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Infinite-randomness quantum Ising critical fixed points
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We examine the ground state of the random quantum Ising model in a transverse field using a generalization
of the Ma-Dasgupta-Hu renormalization group~RG! scheme. For spatial dimensionalityd52, we find that at
strong randomness the RG flow for the quantum critical point is towards an infinite-randomness fixed point, as
in one dimension. This is consistent with the results of a recent quantum Monte Carlo study by Pichet al.
@Phys. Rev. Lett.81, 5916~1998!#, including estimates of the critical exponents from our RG that agree well
with those from the quantum Monte Carlo. The same qualitative behavior appears to occur for three dimen-
sions; we have not yet been able to determine whether or not it persists to arbitrarily highd. Some conse-
quences of the infinite-randomness fixed point for the quantum critical scaling behavior are discussed. Because
frustration is irrelevant in the infinite-randomness limit, thesamefixed point should govern both ferromagnetic
and spin-glass quantum critical points. This RG maps the random quantum Ising model with strong disorder
onto a novel type of percolation/aggregation process.
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I. INTRODUCTION

Systems with quenched randomness and many degre
freedom may be divided into three classes based on t
coarse-grained behavior in the low-energy, low-frequen
and/or long-distance limit. First, there are many syste
where the quenched disorder is irrelevant in t
renormalization-group sense. Such systems, even tho
they are spatially inhomogeneous at the microscopic sc
become asymptotically homogeneous at macroscopic sc
their coarse-grained, low-energy behavior is the same
some ‘‘pure’’ system without quenched disorder. In th
case, the renormalization-group fixed point governing
coarse-grained system is at zero quenched randomness
second possibility is systems controlled by fixed points w
nonzero, but finite, quenched randomness. In this case
coarse-grained behavior is spatially inhomogeneous, but
relative magnitude of the inhomogeneities remains finite
the fixed point. Examples of this second class include s
glasses and other glassy phases, as well as various cr
points with randomness. The third possibility, which is t
subject of this paper, occurs when the quenched random
and thus the relative magnitude of the inhomogenei
grows without limit as the system is coarse grained. So
we know of a few infinite-randomness fixed points that co
prise this third class; all of them are one-dimensionald
51) quantum ground states. These are the random sin
states of certain random antiferromagnetic spin chains,1,2 the
quantum critical point of the random quantum Ising~and
Potts! chain,3–6 and quantum critical points separating ra
dom singlet states and the Ising antiferromagnetic phase2 or
the Haldane state in the random spin-1 Heisenberg chai7,8

A natural question is whether such infinite-randomn
fixed points can govern the behavior of physical syste
with spatial dimensionalityd>2.

Here we study the simplest random quantum system
PRB 610163-1829/2000/61~2!/1160~13!/$15.00
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can exhibit a phase transition, the random ferromagn
Ising model in a transverse field, which, in all dimension
has a quantum critical point at zero temperature. We fo
on the strong-randomness regime, using a generalization5 of
the Ma-Dasgupta-Hu1 renormalization group~RG! scheme.
This approximate RG is exact in the limit of infinite random
ness and thus can, in principle, yield exact results for
scaling behavior of systems governed by infinite randomn
fixed points.5 In one dimension, this RG has been used
analyze the various infinite-randomness fixed points m
tioned above and many results can be obtained analytic
in particular for the random quantum Ising model. In high
dimensions, the renormalization group cannot~to our knowl-
edge! be carried out analytically; in this paper we analyze
general structure and consequences, implement it num
cally and examine a simple approximation to it. Ford52
and 3, we find that the renormalization group flow on t
critical manifold for strong randomness is indeed towa
even stronger randomness, as in one dimension, indica
that the quantum critical behavior is governed by the infini
randomness critical fixed point. Ford52 we have studied
the RG flow thoroughly enough to be fully confident that th
is the case, and it appears to remain true ford53.

For d,4, the Harris criterion9 indicates that at the pure
Ising quantum critical point weak randomness is releva
with the RG flow towards stronger randomness; thus the s
plest scenario for two and three dimensions is that
infinite-randomness fixed point governs the random quan
critical point with any randomness, as in one dimension.
recent quantum Monte Carlo study by Pichet al. of the fer-
romagnetic model with moderate randomness in two dim
sions is consistent with this picture.10

What do we mean by infinite randomness? This mean5,2

that as the system is coarse grained and the characte
energy scale decreases, the distributions of thelogarithmsof
the magnitudes of the terms in the renormalized Hamilton
1160 ©2000 The American Physical Society
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become arbitrarily broad. As a result, the ratio of the mag
tude of any two terms approaches either zero or infinity.
this limit each renormalized coupling completely domina
any weaker renormalized coupling, so even the Ising s
glass becomes unfrustrated.11 Thus we expect that the sam
infinite-randomness fixed point governs both the random
romagnetic and the spin-glass quantum critical points, w
simple modifications to account for the antiferromagne
bonds in the latter case. We should note that recent quan
Monte Carlo studies of the spin-glass case had conclu
that for two and three dimensions the scaling near the qu
tum critical point is conventional,12 implying a finite-
randomness fixed point, in contrast to what we are propos
here. But these finite-size scaling Monte Carlo studies loo
at a rather small size range and did not look at distributi
of physical properties; thus they were not sensitive to
scaling towards infinite randomness that we now believe
curs ford52 and probably for higherd.

II. CLUSTER RG

We will study the quantum spin-1/2 Ising model with ra
dom ferromagnetic interactions, positive transverse fieldshi ,
and momentsm i :

Ĥ52(
i , j

Ji j s i
zs j

z2(
i

his i
x2H(

i
m is i

z , ~1!

where thes ’s are the Pauli spin matrices. In general, w
consider an arbitrary random lattice, with all interactions p
tentially present. More specifically, we are interested in r
dom lattices that may appear in our effective description
some finite-dimensional system. Then the dimensionality
the system is encoded in the interactionsJi j , with the strong
interactions being between nearby pairs of spins and the
teractions between distant spins being extremely weak or
sent. The uniform ordering fieldH5Hz is zero or small; it is
included only to probe the system’s magnetization and s
ceptibilities.

The cluster RG finds the system’s ground state by suc
sively eliminating the highest energy degrees of freedom
each step, we find the largest term in the Hamiltonian, wh
is either a transverse field or an interaction; its strengthV
sets the~maximum remaining! energy scale. If the larges
term is the field on spini, V5hi , that spin is put in the
ground state,s i

x51, of the local field term and virtual exci
tations to the other state (s i

x521) are treated in second
order perturbation theory. For this to be a valid approxim
tion, the field must be much stronger than all this spi
interactions, which is true only in the strong-randomne
limit. This step eliminates the spini, and generates new in
teractions of the formJjk8 'Jji Jik /hi . But some of these new
interactions may be negligible compared to the interacti
that were already present, so the full renormalized inter
tions are given, for each pair (j ,k), by

Jjk8 'maxS Jjk ,
Jji Jik

hi
D . ~2!

We use the maximum here because in the strong-random
limit the sum of two nonnegative numbers of very differe
magnitudes is well approximated by the larger number.
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If, on the other hand, the largest term in the Hamiltoni
is an interaction,V5Ji j , the two spins involved are com
bined into one new spin—a cluster—whose two states r
resent the two ground states (s i

z5s j
z561) of that interac-

tion. Again, the virtual excitations to the states that a
eliminated are treated in second-order perturbation the
With the new spin labeledi ~an arbitrary choice! the renor-
malized field is

hi8'
hihj

Ji j
, ~3!

and the renormalized moment is simply

m i85m i1m j . ~4!

