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We examine the ground state of the random quantum Ising model in a transverse field using a generalization
of the Ma-Dasgupta-Hu renormalization gro(lRG) scheme. For spatial dimensionalidy=2, we find that at
strong randomness the RG flow for the quantum critical point is towards an infinite-randomness fixed point, as
in one dimension. This is consistent with the results of a recent quantum Monte Carlo study kst Bich
[Phys. Rev. Lett81, 5916(1998], including estimates of the critical exponents from our RG that agree well
with those from the quantum Monte Carlo. The same qualitative behavior appears to occur for three dimen-
sions; we have not yet been able to determine whether or not it persists to arbitrarilg. Higime conse-
guences of the infinite-randomness fixed point for the quantum critical scaling behavior are discussed. Because
frustration is irrelevant in the infinite-randomness limit, #anefixed point should govern both ferromagnetic
and spin-glass quantum critical points. This RG maps the random quantum Ising model with strong disorder
onto a novel type of percolation/aggregation process.

[. INTRODUCTION can exhibit a phase transition, the random ferromagnetic
Ising model in a transverse field, which, in all dimensions,

Systems with quenched randomness and many degreeslmdis a quantum critical point at zero temperature. We focus
freedom may be divided into three classes based on thean the strong-randomness regime, using a generalization
coarse-grained behavior in the low-energy, low-frequencythe Ma-Dasgupta-Hurenormalization grougRG) scheme.
and/or long-distance limit. First, there are many systemdhis approximate RG is exact in the limit of infinite random-
where the quenched disorder is irrelevant in theness and thus can, in principle, yield exact results for the
renormalization-group sense. Such systems, even thouggtaling behavior of systems governed by infinite randomness
they are spatially inhomogeneous at the microscopic scaldixed points® In one dimension, this RG has been used to
become asymptotically homogeneous at macroscopic scaleanalyze the various infinite-randomness fixed points men-
their coarse-grained, low-energy behavior is the same atjooned above and many results can be obtained analytically,
some ‘“pure” system without quenched disorder. In thisin particular for the random quantum Ising model. In higher
case, the renormalization-group fixed point governing thelimensions, the renormalization group cangiotour knowl-
coarse-grained system is at zero quenched randomness. Tédge be carried out analytically; in this paper we analyze its
second possibility is systems controlled by fixed points withgeneral structure and consequences, implement it numeri-
nonzero, but finite, quenched randomness. In this case thmlly and examine a simple approximation to it. Fb+2
coarse-grained behavior is spatially inhomogeneous, but thend 3, we find that the renormalization group flow on the
relative magnitude of the inhomogeneities remains finite atritical manifold for strong randomness is indeed towards
the fixed point. Examples of this second class include spireven stronger randomness, as in one dimension, indicating
glasses and other glassy phases, as well as various critiddlat the quantum critical behavior is governed by the infinite-
points with randomness. The third possibility, which is therandomness critical fixed point. Far=2 we have studied
subject of this paper, occurs when the quenched randomnetige RG flow thoroughly enough to be fully confident that this
and thus the relative magnitude of the inhomogeneitiess the case, and it appears to remain trueder3.
grows without limit as the system is coarse grained. So far, For d<4, the Harris criterionindicates that at the pure
we know of a few infinite-randomness fixed points that com-Ising quantum critical point weak randomness is relevant,
prise this third class; all of them are one-dimensiondl ( with the RG flow towards stronger randomness; thus the sim-
=1) quantum ground states. These are the random singlelest scenario for two and three dimensions is that the
states of certain random antiferromagnetic spin chifrtee  infinite-randomness fixed point governs the random quantum
guantum critical point of the random quantum Isit@nd  critical point with any randomness, as in one dimension. A
Potty chain®=® and quantum critical points separating ran- recent quantum Monte Carlo study by Piehal. of the fer-
dom singlet states and the Ising antiferromagnetic phase romagnetic model with moderate randomness in two dimen-
the Haldane state in the random spin-1 Heisenberg ciain. sions is consistent with this pictut®.

A natural question is whether such infinite-randomness What do we mean by infinite randomness? This m&ans
fixed points can govern the behavior of physical systemshat as the system is coarse grained and the characteristic
with spatial dimensionalitgl=2. energy scale decreases, the distributions ofdgarithmsof

Here we study the simplest random quantum system thahe magnitudes of the terms in the renormalized Hamiltonian
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become arbitrarily broad. As a result, the ratio of the magni- If, on the other hand, the largest term in the Hamiltonian
tude of any two terms approaches either zero or infinity. Inis an interaction{)=J;;, the two spins involved are com-
this limit each renormalized coupling completely dominateshined into one new spin—a cluster—whose two states rep-
any weaker renormalized coupling, so even the Ising spimesent the two ground states{= on= +1) of that interac-
glass becomes unfrustrattdThus we expect that the same tion. Again, the virtual excitations to the states that are
infinite-randomness fixed point governs both the random fereliminated are treated in second-order perturbation theory.
romagnetic and the spin-glass quantum critical points, withwith the new spin labeled (an arbitrary choicethe renor-
simple modifications to account for the antiferromagneticmalized field is

bonds in the latter case. We should note that recent quantum

Monte Carlo studies of the spin-glass case had concluded . hih;
that for two and three dimensions the scaling near the quan- hi ~ T )
tum critical point is conventiondf implying a finite- _ o
randomness fixed point, in contrast to what we are proposingnd the renormalized moment is simply
here. But these finite-size scaling Monte Carlo studies looked '
My = Mt (4)

at a rather small size range and did not look at distributions
of physical properties; thus they were not sensitive to theThe renormalized interactions are, for each remairing
scaling towards infinite randomness that we now believe oc-

curs ford=2 and probably for highed. Jie=maxJig , Jjk).- 5

The net result in both cases is the elimination of one spin
along with the various renormalizations and reconnections of

We will study the quantum spin-1/2 Ising model with ran- the lattice. The major complication fa>1 is that the RG

dom ferromagnetic interactions, positive transverse figds dpes not preserve the lattice structure but instead genergtes a
and momentgy; : disordered and strongly correlated network of sites—i.e.,

clusters—and bonds connecting them.
- 7 2 X 2 The action of the cluster RG is a novel aggregation/
H= _Zj Jijoi Ui_Z hio _HEi Kigis (D annihilation process. When the strongest term is a field, the
corresponding cluster is removédnnihilated, while when
where theo’s are the Pauli spin matrices. In general, weit is an interaction the two clusters that it connects are aggre-
consider an arbitrary random lattice, with all interactions po-gated into one cluster. The clusters thus represent sets of the
tentially present. More specifically, we are interested in ranoriginal spins that are strongly correlated. In the paramag-
dom lattices that may appear in our effective description ohetic phase, the annihilation process dominates and no large
some finite-dimensional system. Then the dimensionality otjusters are formed, while in the ordered phase the aggrega-
the system is encoded in the interactidis with the strong  tion dominates producing arbitrarily large clusters. Fbr
interactions being between nearby pairs of spins and the in>1, in the ordered phase an infinite percolating cluster ap-
teractions between distant spins being extremely weak or aliyears during the action of the RG affiaite energy scale.
sent. The uniform ordering field =H, is zero or small; itis  \When and after this occurs, the infinite cluster is represented
included only to probe the system’s magnetization and suspy a single renormalized spin that interacts with an infinite
ceptibilities. number of the other remaining spirtehich represent the
The cluster RG finds the system’s ground state by succesmite cluster. Thus the topology of the network has by this

