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Mean-field theory for Josephson junction arrays with charge frustration
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We derive, using a finite-temperature path integral approach, the equation for the phase boundary between
the insulating and the superconducting phase for quantum Josephson junctions(&ifdgswith offset
charges and general capacitance matrices. We show that—within the mean field theory approximation—a
reentrance in the phase boundary should appear, for systems with a uniform distribution of offset charges, only
when the capacitance matrix is nondiagonal. For a model with nearest-neighbor capacitance matrix and uni-
form offset chargeg/2e=1/2, we find reentrant superconductivity even if the intergrain interaction is short
ranged; for this model, we determine the most relevant contributions to the equations for the phase boundary
by explicitly constructing the charge distributions on the lattice corresponding to the lowest-energy states
which provide the leading contributions to the partition function at Taw

I. INTRODUCTION pling between Cooper pairs. The diagonal elements of the
inverse matrix Cij_1 provide the charging energyEc

Josephson junction array3JA’s) and granular supercon- =e?C; '/2=e?/2C,, whereC, is the self-capacitance.
ductors, namely, systems of metallic grains embedded in an The superconductor-insulator transition depends crucially
insulator, become superconducting in two stepast, atthe  on the spatial dimensionalitp. For D=1 there may exist
bulk critical temperature each grain develops a superconalso other phas€sFor D=2 the system exhibits a richly
ducting gap but the phases of the order parameter on diffestructured phase diagrahi.In higher dimensions it is be-
ent grains are uncorrelated. Then, at a lower temperaiyre Jieved that the mean field theory analysis provides qualita-
the Cooper pair tunneling between grains gives rise to aively correct results. It is relevant to clarify how the transi-
long-range phase coherence and the system as a whole ain from insulator to superconductor depends on the
hibits a phase transition to a superconducting state. relevant constitutive parameters—such as the capacitances

The phase transition is governed by the competition beof, and between, the junctions—as well as on external pa-
tween the Josephson tunneling, characterized by a Josephs@iimeters such as the temperature, offset charges, and external
coupling energyE;,2 and the Coulomb interaction between magnetic fields.
Cooper pairs, described by a charging enegy>* In clas- Much work has been done to study the phase diagram of
sical junction arrays the Josephson couplifigis dominant,  quantum JJA’s, in th&/Ec-E/E, plane! The analysis uses
the transition separates a superconducting low-temperaturgean field theor3® '°as well as the renormalization group
phase from a normal high-temperature phase. Wigris  approach’*8 or the mapping into a spin systethThere is
comparable tde; (small graing charging effects give rise to the claim that the phase diagram—under suitable
a quantum dynamics. The grain capacitance is small, so thaircumstances—may exhibit a reentrant character with the
the energy cost of Cooper pair tunneling may be higher thaguperconducting phase existing between upper and lower
the energy gained by the formation of a phase-coherent stateritical temperaturd!®*In Refs. 9,19 the influence of the
Zero point fluctuations of the phase may destroy the longCoulomb energy on the transition temperature was investi-
range superconducting order even at zero temperése® gated for a model with a diagonal capacitance matrix. The
for example, Ref. 1 effects of off-diagonal terms in the charging energy were

Within the framework of the BCS theory, Efetbderived  investigated by several authors within the mean field theory
an effective quantum Hamiltonian in terms of the phages approximatiorr11121820-23yhjle it is widely believed that
of the superconducting order parameter at the graend the nearest neighbors interaction enhance the transition tem-
their conjugate variables; representing the number of Coo- peratureT, by lowering the energy cost for a Cooper pair to
per pairs. The Hamiltonian for the quantum phase modetunnel from one neutral grain to anotHétthere is still some
reads dispute on whether there is a reentrance or not for models

with nondiagonal capacitance matff?!??

1 _ In this paper we shall consider also the effect of a back-
H= 2 ; Ci QiQ; EJ% cos oi~ ¢y), @ ground of external charges on the superconductor-insulator
transition of a quantum JJAS®?32% Such an offset of
Qi=2en, [¢;,n]=id;, charges might arise in physical systems as a result of charged

impurities or by application of a gate voltage between the
whereQ; is the excess of charge due to Cooper pa@ilgrge array and the ground. In the former case offset charges are
2e) on the sitd of a square lattice iD-space dimension and distributed randomly on the lattice while in the latter case the
Cj is the capacitance matrix describing the electrostatic coudistribution can be uniform. They might be regarded as ef-
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fective charges); on the sites of the lattice. Whep+2e the  on this set of integers, and a nontopological term which one
offset charges cannot be eliminated by Cooper pair tunnelcan explicitly compute. The Poisson resummation formula
ing. for the topological part of the partition function turns out to

