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Quasiperiodicity, bistability, and chaos in the Landau-Lifshitz equation
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The dynamics of an individual magnetic moment is studied through the Landau-Lifshitz equation with a
periodic driving in the direction perpendicular to the applied field. For fields lower than the anisotropy field and
small values of the perturbation amplitude we have observed the magnetic moment bistability. At intermediate
values we have found quasiperiodic bands alternating with periodic motion. At even larger values a chaotic
regime is found. When the applied field is larger than the anisotropy one, the behavior is periodic with
quasiperiodic regions. Those appear periodically in the amplitude of the oscillating field. Also, even for low
values of the driving force, the moment is not parallel to the applied field.
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I. INTRODUCTION

Traditionally, the study of the dynamics governed by t
Landau-Lifshitz equation is related to the ferromagne
resonance problems.1 Recently, the spin dynamics has al
become important in other physical phenomena relevan
technological applications, such as, e.g., magnetic recor
processes2,3 due to a continuous increase of the magne
recording density together with the writing frequency.3,4

While the writing frequency is approaching the values c
responding to that of the precessional motion, the ac
magnetization dynamics becomes more and more impor
This complicated dynamics may arise, e.g., during a proc
of fast magnetization switching.5 The dynamical micromag
netic calculations have provided a useful tool in study
such important media characteristic as dynami
coercitivity.6 In spite of the fact that the Landau-Lifshit
equation is widely used in micromagnetic calculations,5–8 to
our knowledge, no systematic study of its dynamics exist
the literature. Let us recall here that this equation is non
ear, and in some regime one may expect a highly com
cated dynamics similar to one arising for an externally driv
pendulum. As an example, we can mention the nonlin
stochastic resonance behavior of an individual magn
moment.9,10 The purpose of this paper is to present a syste
atic study of nonlinear dynamics governed by the Land
Lifshitz equation, including its bifurcation diagram and st
bility properties. This dynamical behavior is going to b
relevant in studying an ensemble of noninteracting Ston
Wolfarth particles.11 Also it would be very useful when ana
lyzing results obtained from large simulations of coupl
Landau-Lifshitz~LL ! equations. There, and for some valu
of the coupling parameters, the individual characteristics
each magnetic moment may play an important role in
collective behavior. Eventually, when enough of these m
ments are coupled, a description in terms of magnons wo
be possible.12

Also the subject of chaos in magnetic materials13 is not
new. It has been studied in YIG, both experimentally a
PRB 610163-1829/2000/61~17!/11613~5!/$15.00
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theoretically, through spin-wave descriptions.14,15 In differ-
ent driving regime, the chaotic behavior can arise in mag
tostrictive wires and ribbons due to the magnetoela
coupling.16

The paper is organized as follows. In Sec. II we pres
the equations and explain the method we use to solve t
numerically. The relevant results are presented in Sec. III
Sec. III we discuss the physical aspects of our results an
Sec. IV outline the conclusions.

II. NUMERICAL PROCEDURE

In the original form the Landau-Lifshitz-Gilbert17 equa-
tion may be written as

dM

dt
52g~M3Heff!1

h

M0
S M3

dM

dt D , ~1!

or in the more practical form~Landau-Lifshitz19!

11h2

g

dM

dt
52~M3Heff!2

h

M0
@M3~M3Heff!#, ~2!

whereg is the local gyromagnetic factor,h is the damping,
M0 the saturation magnetization,M is the tridimensional lo-
cal continuous magnetization,18 whose module is conserve
(M•M5M0), andHeff the effective field:

Heff5Hext1bn~n•M !. ~3!

HereHext is the external magnetic field,b is the anisotropy
coefficient andn is the unitary vector pointing in the aniso
ropy direction.

As we will deal with only one local magnetic moment w
will not consider exchange and dipolar interactions. This
scription could be relevant to dynamics of bistable magne
microwires and ribbons,16 as well as noninteracting Stone
Wolfarth particles.
11 613 ©2000 The American Physical Society



en

tim

tt
t
w
d
a
e

ed
c
n
In

rte

av

fre

th

s
th

a

ib
i

e

e

p

pe-
nly

f
w
al
nd
e

the
al
-
cially
situ-
of
x-

l
he

st-
n-
ing

a
nce

ved
x
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The external field will be decomposed in two parts:Hn ,
constant and parallel to the anisotropy direction, andh5h0
•sin(vt), perpendicular ton and oscillating in time with fre-
quencyv.

For practical purposes we rewrite the equation in dim
sionless form and expanded notation:

kṁx52@my~hz1mz!2mzhy#2h@mxmz~hz1mz!