The renormalized interactions are, for each remainingk,

Jik8 'max~Jik ,Jjk!. ~5!

The net result in both cases is the elimination of one s
along with the various renormalizations and reconnection
the lattice. The major complication ford.1 is that the RG
does not preserve the lattice structure but instead genera
disordered and strongly correlated network of sites—i
clusters—and bonds connecting them.

The action of the cluster RG is a novel aggregatio
annihilation process. When the strongest term is a field,
corresponding cluster is removed~annihilated!, while when
it is an interaction the two clusters that it connects are agg
gated into one cluster. The clusters thus represent sets o
original spins that are strongly correlated. In the param
netic phase, the annihilation process dominates and no l
clusters are formed, while in the ordered phase the aggr
tion dominates producing arbitrarily large clusters. Ford
.1, in the ordered phase an infinite percolating cluster
pears during the action of the RG at afinite energy scale.
When and after this occurs, the infinite cluster is represen
by a single renormalized spin that interacts with an infin
number of the other remaining spins~which represent the
finite clusters!. Thus the topology of the network has by th
energy scale completely changed from that of the ‘‘bar
d-dimensional lattice that had only short-range interactio
This emphasizes that this RG is not simply a ‘‘real-spac
RG; it is more precisely an ‘‘energy-space’’ RG that c
produce a renormalized lattice with a geometry very differ
from the bare lattice.

The zero-temperature quantum critical point is a new ty
of percolation transition at which an infinite cluster first a
pears~at the quantum critical point it only appears in the ze
energy limit!, as pointed out by Monthuset al.8 The quantum
critical point occurs when the annihilation and aggregat
processes balance, so that arbitrarily large clusters are
duced but no single cluster dominates at any finite ene
scale.

Because of the multiplicative structure of the RG rec
sion relations, it is convenient to write the renormalized
teractions after decimating down to energy scaleV in loga-
rithmic variables as

hi5Ve2b i, ~6!

Ji j 5Ve2z i j . ~7!
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The RG equations involve the full joint distribution of th
positive quantities$b i% and $z i j %. The single-field distribu-
tion functionR(b) and the single-bond distribution functio
P(z) provide partial but important information about the fu
joint distribution of all the couplings. In general, the coord
nation number is not fixed, and if there areN spins~clusters!
remaining, there may be up toN(N21)/2 interactions. How-
ever, only of orderN of the strongest interactions matt
because the weaker ones will be overruled by the stron
ones in the action of the RG for strong randomness. Thus
normalize the bond distribution functionP(z) per remaining
spin, so that the total number of bonds in the system
N*0

`P(z)dz, and ford.1 we define the ‘‘width’’w of this
bond distribution by

E
0

w

P~z!dz51. ~8!

This width thus includes only theN strongest bonds.@Note
that in one dimension, there are always exactlyN nearest-
neighbor bonds and this normalization ofP(z) coincides
with that of Ref. 2. If further neighbor bonds exist in on
dimension, they will be irrelevant at low energy scales a
can be ignored.# The condition for validity of our approxi-
mate RG is that the widths of the distributionsR(b) and
P(z) be large; for the RG to be asymptotically exact, the
widths should tend to infinity asV→0; this is the indication
that the RG flow goes to an infinite-randomness fixed po
We now discuss the general structure of such a puta
infinite-randomness critical fixed point. We will assume th
the simplest scaling scenario for an infinite-randomness fi
point occurs in our cluster RG~Ref. 13!—this is the case in
one dimension,6 and is consistent with our numerics for tw
dimensions.

III. CRITICAL FIXED POINT

We first consider the behavior at the quantum criti
point. We expect that at the critical fixed point the distrib
tions R(b;G) and P(z;G) will asymptotically be given by
the simple scaling forms

R~b;G!db5B~b/G!db/G, ~9!

P~z;G!dz5Z~z/G!dz/G ~10!

for largeG; where

G[ lnS V0

V D.0 ~11!

is the logarithm of the energy scale, relative to an ene
scaleV0 set by the properties of the bare Hamiltonian. AsG
is increased bydG, the fractional decrease in the number
spins or clusters is (Z01B0)dG/G with

B0[B~0!, Z0[Z~0!. ~12!

The density of remaining clusters per unit volume thus
creases under renormalization as

nG;G2(Z01B0). ~13!
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This gives the basic relationship between the length scaL
and the energy scale at the quantum critical point,

G5 lnS V0

V D;Lc, ~14!

with c5d/(Z01B0),1. Note that this is very differen
from conventional power-law scaling; here it is theloga-
rithm of the energy scale that varies as a power of the len
scale. Since this is associated with the ‘‘tunneling’’ even
by which clusters flip, it has been dubbed ‘‘tunneling d
namic scaling.’’13

The typical moment of a cluster—the number of strong
correlated ‘‘active’’ spins in it ~i.e., those not yet
decimated!—scales as

m;Gf, ~15!

with some new exponentf, so that the fractal dimension o
the set of active spins in a cluster is

df5fc. ~16!

This determines the decay of the average spin-spin corr
tion function at the critical point.

A. Critical correlations

The correlation function between two spins at distancer,

Gi j [^s i
zs j

z& ~17!

is a random quantity with a very broad probability distrib
tion for large r[ur i2r j u. We first consider the correlation
function of atypical pair of spins with separationr; typical
spin pairs are never active in the same cluster and have
weak correlations that fall off, at criticality, as a stretch
exponential function of distance,

2 ln Gtyp~r !;r c, ~18!

with c,1. These correlations arise from the lowest-ord
perturbative corrections to the decimation of spin clusters5,14

When a cluster is decimated at energy scaleV, each of the
effective spins on its neighboring clusters—in more conv
tional terms the perturbatively modified wave functions th
are labeled by the remaining effective spins—will acquire
component of the decimated cluster’s spin whose magnit
is of orderJ/V, with J the effective coupling that links the
neighboring cluster to the decimated cluster. Likewise, wh
these neighboring clusters are decimated, an even sm
component of the original spin will be acquired by the r
maining clusters. Correlations between two spinsi and j that
are never active in the same cluster thus occur when a
viving cluster contains simultaneously a component ofboth
the spinsi and j. The correlation functionGi j is then deter-
mined by the maximum over all such mutual clusters t
occur, at any energy scale, of the product of the two sp
components contained by the mutual cluster. Typically,
smallest of the multiplied perturbative factors that determ
ln G will dominate; these arise from the stage at which t
two spins first have a component on a mutual cluster. Si
this occurs when the remaining cluster sizes are of order
separationr between the spins of interest, the dominant p
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PRB 61 1163INFINITE-RANDOMNESS QUANTUM ISING CRITICAL . . .
turbative factor will be of ordere2Ki j G with G;r c andKi j
random and of order one. This yields the result Eq.~18!.5,14

We should note that there is another mechanism by wh
spins become correlated. At any step of the renormalizat
when a cluster with fieldh̃ is decimated, higher-order pe
turbative effects will give components of the decimated sp
on all the remaining clusters, with magnitudes that invol
products over all the bonds connecting the decimated clu
to the remaining clusters, of factors of the formJ̃ jk /h̃. These
by themselves would give rise to simple exponential de
of typical correlations as occurs in conventional disorde
phases. In contrast to these, the contributions to the cor
tions that come from the cumulative effects of the succes
lowest-order perturbative terms discussed above will h
similar form but with each of the$J̃ jk% being divided by an
effective field from one of thelater stages of the RG; thes
are always smaller thanh̃. Thus the cumulative lowest-orde
contributions discussed above will always dominate over
simple exponential decays from the higher-order perturba
effects. We hence conclude that thec from the RG must be
less than one.