Offset charges frustrate the attempts of the system tée very useful for the derivation of the low critical tempera-
minimize the energy of the charge distribution of the groundture expansion. Our revisitation of the path integral deriva-
state. Consequently the charging energy of any excitations i#on of the equation for the phase boundary between the in-
smaller compared to the unfrustrated case and superconduddlating and the superconducting phase of a system of JJA’s
tivity is enhanced: more intuitively, one may view the effect evidences also that methods used in the analysis of phase
of offset charges as a reduction of the effective valuEgf transitions in finite temperature gauge thedfiesay be used
and thus as an enhancement of superconductivity. For a din the study of condensed matter systems.
agonal capacitance matrix and uniform offset charges of In Sec. Il we review the self-consistent mean field theory
magnitudee the states with zero and one Cooper pair on theapproximation within the Hamiltonian formalism for quan-
islands become degenerate in energy and this allows for siium JJA’s. We study the eigenvalue equation of the mean
perconductivity even for small values Bf,: as evidenced in field Hamiltonian with diagonal capacitance, and uniform
Appendix A the superconducting order parameter is nonvaoffset chargeg;=e showing explicitly that at zero tempera-
nishing forT<T. and for anyE;. ture there is superconductivity for all values af

For a nondiagonal capacitance matrix, the phase diagrarm ZE,/4E¢ .
becomes much more complicated as a function of uniform In Sec. Il we use the coarse grained approach to compute

offset charge$.With offset charges the Hamiltonigd) be-  the Ginzburg-Landau free energy for quantum JJA’'s with
comes charge frustration and a general Coulomb interaction matrix.

The path integral providing the phase correlator needed to

1 . investigate the critical behavior of the system, is explicitly

H= 3 E o (Qi+Qi)(Qj+qj)_EJ2 cos ¢~ ;). computed.

I () 2 In Sec. IV, from the Ginzburg-Landau free energy, we

@) derive, within the mean field theory approximation, the ana-

To study the effect of charge frustration on the phaséytical form of the critical line equatio_n_and analyz_e the phe-
diagram of a system described by the above Hamiltonian, ffomenon of reentrant superconductivity for a variety of sys-
is one of the purposes of this paper; in the following, wetems of JJA’s. The phase boundary is drawn for the model

shall analyze the equation relating the critical temperature t§/ith diagonal capacitance matrix for several charge distribu-
the ratio E;/E¢ and find a reentrant bulge in the phaserns and a reentrance is never found. We then analyze the

boundary between the insulating and superconducting phaSIQyV-tgmperatqre limit of a system with nearest-neighbor in-
for arrays with a uniform distribution of offset charges teraction matrix. Through the analysis of the charge distribu-
q/2e=1/2, even if the capacitive interaction is short rangedion providing the leading contributions to the low-
For this model, we determine the most relevant contribution{€MPerature expansion of the partition function, we are able
to the equations for the phase boundary by explicitly conlo establish analytically the existence of a reentrant behavior

structing the charge distributions on the lattice correspondindPr @ System with a uniform background of external charges

to the lowest-energy states which provide the leading contrihi=€: , .
butions to the partition function at loW.. The determina- Section V is devoted to some concluding remarks. The

tion of these configurations allows one to simplify the equa_appendixe.s contain the de_rivation of some relevant formulas
tion for the phase boundary and to evidence analytically th@f the main text and are introduced to keep the text self-
existence of a reentrant superconductivity. For models with gontained.

diagonal capacitance matrix, a reentrance is absent.

The approach we follow uses the well known Il. SELF-CONSISTENT MEAN FIELD THEORY
Hubpard—Stratonovufﬁ repr.esentauon for the part!tlon func- IN THE HAMILTONIAN APPROACH
tion in terms of coarse-grained classical local varialptgfor
which the effective action is computé¥i This method has Mean field theory for quantum JJA’'s with diagonal ca-
been used in previous analyses of the phase diagram of JJApacitance matrix was first used by Sine&k® The approxi-
in Refs. 20,7. mation consists in replacing the Josephson coupling of the

In deriving our results on reentrant superconductivity forphase on a given islandto its neighbors by an average
JJA’s, we shall pursue a rather pedagogical approach by reoupling so that
visiting the path integral derivation of the finite temperature
mean field theory of a system of JJA’s. Our goal is not only
to show that the path integral method is much simpler than E,>, cog goi—goj)=zEJ(c03¢>>E COSg;. (3
the more conventional self-consistent mean field theory ap- (i) ‘
proach for the analysis of systems of JJA’s with offset
charges and nondiagonal capacitance matrices, but also to Eq. (3) z is the coordination number; it is assumed also
evidence that it allows for a systematic analysis of the effect¢hat (cos¢) does not depend on the island indieand the
of the periodicity of the phase variables in the finite tempera<choice (sing;)=0, which provides a real order parameter,
ture theory. The periodicity can be taken into account byhas been made.
introducing a set of integers, so that the partition function Within the mean field approximation the Hamiltonié)
factorizes as a product of a topological term, depending onlypecomes
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1 _
Hwr=7 ; Cjj 1Qin_ZEJ<COS<P>2i cosg; (4 20

and the order parametécose) is evaluated self-consistently
from Eq. (4). For a diagonal capacitance matrixCi(
=Cpd;) mean field theory computation are very simple
since Eq.(4) describes on each site a quantum particle in a L
periodic potential cog;.° The eigenfunction of the array is a ©
product of eigenfunctiong),,(¢) describing the individual
islands and satisfying the Mathieu equafion