sively eliminating the highest energy degrees of freedom. Aenergy scale completely changed from that of the “bare”
each step, we find the largest term in the Hamiltonian, whichy-dimensional lattice that had only short-range interactions.
is either a transverse field or an interaction; its stred@th This emphasizes that this RG is not simply a “real-space”
sets the(maximum remaining energy scale. If the largest RG; it is more precisely an “energy-space” RG that can
term is the field on spin, 1=h;, that spin is put in the produce a renormalized lattice with a geometry very different
ground stateg] =1, of the local field term and virtual exci- from the bare lattice.
tations to the other states{=—1) are treated in second- The zero-temperature quantum critical point is a new type
order perturbation theory. For this to be a valid approxima-of percolation transition at which an infinite cluster first ap-
tion, the field must be much stronger than all this spin’spears(at the quantum critical point it only appears in the zero
interactions, which is true only in the strong-randomnessnergy limiy, as pointed out by Monthuest al® The quantum
limit. This step eliminates the spin and generates new in- critical point occurs when the annihilation and aggregation
teractions of the forrﬂj’kajiJik/hi_ But some of these new processes balance, so that arbitrarily large clusters are pro-
interactions may be negligible compared to the interactiongluced but no single cluster dominates at any finite energy
that were already present, so the full renormalized interacscale.

II. CLUSTER RG

tions are given, for each paii k), by Because of the multiplicative structure of the RG recur-
sion relations, it is convenient to write the renormalized in-
;o Jjidik teractions after decimating down to energy sdalén loga-
Jj=max Jjx, h; @ ithmic variables as
We use the maximum here because in the strong-randomness hi=Qe A, (6)

limit the sum of two nonnegative numbers of very different
magnitudes is well approximated by the larger number. Jij =Qe ‘i, (7)



1162 MOTRUNICH, MAU, HUSE, AND FISHER PRB 61

The RG equations involve the full joint distribution of the This gives the basic relationship between the length dcale
positive quantitieg 8;} and{¢;;}. The single-field distribu- and the energy scale at the quantum critical point,
tion functionR(B) and the single-bond distribution function
P(¢) provide partial but important information about the full r= In(%) LY
joint distribution of all the couplings. In general, the coordi- '
nation number is not fixed, and if there adespins(clusters ) o .
remaining, there may be up M(N—1)/2 interactions. How- With ¢=d/(Zo+Bo)<1. Note that this is very different
ever, only of orderN of the strongest interactions matter TOM conventional power-law scaling; here it is tiega-
because the weaker ones will be overruled by the strongdfth™ of the energy scale that varies as a power of the length
ones in the action of the RG for strong randomness. Thus wgcale. Since this is associated with the “tunneling” events
normalize the bond distribution functid®(¢) per remaining  2Y Which clusters flip, it has been dubbed “tunneling dy-

. . '13
spin so that the total number of bonds in the system id'@mic scaling.
NSZP()dZ, and ford>1 we define the “width”w of this The typical moment of a cluster—the number of strongly
bor?d distrik;ution by correlated “active” spins in it (i.e., those not yet

decimategt—scales as

(14)

pr(g)dgz 1. ®) p~T?, (15
0

with some new exponenp, so that the fractal dimension of
This width thus includes only thbl strongest bond§Note  the set of active spins in a cluster is
that in one dimension, there are always exa®llyearest-
neighbor bonds and this normalization B{¢) coincides di= . (16)
with that of Ref. 2. If further neighbor bonds exist in one [This determines the decay of the average spin-spin correla-
dimension, they will be irrelevant at low energy scales and[ion function at the critical point
can be ignored.The condition for validity of our approxi- '
mate RG is that the widths of the distributio®§ ) and

P(¢) be large; for the RG to be asymptotically exact, these A. Critical correlations

widths should tend to infinity a@ — 0; this is the indication The correlation function between two spins at distance
that the RG flow goes to an infinite-randomness fixed point.
We now discuss the general structure of such a putative Gjj=(oio}) (17)

infinite-randomness critical fixed point. We will assume that, d . ith broad bability distrib
the simplest scaling scenario for an infinite-randomness fixeff & fandom quantity with a very broad probability distribu-

point occurs in our cluster R@ef. 13—this is the case in tion for Iarger%|ri—rj_|. We first cpnsider th? corre_lation
one dimensiofi,and is consistent with our numerics for two function of atypical pair of spins with separation typical
dimensions spin pairs are never active in the same cluster and have only

weak correlations that fall off, at criticality, as a stretched
exponential function of distance,

IIl. CRITICAL FIXED POINT
. . . L _ ¥
We first consider the behavior at the quantum critical In Gyyp(r)~r", (18)

point. We expect that at the critical fixed point the distribu-yjth y<1. These correlations arise from the lowest-order
tions R(B;T") and P(£;T") will asymptotically be given by  perturbative corrections to the decimation of spin clustéfs.

the simple scaling forms When a cluster is decimated at energy sddleeach of the
) effective spins on its neighboring clusters—in more conven-
R(B:INdB=B(AIT)dAIT, ©) tional terms the perturbatively modified wave functions that
are labeled by the remaining effective spins—will acquire a
P(&1)dE=2Z(Z/T)dZ/T (10) component of the decimated cluster’s spin whose magnitude

is of orderJ/Q, with J the effective coupling that links the
neighboring cluster to the decimated cluster. Likewise, when
Q these neighboring clusters are decimated, an even smaller
len<—)>0 (11 component of the original spin will be acquired by the re-
Q maining clusters. Correlations between two spiasdj that
\pre never active in the same cluster thus occur when a sur-
viving cluster contains simultaneously a componenbath
¢the spinsi andj. The correlation functior;; is then deter-
mined by the maximum over all such mutual clusters that
occur, at any energy scale, of the product of the two spins’
By=B(0), Z,=2(0). (12) components containeq by the mut_ual cluster. Typically, f[he
smallest of the multiplied perturbative factors that determine
The density of remaining clusters per unit volume thus dedn G will dominate; these arise from the stage at which the
creases under renormalization as two spins first have a component on a mutual cluster. Since
this occurs when the remaining cluster sizes are of order the
np~T ~(%0*Bo), (13 separatiorr between the spins of interest, the dominant per-

for largeI’; where

is the logarithm of the energy scale, relative to an energ
scale(), set by the properties of the bare Hamiltonian.IAs
is increased byll', the fractional decrease in the number o
spins or clusters is4y+ Bg)dI'/T" with
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turbative factor will be of ordee™¥i'" with T~r¥ andK;

random and of order one. This yields the result B@).>* M~|InH|¢~ 9= o (21)
We should note that there is another mechanism by which [InH|™

spins become correlated. At any step of the renormalization,

when a cluster with fieldh is decimated, higher-order per- B. Simple approximate RG

turbative effects will give components of the decimated spins _ . L
on all the remaining clusters, with magnitudes that involve, " order to get a better feeling for the scaling behavior, it

products over all the bonds connecting the decimated clustéf US€ful to study a simple approximation to the RG flows

. ~ o~ hat is exact in one dimension and in some r for
to the remaining clusters, of factors of the fodm/h. These that is exact in one dimension and in some respects good fo