1mxmyhy1~mx
221!hx#, ~4a!

kṁy5@mx~hz1mz!2mzhx#2h@mymz~hz1mz!1mxmyhx

1~my
221!hy#, ~4b!

kṁz52@mx~hy2myhx!2hmxmzhx1mymzhy1~mz
221!

3~hz1mz!#, ~4c!

wherem5M /M0 , h5Hext/(bM0), k511h2, and the dot
represents the derivative with respect to dimensionless
t5gbM0t. We take thez axis in the direction ofn and thex
axis in the direction ofh0, which makeshy50.

These equations with appropriate initial conditions~over
400! have been solved by using a fourth order Runge-Ku
scheme. In Eqs.~4a!–~4c! only two of them are independen
because of the constant magnetization constraint. If
choose polar coordinates, we reduce the degrees of free
to 2 and the constant magnetization constraint is autom
cally fulfilled. The problem arises when the polar angle b
comes zero orp, and the azimuthal angle cannot be defin
This problem is overcome by using two different referen
frames, one with the polar axis pointing to the north pole a
the other with the polar axis pointing to the south pole.
order to avoid this computational trouble we choose Ca
sian coordinates and integrate the full Eqs.~4a!–~4c!. Also
we have taken initial conditions over all the sphere and h
observed that the condition thatumu51 is fulfilled with a
precision of more than eight orders of magnitude (1028 in
1!, for even more than 109 integration steps. In Eqs.~4a!–
~4c! there are several parameters which are, in principle,
in our calculation:h, hz , h, andv. We have fixedh and the
bias fieldhz and we have chosen as control parameters
amplitude and frequency of the perturbation~which is rea-
sonable from the experimental point of view!. Of course the
values ofh and hz that we have taken for our calculation
are arbitrary and may be changed. Different values for
parameters will give different behaviors~see Sec. III!. In
what follows we have takenh50.05 andhz50.1. Sweeping
in frequency, we have found that the interesting ones
those close to the resonance frequencyv r51 in our units,
and of the order of several GHz in real units. Thus poss
perturbing signals are radio-wave sources. For simplicity
what follows will put the perturbing frequency fixed to th
resonance, and sweep in the amplitude,h5(hx

21hy
2)1/2.

III. RESULTS

A typical bifurcation diagram is shown in Fig. 1. Her
only the componentsmu and mf are drawn, though in the
numerical simulations we followed Eqs.~4a!–~4c!, as ex-
plained before. The diagram shows the values of the com
-
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nents ofm, at time interval multiples ofT52p/v ~Poincare´
sections!, with the valueh shown in thex axis of the figure.
There, various kinds of behaviors can be distinguished:
riodic, quasiperiodic, and chaotic motion. When there is o
one point for a given value ofh, it represents a periodic
motion with periodT; and when there is a continuum o
points the behavior is quasiperiodic or chaotic. We will no
try to describe the principal features of different critic
points shown in Fig. 1. The changes in the diagram fou
when the dissipation (h) is changed, are mainly quantitativ
~it changes the value ofh at which a given critical behavior is
found!. Also, the diagram shown has been produced for
magnetic moment pointing in the direction of the extern
field at t50. Although many initial conditions were consid
ered, this case has been chosen as typical, also and espe
because it corresponds to an experimentally reasonable
ation. Different initial condition, depending on the basin
attraction, can lead to a slightly different picture. For e
ample, the intermediate odd-period solutions~like period
three or period seven in Fig. 1! which normally have a smal
basin of attraction may appear with a different period. T
qualitative picture remains the same.

For small values ofh (h;hz) a discontinuity that corre-
sponds to a folding bifurcation is found. This effect, consi
ing of two independent limit circles, may be the experime
tal source for the observation of hysteresis when chang
the amplitude of the perturbation (h). When increasingh the
jump in u is the one shown in Fig. 1, but ifh is decreased,
the jump to smalleru would occur at a lower value ofh.
Experimentally, this phenomenon could manifest itself in
bistable behavior of a magnetic microwire near the resona
frequency.

Two bifurcations, identified as torus have been obser
at h50.60 andh50.75, leading to two regions of comple

FIG. 1. Bifurcation diagram for theu andf components of the
magnetization and Lyapunov exponents whenhz50.1 and h
50.05.
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~but mainly quasiperiodic! behavior:h from 0.60 to 0.66, and
from 0.75 to 0.87. The first one in the upper hemisphere,
the second one in the lower. In the torus bifurcations
stable limit circles become unstable and give rise to qua
eriodic motion on the surface of a torus. In Fig. 2 is sho
the phase portrait, in coordinatesx, y, andz, of the quasip-
eriodic attractor ath50.64. There, the Poincare´ section
changes from just one single point to a closed connec
curve.