insulating phase superconducting phase

T k_/E
B

d?>  zE, E,
d(P2 4EC<COS§D>COS(P dfn((P)_ 4EC (v[/n((P) (5)
with periodic boundary conditiong,(¢) = ¢, (¢+2). 0.5
It is well known that the Mathieu equation admits also i
antiperiodic solutionsy,(¢) = — (e +27) (see Appendix
A). If both periodic and antiperiodic solutions are used, the
general solution of Eq5) does not have a definite periodic-
ity and, consequently, the chargestake continuous eigen- 0.0 ! . . ! . !
values. Such continuous eigenvalues are expected to be rel- 0.8 1.0 12 14
evant in the description of continuous flows of currents due, Q.
for example, to ohmic shunt resistané&4® Although the
superposition of both periodic and antiperiodic solutions FIG. 1. Phase diagram for the diagonal model without charge
yields to a reentrant behavior even in the unfrustrated dissifrustration.
pationless diagonal mod#l;'*3'this superposition is not al- )
lowed in describing physical situations in which the only Mean field theory of this model leads to a Sdfiirger equa-
excitations are Cooper pairs of charge.??’ Thus the use tion of the form
of both periodic and antiperiodic solutions does not have

physical significance in the models considered in this paper. d? .q d q)\?
The mean field self-consistency condition gives T de? 258 de T\2¢) a(C0S¢)COSe | Yn(¢)
S e e, _En
e PEn(y|cosel¢y) == ¥nle). 9
. 4E¢
(cose)= (6) N _
2 e~ BEn Redefining the phase of the wave function as
n .
, _ Un(@)=e"'V2%p (o),
with B=1/kgT. For high temperatures or lo&; only the _ )
solution{cosg)=0 exists and there is not superconductivity. Ed- (9) reduces to a Mathieu equation fog(¢)
For low temperatures or high; (cos¢)#0 and the system
d? A
as a whole behaves as a superconductor. Pn (MY os —0 (10)
From Eqg. (6) one gets the equation for the critical de2 |4 2 @ |Pn
temperaturg
with \,=E,/E¢ andv = —zE(cos¢)/2E . Equationy8)—
+o s (10) lead to the following modification of Eq7) [see Ap-
> e @mn pendix AJ:
n=-—ow
a= + o0 (7) + o
o~ (4h)n? e W4 emmnT12?
n==x 1—4n? n=1
a= To
. . 4+y B 1 B 2
with y=kg T/E; anda=zE,/4E. In Fig. 1 we plotT; as T Wy E— ) I G R V)
a function of . 4y A=1 1—4(n+1/2)2
If one considers a diagonal capacitance matrix and uni- (11)

form offset charges of magnitude on each site di/2e

which—at variance with the unfrustrated model—exhibits
=1/2), the Hamiltonian reads

superconductivity even for infinitesimal values af This
1 feature is shown in Fig. 2 which also shows the absence of a
Ho——— AN O+a)—E cod o — o). reentrant behavior at low. From Fig. 2 one sees also how

a7 2C 2 (Qita)(Qita) J% Lo o) the presence of offset charges improves the superconductiv-
(8) ity of the array.
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2= T v [{61 -3 3 e, 213 att

+E72 iy e ] (15)
1.5

where —o <<+, ¢i(0)=¢i(B)+2mn;, and y;=1 if

i,j are nearest neighbors and equals zero otherwise. The in-
tegersn; appearing in this boundary condition take into ac-
count the 27 periodicity of the states),, appearing in Eq.
(12).

In order to derive the Ginzburg-Landau free energy for
the order parameter, it is convenient to carry out the integra-
superconducting phase tion over the phase variables by means of the Hubbard-

Stratonovich trick’® using the identity

insulating phase

Tk /E

0.5

-1
detl—'ll f H D2¢Iie*l/l+r_l',//*~]+l//7’ﬁ+.] (16)
T i

n
el T

Co the partition function may be rewritten as

o Z:f H DDy o/ G~ 2Bzt Vi;llﬂj]e_seﬁ[‘ﬂ]_
FIG. 2. Phase diagram of the diagonal model with half-integer ' 17)
charge frustration.
where the effective action for the auxiliary Hubbard-
For frustrated models with nondiagonal capacitance maStratonovich fieldy;, Seql /], is given by
trix, the self-consistent mean-field theory approximation be-

comes very cumbersome and it turns convenient to resort to B @i (p]
el Y11= InUH D<p.exp{f dr| - 2 Cizg

the more powerful functional approach. Without offset S i2e 2e

charges, a reentrance at 10w is expected at least when the

interaction between grains is long-rangéd® _
- | R

Ill. GINZBURG-LANDAU FREE ENERGY ) )
The Hubbard-Stratonovich fielg; may be regarded as the

The partition function for the frustrated off-diagonal order parameter for the insulator-superconductor phase tran-
model is given by sition since it turns out to be proportional ¢e'#), as it can
be easily seen from the classical equations of motion. From
Eqg. (18) the Ginzburg-Landau free-energy may be derived
Z=Tre PH=2 (ynle Py, (12 py integrating out the phase fielg| .
3 Since the phase transition is second offeriose to the
onset of superconductivity, the order parameftgeis small.
One may then expand the effective action up to the second
order in¢;, getting

whereH is given in Eqg.(2) and the sum is extended only to
states of charge€®and thus with definite periodicity. In the
functional approaclz reads