; . ) . higher d; this consists of ignoring correlations among the
by themselves qud give rise to simple ex_ponent_lal deca ields and between the fields and the bonds, but allowing
of typical correlations as occurs in conventional disordere orrelations among the bonds. In this apprdximation the
phases. In contrast to these, the_ contributions to the Correl%'volution equation for the field distributidR(8:T) depend's
tions that come from the cumulative effects of the successive ", o0 - ap oo only througR(0:T") and is identi-

lowest-order perturbative terms discussed above will have o 0o dimensional fonfsee Refs. 5 and 13Solving

similar form but with each of th¢J;} being divided by an  or the fixed point gives scaling distributions witly=1 and
effective field from one of théater stages of the RG; these B(0)=Bye o’ with B, undeterminedthe exact solution

are always smaller tham. Thus the cumulative lowest-order for one dimension ha8y=1). Within this approximation
contributions discussed above will always dominate over thenhe exponents ar¢g=d/(1+B,) and ¢=(1+ 1+4By)/2.
simple exponential decays from the higher-order perturbative)ur numerical studies of the RG flows in two dimensions
effects. We hence conclude that titefrom the RG must be  show that the log-field distribution is very close to the simple
less than one. - exponential form, but the estimated critical exponents for
The averagecorrelation functionG(r) behaves quite dif-  two dimensions differ somewhat from this simple approxi-

ferently than typical correlations. It is dominated by the raremation; this must be due to correlations among the fields and
spin pairs that are active in tleamecluster atsomeenergy  petween them and the bonds.

scale; such pairs of spins have correlations of order one,

reduced from one only by the short-scale high-energy fluc-

tuations that are not included in the approximate RG. As a!V- NUMERICAL RG STUDY OF THE CRITICAL FIXED
result, the average correlation function is proportional to the POINT IN TWO DIMENSIONS
probability of the two spins being active in the same cluster
at someenergy scale. At criticality this occurs—if at all—at
scalel'~r¥, and the resulting average correlation function
hence falls off as a power law:

In order to do better and certainly to test the conjecture of
a controlling infinite-randomness fixed point, we must imple-
ment the strong-randomness cluster RG numerically. The
formulation is the same for a general random network, but
we are of course interested in systems that can arise from
G(r)~r = 7~y 20@=d¥) (19) finite-dimensional lattices with short-range interactions. We
have thus studied the RG flows with “initial conditions” of
This is an example of the radically different scaling behaviorfinjte d-dimensional lattices for two and three dimensions.
of the typical and average quantities that is one hallmark ofrhe program has been tested by verifying that it reproduces
infinite-randomness fixed points? (within statistical errorsthe analytical results for one dimen-
Thermodynamic properties involve averaging over thesjgn.
whole system and will hence be dominated, as are the aver- Ford>1, many weak interactions are generated that, for
age correlations, by rare clusters. The low-temperature sughe |arger lattices studied, cannot all be stored. Because of
ceptibility to a small ordering fieldd (H<T) can be found thjs, we keep only interactions above a minimum strength
easily by stopping the RG at energy sclle-T. For smallT, 5 . the smallness ofl,,, being limited by computer
almost all the decimated spins are frozen and hence nonmagtemory capacity and speed. Since the discarded bonds
netic, while almost all the remaining clusters have effectivethose with J<J,,,) could not have generated stronger
transverse fields and interactions between them that aigynds, for the renormalization down to any energy scale with
much less thafl. They are hence essentially free and have > j . the RG decimation sequence is not affected at all,
independent Curie susceptibilities yielding an overall suscepang all the bonds withl,;,,<J<Q are retained; thus we
tibility at low temperatures near the quantum critical point ofynow all the fields and all the bonds with<@'<¢,,
=In(Q/Jnin) . However, under renormalizatiaf), decreases
(20) and I'=In(Q,/Q) increases so that the range @f" in the
scaled distributionZ(Z/T") that we can study steadily de-
creases as the system is coarse grained. We have been quite
The magnetization in a small ordering figtt(at T<H) conservative and do not look at all at the “contaminated”
can be found similarly: the RG is stopped when the typicalow-energy part of the bond distributiod <€ J,,;,). The lim-
magnetic energyH . of a cluster is of ordef). The deci- its on memory are most restrictive at the earliest stages of the
mated spins are nonmagnetic while the remaining cluster®G decimation, where the number of clusters is large, so this
are almost perfectly polarized by the field. This yields, at theis whenJ,;, must be set the largest. It might be possible to
guantum critical point, a magnetization proportional to thelet J,,, decrease later in the decimation and recover more of
fraction of spins that are still active, the renormalized bond distribution with controllable errors.

[InT|2¢-dv
~—



1164 MOTRUNICH, MAU, HUSE, AND FISHER PRB 61

We have not explored this possibility. 1
We start with initial conditions of systems of up t0°10
spins with random short-range interactions and random
transverse fields independently chosen from specified initial
probability distributions. We run up to 1000 samples for 01|
each initial probability distribution to reduce the statistical _.
errors. For each sample we measure properties of the systenﬁé'5

when the energy scale pasdesder renormalizationa pre-
defined set of energié4,and then average these properties
over different samples.

To reduce transients as much as possible, the shapes of
the initial distributionsR(B) and P({) are chosen to ap- . . . . . ]
proximate, as best as we can, the renormalized critical point 0 1 2 3 4 5 6
distributions that we observe. However, these initial condi- B
tions are missing any correlations among the fields and in-
teractions that certainly exist in the full joint distribution at ~ FIG. 1. RG evolution of the field distribution at a putative quan-
show a fairly strong transient behavior as these correlation§iangular lattice with couplings drawn independently from the field
are generated and the fixed point is approached. So far, wistribution R(8)=e"# and the scaled bond distributidPs{({so
have only a limited understanding of these transients and thg 0-1+0-10%s., as described n tﬂhe text. Lines are fits to the
correlations that are generated and we do not have a systerf{MPle exponential formR=Re """ with R, depending on the
atic way of controlling them: we do, however, monitor the energy scale. Note that th_e renormal_lzed f_lelq dl_strlbutlon fits this

. . ..._form well for all N. Inset: width of the field distribution R} vs the
simplest types of correlations and they do appear to stabilize L - o o
after the initial transient in the RG. number of remaining spinl; the RG evolution is in the direction

. . . . ,. of decreasing NThe increasing width indicates the RG flow to-
In our numerics we primarily concentrate on the indi-

. . L wards infinite randomness. The line here is a power-law fit that
vidual field ar_1d bond_ d!strlbut_lonfl(ﬁ;f‘) and P(_g;l“); gives our estimate of the exponept Note that this fit works well
fches_e are partial but S|gn_|f|cant md_u_:ator_s o_f What is happenbmy after the rather strong initial transient.
ing in the system’s full joint probability distribution. For two
dimensions we find that at the critical point both distributions(Note that{), and thusl’ are not defined precisely, so we
do become broader under the action of the RG and the flowannot simply scale the data by) The scaled field distri-
towards stronger randomness is clear. This flow is weakébution is nowRg{ Bs) =exp(—Bs) and we can concentrate
but nevertheless is clearly apparent for three dimensionsen the scaled bond distributioRs{{s). The shape of the
also. bond distribution evolves continuously and its characteriza-

Numerically we find that under the RG the field distribu- tion is much less clear. Numerically we observe that for
tion maintains fairly accurately a simple exponential form, d=2 at and near the quantum critical point the cluster RG

always generates positively sloping®/dZ>0) bond distri-

0.01 ¢

R(B;T)=Ry(I'e" Ro(MB, (22) butions. This is in contrast to one dimension, where the exact
critical-fixed-point bond distributiorPs({s) =exp(—4sd IS
with the same simple exponential as the field distribution due to a
duality relation®
Ro(I"=R(B=0:T"). (23 For d=2 the bond distributions that are generated by the