The averagecorrelation functionG(r )̄ behaves quite dif-
ferently than typical correlations. It is dominated by the ra
spin pairs that are active in thesamecluster atsomeenergy
scale; such pairs of spins have correlations of order o
reduced from one only by the short-scale high-energy fl
tuations that are not included in the approximate RG. A
result, the average correlation function is proportional to
probability of the two spins being active in the same clus
at someenergy scale. At criticality this occurs—if at all—a
scaleG;r c, and the resulting average correlation functi
hence falls off as a power law:

G~r !̄;r 2h;r 22(d2fc). ~19!

This is an example of the radically different scaling behav
of the typical and average quantities that is one hallmark
infinite-randomness fixed points.5,13

Thermodynamic properties involve averaging over
whole system and will hence be dominated, as are the a
age correlations, by rare clusters. The low-temperature
ceptibility to a small ordering fieldH (H!T) can be found
easily by stopping the RG at energy scaleV;T. For smallT,
almost all the decimated spins are frozen and hence nonm
netic, while almost all the remaining clusters have effect
transverse fields and interactions between them that
much less thanT. They are hence essentially free and ha
independent Curie susceptibilities yielding an overall susc
tibility at low temperatures near the quantum critical point

x;
u ln Tu2f2d/c

T
. ~20!

The magnetization in a small ordering fieldH ~at T!H)
can be found similarly: the RG is stopped when the typi
magnetic energyHm of a cluster is of orderV. The deci-
mated spins are nonmagnetic while the remaining clus
are almost perfectly polarized by the field. This yields, at
quantum critical point, a magnetization proportional to t
fraction of spins that are still active,
h
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M;u ln Huf2d/c5
1

u ln Huh/2c
. ~21!

B. Simple approximate RG

In order to get a better feeling for the scaling behavior
is useful to study a simple approximation to the RG flo
that is exact in one dimension and in some respects good
higher d; this consists of ignoring correlations among t
fields and between the fields and the bonds, but allow
correlations among the bonds. In this approximation,
evolution equation for the field distributionR(b;G) depends
on the bond distribution only throughP(0;G), and is identi-
cal to its one-dimensional form~see Refs. 5 and 13!. Solving
for the fixed point gives scaling distributions withZ051 and
B(u)5B0e2B0u with B0 undetermined~the exact solution
for one dimension hasB051). Within this approximation
the exponents arec5d/(11B0) and f5(11A114B0)/2.
Our numerical studies of the RG flows in two dimensio
show that the log-field distribution is very close to the simp
exponential form, but the estimated critical exponents
two dimensions differ somewhat from this simple appro
mation; this must be due to correlations among the fields
between them and the bonds.

IV. NUMERICAL RG STUDY OF THE CRITICAL FIXED
POINT IN TWO DIMENSIONS

In order to do better and certainly to test the conjecture
a controlling infinite-randomness fixed point, we must imp
ment the strong-randomness cluster RG numerically. T
formulation is the same for a general random network,
we are of course interested in systems that can arise f
finite-dimensional lattices with short-range interactions. W
have thus studied the RG flows with ‘‘initial conditions’’ o
finite d-dimensional lattices for two and three dimension
The program has been tested by verifying that it reprodu
~within statistical errors! the analytical results for one dimen
sion.

For d.1, many weak interactions are generated that,
the larger lattices studied, cannot all be stored. Becaus
this, we keep only interactions above a minimum stren
Jmin , the smallness ofJmin being limited by computer
memory capacity and speed. Since the discarded bo
~those with J,Jmin) could not have generated strong
bonds, for the renormalization down to any energy scale w
V.Jmin the RG decimation sequence is not affected at
and all the bonds withJmin<J<V are retained; thus we
know all the fields and all the bonds with 0<z<zm
5 ln(V/Jmin). However, under renormalizationzm decreases
and G[ ln(V0 /V) increases so that the range ofz/G in the
scaled distributionZ(z/G) that we can study steadily de
creases as the system is coarse grained. We have been
conservative and do not look at all at the ‘‘contaminate
low-energy part of the bond distribution (J,Jmin). The lim-
its on memory are most restrictive at the earliest stages of
RG decimation, where the number of clusters is large, so
is whenJmin must be set the largest. It might be possible
let Jmin decrease later in the decimation and recover more
the renormalized bond distribution with controllable erro
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We have not explored this possibility.
We start with initial conditions of systems of up to 105

spins with random short-range interactions and rand
transverse fields independently chosen from specified in
probability distributions. We run up to 1000 samples f
each initial probability distribution to reduce the statistic
errors. For each sample we measure properties of the sy
when the energy scale passes~under renormalization! a pre-
defined set of energies,14 and then average these propert
over different samples.

To reduce transients as much as possible, the shape
the initial distributionsR(b) and P(z) are chosen to ap
proximate, as best as we can, the renormalized critical p
distributions that we observe. However, these initial con
tions are missing any correlations among the fields and
teractions that certainly exist in the full joint distribution
the critical fixed point. Thus when we run the RG it do
show a fairly strong transient behavior as these correlat
are generated and the fixed point is approached. So far
have only a limited understanding of these transients and
correlations that are generated and we do not have a sys
atic way of controlling them; we do, however, monitor th
simplest types of correlations and they do appear to stab
after the initial transient in the RG.

In our numerics we primarily concentrate on the ind
vidual field and bond distributionsR(b;G) and P(z;G);
these are partial but significant indicators of what is happ
ing in the system’s full joint probability distribution. For tw
dimensions we find that at the critical point both distributio
do become broader under the action of the RG and the
towards stronger randomness is clear. This flow is wea
but nevertheless is clearly apparent for three dimens
also.

Numerically we find that under the RG the field distrib
tion maintains fairly accurately a simple exponential form

R~b;G!>R0~G!e2R0(G)b, ~22!

with

R0~G![R~b50;G!. ~23!

The width of the distribution is proportional to 1/R0(G) and
grows steadily as the energy scale is decreased. Th
shown in Fig. 1 for a flow near the critical point, but it is als
true away from the critical point, and is consistent with t
simple approximation to the RG flows discussed above
which the field distribution at low energy scales is always
exponential whose width never decreases.

As initial conditions, we choose for convenience t
simple exponential distribution of log-fields with the initia
R051. @Note that the strong-randomness RG equations, E
~2!–~5!, are invariant under a multiplication of all the log
couplings by any constant. Thus, although the initial cho
R051 would appear to correspond to moderate randomn
we can, without loss of generality, use this in our study
the strong-randomness RG flows.# To search for a fixed poin
we measure 1/R0(G) and scale bothb andz by this width,
defining

bsc5R0b and zsc5R0z. ~24!
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~Note thatV0 and thusG are not defined precisely, so w
cannot simply scale the data byG.! The scaled field distri-
bution is nowRsc(bsc)>exp(2bsc) and we can concentrat
on the scaled bond distributionPsc(zsc). The shape of the
bond distribution evolves continuously and its characteri
tion is much less clear. Numerically we observe that
d>2 at and near the quantum critical point the cluster R
always generates positively sloping (dP/dz.0) bond distri-
butions. This is in contrast to one dimension, where the ex
critical-fixed-point bond distributionPsc(zsc)5exp(2zsc) is
the same simple exponential as the field distribution due
duality relation.5