B B
p de, Sul#1=Sul01+ | " [ "dr Gr (7
_f 1_|[ D ¢ ex;{—fo dTLE(QDi(T),E(T))}, (13 0 0

+e, (19
where the Euclidean Lagrangidri can be derived from whereG, is the phase correlator
1( ﬁ )2 deidg (4} dei 5°Ser ] o () — o’
— 2 6 N 2 My Gy(r7)= ————— =(ger(N-iedr)y
212e] 4 ~i7dt dt |\ 2e/ 4 dt @ © SY(T)SYLT |, e _g < &
(20
+EJ% cod ¢i~ ¢)) (14) The partition function(17), can be written as
by replacingt/#— 7. The path integral that one should com- Z:f IT dydyreF14, (22)
pute is then given by i
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whereF[ ¢] is the Ginzburg-Landau free energy; due to Egs.For this purpose it turns out very convenient to untwist the

(18),(19), up to the second order i#;, one has boundary conditions by decomposing the phase field in terms
5 5 of a periodic field¢;(7) and a term linear inr which takes
Fly]= JO dTJO dT,iEj 1//7‘(7)[7{15( —1) into account the boundary conditiof®3); namely, one sets
_ . ! . ’ 2
Colm 7T 22 w(7)=(n)+ i, (24)

We shall now compute the phase correla®g by evalu-
ating the expectation value in E1) by means of the path | .
integral over the phase variables(7). In performing this With $i(8)=¢i(0). Summing over all the phases(7)

integration one should take into account that the field con@mounts then to integrate over the periodic figidand to
figurations satisfy sum over the integers;. As a result the phase correlator

factorizes as the product of a topological term depending on
@i(B)— ¢i(0)=27n;. (23 the integer:; and a nontopological one; namely,

i6e(D) -7’ N B PN
fD¢ie¢() " )eXp{ jo dT( ECiJZ_eZ_e)]
B 1 ¢ ¢
fDd)iexp{ fo dT(_ECHEZ_(Ja)]

2
; ' m . i
> el@mB)(nr=ngr’) — > ——Cinni+ >, h
e rm s exp| ZﬁeZC'Jn'n'+i 2|772en,]

Gs( T T')=

nil ij
X

- . 5
2 exp{—z wcijninj‘f‘gi 2|7T,8in|]

[nil i
After a lengthy computation, the firghontopological factor appearing in the left-hand side of equatiaB) has the following
simple expressiohsee Appendix B

(r—1")?

5rsex;ﬂ’—2e2c:;1(|r—r'|— 3 ] (26)

The sum over the integers in the topological factor in Ep) is done by means of the well known Poisson resummation
formula

|detG|1/22 e—w(n—a)iGij(n—a)j:E e—wmi(Gfl)ijmj—Zwimiai.
[nil

[my]

Thus Eq.(25) becomes

>, exp — > 2e?BC;*t nﬁﬂ nj+& -> 4e2C§1(ni+& (1—7')
S [ 7 : 2e 2e| 4 2e
Gs(7,7')= 582 Cr 1777 a q (27)
_ 2c Y n.+ b ._|__J
[;i] ex ; 2Be”C | it oo || g
|
with n; assuming all integer values ati{ni] being a sum L1 : : ,
over all the configurations. Gj(m7')= B E/ Gij(w, w, e ™ (28
o

By means of a Euclidean-time Fourier transform, the

fields y; are written as From Eq.(27) one can show th&(w,, ;) is diagonal in

1 ' the Matsubara frequencies and can be written as
(=5 2 dilw)en,
: Gis(@,10)=G(w,) S 8w, tw,) (29
wherew, are the Matsubara frequencies. As a consequence,
the phase correlatds; can be expressed as with
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Giw,) 1 g%a®
. ’y;lIE'f‘q?-F---, (35)
exp{—fEi nﬁi nj+&
1 Y T Yoo 2e 2e/] 1 wherea is the lattice spacing angthe coordination number.
2E; fn] Uy il 2 Zy' The first term in Eq.(35) provides the mean field theory
1-4 EJ: Uoo Nit5e) ~1@u approximation which, as expected, is exact in the limit of

(30) large coordination number.

The Ginzburg-Landau free ener¢$1), reads
In Eq. (3D Z, is given by

Gq-g(@,)

4 U 15
Yq Oqq N

i g
Zo=2, expl —— >, —|ni+ o
0 [;.] p[ y ; Ug| ' 2e
with Uy =Cij’1, Ec=e’C, /2, andy=KkgT./Ec. In terms  Using Eq.(35) and keeping only terms of zeroth orderdn,
of Matsubara frequencies the Ginzburg-Landau free energgndg one obtains the mean field theory approximation to the

a
2e

1
Flgl=—c 2 ¢g(w,)*

' AN naq’ Varlon):

nj-l—

(22) becomes coefficient of the quadratic term &f
_1 S g 2 1 2
Flvl=3 o ¥ (wu)| g7~ Gilew) 6y o). =5N 2 gz Co0* [g(w,)? (36)
31) qu B3

This equation was first derived in Ref. 7 by means of alhe equation for the phase boundary line then reads as
cumulant expansion and it is the starting point for any analy-
sis of the phase boundary between the insulating and the