RG near the quantum critical point can be reasonably ap-
The width of the distribution is proportional toR4(I') and  proximated, in the smalls; regime of interest, by a simple
grows steadily as the energy scale is decreased. This ligear fit: Pg{{s)=a+b{s. We thus choose for initial con-
shown in Fig. 1 for a flow near the critical point, but it is also ditions aPs{{s) of this form. Our initial lattice for all the
true away from the critical point, and is consistent with thedata presented here is a triangular lattice with periodic
simple approximation to the RG flows discussed above foboundary condition$we also tried others, such as square, to
which the field distribution at low energy scales is always anconfirm that the results did not depend strongly on this arbi-
exponential whose width never decreases. trary choicg. Since we expect the stronger bonds to be

As initial conditions, we choose for convenience theshorter ranged, we select the nearest-neighbor b¢hese

simple exponential distribution of log-fields with the initial are three such bonds per $ite constitute the strongest-bond
Ry=1.[Note that the strong-randomness RG equations, Eqpart 0<{s<{. of the bond distribution, with{. chosen so
(2)—(5), are invariant under a multiplication of all the log- thatfgc(a—i— b{)d{=3, i.e., there are precisely three bonds
couplings by any constant. Thus, although the initial choiceyer site withZ between zero antl.. Then the next batch of
Ro=1 would appear to correspond to moderate randomnesgse distribution,¢ < {s<{n, are assigned at random to all
we can, without loss of generality, use this in our study ofthe second- and third-neighbor bon@sx more bonds per
the strong-randomness RG flow$o search for a fixed point - sjte), with £, chosen appropriatelyThis ., sets ourd i,
we measure Ho(I') and scale botig and{ by this width,  as discussed aboyeThus our initial condition has nine
defining bonds per site, corresponding to a coordination number of

18. Under renormalization, the lattice is quickly randomized,

Bs—=RoB and (=Ryl. (24 so it no longer resembles the initial triangular lattice, and the
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FIG. 2. RG evolution of the scaled bond distributiBgy {) at FIG. 3. RG evolution of the intercefits{0) of the scaled bond
the apparent critical point corresponding to the initial conditions ofdistribution for different initial conditions: all are initially
Fig. 1. Note that although the intercept is fairly stablePat(0) 290% 290 triangular lattices with independent couplings and initial
=0.15 in the later stages of the R@is is our criterion for locating ~ field distribution R(8)=e"#; the different curves correspond to
the critical point—see also, Fig),3the shape of the distribution is Vvarious initial scaled bond distributionB;{{s) =a+b{. with the
not as stablésee also, Fig. ¥ presumably due to transient effects parameters andb as indicatedsee text If the intercept saturates
from our uncorrelated initial conditions. Because we do not keego a finite nonzero value & is decreased, this indicates that the
bonds weaker thad,,, (see tex}, the range of the scaled bond system is critical. Our best estimate of the critical point laas
distribution that we measure and plots@ .= {m=Ro 109(Y i), =0.10,b=0.105(filled square} this is what is used in all the other
decreases as we run our RG. figures. Other parameters that we view as possibly critical are also

indicated by filled symbols. The error estimates on the various criti-
number of bonds kept per remaining cluster initially in- cal exponents include the results from all of these potentially criti-
creases. However, since we do not keep bonds dvitl ,;, , cal systems.
the number of bonds kept per cluster decreases in the later

stages of the decimation, & decreases towards,;,. Note quency of these occurrences is simply the interdegpt0)

that our (_:hoice of the part of the distributic_m withe> . [since we have normalized so that the intercept of the scaled
(the tail is only a matter of convenience; its detalsnd  fig|d distribution isRs(0)= 1], and is easily estimated with-
even its very presengare not important: specifically, we oyt fitting any distributions by counting the number of oc-
have checked that by the time the RG reaches this energy,rrences of the two types of decimations as the RG runs.

range, most of the original bonds from the tail are goneggapility of the ratio of the frequencies of the two types of
having been dominated by the stronger interactions that arise

from the original strong first-neighbor bonds only.

We first searched for a fixed point of the RG by starting 0150 (a,b)
from such a linear distribution of initially uncorrelated bonds 0.100 Hg}% e
and monitoring the flow of the two parameters obtained by (10,1
fitting the renormalized and scaled bond distribution to such g5 | Hg v
a linear form—the interce®{0) and the slope Ps./d . 3 (10,.08) -0
By choosing an initial bond distribution close to the fixed- °§: (.10,.07) -
; Catpibg ; L ; 3 (13,.09) -
point distribution we tried to minimize the transients that o (12,.09) -
occur as the full fixed-poinjoint distribution of the fields (11,.09) —e—
and bonds is generated by the RG. However, the transients g'gg"ggg o
remained too strong for us to accurately locate a fixed point 0010 ¢ (.07,.09) e
of the RG flow in the plane of these two parameters: we
could not fully stabilize this scaled bond distribution. 0.005 . s L
Figure 2 shows an example of the evolution of the scaled 100000 10000 1000 100
bond distribution for initial conditions near what we estimate N

to be the critical fixed point. The intercept stabilizes at

PlscéO)EhO:lS (Se% Fig. 3 bUtht.he SI?.pe. IS muah les.s S't:"?‘b'i distribution for the same set of different initial conditions as in Fig.
alt oug it may be approaching a |m|_t, as shown in F1g. 4.3 At each energy scale, the slope is calculated by fitting a linear
Since we could not obtain a clear fixed point in the tWO-tynction to the corresponding distributidas in Fig. 2 in the full

parameter space defined by the simple linear fit to the bong 4jjable region & ¢ <¢,,. The observed shape of the bond dis-
distribution, we instead chose as our candidates for criticakihution is only approximately linear, and our data for the bond

points those that produce a scaled bond distribution whosgistributions becomes very limited and noisy for small The
interceptPs(0) appeared to be stabilizing to a fixed-point strongly transient behavior seen here is presumably due to both
value under the action of the RG. In running the RG, at eaclactual transients in the shapes of the distributions and the reduction
decimation step the maximum-energy term that is “inte-with decreasingN of the range (0Z,,), over which the linear fit is
grated out” is either a bond or a field. The ratio of the fre- made.

FIG. 4. Evolution of the slopelPs./d{,. of the scaled bond
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FIG. 5. Width of the field distribution B, vs the log-energy FIG. 6. Scaling of the average magnetic moment per clyster

scalel" for the same set of different initial conditions as in Fig. 3. With the number of remaining clustelé Under the RG, the mag-
There is a clear initial transient in all the data foRg#<1.5 (see ~ Netic moment of a clustes; and local log-field magnitud@; be-
also plot of 1R, vs N for our candidate critical point in Fig.)1 ~ come strongly positively correlated, and we expect significant tran-
After the initial transient the data are consistent with the expecte&ie”ts if our initial conditions do not have these correlations. The

linear behavior at criticality and with the saturation of the width in initial transient is clearly seen if we start with =1 for all sites, or
the disordered phase. with uj= Bi—an attempt to imitate the positive correlation—but the

transient dies off quickly as we run the RG. This transient is slightly
decimations is a direct indication of a “balance” between suppressed if we generate initig;(, «;) from the joint distribution
the field part of the Hamiltonian and the bond part. A de-function B(8,u), which is the fixed-point joint distribution in the
tailed study, extended down to a factor of over 100(Njn  uncorrelated-field approximatiofiscussed in the textvith B(0)
shows three different types of behavior of the intercept=7- We consistently findu~N~%%“%% implying d;=1.0+0.1
which we interpret as follows: IP¢(0) is clearly decreasing and#=2.0=0.2.
towards zero then the system is in the disordered phase. ) ) )
If P.(0) is steadily increasing then the system is in thellon- Th|s acq’eleratm.g growth of the width occurs for all our
ordered phase. Finally, P.{0) appears to be saturating at candldate crltlca_ll points fod_=2_, _and emphasizes @hat the
some value then we have a candidate for the critical pointRC flow is certainly towards infinite randomness. Fitting the
Figure 3 illustrates this. Starting from different initial two- later stages of the RG for all the initial conditions that appear
dimensional lattices and different initial distributions, we al- consistent with being critical—illustrated by the filled sym-
ways find that the apparently “critical(stable value of the ~ POIs in Fig. 3—gives exponent estimates in the rafige
intercept is in the range 0.1-0.2, using what we think are
conservatively large uncertainties on when and where the =0.42+0.06. (25

intercept stabilizes. All of the candidate critical points thatg,, o1 candidate critical points the estimated expongiis

fall in this range, and that are shown by the filled symbols innoticeably larger than thé=d/(1+ B,) =0.2— 0.3 from the