For d52 the bond distributions that are generated by
RG near the quantum critical point can be reasonably
proximated, in the smallzsc regime of interest, by a simple
linear fit: Psc(zsc)>a1bzsc. We thus choose for initial con
ditions aPsc(zsc) of this form. Our initial lattice for all the
data presented here is a triangular lattice with perio
boundary conditions~we also tried others, such as square,
confirm that the results did not depend strongly on this a
trary choice!. Since we expect the stronger bonds to
shorter ranged, we select the nearest-neighbor bonds~there
are three such bonds per site! to constitute the strongest-bon
part 0,zsc,zc of the bond distribution, withzc chosen so
that *0

zc(a1bz)dz53, i.e., there are precisely three bon
per site withzsc between zero andzc. Then the next batch o
the distribution,zc,zsc,zm, are assigned at random to a
the second- and third-neighbor bonds~six more bonds per
site!, with zm chosen appropriately.~This zm sets ourJmin ,
as discussed above.! Thus our initial condition has nine
bonds per site, corresponding to a coordination numbe
18. Under renormalization, the lattice is quickly randomize
so it no longer resembles the initial triangular lattice, and

FIG. 1. RG evolution of the field distribution at a putative qua
tum critical point. Initial conditions are a 2903290 (N584,100)
triangular lattice with couplings drawn independently from the fie
distribution R(b)5e2b and the scaled bond distributionPsc(zsc)
50.110.105zsc, as described in the text. Lines are fits to t
simple exponential formR5R0e2R0b with R0 depending on the
energy scale. Note that the renormalized field distribution fits t
form well for all N. Inset: width of the field distribution 1/R0 vs the
number of remaining spinsN; the RG evolution is in the direction
of decreasing N. The increasing width indicates the RG flow to
wards infinite randomness. The line here is a power-law fit t
gives our estimate of the exponentc. Note that this fit works well
only after the rather strong initial transient.
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number of bonds kept per remaining cluster initially i
creases. However, since we do not keep bonds withJ,Jmin ,
the number of bonds kept per cluster decreases in the
stages of the decimation, asV decreases towardsJmin . Note
that our choice of the part of the distribution withzsc.zc
~the tail! is only a matter of convenience; its details~and
even its very presence! are not important: specifically, we
have checked that by the time the RG reaches this en
range, most of the original bonds from the tail are go
having been dominated by the stronger interactions that a
from the original strong first-neighbor bonds only.

We first searched for a fixed point of the RG by starti
from such a linear distribution of initially uncorrelated bon
and monitoring the flow of the two parameters obtained
fitting the renormalized and scaled bond distribution to su
a linear form—the interceptPsc(0) and the slopedPsc/dzsc.
By choosing an initial bond distribution close to the fixe
point distribution we tried to minimize the transients th
occur as the full fixed-pointjoint distribution of the fields
and bonds is generated by the RG. However, the transi
remained too strong for us to accurately locate a fixed p
of the RG flow in the plane of these two parameters:
could not fully stabilize this scaled bond distributio
Figure 2 shows an example of the evolution of the sca
bond distribution for initial conditions near what we estima
to be the critical fixed point. The intercept stabilizes
Psc(0)>0.15 ~see Fig. 3!, but the slope is much less stabl
although it may be approaching a limit, as shown in Fig.

Since we could not obtain a clear fixed point in the tw
parameter space defined by the simple linear fit to the b
distribution, we instead chose as our candidates for crit
points those that produce a scaled bond distribution wh
interceptPsc(0) appeared to be stabilizing to a fixed-poi
value under the action of the RG. In running the RG, at e
decimation step the maximum-energy term that is ‘‘in
grated out’’ is either a bond or a field. The ratio of the fr

FIG. 2. RG evolution of the scaled bond distributionPsc(zsc) at
the apparent critical point corresponding to the initial conditions
Fig. 1. Note that although the intercept is fairly stable atPsc(0)
>0.15 in the later stages of the RG~this is our criterion for locating
the critical point—see also, Fig. 3!, the shape of the distribution i
not as stable~see also, Fig. 4!, presumably due to transient effec
from our uncorrelated initial conditions. Because we do not ke
bonds weaker thanJmin ~see text!, the range of the scaled bon
distribution that we measure and plot, 0<zsc<zm5R0 log(V/Jmin),
decreases as we run our RG.
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quency of these occurrences is simply the interceptPsc(0)
@since we have normalized so that the intercept of the sc
field distribution isRsc(0)51#, and is easily estimated with
out fitting any distributions by counting the number of o
currences of the two types of decimations as the RG ru
Stability of the ratio of the frequencies of the two types

f

p

FIG. 3. RG evolution of the interceptPsc(0) of the scaled bond
distribution for different initial conditions: all are initially
2903290 triangular lattices with independent couplings and init
field distribution R(b)5e2b; the different curves correspond t
various initial scaled bond distributions:Psc(zsc)5a1bzsc with the
parametersa andb as indicated~see text!. If the intercept saturates
to a finite nonzero value asN is decreased, this indicates that th
system is critical. Our best estimate of the critical point hasa
50.10,b50.105~filled squares!; this is what is used in all the othe
figures. Other parameters that we view as possibly critical are
indicated by filled symbols. The error estimates on the various c
cal exponents include the results from all of these potentially c
cal systems.

FIG. 4. Evolution of the slopedPsc/dzsc of the scaled bond
distribution for the same set of different initial conditions as in F
3. At each energy scale, the slope is calculated by fitting a lin
function to the corresponding distribution~as in Fig. 2! in the full
available region 0<zsc<zm . The observed shape of the bond di
tribution is only approximately linear, and our data for the bo
distributions becomes very limited and noisy for smallN. The
strongly transient behavior seen here is presumably due to
actual transients in the shapes of the distributions and the redu
with decreasingN of the range (0,zm), over which the linear fit is
made.
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decimations is a direct indication of a ‘‘balance’’ betwe
the field part of the Hamiltonian and the bond part. A d
tailed study, extended down to a factor of over 1000 inN,
shows three different types of behavior of the interce
which we interpret as follows: IfPsc(0) is clearly decreasing
towards zero then the system is in the disordered ph
If Psc(0) is steadily increasing then the system is in t
ordered phase. Finally, ifPsc(0) appears to be saturating
some value then we have a candidate for the critical po
Figure 3 illustrates this. Starting from different initial two
dimensional lattices and different initial distributions, we a
ways find that the apparently ‘‘critical’’~stable! value of the
intercept is in the range 0.1–0.2, using what we think
conservatively large uncertainties on when and where
intercept stabilizes. All of the candidate critical points th
fall in this range, and that are shown by the filled symbols
Fig. 3, are used in all of our error estimates.

In the simple approximation to the RG that neglects c
relations involving fields and hasP0[P(0)'1/G, the inter-
cept is Psc(0)'1/B0; in general at the critical pointP0
'Z0 /G and the intercept is thusPsc(0)'P0 /R05Z0 /B0.

