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Monte Carlo study of the anisotropic Heisenberg antiferromagnet on the triangular lattice
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We report a Monte Carlo study of the classical antiferromagnetic Heisenberg model with easy axis exchange
anisotropy on the triangular lattice. Both the free energy cost for long-wavelength spin waves as well as for the
formation of free vortices are obtained from the spin stiffness and vorticity modulus, respectively. Evidence for
two distinct Kosterlitz-Thouless types of defect-mediated phase transitions at finite temperatures is presented.

I. INTRODUCTION Il. MODEL

The nature of phase transitions in frustrated systems are The Hamiltonian of the system is given by
generally found to be quite different from those in conven-
tional magnets.Frustration often leads to nontrivial ground- H=+ Z [JS'S{+ 1SS/ +I°5/S]], ()
state degeneracies as in the case of the antiferromagnetic -

spin-1/2 Ising model on the triangular lattit8 The classical where S*,a=x,y,z represents a classical three-component
Heisenberg model on the two-dimensional triangular latticespin of unit magnitude located at each ditef a triangular
with antiferromagnetic nearest-neighbor coupling and easlattice and the exchange interactiodis=JY=J,J°=AJ are
axis exchange anisotropy is another example where frustrdestricted to nearest-neighbor pairs of sites. We shall con-
tion leads to a ground-state degeneracy. Miyashita angider the case where the parameter rafgel represents an
Kawamur4 (MK) have investigated both the ground state€asy axis anisotropy. The limdt—1 corresponds to the iso-
and the nature of harmonic excitations at low temperatures iHOpic Heisenberg modlwhereas the limitA—oc corre-
this model. At zero temperature the spins lie in a plane whictfPonds to an infinite spin Ising modeSouthern and Xu
contains the easy axis. In addition to theS, degeneracy have p_rewously studied the H_elsgnberg I|_m|t and.fqund di-
related to the rotation of this plane about thaxis, there is rect evidence for a vortex unbinding transition at finite tem-

also a nontrivialS; degeneracy of the ground state related foPerature even thpugh the spin §t|ﬁness vamsheg on large
rotations of the spins within the plane. The planar spin Conjength scales. This latter fact indicates that the spin correla-

. . . s . tions decay exponentially at all finite temperatufiesThis
figuration distorts as it is rotated about an axis normal to th S S . .

. . ehavior is quite different from that which occurs in the cor-
plane but the energy remains constant. This degeneracy

. o . t%sponding two-componemty modef where power-law de-
not broken by the harmonic excnqt]ons. Using Monte Ca.rloCay of the correlations appear at low temperatures.
methods, MK measured the specific heat as well as various 1o triangular lattice can be decomposed into three sub-

susceptibilities and suggested that the system undergoes t"fﬁ’[ticesA,B, andC as shown in Fig. 1 with the three spins on

successive phase transitions as the temperature is loweregd, ., triangle labeled & ,Ss, andS.. A chirality vector®
The two transitions indicated the onset of power-law correor each upward pointing triangle is defined as follows:

lations of the spin-spin correlation functions parallel and per-

pendicular to the easy axis. More recently, Sheng and 2

Henley have examined both the effects of finite temperature Ka= = (SaX S+ S X Sc+Sc X Sp). 2

and quantum fluctuations on this nontrivial degeneracy. They 3\3

predicted that the continuous degeneracy at finite temperan the present case of the easy axis antiferromagnet, the low-
turesT is reduced to a discrete sixfold degeneracy and thaemperature spin configuration on each triangle has the spins
an additional phase transition from a floating phase to 3ying in a plane which includes theaxis and which is per-
locked phase occurs at a temperature in between the uppgéndicular to the chirality vector. We introduce a local spin
and lower transitions for large values of the easy axis anisotspace coordinate system for each upward pointing triangle
ropy. using the three unit vectoké,, zand 1,=zxK,. Hence

In the present work, we use a direct method to study th h tors and 1« lie in th in ol & . is the local
free energy cost of both spin wave and vortex formation in"'c VECOrEz and.Ly fie in the spin plane ant 1S the loca

this system at low temperatures. We define a spin stiffnesgormal to the plane. The is a global axis for all triangles
and a vorticity modulus in terms of an equilibrium correla- whereas th&, are only all aligned al =0. AsT increases,
tion function which can be evaluated using standard Montehe local normal directions fluctuate and the spin plane de-
Carlo methods. Our results indicate that there are only twoelops curvature. Hence local coordinates are needed to
transitions and that both correspond to vortex unbindingoroperly define the response properties of the system.
transitions accompanied by power-law decay of spin corre- Information about the rigidity of the system against fluc-
lations. tuations can be obtained from the spin-wave stiffness coeffi-
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FIG. 2. Compact clusters of linear sitecontainingN=3L2
spins used in the Monte Carlo calculations are indicated by the solid
lines. In each case periodic boundary conditions are used which are

FIG. 1. The decomposition of the triangular lattice into three compatible with the three sublattice structure.

sublatticesA,B, andC. The sublattice labels on all black triangles
are the same and represent only one of the six possible choices. A+2
pLII=A2
cient. The spin stiffnesghelicity) tensor is given by the sec- 2(1+A)
ond derivative of the free enertiy*?with respect to the twist
angle about a particular direction in spin space. We apply a
twist about each of the local axes defined above and the

corresponding average stiffness is given by

PKk=pztpL - (4)

These three stiffnesses satisfy a perpendicular axis theorem
which is consistent with the ground state being a planar spin

Pu="— % 2 (élj . l])2<JBSFSjﬁ+J78|VSj7) arrangement. In the Heisenberg limit we haye- p, but for
<] large values ofA they have different energy scales,/J
1 3By 2 ~1/A whereas, /J~A/2. These limiting values can also be
— <[2 (aj-u)()(s,ﬁsjy SVSJ.B) > obtained from the harmonic excitation spectriiffigure 3
NT\ |5 2 shows the results obtained for the three stiffnesses as a func-

