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^c1
eucoswuc1

e&5
1

2
2

v
8

,

^c1
oucoswuc1

o&52
1

2
2

v
8

,

^c2n11
e ucoswuc2n11

e &5
v

8n~n11!
, ~A8!

^c2n11
o ucoswuc2n11

o &5
v

8n~n11!
,

~n51,2, . . .!.

Inserting Eqs.~A6! and~A8! in Eq. ~6! and keeping only
the terms proportional tov;^cosw&, one finds

15a

S 2

y
1

1

2De21/y2 (
n51

`
e2(1/y)(2n11)2

2n~n11!

2e21/y12(
n51

`

e2(1/y)(2n11)2
; ~A9!

namely, Eq.~11!.

APPENDIX B: THE PHASE CORRELATOR

In this appendix to keep the paper self-contained we
port the computation of the correlator defined in Eq.~25!.
One should compute the path integral

E Df ie
ifr(t)2 ifs(t8) expH E

0

b

dtS 2
1

2
Cij

ḟ i

2e

ḟ j

2e
D J

E Df i expH E
0

b

dtS 2
1

2
Cij

ḟ i

2e

ḟ j

2e
D J .

~B1!

Fourier transformingf i(t) according to

f i~t!5
1

b (
n52`

1`

f i,meivmt ~B2!

with 0<t<b and vm5(2p/b)m, the numerator of~B1!
becomes

E )
i

df i,0)
n51

`

df i,ndf i,n* expH 2
1

4e2b

3 (
ij

(
n51

1`

Cijvn
2f i,nf j ,n* 1

i

b (
n51

`

~f r ,neivnt

2fs,n* e2 ivnt8!1
i

b
~f r ,02fs,0!1c.c.J . ~B3!

Upon integrating over the componentsf r ,0 ,fs0 one gets a
factor d rs

S )
iÞr ,s

E
2`

`

df i,0D S E
2`

`

df r ,0E
2`

`

dfs,0e
( i /b)(fr ,02fs,0)D

5d rs•K, ~B4!
-

where K is an irrelevant divergent constant which canc
against the denominator. Using Eq.~B4!, Eq. ~B3! becomes

Kd rs)
n51

` E
2`

`

)
i

df i,ndf i,n* expS 2
1

4e2b
(
ij

Cijvn
2f i,nf j ,n*

1(
i

f i,n

i

b
d ri ~eivnt2eivnt8!

2(
i

f i,n* d ri

i

b
~e2 ivnt82e2 ivnt8! D .

The multiple Gaussian integral may be easily computed
give, up to an irrelevant constant which cancels against
denominator,

d rs)
i

)
n51

` E
2`

`

df indf in* expH (
ij

i

b
d ri ~eivnt2eivnt8!

3S 4e2bCij
21

vn
2 D i

b
d ri ~e2 ivnt2e2 ivnt8!J

5d rs expH 8e2Crr
21

b (
n51

` S 12cosvn~t2t8!

vn
2 D J

5d rs expH 22e2Crr
21S ut2t8u2

~t2t8!2

b D J ,

where2b<t2t8<b. In the last step, the identity

uxu2
x2

b
5 (

n51

` S 4

bvn
2

2
4 cosvnx

bvn
2 D , 2b<x<b

~B5!

has been used. This completes the proof of Eq.~26!

APPENDIX C: LOW Tc EXPANSION

In this appendix we derive Eq.~44! and compute the nex
two orders whose coefficients are plotted in Fig. 6. Using
notation (21)i5(21)i 11•••1 i D, the ground state charg
configurationni

0 can be written as

S ni
01

1

2D5
1

2
~21! i.

The first excited states read

S ni
1r1

1

2D5ni
0~122d ri !,

where the apex 1r means that this first excited state is o
tained from the ground state by flipping the sign of t
charge at the siter . Higher excitations may be obtained from
the ground state by flipping the sign of two charges at siter
ands and can be represented as

S ni
2rs1

1

2D5ni
0~122d ri 22dsi!.

The energy shifts are given by
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D15E12E05(
i

iÞr

U ir ~21!r1 i11

and

D2rs5E@ni
2rs#2E052D112~21!r2sU rs .

Note that, whereas the energyE1 of the charge configura
tionsni

1r does not depend onr , E@ni
2rs# depends on the rela

tive positionr2s of the charges whose sign has been flipp
Defining

R05
1

124F(
j

U0jS nj
061

1

2D G2 ,

R1r5
1

124F(
j

U0jS nj
1r1

1

2D G2 ,

and

R2rs5
1

124F(
j

U0jS nj
2rs1

1

2D G2 ,

one may expand Eq.~41! for small critical temperatures (y
}Tc→0), according to

a5

11(
r

e2 ~4/y! D1
1(

rÞs

*
e2~4/y! D2rs1•••

R01(
r

R1re2 ~4/y! D1
1(

rÞs

*
R2rse2 ~4/y! D2rs1•••

5
1

R0 F11(
r

S 12
R1r

R0 D e2 ~4/y! D1

1(
rÞs

* S 12
R2rs

R0 D e2 ~4/y! D2rs

1(
rs

S R1r

R0

R1s

R0
2

R1r

R0 D e2 ~8/y! D1
1•••G , ~C1!

where ( rÞs* indicates a summation over pairs of differe
sitesr ,s, where each pair is counted only once.

For a nearest-neighbor interactionU0j5d0j1u(pd jp
~where p denotes the vector connecting two neighbori
sites! one has

D15zu,

D2rs5H 2~z21!u, r2s5p,

2zu, r2sÞp,

R05
1

12~12zu!2
,

.

R1r55
R0, rÞ0,p,

1

12~11zu!2
, r50,

1

12@12~z22!u#2
, r5p,

R2rs55
R0, r ,sÞ0,p ,

R1s, rÞ0,p,

1

12@11~z22!u#2
, r50 s5p ,

1

12@12~z24!u#2
, r5p s5p8.

Substituting these relations in~C1!, one obtains the expan
sion for small temperatures of the critical line equation, up
the first four orders

a5@12~12zu!2#~11a1e2(4/y)zu1a2e2(8/y)(z21)u

1a3e2(8/y)zu!. ~C2!

a1 is given in Eq.~45!, a2 is equal to

~z21!zS 12
12~12zu!2

12@12~z22!u#2D
1zS 12

12~12zu!2

12@11~z22!u#2D
anda3 is given by

S 12~12zu!2

12~11zu!2D 2

2S 12~12zu!2

12~11zu!2D 1z~z21!

3S 12~12zu!2

12@12~z22!u#2
21D

1z2
12~12zu!2

12@12~z22!u#2 S 12~12zu!2

12@12~z22!u#2
21D

1z
12~12zu!2

12~11zu!2 S 12~12zu!2

12@12~z22!u#2
21D

1z
12~12zu!2

12@12~z22!u#2)
S 12~12zu!2

12~11zu!2
21D

1
z~z21!

2 S 12
12~12zu!2

12@12~z24!u#2D .

The condition for the reentrant behavior isa1,0. In Fig. 6
we plot the coefficientsa1 ,a2 ,a3 as a function ofu. In Fig.
7 we plot the critical equation~C2! with u50.05 andz56.
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