Figure 1 and Fig. 2 show the evolution under the RG
the field distribution and the scaled bond distribution of o
candidate for the critical point. Since the bond distribution
not fully stable, our scaling analysis of the critical flow
which we discuss next, is not as certain as our conclusion
the nature of the critical fixed point: i.e., that it is at infini
randomness. As we already mentioned, direct scaling witG
requires estimating the additional parameterV0. To estimate
the ‘‘tunneling scaling’’ exponentc we therefore conside
the evolution of the width 1/R0 of the field distribution; this
is shown in the inset of Fig. 1. It is expected that 1/R0
;N2c/d at the critical fixed point since at asymptotical
low energy scales, for which the ‘‘bare’’ scaleV0 is not
important, 1/R0 should be proportional toG. ~Figure 5 shows
that this is indeed true in the later stages of the renormal
tion after the initial transient.! It can be seen from the inset i
Fig. 1 that during the initial transient the width of the fie
distribution grows more slowly than later in the renormaliz

FIG. 5. Width of the field distribution 1/R0 vs the log-energy
scaleG for the same set of different initial conditions as in Fig.
There is a clear initial transient in all the data for 1/R0,1.5 ~see
also plot of 1/R0 vs N for our candidate critical point in Fig. 1!.
After the initial transient the data are consistent with the expec
linear behavior at criticality and with the saturation of the width
the disordered phase.
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tion. This accelerating growth of the width occurs for all o
candidate critical points ford52, and emphasizes that th
RG flow is certainly towards infinite randomness. Fitting t
later stages of the RG for all the initial conditions that app
consistent with being critical—illustrated by the filled sym
bols in Fig. 3—gives exponent estimates in the range15

c50.4260.06. ~25!

For all candidate critical points the estimated exponentc is
noticeably larger than thec5d/(11B0)50.220.3 from the
simple approximation discussed above if one uses the 1B0
>Psc(0)50.120.2 obtained from the apparent intercep
this indicates that correlations between the fields and
bonds must be substantial at the critical fixed point. Inde
after renormalization, correlations between a field and its
jacent bonds are easily detected: the strengths are antic
lated, so that, for example, a cluster with a weak renorm
ized field is more likely to have strong renormalized bon
connected to it.

The fractal dimensiondf5fc of the critical clusters can
be obtained directly from the RG flows at the critical fixe
point. Figure 6 shows the scaling withN of the average mag
netic moment~proportional to the number of bare spins! of
surviving clusters. Direct fits to such plots for our candida
critical points give

df51.060.1, ~26!

in contrast to the prediction from the simple approximati
of df50.720.9. Note, however that ifB0>4 is obtained
from our c>0.4 by using the simple approximation@but
ignoring the estimates ofPsc(0)#, the predicteddf>1.0 is
close to the value obtained from the full RG. This sugge

d

FIG. 6. Scaling of the average magnetic moment per clustem̄
with the number of remaining clustersN. Under the RG, the mag
netic moment of a clusterm i and local log-field magnitudeb i be-
come strongly positively correlated, and we expect significant tr
sients if our initial conditions do not have these correlations. T
initial transient is clearly seen if we start withm i51 for all sites, or
with m i5b i—an attempt to imitate the positive correlation—but t
transient dies off quickly as we run the RG. This transient is sligh
suppressed if we generate initial (b i ,m i) from the joint distribution
function B(b,m), which is the fixed-point joint distribution in the
uncorrelated-field approximation~discussed in the text! with B(0)
57. We consistently findm;N20.5060.05 implying df51.060.1
andh52.060.2.
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that the correlations between the moment and the field o
cluster are reasonably well captured by the simple appr
mation.

From the scaling relation Eq.~19!, the average critica
correlations decay with the exponent

h52.060.2. ~27!

More direct fits for the exponentf alone can be obtaine
from plots ~not shown! of the average magnetic moment
R0, giving

f52.560.4. ~28!

The recent quantum Monte Carlo study by Pichet al.10 of
the two-dimensional random Ising ferromagnet has fou
evidence that the width of the distribution of the logarithm
of characteristic energies grows with sample size at the qu
tum critical point, as for one dimension. They estimatec
>0.4, in good agreement with what we find from the n
merical RG. They also measured the spatial correlati
G(r )5^s0

zs r
z& at criticality and found that the median~and

hence typical! correlation Gtyp(r ) falls off faster than a
power of r, better fit by 2 ln Gtyp;r cc with cc>1/3, not
inconsistent with the scaling predictioncc5c. In contrast,
the average critical correlations exhibit a power-law dec
with h>2, which implies that the fractal dimension of th
critical cluster isdf5fc>1, again in good agreement wit
the exponents estimated from our RG study.

V. ORDERED AND DISORDERED PHASES

We now turn to a discussion of the ordered and disorde
phases. Here and henceforth, we will denote the param
that controls the difference between the strengths of the t
cal random fields and those of the typical random bonds
the original Hamiltonian byd, chosen so that the zero
temperature quantum critical point corresponds tod50, the
zero-temperature disordered phase tod.0 and the zero-
temperature ordered phase tod,0.

In our numerical RG studies, we do not know the fix
point accurately enough and do not have sufficient con
over initial transients to study the off-critical flows directl
Nevertheless, we can still obtain some information about
near-critical properties indirectly from the critical flows~just
as, in conventional systems, the correlation length expon
n is related to the decay of energy density correlations at
critical point!.

The effective field of a cluster is generally a product
some numberf of theoriginal fields divided by a product o
( f 21) original interactions ~both the original fields and
original interactions need not be distinct!. At the critical
point we expect

f ;Gr, ~29!

with the new exponentr satisfying

r>maxS f,
1

c D . ~30!

The first inequality is obtained because any spin that is ac
in a cluster contributes~at least once! its original field to the
a
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effective field of the cluster; the second inequality follow
from the observation that the~decimated! bonds that hold the
cluster together also contribute to the effective field and m
reach across the diameter of the cluster, which is of or
G1/c.

An instructive way to understand the effect of deviatio
from criticality, is to move away from it by simply multiply-
ing all the original fields by an amount 11d. Perturbatively,
this would change the log-fields at scaleG by of order f d
;Grd. If we neglect the effects ofd on changing the orde
of decimations, we obtain the crossover scale away fr
criticality

Gd;udu21/(r21), ~31!

as the scale at which the changes in the log-fields bec
comparable to a typical log-field or log-interaction (;G) and
thereby substantially alter the distribution. This can be ju
fied as follows. First, note that the cluster RG as given
Eqs.~2!–~5! is essentiallylocal: we have considerable free
dom in the precise global order of the decimations. The o
restriction is that one eliminates, via Eqs.~2!–~5!, only the
locally highestenergy degrees of freedom; the eventual
sult of many such transformations does not depend on
particular order in which they are performed as long as t
restriction is respected.16 Now, before the scaleGd is
reached,d only changes the global sequence of the decim
tions, but not significantly the local sequence. The sa
terms remain locally strongest; hence, the same local d
mation sequence is followed, and the log-fields’ change
scaleG,Gd are indeed of orderGrd and smaller than the
typical difference of any two log-energies (;G). Thus, the
estimate of the crossover scale is consistent.@Note also that
‘‘chaotic’’ behavior under the RG flows, as occurs at~and
below! the critical point in classical spin glasses,17 cannot
occur here. This is because our RG equations have a form
monotonicity: increasing the original field on one spin in t

FIG. 7. Scaling of the average cluster ‘‘history’’f —the number
of the original fields whose product enters the effective field—w
the number of remaining clustersN. Under the RG,f and the log-
field magnitudeb become positively correlated, but the transie
generating this correlation dies off quickly. By starting either fro
f i51 and the corresponding quantity for the bondsf i j 51, or from
f i5b i and f i j 5z i j , we consistently find f ;N20.6760.07

;L1.3460.14.



m
a

gt

-
e

or

wa

o
y

re
o
in

ll
in
ac
te

iti

he
ld

th

-

ly
-
ng

ds
it-
-
d-

ed
-

an
ty

rie-

ed
ters
able

s
ou-
at

that
o re-
try.

ch

e-

to
la-

nce

1168 PRB 61MOTRUNICH, MAU, HUSE, AND FISHER
quantum model cannot result in a decrease of any renor
ized field and cannot result in an increase of any renorm
ized interaction.#

The scaling argument above yields a correlation len
j5jav;udu2n with

n5
1

~r21!c
. ~32!

