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Quasiperiodicity, bistability, and chaos in the Landau-Lifshitz equation
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The dynamics of an individual magnetic moment is studied through the Landau-Lifshitz equation with a
periodic driving in the direction perpendicular to the applied field. For fields lower than the anisotropy field and
small values of the perturbation amplitude we have observed the magnetic moment bistability. At intermediate
values we have found quasiperiodic bands alternating with periodic motion. At even larger values a chaotic
regime is found. When the applied field is larger than the anisotropy one, the behavior is periodic with
quasiperiodic regions. Those appear periodically in the amplitude of the oscillating field. Also, even for low
values of the driving force, the moment is not parallel to the applied field.

. INTRODUCTION theoretically, through spin-wave descriptidfs® In differ-
ent driving regime, the chaotic behavior can arise in magne-
Traditionally, the study of the dynamics governed by thetostrictive wires and ribbons due to the magnetoelastic
Landau-Lifshitz equation is related to the ferromagneticCOUp”an-16
resonance problentsRecently, the spin dynamics has also  The paper is organized as follows. In Sec. Il we present
become important in other physical phenomena relevant t§1e equations and explain the method we use to solve them
technological applications, such as, e.g., magnetic reCordi@umerlcally. _The relevant results are presented in Sec. Ill. I_n
processes® due to a continuous increase of the magnetic>€C- 1 we qllscuss the phy_s,lcal aspects of our results and in
recording density together with the writing frequeridy. Sec. IV outline the conclusions.
While the writing frequency is approaching the values cor-
responding to that of the precessional motion, the actual Il. NUMERICAL PROCEDURE
magnetization dynamics becomes more and more important.
This complicated dynamics may arise, e.g., during a process In the original form the Landau-Lifshitz-Gilbéft equa-
of fast magnetization switchifyThe dynamical micromag- tion may be written as
netic calculations have provided a useful tool in studying

such important media characteristic as dynamical dM 7 dM
coercitivity® In spite of the fact that the Landau-Lifshitz Gi = " IMXHer) + My MXGt ] @
equation is widely used in micromagnetic calculatidrto

our knowledge, no systematic study of its dynamics exists ityr in the more practical forniLandau-Lifshit2°)

the literature. Let us recall here that this equation is nonlin-

ear, and in some regime one may expect a highly compli- 1+ 72 dM 7

cated dynamics similar to one arising for an externally driven —=—(MXHg)— = [MX(MXHgs)], (2
pendulum. As an example, we can mention the nonlinear g dt Mo

stochastic resonance behavior of an individual magnetic . ) i )

moment° The purpose of this paper is to present a system?Whereg is the local gyromagnetic factor; is the damping,

atic study of nonlinear dynamics governed by the LandauMo the saturation magnetizatiokt is the tridimensional lo-

Lifshitz equation, including its bifurcation diagram and sta-Cal continuous magnetizatidfiwhose module is conserved

bility properties. This dynamical behavior is going to be (M-M=Mj), andH, the effective field:

relevant in studying an ensemble of noninteracting Stoner-

Wolfarth particlest! Also it would be very useful when ana- Hett=Hext BN(N-M). (3)

lyzing results obtained from large simulations of coupled

Landau-Lifshitz(LL) equations. There, and for some valuesHere Hgy is the external magnetic fielg§ is the anisotropy

of the coupling parameters, the individual characteristics otoefficient andh is the unitary vector pointing in the anisot-

each magnetic moment may play an important role in theopy direction.

collective behavior. Eventually, when enough of these mo- As we will deal with only one local magnetic moment we

ments are coupled, a description in terms of magnons wouldill not consider exchange and dipolar interactions. This de-

be possible? scription could be relevant to dynamics of bistable magnetic
Also the subject of chaos in magnetic materidis not  microwires and ribbon as well as noninteracting Stoner-

new. It has been studied in YIG, both experimentally andWolfarth particles.
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The external field will be decomposed in two pailk;, sl 3
constant and parallel to the anisotropy direction, ardh, : ]
-sin(wt), perpendicular ton and oscillating in time with fre- o[ .
quencyw. o I ]

For practical purposes we rewrite the equation in dimen- 1F
sionless form and expanded notation: -

kmy = —[my(h,+my) —m,h,]— L mem,(h,+m,)

N
T

+mymyhy+(mZ—1)h,], (4a)
e o -
Kmy:[mx(hz+ m,) —m,h,]— U[mymz(hz+ mz)+mxmyhx . L b
+(mi—1)hy], (4b) 0z | ]
km,= —[m(h,—myh,) — m,mh,+mymh,+ (m>—1) o1 ]
X(hz+my)], (40 < of E

wherem=M/Mg, h=H/(BM,), k=1+ 5%, and the dot o1 f

represents the derivative with respect to dimensionless time ; ‘ . L L 1

7=gBM,t. We take thez axis in the direction oh and thex 02 ' . 2 3

axis in the direction ohg, which makesh,=0. h
These equations with app_roprlate initial conditidnger FIG. 1. Bifurcation diagram for thé and ¢ components of the