. : o h . E,
superconducting phases in JJA’s with arbitrary capacitance 1=2—G(0) (37)
matrix and with charge frustration. 2

with
IV. MEAN FIELD THEORY ANALYSIS OF REENTRANT
SUPERCONDUCTIVITY IN JJA'S

In the following we shall derive the equat@on deterr_nining Gy(0) = i S G,(0). (38)
the phase boundary in the plane,KgT./Ec), in mean field N 7

theory and for a system with arbitrary capacitance matrix and

a uniform distribution of off-set charges. For this purpose itEquation(37) determines the relation betwed@i and « at
is convenient to expand the fieldg(w,) and Gj(w,) in  the phase boundary.

terms of the vectors of the reciprocal lattigeOne has For a uniform distribution of offset charges E&7) sim-
plifies further since in Eq38) G, does not depend an As
a consequence, the phase boundary equation becomes

1 iq-i
Vilw)= g 2 (w0, (32
4 & Uj q q
1 EXW’——EU:E ni+2—e(nj+2—e 1
Gi(w,)= = > Gglw,)e'" (33) 1=a-> — > >
# N q ® [n|] 1_42_0]n]+% 0
Moreover L1ro . (39)
1 o with
g — —1aig-(i-j)
Y=o 2 vy e : (34)
N4 T
where 7;1 is the inverse of the Fourier transform of the a= ZE
Josephson coupling strenggh which equals 1 for,j nearest 4E,
neighbors and O otherwise. As a consequence q
an
1 1
Yq T o 4 Ujj q q
zp: eiap ZO_% eX[{—yiEJ U_Oo ni+2—e nj+2—e .

wherep is a vector connecting two nearest neighbors sitesln the following we shall derive the physical implications of
Expanding ing one gets Eq. (39) in a variety of models describing JJA's.
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FIG. 4. Ground state.

T k /E

> e @mn? !
n 1—4n?
a—= fo
E— ' ' > e @mm?
0.0 0.2 0.4 0.6 0.8 1.0 1.2 m
o 1 1
2
FIG. 3. Phase diagram for several values gf. E I
g ok - 1-4(n+1/2)2
+f12

> e @mm+ 1/2)?
m

A. Self-charging model
In Fig. 3 we plotT. as a function ofx for several values of

For a diagonal capacitance matrix);=6;Uq, one A ted ductivity i h dfas |
singles out only the self-interaction of plaquettes. This cas%(r"ea:ése)(pec ed superconductivity 1S enhancedtgs in-

was already analyzed in Sec. Il within the approach of self-

consistent mean field theory. As a check of the path integral

approach we shall show that one is able to reproduce the

same results from Eq39). In Ref. 21 Fishman and Stroud, using a low temperature
In the diagonal case E¢39) becomes expansion, determinel, as a function ofx for models with

nondiagonal interaction matrix without considering the effect

of offset charges. They did not find signs of normal state

) reentrance for nearest-neighbor interaction matrix models in
1 which only the diagonal interaction matrix elemehg, and
]1—4(n+q/29)2 the nearest-neighbor interaction matrix elemeigt,= 60U

B. Models with nondiagonal capacitance matrix

q
n+£

Eexp[—g

n

> are nonzero. This can be seen from the expansion of the

=
> ex;{—f m+i critical line Eq. (39) for g=0 and small critical tempera-
m y 2e tures:
(40)
8
a=1+|-+2z 1- S| lem Wt
Sincen is an integer(40) is invariant under the shift)/2e 3 —40

—q/2e+1. Forq=0 Eq.(40) reduces to Eq.7). From Fig.

1 one readily sees that there is no superconductivityafor Reentrant behavior is possibfdor 6> 6,=1/\/4+ 3z when
<1. Due to the periodicity of Eq(40) this holds for any the coefficient of the exponential *¥ is negative; in fact,
integerq. Forg/2e equal to 1/2 one gets E¢L1). From Fig.  the phase boundary line= «a(T,) first bends to the left due

2 one sees that superconductivity is attained for all the value® the negative coefficient o8~ and finally, when the

of a, due to the effect of offset charges; the superconductingritical temperature is high enough, bends to the right, favor-
order parameter at zero temperature is different from zero.ing the insulating phase.

For the self-charging model the system exhibits supercon- As evidenced by Fishman and Stratldthe regime of
ductivity for all the values ofa also if the distribution of physical interest isf<<1/z; namely, when the capacitance
offset charges is such that integer and half-integer chargewatrix is invertible. Reentrance is possible only in one di-
coexist on the lattice. If one denotes by the fraction of ~mension @,=1/y10<1/z=1/2); in higher dimensions re-
integer charges and by,,=1—f, the fraction of half- entrance occurs only when the electrostatic interaction is
integer charges, Eq40) implies that long ranged!
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If there are half-integer offset charges on the sites of a square lattice, our analysis shows that the equation for the critical
line is

exd— 4aly) Eij(uij/UOO) (ni+ l/2)(nj+ 1/2)

a=> e 4y XUylUog(m+ L2 +12) /S > , (41)
(n [ Vo !
—4 2 |+
] 00 2
where
U 1
. +2(n+2
ein1=3 o4+ 3] n 2) 42

is the electrostatic energy of any charge distribution on the lattice.
Denoting withni0 and ni1 the charge distributions of the two lowest lying energy states andEfitindE?* the correspond-
ing energies, the low temperature expansion of @4d) yields