Fig. 3, are used in all of our error estimates. simple approximation discussed above if one uses tBg 1/
In the simple approximation to the RG that neglects cor-_ Ps{0)=0.1-0.2 obtained from the apparent intercept;

relations mvohﬁng f'?'f}'s and ha8,=P(0)~1/T", the inter-  his"indicates that correlations between the fields and the

cept is Ps{0)~1/Bo; in general at the cr|t|c_al POINPo  honds must be substantial at the critical fixed point. Indeed,

~Z,/I" and the intercept is thuBs{0)~Po/Ro=2Z,/B,. after renormalization, correlations between a field and its ad-

Figure 1 and Fig. 2 show the evolution under the RG 0fiacent honds are easily detected: the strengths are anticorre-

the field distribution and the scaled bond distribution of on€4iaq 5o that. for example, a cluster with a weak renormal-
candidate for the critical point. Since the bond distribution isj;aq field is more likely to have strong renormalized bonds
not fully stable, our scaling analysis of the critical flow, - nected to it.

which we discuss next, is not as certain as our conclusion on The fractal dimensionl;= ¢ of the critical clusters can

the nature of the critical fixed point: i.e., that it is at infinite o Jptained directly from the RG flows at the critical fixed
randomness. As we already mentioned, direct scaling With point. Figure 6 shows the scaling withof the average mag-

requires estimating the additional paramedgr To estimate e moment(proportional to the number of bare spiraf

the “tunneling scaling” exponenyy we therefore consider - g,niving clusters. Direct fits to such plots for our candidate
the evolution of the width R, of the field distribution; this . itical points give

is shown in the inset of Fig. 1. It is expected thaRg/

~N~" at the critical fixed point since at asymptotically di=1.0+0.1, (26)

low energy scales, for which the “bare” scal@, is not

important, 1R, should be proportional tb. (Figure 5 shows in contrast to the prediction from the simple approximation
that this is indeed true in the later stages of the renormalizaef d;=0.7—0.9. Note, however that iBy=4 is obtained
tion after the initial transientlt can be seen from the insetin from our ¢=0.4 by using the simple approximatidiut
Fig. 1 that during the initial transient the width of the field ignoring the estimates dP¢{0)], the predictedd;=1.0 is
distribution grows more slowly than later in the renormaliza-close to the value obtained from the full RG. This suggests



PRB 61 INFINITE-RANDOMNESS QUANTUM ISING CRITICAL. .. 1167

that the correlations between the moment and the field on a 100 [ ' ' %,x E
cluster are reasonably well captured by the simple approxi- - e
mation. M o X
From the scaling relation Eq19), the average critical P
correlations decay with the exponent P
10 | -
7=2.0=0.2. (27

average f

More direct fits for the exponenp alone can be obtained
from plots (not shown of the average magnetic moment vs
Ro, giving =

¢p=2.5+0.4. (28) : ' '
100000 10000 1000 100
The recent quantum Monte Carlo study by Péathal 1° of N
thg two-dlmenS|ongI random Is_mg, fer.romagnet has .found FIG. 7. Scaling of the average cluster “history~—the number
evidence th‘f"t _the W'dt_h of the dls'_[rlbutlon of t_he Iogarlthmsof the original fields whose product enters the effective field—with
of characteristic energies grows with sample size at the quae number of remaining clustets Under the RGf and the log-
tum critical point, as for one dimension. They estimate field magnitudeg become positively correlated, but the transient
=0.4, in good agreement with what we find from the nu-generating this correlation dies off quickly. By starting either from
merical RG. They also measured the spatlal correlatlonssi: 1 and the corresponding quantity for the bOfﬂQ§ 1, or from
G(r)=(ogoy) at criticality and found that the medigand  f,=g, and f;=¢;, we consistently find f~N~06%007
hence typical correlation Gy,(r) falls off faster than a ~L*3*%
power of r, better fit by —In thp~r‘”c with ,=1/3, not

inconsistent with the scaling predictioft= . In contrast,  effective field of the cluster; the second inequality follows
the average critical correlations exhibit a power-law decayrom the observation that tHelecimatedlbonds that hold the
with =2, which implies that the fractal dimension of the cluster together also contribute to the effective field and must
critical cluster isd;= ¢#=1, again in good agreement with reach across the diameter of the cluster, which is of order

the exponents estimated from our RG study. i
An instructive way to understand the effect of deviations
V. ORDERED AND DISORDERED PHASES from criticality, is to move away from it by simply multiply-

ing all the original fields by an amountilé. Perturbatively,
We now turn to a discussion of the ordered and disordereI 9 9! I1e1ds by . . vely

. is would change the log-fields at scdleby of orderfés
phases. Here and_ henceforth, we will denote the parameter -y s ¢ e neglect the effects of on changing the order
that controls Fhe difference between the strengths of the typ'c')f decimations, we obtain the crossover scale away from
cal random fields and those of the typical random bonds i
the original Hamiltonian bys, chosen so that the zero-
temperature quantum critical point correspondg$+e0, the
zero-temperature disordered phaseso0 and the zero- T s~|8] M0, (32)
temperature ordered phaseds 0.

In our numerical RG studies, we do not know the fixedas the scale at which the changes in the log-fields become
point accurately enough and do not have sufficient controtomparable to a typical log-field or log-interactior ') and
over initial transients to study the off-critical flows directly. thereby substantially alter the distribution. This can be justi-
Nevertheless, we can still obtain some information about théied as follows. First, note that the cluster RG as given by
near-critical properties indirectly from the critical flowisist  Egs.(2)—(5) is essentiallylocal: we have considerable free-
as, in conventional systems, the correlation length exponerfom in the precise global order of the decimations. The only
v is related to the decay of energy density correlations at theestriction is that one eliminates, via Ed8)—(5), only the
critical poind. locally highestenergy degrees of freedom; the eventual re-

The effective field of a cluster is generally a product ofsult of many such transformations does not depend on the
some numbef of the original fields divided by a product of particular order in which they are performed as long as this
(f—1) original interactions(both the original fields and restriction is respectetf. Now, before the scald; is
ori_ginal interactions need not be distincit the critical  reached s only changes the global sequence of the decima-
point we expect tions, but not significantly the local sequence. The same

(TP 29 terms remain locally strongest; hence, the same local deci-
' mation sequence is followed, and the log-fields’ changes at
with the new exponens satisfying scaleI'<I'; are indeed of ordeF'”s and smaller than the
typical difference of any two log-energies-("). Thus, the
estimate of the crossover scale is consistgtte also that
. (30) “chaotic” behavior under the RG flows, as occurs(ahd
below) the critical point in classical spin glass€scannot
The first inequality is obtained because any spin that is activeccur here. This is because our RG equations have a form of
in a cluster contributegt least onckits original field to the  monotonicity: increasing the original field on one spin in the

rEriticality

_ { L
p/ma ¢!¢
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quantum model cannot result in a decrease of any renormai=R,(8)e Fo(P% for T'>T 5, while the bonds continue to be-
ized field and cannot result in an increase of any renormaleome weaker. The limiting width is of order
ized interaction].