400 have been solved by using a fourth order Runge'KUttamagnetization and Lyapunov exponents whep-0.1 and 7

scheme. In Eq94a—(4c) only two of them are independent —0.05 '

because of the constant magnetization constraint. If we

choose polar coordinates, we reduce the degrees of freedom

to 2 and the constant magnetization constraint is automatiRents ofm, at time interval multiples of =27/ (Poincare

cally fulfilled. The problem arises when the polar angle be-sectiong, with the valueh shown in thex axis of the figure.

comes zero otr, and the azimuthal angle cannot be defined.There, various kinds of behaviors can be distinguished: pe-

This problem is overcome by using two different referenceriodic, quasiperiodic, and chaotic motion. When there is only

frames, one with the polar axis pointing to the north pole ancdbne point for a given value of, it represents a periodic

the other with the polar axis pointing to the south pole. Inmotion with periodT; and when there is a continuum of

order to avoid this computational trouble we choose Cartepoints the behavior is quasiperiodic or chaotic. We will now

sian coordinates and integrate the full E¢da—(4¢). Also  try to describe the principal features of different critical

we have taken initial conditions over all the sphere and haveoints shown in Fig. 1. The changes in the diagram found

observed that the condition than|=1 is fulfilled with a  when the dissipation+) is changed, are mainly quantitative

precision of more than eight orders of magnitude (&n (it changes the value d¢fat which a given critical behavior is

1), for even more than fOintegration steps. In Eqg4a—  found). Also, the diagram shown has been produced for the

(4c) there are several parameters which are, in principle, freenagnetic moment pointing in the direction of the external

in our calculation:z, h,, h, andw. We have fixedy and the field att=0. Although many initial conditions were consid-

bias fieldh, and we have chosen as control parameters thered, this case has been chosen as typical, also and especially

amplitude and frequency of the perturbatitwhich is rea- because it corresponds to an experimentally reasonable situ-

sonable from the experimental point of vievDf course the ation. Different initial condition, depending on the basin of

values of» and h, that we have taken for our calculations attraction, can lead to a slightly different picture. For ex-

are arbitrary and may be changed. Different values for th@mple, the intermediate odd-period solutiofiike period

parameters will give different behaviofsee Sec. I). In  three or period seven in Fig) Which normally have a small

what follows we have taker=0.05 andh,=0.1. Sweeping basin of attraction may appear with a different period. The

in frequency, we have found that the interesting ones argualitative picture remains the same.

those close to the resonance frequenagy=1 in our units, For small values oh (h~h,) a discontinuity that corre-

and of the order of several GHz in real units. Thus possiblesponds to a folding bifurcation is found. This effect, consist-

perturbing signals are radio-wave sources. For simplicity inng of two independent limit circles, may be the experimen-

what follows will put the perturbing frequency fixed to the tal source for the observation of hysteresis when changing

resonance, and sweep in the amplitude,(h2+ h§)1/2_ the amplitude of the perturbatiom). When increasing the
jump in @ is the one shown in Fig. 1, but if is decreased,
IIl. RESULTS the jump to smallerd would occur at a lower value df.

Experimentally, this phenomenon could manifest itself in a
A typical bifurcation diagram is shown in Fig. 1. Here bistable behavior of a magnetic microwire near the resonance
only the componentsn, and m, are drawn, though in the frequency.
numerical simulations we followed Eq$4a—(4c), as ex- Two bifurcations, identified as torus have been observed
plained before. The diagram shows the values of the compat h=0.60 andh=0.75, leading to two regions of complex
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FIG. 2. Quasiperiodic attractor &t=0.64 in the diagram | |
of Fig. 1. | |
(but mainly quasiperiodjcdbehavior:h from 0.60 to 0.66, and i A
from 0.75 to 0.87. The first one in the upper hemisphere, anc |
the second one in the lower. In the torus bifurcations the N T e
stable limit circles become unstable and give rise to quasip- 0 2x10° 4x108 6x10°
eriodic motion on the surface of a torus. In Fig. 2 is shown t
thg p_hase portrait, in coordinatgsy, andz, Of, th,e quaglp- FIG. 3. Time evolution for the Lyapunov exponents when
eriodic attractor ath:O.GA. Ther?’ the Poincarsection  _ 9785 in the diagram of Fig. 1. The left inset is the Poincare
changes from just one single point to a closed connectegection taken from=0 to t=1.8x 10°. The right one is taking
curve. =4.5x10° to t=6.3x 1CP.