E e (4ly) E +2 e (4/y)E

[n°] (n}
— (aly) E? ~O,
e
/ 3o

+>
[n})

2 .43

Ca e /eyl

Independently on the epr|C|t form &f; , E[n;] reaches In Fig. 7 we plotT, versusa for 6=0.05 andz=6. In
its m|n|mum value when r’+3)=+3(—1)1"2" o this plot we keep into account also the next two orders of Eq.
with iy (j= . D) the components of the lattice position (44) with coefficientsa, andaz. The resulting diagram ex-
vectori in unlts of the lattice spacing. This charge configu- hibits reentrance in the insulating phase even for models with
ration is exhibited in Fig. 4. For models with nearest- nearest neighbors interaction.
neighbor interaction, i.el;; = 6; + 62,8, ,; with =, denot- In Fig. 8 we plotag=a(T.=0) as a function o for q
ing summation over nearest ne|ghbors the chargéteger andy half-integer and foz=6. The plot shows that
configuration corresponding to the first excited state is giverhalf-integer offset charges always favor superconductivity
in Fig. 5. The energy of the charge distribution of Fig. 5 isand that—at variance with the self-charging model—for non-

E[n']=E[n°]+z6, whereE[n?], the ground state energy, diagonal interaction matrix there is always a rangexoin
which the system behaves as an insulator. The plot also

shows that foig/2e=1/2 andT =0 the size of the supercon-
ducting region in the phase diagram depend¥ion

is given by=;7(1—z26).
With the above values dE[n?] and E[n}] and keeping
only the leading order term i, Eq. (43) becomeqsee

Appendix J
V. DISCUSSION
) 1—(1-26)? , , . . .
a=[1-(1-2z6)7]{ 1+ I — In this paper we investigated—using the path integral ap-
1-(1+z0) proach to finite temperature mean field theory—the phenom-

JJA’s. For a model with nearest-neighbor capacitance matrix
and uniform offset chargg=1/2 (in units of 2e), following
the analysis developed in Ref. 21, we determined, in the

_ _ 2
+Z(1_ 1-(1-26)

enon of reentrant superconductivity in a variety of models of
—(4ly)z6 4.
1-[1-(z—2)6]?

(44)

Reentrant behavior at low temperature occurs when the
coefficient of the exponential is negative, namely, when - 4+ = 4+ = o+

_ _ 2
Z( B 1-(1-2z0) )<0. 4+ - 4+ - 4+ =
1-[1—(z—2)6]?

N =(1_ 1—(1—26)2
YT 1-(1+26)2

In Appendix C we compute also the coefficieatsandas of + - + - B _
the higher order exponentials in the expandi). In Fig. 6

we plot the coefficients,, a,, andas as a function ofy for
z=6, i.e., for a three-dimensional array on a square lattice.
One sees that the inequalit#5) can be satisfied for values
of # consistent with the physical constraifi# 1/z=1/6. FIG. 5. First excited state.
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FIG. 6. Expansion coefficients af as a function of nearest-
neighbor interactiord.
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0

FIG. 8. Broadening of the superconducting phas&-a0 with
z=6 and nearest-neighbor interaction.

found in Ref. 21 to the situation in which offset charges are

low-temperature expansion, the most relevant contributionpresent and provides a physical picture of the states contrib-
to the equation for the phase boundary. For this purpose wegting to the reentrant behavior.

explicitly constructed the charge distributions on the lattice For a model with diagonal capacitance matrix our analysis
corresponding to the lowest energies. Confirming the resultsonfirms the absence of reentrant behavior for the physical
of the numerical analysis of Ref. 8, we evidenced the appeasituation where the phase variable is periodic. The diag-
ance of reentrant superconductivity even when the capacitivenal model with offset chargg=1/2 exhibits superconduc-
interaction is short ranged. Our analysis extends the resultgity for all the values ofa = zE,/4E, since in this case the

0.4
0.3
-
L .
— insulating phase superconducting phase
0
'
o 0.2
|_ -
0.1
0.0
| L | L 1 L J
0.48 0.50 0.52 0.54
o

FIG. 7. Phase diagram for small critical temperatures vzith
=6 and#=0.05.

superconducting order parameter is different from zero at
zero temperature; this is evidenced by Esf) in Appendix

A. An offset chargeq=1/2 tends to decrease the charging
energy and thus favors the superconducting behavior even
for small Josephson enerdy .

The search for reliable theoretical approaches to establish
the existence of a reentrant bulge in the phase boundary of
quantum Josephson junctions arrays is strongly encouraged
by the evidence of low temperature instabilities found ex-
perimentally in Josephson junctions arrd¢sitrathin amor-
phous films®® granular superconductot$,and multiphase
high-T, systems® Our analysis not only clarifies issues still
open for quantum phase models with a diagonal capacitance
matrix and uniform offset charges, but also predicts the ap-
pearance of a reentrant bulge—even if the interaction among
grains is short ranged—for quantum Josephson junction ar-
rays with non diagonal capacitance matrix and uniform off-
set charges.