The scaling argument above yields a correlation length 1Ry(8)~T 5~ 5~ (40

E=Ea~ |07 with which diverges a$— 0.>° As in one dimension, this gives

1 rise to a disordered “Griffiths” phase with continuously
p=— (32)  variable dynamical exponeumtthat relates the scales of en-
(p=1)¢ ergy and length—the typical fields and spacing of surviving
Numerically, we obtain from fitting td ~N~*%2, Clusters—via
py=1.34+0.14 (33 Q~L7* (42)

(Fig. 7), and henceyp. We can also fit more directly fop ~ With zdiverging as
; N2y . T ;
usingfRy~N , obtaining a similar estimate e 42)
v=1.07£0.15, (34 for 50, consistent with the numerical data of Ref. 10.
In the disordered phase the distribution of log-fields tends
to a simple exponential form at low energies with the limit-
1 ing width 1R,~z/d.*®% Concomitantly, there is a continu-
V< mzll (35  ously variable power-law singularity in the average ground-
’ state magnetization per spin in an ordering field

which is consistent with the bourdsy=2/d=1 and

A. Disordered phase: Correlations M~HYZInH|X, (43

and Griffiths-McCoy singularities . . . .
with the exponent of the logarithmic factor not determined

In the disordered phasé>0, the average spin correla- from these simple arguments. This gives the leading tow-
tions vvjll be dominated by rare large clusters and decay eXpehavior near the critical point whez>d. For largers,
ponentially, where z<d, this instead gives a singular correction to an

- analyticM (H). The low-temperature zero-field susceptibility
G(r)~e "¢ (36) likewise diverges foz>d as 1T raised to a continuously
varying power that is less than unity—a weaker than Curie-

The typical correlations, on the other hand, will decay morg,, divergence

rapidly. &8 For small (positive H and small| 8|, the magnetization
—In Gyyp(r)~ /&g, 37) has a scaling form:
with M(H,8)~|InH[#~ 942 (CallnH[¥),  (44)

Eyo 50 _glv g 39) with_both C an_d the cutoff sc_:ale implicit_in the IFI repre-
senting nonuniversal corrections to scaling. Whes large
This can be seen as follows: At the crossover scale awagnd positive, the scaling functids (u) ~exp(-u””) times a
from criticality, I' 5, which corresponds to length scalethe ~ power ofu.
ratios between typical remaining bonds and fields are of The clusters surviving to low energies in the disordered
magnitude Ind/h)~—T'5. Two spins of interest separated by phase are rare large strongly coupled ferromagnetic clusters
distance r much longer than¢ will each have the that exist even in the disordered phase. The most probable
maximum—albeit small—component of their spin on a re-way for such a region to occur ig& appearsfor there to be,
maining cluster near to them. As these clusters and thosel the crossover scale;, a connected set of clusters each
between them are decimated until eventually the two spin®ith linear size~ ¢ with somewhat anomalously weak fields
are contained in the san{enutua) cluster, a multiplicative on them and somewhat anomalously strong effective cou-
factor of order the typical/h ratio at the crossover scale will Plings between them; these will make them join together at
reduce the components of the spins on the remainingPwer energies into the rare large cluster of interest. Note that
clusters—and thus on the eventual mutual cluster—for eacRecause the system has strong randomness, there is no re-
one of the clusters at the crossover scale that is decimatefitirement that this large cluster has a compact geometry.
i.e., for each element of length of ordgrThe result Eq(38)  Indeed, for largen we expect that the most probable such
follows. Note that the typical correlations at and near criti-clusters will have, on scales larger thgre geometry similar

cality have the scaling form to incipient classical percolation clusters, as the require-
ments for a large rare cluster to form out of the scéle
—INGyyp~rFyy(r/§). (390  subclusters is qualitatively like that for a large cluster to

form out of the small scale objects in conventional percola-
The behavior of the typical correlations is related to thetion.[See more detailed discussion in next subsedtidimce
behavior of the distributions of fields and bonds. The fieldthe probabilities of the occurrence at scélef each of then
distribution in the disordered phase has finite width in thesuch clusters and each of the ) corresponding couplings
limit of low energy (as in one dimension R(B;T'|6) are determined primarily by local properties and are hence
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roughly independent, the probability of the rare large clusteone dimension, an interfacial energy density—albeit expo-
is of order 1A" with a>1; « is independent ob for small  nentially small—for a domain wall for ang<<0. This “sur-

8, since the needed clusters and bonds are not very atypictice tension” scales as

at scaleé. The field on such a cluster will be of order the

energy scale for crossover away from criticality, multiplied o~ &9, (50)

by of ordern factors, each less than unity with logarithm of

orderT —simply the energy needed to cut the infinite cluster in half.

The transition temperature for destruction of the long-range
~ Carpn order by thermal fluctuations will similarly be determined by
h~Qe(e " 2)", 459 the strength of the bonds that hold together the infinite clus-

with a independent ob near the critical point. The probabil- ter; thus

ity of a cluster with an anomalously small fiel is thus T.~Q.. (51)
approximately ¢
We note that the arguments given below imply that the width

p(h)~e-(n @)In(Qq /h)/ar (46) of the classical finite-temperature critical region as the tem-
perature is reduced at fixed negati@ewill be of orderT,.
If one finds the least rare such clusters, i.e., witha)lta as The behavior near the energy scéle(45) at which the

small as possible, theRy(5)=(Ina)/al’'s and these rare infinite cluster forms has aspects similar to conventional
clusters give rise to the singular scaling in the Griffiths phaselassical percolation(in contrast to the zero-temperature
quoted above. As stated earlier the dynamic expozest quantum percolation transition a@=0). At the crossover
given by the asymptotic low-energy value ofR,. [Note  scalel" s;=In(Q,/Q;) away from criticality, the bonds will
that we have ignored here differences betweefddrand  start to dominate over the random fields. At this scale the
InQ;=InQy—T, since these will not affect the dominant sizes of the clusters and the lengths of the bonds will typi-
behavior in the limit of interest. Also note that sinieh|  cally be of order the crossover length scaiel“fs"”; indeed,
~n, a factorp(h) controls the asymptotic behavior of the bonds much longer than this will be exponentially rare. Be-
distribution of the|In'h|-variable] tween the log-energy scales, and I'.~In(Qo/(2.), at
The RG generates the low-energy taie~Ro(d2 of the which the infinite cluster forms, most of the decimations will

log-field distribution on scales> ¢ precisely because the be of bonds, resulting in the joining together of clusters. The

rare large clusters discussed above argomtare. Note that Process of Qecimation of bondand occasional cl.uste)rwi'll
an exponential tail of the distribution of the cluster effectivecont'nlui’f with I?;ger sntd I?hrgtelf cIu_Tltebrs fofr_m|r(1jg ugtll the
fields is generated by the RG almost immediately and somBercolation scai@ ... Note thatl ., will be a Tixe (order-

rare arbitrarily large clusters are present at any energy scal8,ne multiple of the somewhat arbitrarily defined crossover

as long as there is no infinite cluster that would consuméﬁaler5' but Fhﬁ correITpor;]dmghphysmal enfer@lyj IS ?Ctu'
them. In particular, this tail is also generated at the critica!ly ©xponentially smaller than the ener@y; (for largel’s).