Numerically, we obtain from fitting tof ;N2rc/2,

rc51.3460.14 ~33!

~Fig. 7!, and hence,n. We can also fit more directly forn
using f R0;N21/(2n), obtaining a similar estimate

n51.0760.15, ~34!

which is consistent with the bounds18 n>2/d51 and

n<
1

max~1,fc!2c
>1.7. ~35!

A. Disordered phase: Correlations
and Griffiths-McCoy singularities

In the disordered phase,d.0, the average spin correla
tions will be dominated by rare large clusters and decay
ponentially,

G~r !̄;e2r /j. ~36!

The typical correlations, on the other hand, will decay m
rapidly, as

2 ln Gtyp~r !;r /j typ , ~37!

with

j typ;d2(12c)n;j12c,j. ~38!

This can be seen as follows: At the crossover scale a
from criticality, Gd , which corresponds to length scalej, the
ratios between typical remaining bonds and fields are
magnitude ln(J/h);2Gd . Two spins of interest separated b
distance r much longer than j will each have the
maximum—albeit small—component of their spin on a
maining cluster near to them. As these clusters and th
between them are decimated until eventually the two sp
are contained in the same~mutual! cluster, a multiplicative
factor of order the typicalJ/h ratio at the crossover scale wi
reduce the components of the spins on the remain
clusters—and thus on the eventual mutual cluster—for e
one of the clusters at the crossover scale that is decima
i.e., for each element of length of orderj. The result Eq.~38!
follows. Note that the typical correlations at and near cr
cality have the scaling form

2 ln Gtyp;r cF typ~r /j!. ~39!

The behavior of the typical correlations is related to t
behavior of the distributions of fields and bonds. The fie
distribution in the disordered phase has finite width in
limit of low energy ~as in one dimension!, R(b;Gud)
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>R0(d)e2R0(d)b for G@Gd , while the bonds continue to be
come weaker. The limiting width is of order

1/R0~d!;Gd;d2cn, ~40!

which diverges asd→0.5,19 As in one dimension, this gives
rise to a disordered ‘‘Griffiths’’ phase with continuous
variable dynamical exponentz that relates the scales of en
ergy and length—the typical fields and spacing of survivi
clusters—via

V;L2z ~41!

with z diverging as

z;d2cn ~42!

for d→0, consistent with the numerical data of Ref. 10.
In the disordered phase the distribution of log-fields ten

to a simple exponential form at low energies with the lim
ing width 1/R0'z/d.19,5 Concomitantly, there is a continu
ously variable power-law singularity in the average groun
state magnetization per spin in an ordering fieldH:

M;Hd/zu ln Hux, ~43!

with the exponent of the logarithmic factor not determin
from these simple arguments. This gives the leading lowH
behavior near the critical point wherez.d. For largerd,
where z,d, this instead gives a singular correction to
analyticM (H). The low-temperature zero-field susceptibili
likewise diverges forz.d as 1/T raised to a continuously
varying power that is less than unity—a weaker than Cu
law divergence.

For small ~positive! H and smalludu, the magnetization
has a scaling form:

M ~H,d!;u ln Huf2d/cJ~Cdu ln Hu1/cn!, ~44!

with both C and the cutoff scale implicit in the lnH repre-
senting nonuniversal corrections to scaling. Whenu is large
and positive, the scaling functionJ(u);exp(2ucn) times a
power ofu.

The clusters surviving to low energies in the disorder
phase are rare large strongly coupled ferromagnetic clus
that exist even in the disordered phase. The most prob
way for such a region to occur is~it appears! for there to be,
at the crossover scaleGd , a connected set ofn clusters each
with linear size;j with somewhat anomalously weak field
on them and somewhat anomalously strong effective c
plings between them; these will make them join together
lower energies into the rare large cluster of interest. Note
because the system has strong randomness, there is n
quirement that this large cluster has a compact geome
Indeed, for largen we expect that the most probable su
clusters will have, on scales larger thanj, a geometry similar
to incipient classical percolation clusters, as the requir
ments for a large rare cluster to form out of the scalej
subclusters is qualitatively like that for a large cluster
form out of the small scale objects in conventional perco
tion. @See more detailed discussion in next subsection.# Since
the probabilities of the occurrence at scalej of each of then
such clusters and each of the (;n) corresponding couplings
are determined primarily by local properties and are he
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roughly independent, the probability of the rare large clus
is of order 1/an with a.1; a is independent ofd for small
d, since the needed clusters and bonds are not very aty
at scalej. The field on such a cluster will be of order th
energy scale for crossover away from criticality, multiplie
by of ordern factors, each less than unity with logarithm
orderGd:

h̃;V0~e2aGd!n, ~45!

with a independent ofd near the critical point. The probabil
ity of a cluster with an anomalously small fieldh̃ is thus
approximately

p~ h̃!;e2(ln a)ln(V0 /h̃)/aGd. ~46!

If one finds the least rare such clusters, i.e., with (lna)/a as
small as possible, thenR0(d)5(ln a)/aGd and these rare
clusters give rise to the singular scaling in the Griffiths ph
quoted above. As stated earlier the dynamic exponentz is
given by the asymptotic low-energy value ofd/R0. @Note
that we have ignored here differences between lnV0 and
ln Vd5ln V02Gd , since these will not affect the dominan
behavior in the limit of interest. Also note that sinceu ln h̃u
;n, a factorp(h̃) controls the asymptotic behavior of th
distribution of theu ln h̃u-variable.#

The RG generates the low-energy tail;e2R0(d)b of the
log-field distribution on scalesL@j precisely because th
rare large clusters discussed above are nottoo rare. Note that
an exponential tail of the distribution of the cluster effecti
fields is generated by the RG almost immediately and so
rare arbitrarily large clusters are present at any energy sc
as long as there is no infinite cluster that would consu
them. In particular, this tail is also generated at the criti
point, but it continues to become longer as the energy s
decreases.

B. Ordered phase: Percolation
and finite-temperature ordering

The behavior in the ordered phase differs strikingly fro
that in one dimension. At afinite energy scale

V`5V0e2G`;V0 exp@2Kudu2cn#, ~47!

a single infinite cluster~with zero transverse field! develops.
Finite clusters, some of which will join the infinite cluster
lower energies, coexist with it. The spontaneous magnet
tion is proportional to the number of sites in the infini
cluster atV→0 yielding

M0;udub, ~48!

with

b5nh/25n~d2fc!. ~49!

This implies that the scaling function in Eq.~44! has the
asymptotic form in the ordered phaseJ(u→2`);
(2u)dn2fcn.

As a consequence of the infinite cluster development
the ferromagnetically ordered phase there is, in contras
r
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e

e
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e
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one dimension, an interfacial energy density—albeit ex
nentially small—for a domain wall for anyd,0. This ‘‘sur-
face tension’’ scales as

s;j12dV` ~50!

—simply the energy needed to cut the infinite cluster in ha
The transition temperature for destruction of the long-ran
order by thermal fluctuations will similarly be determined b
the strength of the bonds that hold together the infinite cl
ter; thus

Tc;V` . ~51!

We note that the arguments given below imply that the wi
of the classical finite-temperature critical region as the te
perature is reduced at fixed negatived, will be of orderTc .