It would be interesting to investigate the superconducting-
insulating behavior in quantum JJA’s in lower dimensional
models, where mean field theory is not expected to provide
accurate results, as well as in models in which offset charges
are randomly distributed. Fdd =1 there is evidendefor a
new phase separating the superconducting and the insulating
phase. The analysis of the phase diagram for this case should
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be carried out with different methods such as the renormalif g/2e is integer, the periodic boundary conditiogig (¢
ization group®!’ or strong coupling expansidh. =0)= (o= 27) singles out only the 2-periodic Mathieu
Note addedAfter completion of this paper we became eigenfunctionsce,,,se,,. With these eigenfunctions one
aware of the paper by T. K. Kopec and J. V. Jasend-mat/  may derive Eq.(7).1° If g/2e is half-integer, the periodic
9903222, analyzing the functional approach for quantum JJAoundary conditions together with E€A3) single out the

at zero temperature. sr-anti-periodic Mathieu eigenfunctior(ge., p, is antiperi-
odic of 27 and periodic of 4r). These are the Mathieu
ACKNOWLEDGMENTS eigenfunctionse,, 1 andsey, ;1.

) Since, near the critical temperatufg, the order param-
_ G.G. and P.S. are happy to acknowledge the many disCugger (cose) and v are small, apart from the phase factor
sions with G. W. Semenoff who joined their efforts in the o-iei2 (important only for the periodicity to first order inv,

initial stage of this work. We thank R. Fazio, M. Rasetti, anqu_ (A1) has the solutions
A. Tagliacozzo for useful discussions. The research is sup-
ported by a grant from the theory group of INFM and by

1 v 3
MURST. ¢§:T_( Cosg _ gco%’),
a
APPENDIX A: DERIVATION OF THE
SELF-CONSISTENCY EQUATION (11) . 1 o v 30
With a uniform charge frustratiog the pertinent Mathieu "yl_\/_; sihy g% )
equation is given by
2n+3
d—2—2ii—+(i)2—a<cos<p)cosw Un(@) 1 (2n+1)¢ CO( 2 ¢
de? —2ede |2e n Vnr= 2| 5T Y| a@nt
a
E
= 4EnC ’ﬁn(‘P) (Al) COS(Zn——l)(P
2
Upon defining ~—an || (A5)
)=e @29p (o) (A2)
Un(e Pn (2n+3)e
Eqg. (A1) becomes P 1] (2n+1)e sin————
ne1=—= sin -v
dzpn+(?\ v ) . A3 n+ \/; 2 4(2n+2)
—— ~C0S =
dg? |4 270 (2n-D)¢
si————
with A=E,/Ec and v = —2zE;{cose)/2E-. Equation(A3) _ 2
yields the canonical form of the Mathieu equatiths 8n ’
d?y (n=1,2,...),
FH)\_ZU cos X)y=0, (A4)
X

with the corresponding eigenvalues given by
if one putse=2x e ,=Y.

The Mathieu equation has the well known periodic Ef=Ec(1+0q),
solutiong’
o__ —
ce(X,v) even solutions with perioar Ey=Ec(1-0),
with eigenvaluesi,,(v), (AB)
— — 2
S&n+2(X,0) odd solutions with periodr 2n+1=Eon+1=Ec(2n+1)%,
with eigenvalued ,
g 2n+2(v) (n=1,2,...).

Cen+1(X,v)  even solutions with period 2 The expectation values of the superconducting order param-

with eigenvaluesi, , 1(v), eter on the eigenfunctior(@5) are given by

S&n+1(X,v) 0dd solutions with period 2

2w
— 2
with eigenvalue$32n+1(v), <lv[/n|COS‘P| ¢’n>_ fO d‘P COS(P| l/’n(‘P)l . (A7)

n=0,12... . Using Eq.(A5), to the first order irv one gets
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| <

1
(WElcose )= 5 -
v
(3] cose|yi)=— E_ X

(5n+1lcose| s, )= ma (A8)

(Y30 1]COS@| Y21 1) = e
2n+1 2n+1 8n(n+ 1)!

(n=1,2,...).

Inserting Eqs(A6) and(A8) in Eqg. (6) and keeping only
the terms proportional to ~{cose), one finds

2 1 ? e~ (Wy)(2n+1)?
—=+ — efl/y_ e
y 2 =1 2n(n+1)
l=a = ;o (A9
2e W42 > e~ (y(2n+1)?
n=1

namely, Eq.(11).

APPENDIX B: THE PHASE CORRELATOR

In this appendix to keep the paper self-contained we re-

port the computation of the correlator defined in E2p).
One should compute the path integral

f D¢iei¢f(7)“¢s(fl)exp{f dT( > IJ ;bel jé)}
¢ b '
oot [lo] -Sesuzs
(B1)
Fourier transformingp;(7) according to
13 _
$(N=5 2 dinem (82)

with 0<7<p8 and w,=(27/B)m, the numerator ofB1)
becomes

| 11 doell do a9, exp{ -

X > E Cijwadi n¢,n+ 2 (¢rn€'“n”

ij n=1

4¢e?