point, but it continues to become longer as the energy scale UNIKe the case at the quantum critical point, the process
decreases. by which the large clusters are joined together as the energy

scale is decreased near the percolation scale is basioally
cal. The key feature of this locality, which occurs whErs
in the rangel' s;<I'<TI',,, is that whenl" is changed by a
small amount, whether, say, a large clustewill become
The behavior in the ordered phase differs strikingly fromjoined to a large clusteB, and whether the same clust&r

B. Ordered phase: Percolation
and finite-temperature ordering

that in one dimension. At &inite energy scale will become joined to another large clust€r are roughly
independent events, each only depending on the smaller clus-
Q.= "=~Qgexd — K|~ "], (47)  ters and bonds—which have typical length scéland log-

) L ) i energy scald” s—in the vicinity of the respective potential
a single infinite clustefwith zero transverse figldlevelops.  connections. As the percolation scale is approached, we ex-
Finite clusters, some of which will join the infinite cluster at pect that this independence will become more and more pro-
lower energies, coexist with it. The spontaneous magnetizgsonced as the important connections that make the large
tion is proportional to the number of sites in the infinite ¢|,sters grow become further and further apart. On the basis
cluster att)—0 yielding of this argument, we conjecture that the percolation that oc-
curs in the cluster RG at scalg, is in theuniversality class

Mo~15l%, 48 of classical percolationwith (I'.,—T") playing the role of
with (pc—p) in classical percolatior{Note that the width of the
log-bond distribution at scalé& s is of orderI's and will
B=vpl2=v(d— ). (49) remain so at all scales;<I'<TI".,.]

The nature of the percolation process at the sEaleon-
This implies that the scaling function in E¢44) has the trols the critical behavior associated with the finite-
asymptotic form in the ordered phasg(u— —»)~ temperature ordering transition 8t~ ()., over a substantial
(—u)dv—ovr, region of theT-6 plane. On the logarithmic temperature
As a consequence of the infinite cluster development, irscale,I't=In(Q,/T), the finite-temperature spin-spin correla-
the ferromagnetically ordered phase there is, in contrast tton lengthé; is simply the characteristic length scale of the
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distribution of cluster diameters at scdlg: clusters that C. Ordered phase: Singularities

exist at this scale will each consist of sets of well-correlated We now turn to properties of the ordered phase on energy
(active spins, while the correlations between these clustergq temperature scales much lower than the ordering tem-

will be destroyed by the thermgl fluctqations. On temperatur%eratureTc_ The low-energy properties of the ordered phase
scales abovél,; (I'r<I's), & will be given by the quantum ¢ 4~ 1 \ill not have the strong power-law Griffiths singu-

critical length scale at log-energy scdlg . But_on scales  |arities found in the disordered phase and the one-
between() ; and()., (I's<I'y<I'-.), the percolation process gimensional ordered phase. This can be seen in the RG lan-
will cause the correlation length to diverge as guage that naturally incorporates the role of rare anomalous
regions. If we continue the RG much beld&, , i.e., beyond
the formation of the infinite cluster, we will find that the
remaining finite clusters are almost always connected only to
the macroscopic cluster and at lower energy scales almost all
where v, is the classical percolation correlation length of these will either be decimated or will join the infinite
exponent—with v,=4/3 in two dimensions—andé~ cluster; fewer and fewer will join together to make larger
(—6) "7 is the correlation length associated with tfpgan-  finite clusters. Since the finite clusters and the bonds con-
tum critical point (i.e., the characteristic length at the cross-necting them to the macrocluster are decimated indepen-
over scald’y). dently, no new clusters or bonds will be generated, and the
As the critical temperature is approached, the RG aplow-energy tails of the distributions remain essentially the
proximation will eventually break down at any nonzefo same as they were just beldd,, [when the widths oboth
The clean separation of bonds into “strong” for those stron-the log-field and the log-bond distributions are of order
ger thanl';, and “weak” for those weaker thaR; will not ~ ~In(Qy/Q..)~T 5~[8~"].
hold for the “marginal” bonds whose strength is of order As in the disordered phase, the preformed tails of the field
which correspond to those whose log-strengthi4scO(1).  and bond distributions represent rare large regions respon-
This implies anO(1) multiplicative uncertainty in the pro- sible for the low-energy excitations in the system. The role
portionality betweerT. and ()., and it also implies that the of these rare fluctuations, however, is very different in the
percolation-dominated form of the critical behavior of ordered phase; although they still make the system gapless,
Eq. (52) breaks down whet',—I'y is of order one. Closer they do not dominate all the low-energy propertissch as,
to the finite-temperature critical point, the behavior will be for example, the response to a small ordering magnetiofield
dominated by the thermal fluctuations of the marginal bondsn contrast to the disordered phase, the dominant rare regions
that link very large almost-percolating clusters. This will in the ordered phase are indeegty rareand do not produce
make the critical behavior cross over to that of the convena power-law singularity in the density of states at zero en-
tional classical d-dimensional random bond Isingiversal-  ergy. This can be seen by analyzing the probability that a
ity class with cluster with a very small effective fiell survives down to

energy scalé)~h<(... We can consider such a surviving
ferromagnetic cluster to be composedno$ubclustergeach

of diameter~¢) with h~Q,e "', as in the disordered
phase. But this cluster must be isolated very effectively from
wherev, is the classical random Ising correlation length ex-the rest of the system—with effective coupling linking it to
ponent, equal to one in two dimensiof@ssuming the inter-  he infinite cluster of ordeh or weaker. In the disordered
actions are not frustratgd phase, the typical length of a bond with effective coupling

As a function of temperature, this double crossover in thﬁln3|~nl“5 is L~n¢. Thus to achieve sufficient isolation, the

critical behavior will be particularly hard to observe due to disordered reaion around the droplet must havie@ar size
the logarithmic temperature scale, which makes the cross- 9 P

over energy scal€) ; exponentially larger thaii, for small of order~n¢. The probability of such a r.are region 1s ver.y
(negative 8. But if the temperature is held fixed and ex- Small—of order 14" —so that the generic low-energy talil
tremely small—i.e.J';>1— then the crossovers can be seenthat the RG can generate is

more readily by decreasing the relative strengths of the ran- o

dom fields that are parametrized ByThe critical values, is R(|Infh|)~ecln h|d, (54

of order—I'; /¥ . As the random fields are reduced frai o

of order one untils~+T7Y""~|8,|, the thermal effects very different from the~e~ /" tail in the disordered phase
will be negligible and & will diverge with the zero- and the similar tail in the one-dimensional ordered phase. It
temperaturequantumexponent that we have denoted simply is also strikingly different from an even longer tall,

14

I's
Foo_FT

.y " (52

4l
c

rp T
gT g o T_TC

14 1 "
oy

v. As & is further decreased through zero unfi-8;  ~e=nh"™ that oocurs in the ordered phase of dikite
~F{1*1_"””~|5CI/FT, the intermediate  classical- quantum Ising system of Ref. 20, which differs from ours by
percolation-dominated critical behavior as in E§2 will  some fraction of the initial;;’s beingzerq so perfectly iso-

obtain with the exponent, . Finally, for —8.<I't*"*¥"  lated clusters can form even in the ordered phase. The origin
the classical random Ising critical exponentwill control  of the difference between these cases is easy to understand:
the divergence of;. Note that in the limit of asymptotically in one dimension, the length and the volume of an isolating
small 1I'y, all three of these regimes will become very region are the same, while in the dilute case, with a
broad on a If(&.— 6)/&] plot. S-function weight at zero coupling, a droplet of sizean be
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completelyisolated by a “disordered” region of volume out for the one-dimensional case by Senthil and Majurfidar,

n(@~1d__just a surrounding surface of missing bonds. Potts models or any random quantum systems with continu-

ous (second-ordertransitions at which a discrete symmetry

of a nonconserved order parameter is broken, will have the

same critical behavior as the Ising case, with the extra de-

A. Higher-dimensional random ferromagnetic quantum grees of freedom just “going along for the ride” on the basic
Ising models geometrical transition.