The behavior near the energy scaleV`(d) at which the
infinite cluster forms has aspects similar to conventio
classical percolation~in contrast to the zero-temperatu
quantum percolation transition atd50). At the crossover
scaleGd5 ln(V0 /Vd) away from criticality, the bonds will
start to dominate over the random fields. At this scale
sizes of the clusters and the lengths of the bonds will ty
cally be of order the crossover length scalej;Gd

1/c ; indeed,
bonds much longer than this will be exponentially rare. B
tween the log-energy scalesGd and G`' ln(V0 /V`), at
which the infinite cluster forms, most of the decimations w
be of bonds, resulting in the joining together of clusters. T
process of decimation of bonds~and occasional clusters! will
continue with larger and larger clusters forming until t
percolation scaleG` . Note thatG` will be a fixed ~order-
one! multiple of the somewhat arbitrarily defined crossov
scaleGd , but the corresponding physical energyV` is actu-
ally exponentially smaller than the energyVd ~for largeGd).

Unlike the case at the quantum critical point, the proc
by which the large clusters are joined together as the ene
scale is decreased near the percolation scale is basicalllo-
cal. The key feature of this locality, which occurs whenG is
in the rangeGd,G,G` , is that whenG is changed by a
small amount, whether, say, a large clusterA will become
joined to a large clusterB, and whether the same clusterA
will become joined to another large clusterC, are roughly
independent events, each only depending on the smaller c
ters and bonds—which have typical length scalej and log-
energy scaleGd—in the vicinity of the respective potentia
connections. As the percolation scale is approached, we
pect that this independence will become more and more
nounced as the important connections that make the la
clusters grow become further and further apart. On the b
of this argument, we conjecture that the percolation that
curs in the cluster RG at scaleG` is in theuniversality class
of classical percolation, with (G`2G) playing the role of
(pc2p) in classical percolation.@Note that the width of the
log-bond distribution at scaleGd is of order Gd and will
remain so at all scalesGd,G,G`.#

The nature of the percolation process at the scaleG` con-
trols the critical behavior associated with the finit
temperature ordering transition atTc;V` over a substantia
region of theT-d plane. On the logarithmic temperatur
scale,GT5 ln(V0 /T), the finite-temperature spin-spin correl
tion lengthjT is simply the characteristic length scale of th
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distribution of cluster diameters at scaleGT : clusters that
exist at this scale will each consist of sets of well-correla
~active! spins, while the correlations between these clus
will be destroyed by the thermal fluctuations. On temperat
scales aboveVd (GT,Gd), jT will be given by the quantum
critical length scale at log-energy scaleGT . But on scales
betweenVd andV` (Gd,GT,G`), the percolation proces
will cause the correlation length to diverge as

jT;jS Gd

G`2GT
D np

, ~52!

where np is the classical percolation correlation length
exponent—with np54/3 in two dimensions—andj;
(2d)2n is the correlation length associated with thequan-
tum critical point ~i.e., the characteristic length at the cros
over scaleGd).

As the critical temperature is approached, the RG
proximation will eventually break down at any nonzerod.
The clean separation of bonds into ‘‘strong’’ for those stro
ger thanGT , and ‘‘weak’’ for those weaker thanGT will not
hold for the ‘‘marginal’’ bonds whose strength is of orderT,
which correspond to those whose log-strength isGT6O(1).
This implies anO(1) multiplicative uncertainty in the pro
portionality betweenTc andV` and it also implies that the
percolation-dominated form of the critical behavior
Eq. ~52! breaks down whenG`2GT is of order one. Closer
to the finite-temperature critical point, the behavior will b
dominated by the thermal fluctuations of the marginal bo
that link very large almost-percolating clusters. This w
make the critical behavior cross over to that of the conv
tional classical d-dimensional random bond Isinguniversal-
ity class with

jT;jGd
npS Tc

T2Tc
D n I

;jGd
npS 1

G`2GT
D n I

, ~53!

wheren I is the classical random Ising correlation length e
ponent, equal to one in two dimensions~assuming the inter-
actions are not frustrated!.

As a function of temperature, this double crossover in
critical behavior will be particularly hard to observe due
the logarithmic temperature scale, which makes the cro
over energy scaleVd exponentially larger thanTc for small
~negative! d. But if the temperature is held fixed and e
tremely small—i.e.,GT@1— then the crossovers can be se
more readily by decreasing the relative strengths of the
dom fields that are parametrized byd. The critical valuedc is
of order2GT

21/cn . As the random fields are reduced fromd
of order one untild;1GT

21/cn;udcu, the thermal effects
will be negligible and jT will diverge with the zero-
temperaturequantumexponent that we have denoted simp
n. As d is further decreased through zero untild2dc

;GT
2121/cn;udcu/GT , the intermediate classica

percolation-dominated critical behavior as in Eq.~52! will
obtain with the exponentnp . Finally, for d2dc!GT

2121/cn

the classical random Ising critical exponentn I will control
the divergence ofjT . Note that in the limit of asymptotically
small 1/GT , all three of these regimes will become ve
broad on a ln@(dc2d)/dc# plot.
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C. Ordered phase: Singularities

We now turn to properties of the ordered phase on ene
and temperature scales much lower than the ordering t
peratureTc . The low-energy properties of the ordered pha
for d.1 will not have the strong power-law Griffiths singu
larities found in the disordered phase and the o
dimensional ordered phase. This can be seen in the RG
guage that naturally incorporates the role of rare anoma
regions. If we continue the RG much belowV` , i.e., beyond
the formation of the infinite cluster, we will find that th
remaining finite clusters are almost always connected onl
the macroscopic cluster and at lower energy scales almos
of these will either be decimated or will join the infinit
cluster; fewer and fewer will join together to make larg
finite clusters. Since the finite clusters and the bonds c
necting them to the macrocluster are decimated indep
dently, no new clusters or bonds will be generated, and
low-energy tails of the distributions remain essentially t
same as they were just belowV` @when the widths ofboth
the log-field and the log-bond distributions are of ord
; ln(V0 /V`);Gd;udu2cn#.

As in the disordered phase, the preformed tails of the fi
and bond distributions represent rare large regions resp
sible for the low-energy excitations in the system. The r
of these rare fluctuations, however, is very different in t
ordered phase; although they still make the system gap
they do not dominate all the low-energy properties~such as,
for example, the response to a small ordering magnetic fie!.
In contrast to the disordered phase, the dominant rare reg
in the ordered phase are indeedvery rareand do not produce
a power-law singularity in the density of states at zero
ergy. This can be seen by analyzing the probability tha
cluster with a very small effective fieldh̃ survives down to
energy scaleV;h̃!V` . We can consider such a survivin
ferromagnetic cluster to be composed ofn subclusters~each
of diameter;j! with h̃;V0e2cnGd, as in the disordered
phase. But this cluster must be isolated very effectively fr
the rest of the system—with effective coupling linking it
the infinite cluster of orderh̃ or weaker. In the disordered
phase, the typical length of a bond with effective coupli
u ln J̃u;nGd is L;nj. Thus to achieve sufficient isolation, th
disordered region around the droplet must have alinear size
of order;nj. The probability of such a rare region is ver
small—of order 1/and

—so that the generic low-energy ta
that the RG can generate is

R~ u ln h̃u!;e2 c̃u ln h̃ud, ~54!

very different from the;e2 c̃u ln h̃u tail in the disordered phas
and the similar tail in the one-dimensional ordered phase
is also strikingly different from an even longer tai
;e2 c̃u ln h̃u121/d

, that occurs in the ordered phase of thedilute
quantum Ising system of Ref. 20, which differs from ours
some fraction of the initialJi j ’s beingzero, so perfectly iso-
lated clusters can form even in the ordered phase. The or
of the difference between these cases is easy to unders
in one dimension, the length and the volume of an isolat
region are the same, while in the dilute case, with
d-function weight at zero coupling, a droplet of sizen can be
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completely isolated by a ‘‘disordered’’ region of volume
n(d21)/d—just a surrounding surface of missing bonds.