- ¢;neiiwn7,) + IE(d’r,O_ d’s,o) + C-C-] . (BS)

Upon integrating over the componens,, ¢4 one gets a
factor 6,4

( igs f_:dgbi,o) ( ffwd¢r’0ffmdd,s’oe(ilﬁ)(ﬁbr,o* zfzs,o))

=65 K, (B4)
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whereK is an irrelevant divergent constant which cancels
against the denominator. Using E®4), Eq. (B3) becomes

KrsrsH f H de; nd¢.nexp( 2 Cjwidind’n

[ . _—
+2 dingdile e

_zi ¢i’jn5ri Iﬁ(e—iwnr'_e—iwnr’)).

The multiple Gaussian integral may be easily computed to
give, up to an irrelevant constant which cancels against the
denominator,

o . I - | ,
5rsH rl;[l led(ﬁind(ﬁﬁ] EX[+ EI]: IE 5ri(elwn7_ gi@n” )

(4e BC;*
X [ —

2

02 |B

8e2c; ' & [1—-cosw (17— 7'
_ 5rs eX m 2 n( )
,8 n=1 a)2

n

(17— 7")2)}
—ﬁ ;

B=7—71'<p. In the last step, the identity

X x> & [ 4 4coswpx pa—
X|— == — 1, —B=x=
wp  Bop

5n(e—lwn'r e—iwnT')]

=S5 exp[ — 2e2c”1( |7—7'|—

where —

(B5)

has been used. This completes the proof of [26)

APPENDIX C: LOW T. EXPANSION

In this appendix we derive E§44) and compute the next
two orders whose coefficients are plotted in Fig. 6. Using the
notation (—1)'=(—1)"1"""'o, the ground state charge
configurationn? can be written as

1
n+ ( 1)\,

The first excited states read

ni"+ %) =nP(1-25,),
where the apex 1means that this first excited state is ob-
tained from the ground state by flipping the sign of the
charge at the site. Higher excitations may be obtained from
the ground state by flipping the sign of two charges at sites
ands and can be represented as

1
2r
n; S+ E

=nP(1-268;—25g).

The energy shifts are given by
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Alz El—EOZZ Uir(_ 1)r+i+1
i
i#r

and
AZrSZE[nizrs]_ EC=2A1+ 2(— 1)r_sUrs-

Note that, whereas the ener@/ of the charge configura-
tions nilr does not depend an E[nizfs] depends on the rela-

tive positionr — s of the charges whose sign has been flipped.

Defining
1
ROZ 1 7
0+

1—4[; Uoj(nJ +5)

er_ T2
1—4[2 uoj(n]1 +5

and

Rzrs: L 1 5,

1—4[2 UOJ nj2r5+§
i

one may expand Ed41) for small critical temperaturesy(
«T,—0), according to
*

1+ e (4/y)A1+2 e~ (4ly) A%sy
r r#s

a=

*
RO+ > Rlre~ (4/y)Al+z R2sg~ (4) A%
r r#s

1+,

T

ll’
( 1— R_) g~ (4ly) At
RO

*

+2

r#s

+2

s

2rs
1— R% g~ (4ly) A%

RO

R Rls Rk

— - |e @At
R

(Cy

RO RO

where =¥ ¢ indicates a summation over pairs of different

sitesr,s, where each pair is counted only once.
For a nearest-neighbor interactiob = &g+ 02,6,

(where p denotes the vector connecting two neighboring

siteg one has

Al=z0,
2(z—1)6, r—s=p,
Is—
226, r—s#p,
RI=
1-(1-26)
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( RO, r+0,p,
! r=0
Ri={ 1-(1+20)% '
1
) r:p'
L 1-[1—(z—2)6])?
( RO, r,s#0,p,
Rls, r+0,p,
RZFS: 1 y r:O?py
1-[1+(z—2)6]?
1 !
, r=ps=p’.
[ 1-[1-(z-4)6]°

Substituting these relations {{€1), one obtains the expan-
sion for small temperatures of the critical line equation, up to
the first four orders

a=[1—(1-26)?](1+a,e” M0+ a,e~ EMN(E-1)
+age (BM20) (C2)

a, is given in Eq.(45), a, is equal to

1)(1 1—(1—20)2>
Z— 1)z —
( 1-[1—(z—2)6]?
1—(1-126)2 )
+z| 1—
1-[1+(z—2)6]?

anda; is given by

(1—(1—20)2
1—(1+26)?

2_(1—(1—20)2

1—(1+ 20)2) tx(z-1)

( 1—(1—26)2 )
X -1
1-[1-(z—2)6]?

, 1-(1-26) (

1—(1—26)2 )
z 1
1-[1—(z—2)6)?

1-[1-(z-2)6]%

1—(1—26)2(

1—(1-26)2 )
+z 1
1-(1+2z6)?

1-[1-(z-2)6)2

1-(1-26)2 (1—(1—29)2_ )

+z
1-[1-(z—2)0]) \ 1—(1+26)?
z(z—l)( 1-(1-26)2 )
+ 1- .
2 1-[1—(z—4)6]?

The condition for the reentrant behavioras<0. In Fig. 6
we plot the coefficientsa,,a,,a; as a function off. In Fig.
7 we plot the critical equatiofC2) with #=0.05 andz=6.
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