The region from 0.90 to 1.00 is a mixture of periodic a
quasiperiodic behavior, and even chaotic motion. The ch
in this region is characterized by a chaotic attractor ah
;0.9787, which develops via a global bifurcation of the ty
of chaotic transients. This means that the system will evo
in the chaotic attractor for some time, and then, feeling
periodic or quasiperiodic stable orbits, will leave it. This
illustrated in Fig. 3, where the time evolution of th
Lyapunov exponents is shown. Initially both exponents c
verge, one to a positive value, and the other to negative
signature of chaos. But at a given time the positive expon
initiates a decrease towards 0, or even negative value.
Poincare´ sections for the initial and final time steps are a
shown. Initially the trajectories follow a chaotic map, b
after some time they eventually fall in a period-seven or
The time spent in the chaotic behavior becomes larger as
chaotic attractor is approached.

Next, there is a wide region of period doubling,20 with
some higher period stripes. Finally, from 2.20 to 2.60, cl
chaotic regions~see the Lyapunov exponents in Fig. 1! alter-
nating with quasiperiodicity are observed. In Fig. 4 we sh
the Poincare´ section of the chaotic attractor corresponding
h52.50. In this case the route to chaos is also that of cha
transients.

If the initial state for the magnetization is in the directio
opposite to the external bias fieldhz , then, basically, the
picture presented above holds. Nevertheless, the folding
appears, and the stable period-one orbit evolves in the lo
hemisphere. The same change of hemisphere happens fo
period doubling region. The two~upper and lower! torus
bifurcations are also preserved.

When the external applied biashz is larger than the an
isotropy field ~larger than 1 in our units! the behavior is
slightly different. The bifurcation diagram is shown in Fig.
The same kind of structures repeat ath53.253n, wheren is

FIG. 2. Quasiperiodic attractor ath50.64 in the diagram
of Fig. 1.
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an integer. A magnification of those structures is shown
the inset, where it is seen that they consist of a torus bi
cation and several periodic windows. The magnetizat
does not remain at a value close to the saturation, but w
ders over the whole sphere.

IV. CONCLUSIONS

In conclusion, we have demonstrated that the dynam
governed by a driven Landau-Lifshitz equation in certa

FIG. 3. Time evolution for the Lyapunov exponents whenh
50.9785 in the diagram of Fig. 1. The left inset is the Poinca´
section taken fromt50 to t51.83105. The right one is takingt
54.53105 to t56.33105.

FIG. 4. Chaotic attractor ath52.5 in the diagram of Fig. 1.
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11 616 PRB 61ÁLVAREZ, PLA, AND CHUBYKALO
parameter region can be very complicated. We have
served manifestations of this behavior: the quasiperiodi
alternating with periodic motion, the transient chaotic beh
ior, and finally a chaotic attractor. The experimental obs
vation of these predictions is limited to the materials wh
could have a well defined single ferromagnetic resona
frequency, i.e., may be described by a single magnetic
ment. As an example, the experimental observation of
phenomena described in this paper in microwires with l
anisotropy may be possible. With our election of parame
the interesting phenomena, such as chaotic behavior, occ
values of the microwave field of the order of twice the a
isotropy field ~of course, the folding bifurcation and th

FIG. 5. The same bifurcation as in Fig. 1 forhz52. Insets show
the magnification of the region ofh between 6 and 7.
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periodic-quasioperiodic alternance occur at even low valu!.
Nevertheless the values of the driving field at which tho
phenomena occur may be changed by choosing other va
for h and the bias field. The damping constanth is fixed by
the material but the bias can be modified without difficul
So we expect that by choosing an appropriate set of par
eters the complicated dynamical behavior described ab
would become accessible by experiments with magnetic
crowires of low anisotropy even with the current sources
radiowaves.

On the other hand, the knowledge of the dynamics o
single magnetic moment is relevant for the dynamics o
system of Stoner-Wolfarth particles. Such a description
often made in the approximation of a noninteracti
system.11 Of course, in reality in such a system, the intera
tions are always present. When dealing with a magnetic
terial, composed by a large number of magnetic mome
exchange and dipolar interactions play a decisive role in
collective dynamics. The exchange interaction is a local o
whereas dipolar interaction is global; the competition b
tween them will determine the complex spatiotemporal
havior of the collective system. At this point the individu
behavior of a single magnetic moment is crucial, and
could find a rich variety of complex spatiotemporal dyna
ics depending on which region of the bifurcation diagram
are.12 The most interesting feature of this collective syste
is the possibility of chaotic synchronization21 of different
parts of the system or even the whole system.

All this complex behavior is relevant in problems such
domain-wall dynamics, the dynamics of ferromagnetic p
ticles, relaxation processes, and the dynamics of magn
strictive wires and ribbons, and is of great practical imp
tance.
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