VI. HIGHER DIMENSIONS AND RELATED SYSTEMS

A. Higher-dimensional random ferromagnetic quantum
Ising models

So far, we have presented detailed results only for t
dimensions, although the general scaling picture, expon
equalities, behavior of correlation functions, etc., should
qualitatively the same for strong randomness in any dim
sion (d.1) for which there is a stable infinite-randomne
critical fixed point. Our numerical studies in three dime
sions are sufficient to indicate that the infinite-randomn
fixed point is stable, although they are not thorough eno
to yield reliable estimates of exponents and their uncert
ties. Since in both two and three dimensions, weak rand
ness is a relevant perturbation away from the pure fi
point, we expect the same strong-randomness-domin
critical behavior to occur even for arbitrarily weak random
ness.

The situation in higher dimensions—d>4—is far more
uncertain. It is not clear at this point whether or not t
direction of the RG flow at strong randomness reverses fd
sufficiently large.

For weak disorder, it would appear that the situation
clearer: the Harris criterion would seem to indicate that
d.4 weak randomness is irrelevant. But one must be v
careful. There are other situations known in which weak r
domness formally appears to be irrelevant but for which
ponentially rare regions change the behavior for arbitra
weak randomness.21 We strongly suspect, as argued belo
that this will be the case here. In general, Griffiths singula
ties and other strong-randomness-like effects will start to
pear when the random quantum Ising system is close eno
to the quantum transition that the distribution ofJ’s and the
distribution ofh’s overlap in the sense that for some valu
of (h,J) in the support of these distributions, apure system
would be in the ordered phase, while for other values
(h,J), a pure system would be in the disordered phase. T
implies that arbitrarily large rare regions will exist that act
if they were in the opposite phase than the full system is
particular, in the disordered phase sufficiently close to
critical point, strongly correlated clusters will exist wit
broadly distributed effective fields and effective interactio
between them that are broadly distributed and typically
cay exponentially with their separation. As the quantum cr
cal point is approached, these rare clusters and their
plings will effectively act like a strongly random system th
we expect will dominate the behavior and cause the wh
system to be driven to strong~but not necessarily infinite!
randomness sufficiently close to the critical point—howe
weak the original randomness. This intriguing possibil
clearly merits further investigation.

B. Other quantum transitions with discrete
broken symmetries

As mentioned in the Introduction, the infinite-randomne
critical fixed points found here control more than just Isi
ferromagnetic quantum transitions. In particular, as poin
o
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out for the one-dimensional case by Senthil and Majumd6

Potts models or any random quantum systems with cont
ous ~second-order! transitions at which a discrete symmet
of a nonconserved order parameter is broken, will have
same critical behavior as the Ising case, with the extra
grees of freedom just ‘‘going along for the ride’’ on the bas
geometrical transition.

This holds even for systems that are frustrated on sm
length scales, such as quantum Ising spin glasses. Becau
flow to the infinite-randomness fixed point, the frustrati
will become irrelevant at low energies at the critical poin
since in any frustrated loop the weakest interaction will
infinitely weaker than the others, so can be ignored. T
primary changes here concern the coupling to a unifo
magnetic field in thez direction, and the behavior at nonze
temperature in the ordered phase. Because the uniform
is not an ordering field for the spin glass, the magnetic m
ment of the large clusters will be random in sign, scaling
the square root of the number of active spins on the clus
At the critical point this will change theM (H) scaling,
yielding

MSG;u ln Huf/22d/c, ~55!

in contrast to Eq.~21! for the ferromagnetic case. In th
disordered phase,M will scale as thesamepower ofH as in
the ferromagnetic case with only the logarithmic prefact
modified. In the ordered phase, the behavior of the nonz
temperature, long-distance correlations will cross over
classical spin-glass behavior at and below a temperatur
orderV` . Ford52, true long-range spin-glass order will b
present only at zero temperature, because the lower cri
dimension for the classical spin glass is always more t
two.

C. Random quantum XY and Heisenberg antiferromagnets

The simplest example of an infinite randomness quan
fixed point occurs for one-dimensional random Heisenb
~or XY) spin chains. In the corresponding phase, the ‘‘ra
dom singlet phase,’’ each spin is paired in a singlet with o
other spin, usually one close by, but a small fraction of
spins are paired very weakly with spins far away. The R
analysis of this system, first carried out by Ma, Dasgup
and Hu1 and then more fully by one of us,2 is a simpler
version of that used in the present paper.

A similar RG analysis was carried out for two- and thre
dimensional random antiferromagnets by Bhatt and Le22

over a substantial range of energy scales, in particular inc
ing those relevant for experiments on the insulating phas
phosphorus-doped silicon. This investigation has been
tended by two of us23 to the strong-randomness limit. W
have found that ford>2, in contrast to one dimension, th
infinite-randomness random-singlet fixed point of rando
Heisenberg orXY quantum antiferromagnets isunstableto-
wards a state with finite randomness and, presumably, m
conventional scaling; this state includes both antiferrom
netic and ferromagnetic effective interactions, and involv
clusters with moments much larger than those of the sin
spins that dominate the low-energy behavior in the o
dimensional case.
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VII. SUMMARY

In summary, we have studied random quantum Ising
romagnets using an energy space cluster RG that beco
exact for strong randomness. Using the structure of the
we presented a scaling picture of the behavior near
infinite-randomness quantum critical fixed point that can
cur. Near to this fixed point—corresponding to low ener
scales near the zero-temperature quantum phase transit
the RG yields asymptotically exact results. We have imp
mented the RG numerically, primarily in two dimension
and found that the critical behavior is indeed controlled
such an infinite-randomness fixed point, as in one dimens
We estimated numerically the corresponding critical ex
nents in two dimensions, and discussed the properties o
disordered and ordered phases. In the disordered phas
found that rare anomalously strongly coupled ferromagn
clusters—in the RG language, a low-energy tail of the clus
field distribution generated by the decimation procedure
dominate the low-energy behavior and cause power-
Griffiths-McCoy singularities near the phase transition.
the ordered phase ford.1, on the other hand, the Griffith
singularities are much weaker, and do not produce div
gences in thermodynamic quantities; the low-energy den
of states they produce vanishes faster than any power o
energy.

The universality class controlled by the infinite
ev
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randomness quantum Ising critical fixed point is very bro
it includes all continuous quantum transitions in random s
tems at which a discrete symmetry is broken; since in t
dimensions, first-order transitions are not possible in rand
systems, this class should includeall discrete-symmetry-
breaking transitionsproviding there are no conservatio
laws that alter the quantum dynamics in an essential way~for
an example of an Ising case with a conserved order par
eter, see Ref. 2!. The nature of the discrete symmetry brea
ing quantum transitions we have studied is controlled b
novel type of percolation—rather surprising given the intr
sic quantum nature of the underlying models. As the rules
this percolation process are asymptoticallyclassical ~al-
though the process isnot conventional percolation!, one
might hope that conformal field theory approaches that t
advantage of the two-dimensional~rather than ‘‘211’’ di-
mensional! structure could perhaps be used to obtain anal
results for some of the properties of such two-dimensio
random quantum systems.
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