The region from 0.90 to 1.00 is a mixture of periodic and
quasiperiodic behavior, and even chaotic motion. The chaodn integer. A magnification of those structures is shown in
in this region is characterized by a chaotic attractohat the inset, where it is seen that they consist of a torus bifur-
~0.9787, which develops via a global bifurcation of the typecatlon and se_veral periodic windows. The magnetization
of chaotic transients. This means that the system will evolv&l0€S not remain at a value close to the saturation, but wan-
in the chaotic attractor for some time, and then, feeling thé!€'s Over the whole sphere.
periodic or_quas_iperiodic stable orbi_ts, will Ieav_e it. This is IV. CONCLUSIONS
illustrated in Fig. 3, where the time evolution of the
Lyapunov exponents is shown. Initially both exponents con- In conclusion, we have demonstrated that the dynamics
verge, one to a positive value, and the other to negative, doverned by a driven Landau-Lifshitz equation in certain
signature of chaos. But at a given time the positive exponent . , — —
initiates a decrease towards 0, or even negative value. Th |
Poincaresections for the initial and final time steps are also 3
shown. Initially the trajectories follow a chaotic map, but L
after some time they eventually fall in a period-seven orbit.
The time spent in the chaotic behavior becomes larger as th
chaotic attractor is approached.

Next, there is a wide region of period doubliffgwith I
some higher period stripes. Finally, from 2.20 to 2.60, clear 2}
chaotic regiongsee the Lyapunov exponents in Fig.dlter-
nating with quasiperiodicity are observed. In Fig. 4 we show
the Poincaresection of the chaotic attractor corresponding to *
h=2.50. In this case the route to chaos is also that of chaotic
transients. —

If the initial state for the magnetization is in the direction
opposite to the external bias field,, then, basically, the
picture presented above holds. Nevertheless, the folding dis
appears, and the stable period-one orbit evolves in the lowe
hemisphere. The same change of hemisphere happens for tt
period doubling region. The tw@upper and lower torus I
bifurcations are also preserved. ol

When the external applied bids is larger than the an- - ' R TR
isotropy field (larger than 1 in our unilsthe behavior is 2 0 2
slightly different. The bifurcation diagram is shown in Fig. 5.

The same kind of structures repeahat 3.25x n, wheren is FIG. 4. Chaotic attractor at=2.5 in the diagram of Fig. 1.
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L LT periodic-quasioperiodic alternance occur at even low values
- ‘ ' : ’ . Nevertheless the values of the driving field at which those
phenomena occur may be changed by choosing other values

for » and the bias field. The damping constanis fixed by

the material but the bias can be modified without difficulty.
So we expect that by choosing an appropriate set of param-
eters the complicated dynamical behavior described above
would become accessible by experiments with magnetic mi-
crowires of low anisotropy even with the current sources of
radiowaves.

On the other hand, the knowledge of the dynamics of a
single magnetic moment is relevant for the dynamics of a
system of Stoner-Wolfarth particles. Such a description is
often made in the approximation of a noninteracting
systemt! Of course, in reality in such a system, the interac-
tions are always present. When dealing with a magnetic ma-
terial, composed by a large number of magnetic moments,
exchange and dipolar interactions play a decisive role in the
collective dynamics. The exchange interaction is a local one
. whereas dipolar interaction is global; the competition be-
ST R T B tween them will determine the complex spatiotemporal be-

0 5 10 15 20 havior of the collective system. At this point the individual
h behavior of a single magnetic moment is crucial, and we
could find a rich variety of complex spatiotemporal dynam-
ics depending on which region of the bifurcation diagram we
arel? The most interesting feature of this collective systems
bi_s the possibility of chaotic synchronizatfdnof different

FIG. 5. The same bifurcation as in Fig. 1 foy=2. Insets show
the magnification of the region d¢f between 6 and 7.

parameter region can be very complicated. We have o £ th he whol
served manifestations of this behavior: the quasiperiodicit)parts of the system or even the whole system.

alternating with periodic motion, the transient chaotic behav—d Al .th's clcl)rgplex t?ehat\ﬂorés releyant |fnfproblems Stl.JCh as
ior, and finally a chaotic attractor. The experimental obser- omain-wall dynamics, the dynamics of ferromagnetic par-

vation of these predictions is limited to the materials Whicht'des’ relaxation processes, and the dynamics of magneto-

could have a well defined single ferromagnetic resonancgt/Ctivé wires and ribbons, and is of great practical impor-

frequency, i.e., may be described by a single magnetic mdance.

ment. As an example, the experimental observation of the

phenomena described in this paper in microwires with low ACKNOWLEDGMENTS
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