So far, we have presented detailed results only for th This holds even for systems that are frustrated on small

VI. HIGHER DIMENSIONS AND RELATED SYSTEMS

dimensions, although the general scaling picture, exponeng"dth scales, such as quantum Ising spin glasses. Because of
equalities, behavior of correlation functions, etc., should bdOW O the infinite-randomness fixed point, the frustration
qualitatively the same for strong randomness in any dimenWill become irrelevant at low energies at the critical point,

sion (d>1) for which there is a stable infinite-randomnessSINce In any frustrated loop the weakest interaction will be

critical fixed point. Our numerical studies in three dimen-infinitely v;/]eaker tuan the others,hso canllbe ignored..fThe
sions are sufficient to indicate that the infinite-randomnes&"'Mary. cf_alng'esh ere concern t ehcou;;mg to a uniform
fixed point is stable, although they are not thorough enouglf?@gnetic field in the direction, and the behavior at nonzero

to yield reliable estimates of exponents and their uncertaintSmperature in the ordered phase. Because the uniform field

ties. Since in both two and three dimensions, weak randomS N0t @n ordering field for the spin glass, the magnetic mo-
ness is a relevant perturbation away from the pure fixed"€nt Of the large clusters will be random in sign, scaling as
point, we expect the same strong—randomness-dominateIHe square root Of_ the numper of active spins on the_ cluster.
critical behavior to occur even for arbitrarily weak random-At the critical point this will change theM(H) scaling,

ness. yielding
The situation in higher dimensionsd=4—is far more
uncertain. It is not clear at this point whether or not the Mgg~|InH|#2~ 9, (55)
direction of the RG flow at strong randomness reverses for
sufficiently large. in contrast to Eq.(21) for the ferromagnetic case. In the

For weak disorder, it would appear that the situation isdisordered phasé/ will scale as thesamepower ofH as in
clearer: the Harris criterion would seem to indicate that forthe ferromagnetic case with only the logarithmic prefactors
d>4 weak randomness is irrelevant. But one must be verynodified. In the ordered phase, the behavior of the nonzero-
careful. There are other situations known in which weak rantemperature, long-distance correlations will cross over to
domness formally appears to be irrelevant but for which ex<lassical spin-glass behavior at and below a temperature of
ponentially rare regions change the behavior for arbitrarilyorder(},,. Ford=2, true long-range spin-glass order will be
weak randomnesg.We strongly suspect, as argued below, present only at zero temperature, because the lower critical
that this will be the case here. In general, Griffiths singulari-dimension for the classical spin glass is always more than
ties and other strong-randomness-like effects will start to aptwo.
pear when the random quantum Ising system is close enough
to the quantum transition that the distributionX$ and the
distribution ofh’s overlap in the sense that for some values . o
of (h,J) in the support of these distributions pare system The s_|mplest example of an mﬂmte randomness _quantum
would be in the ordered phase, while for other values offixed point occurs for one-dimensional random Heisenberg
(h,J), a pure system would be in the disordered phase. Thi§or XY) spin chains. In the corresponding phase, the “ran-
implies that arbitrarily large rare regions will exist that act asdom singlet phase,” each spin is paired in a singlet with one
if they were in the opposite phase than the full system is. IPther spin, usually one close by, but a small fraction of the
particular, in the disordered phase sufficiently close to thePins are paired very weakly with spins far away. The RG
critical point, strongly correlated clusters will exist with analysis of this system, first carried out by Ma, Dasgupta,
broadly distributed effective fields and effective interactions@nd .HL} and then more fully by one of dsis a simpler
between them that are broadly distributed and typically deversion of that used in the present paper.
cay exponentially with their separation. As the quantum criti- A similar RG analysis was carried out for two- and tzhree-
cal point is approached, these rare clusters and their cogimensional random antiferromagnets by Bhatt and’tee
plings will effectively act like a strongly random system that OVer & substantial range of energy scales, in part|.cular includ-
we expect will dominate the behavior and cause the wholdd those relevant for experiments on the insulating phase of
system to be driven to stron@ut not necessarily infinile  Phosphorus-doped silicon. This investigation has been ex-
randomness sufficiently close to the critical point—howeverténded by two of US to the strong-randomness limit. We

weak the original randomness. This intriguing possibility have found that fod=2, in contrast to one dimension, the
clearly merits further investigation. infinite-randomness random-singlet fixed point of random

Heisenberg oiXY quantum antiferromagnets isstableto-
wards a state with finite randomness and, presumably, more
conventional scaling; this state includes both antiferromag-
netic and ferromagnetic effective interactions, and involves

As mentioned in the Introduction, the infinite-randomnessclusters with moments much larger than those of the single
critical fixed points found here control more than just Isingspins that dominate the low-energy behavior in the one-
ferromagnetic quantum transitions. In particular, as pointedlimensional case.

C. Random quantum XY and Heisenberg antiferromagnets

B. Other quantum transitions with discrete
broken symmetries
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VIl. SUMMARY randomness quantum Ising critical fixed point is very broad;
. . it includes all continuous quantum transitions in random sys-
In summary, we have studied random quantum Ising fer

4 tems at which a discrete symmetry is broken; since in two
romagnets using an energy space cluster RG that becom

) imensions, first-order transitions are not possible in random
exact for strong randomness. Using the structure of the Regystems, this class should includdl discrete-symmetry-

infinite-randomness quantum critical fixed point that can OC_Breakmg transitionsproviding there are no_conservation

cur. Near to this fixed point—corresponding to low energyIaWS that alter the quantum dynamics in an essential (feay

scales near the zero-temperature quantum phase transitiono example of an Ising case with a conserved order param-
i np 9 P : eter, see Ref.)2 The nature of the discrete symmetry break-
the RG yields asymptotically exact results. We have imple-

mented the RG numerically, primarily in two dimensions, ing quantum transitions we have studied is controlled by a

and found that the critical behavior is indeed controlled bygi(;vgbmiﬁ mOf nzeilrﬁglitfl?r?e_l;ggger{yis#ép;zlgglgI\;_\esntg;e r:ﬂg;n(;f

such an infinite-randomness fixed point, as in one dimension, . percolation process are asymptoticatifassical (al-

We estimated numerically the corresponding critical expo- ; : ,
nents in two dimensions, and discussed the properties of ththough the process isot conventional percolation one

. . r%ight hope that conformal field theory approaches that take
disordered and ordered phases. In the disordered phase WeVantage of the two-dimensionather than "2+ 1" di-
found that rare anomalously strongly coupled ferromagnetic . . .

) . mensional structure could perhaps be used to obtain analytic
clusters—in the RG language, a low-energy tail of the cluster ! i i
. S S 97 results for some of the properties of such two-dimensional
field distribution generated by the decimation procedure—
. ; random quantum systems.
dominate the low-energy behavior and cause power-law
Griffiths-McCoy singularities near the phase transition. In
the ordered phase fat>1, on the other hand, the Griffiths
singularities are much weaker, and do not produce diver- We thank Ravin Bhatt, Kedar Damle, Matthew Hastings,
gences in thermodynamic quantities; the low-energy densitand Peter Young for helpful discussions. Support for this
of states they produce vanishes faster than any power of theork was provided by the National Science Foundation
energy. through Grants No. DMR-9400362, No. DMR-9630064, and

The universality class controlled by the infinite- No. DMR-9802468 and Harvard’s MRSEC.
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