(3) tion of T/J for various system sizek with A=2. As the
temperature increases toward'§1=(0.231t0.005)], the

where the superscripts take the values 1 ,,z,K, and stiffness corresponding to the smaller energy sg¢glele-
a,B,y are to be taken in cyclic orde§" denotes the com- creases abruptly and a strong dependence on systerh isize
ponent of the spin at sitein the average direction of the evident indicating that above this temperature the system has
corresponding local unit vectors of the upward pointing tri-no rigidity against twists of the spins about the easy axis.
angles to which the spin belong%i are unit vectors along MK suggested that this transition corresponds to the unbind-

neighboring bonds, and is thedirection of the twistin the

lattice. 120— I N B
We employ compact clusters, as shown in Fig. 2, contain-

ing N spins with periodic boundary conditions applied that 1.0

are consistent with the sublattice structure. The number of

spins is related to the linear siZe of the cluster asN 0.8

=3L2. We have used a single spin-flip heat bath algorithm  ps

to update the spin directions at each Monte Carlo step and all 0.6

thermal averages are replaced by time averages. For the larg-

est value of the system siZe=60 studied we discard the 0.4

first 1.5< 10* Monte Carlo steps and perform averages over

the next 5< 10° steps. 02
The values of the stiffnesses at zero temperature can be

evaluated using the exact classical ground-state correlation 0.lk="

functions. We find these values to be 0.0 02 04 %? 0.8 1.0 12

2A+1 FIG. 3. The three stiffnessgs, p, , andpk in units ofJ as a
function of T/J for system sized. =10,20,30,40,60 whed=2.

p /= —,
z 2(1+A)? The dashed curve represents the lire(2/7)T.
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5 ‘ - | - - | - sal value 2fr for both stiffnesses for all values #f>1. We
have used this criterion to estimate the value§(gfandTC2.

In the same way that the spin stiffness is a measure of the
response of the spin system to a twist over the length of the
lattice, a vorticity can be defined as the response of the spin
system to an imposed twist about a given axisn spin
space along a closed path which encloses a vortex core. This
is essentially the response of the system to an isolated vortex
and can be calculated as the second derivative of the free
energy with respect to the strength of the vortex, or winding
numberm, evaluated am=0. We obtain the following ex-

pression:
T/ 3 AL
Vo 25 (S8 g s
4r & . { {
0.4 . . : |
I (b) = =10 ] J3 & & J5+J7) 2
_ — 1.=20 - RN § Y _ grg/
03 A=2 47TT< |§<:] ( r 2 [Sﬁsj Slsjﬁ] '

pJI 5

02 wherer; is the distance of sitefrom the vortex core ané&i

is tangent to the circulgpath in the latticepassing through

the sitei and enclosing the vortex. Heee B8,y are defined in

the same way as for the stiffnesses and indicate the axis of
rotation of the vortex.

TheV, contain both a core contribution and a part which
is proportional to Ih.. By comparing systems of different
/1 lattice sized ; andL, we can extract the vorticity modulus
v, defined as follows:

0.1

FIG. 4. The spin stiffnessds) px and(b) p, in units ofJ as a
function of T/J for system size& =10,20,30 withA=2,4,6,8. The

dashed curve in both cases represents thediné2/m)T. Va=Cotu,inl ©®)
ing of vortices associated with the chirality vector which lies ysing
primarily in thexy plane. We will provide further support for
this interpretation in Sec. IV.

The remaining two stiffnesses do not vanisfiat but do v _Valla) = Va(Ly) @
exhibit a rapid decrease followed by a more steady decrease “ In(L/Ly)

until a higher temperatureTczz(O.75i0.03)]. At this

higher temperature, the strong dependence of the stiffness Where thev, are normalized so that they have the same
on system sizel indicates that the system loses rigidity Zero-temperature values as the corresponding stiffnesses.
against rotations about the local chirality axes. TheOur approach does not require any change in boundary con-
Kosterlitz-Thoules$KT) theory**~1for the xy model in two ditions and is applied directly to the antiferromagnetic
dimensions predicts a universal value for the raiigT, ~ model. N _

equal to 2#. The dashed line in Fig. 3 correspondsptd _Figure 5 shows our results for the vorticity moduli ob-
=2/r and intersects the stiffnesses at temperatures whef@ined by comparing systems of different sizes when2.
finite-size effects first appear. The stiffnesgesand p in-  The behavior of the moduli as a function of increasing tem-
dicate two temperatures where rigidity of the system abouP€rature is identical to t.he spin stlffnesses_shown in Fig. 3.
the z axis is first lost followed by a loss of rigidity about the The vorticity modulus, is only weakly sensitive to the two
local chirality axis with an apparent universal value for thefransitions and is not plotted. The vanishing of the vorticity
ratio p./T.. in each case. The third stiffneps has a change Moduliv, andvy atT;, andT,,, respectively, indicates that

in curvature at the two transitions but remains finite to highfree vortices appear at these two transition temperatures. The
temperatures. Similar behavior is found for other value8 of results are also consistent with a universal valygT.

as well. Figures @) and 4b) show our results fopx and  =2/#. Similar behavior is found for the values=2,4,6,8.

p,, respectively, for the values=2,4,6,8. The dashed line The results presented so far do not indicate directly that
plotted in both figures corresponds 6T =2/7 and in each power-law decay of correlations are present below these two
case this line intersects the stiffnesses at the temperaturgggnsition temperatures. In the next section we present results
where finite-size effects first become significant. These refor the spin-spin structure factor which are also consistent
sults indicate that the ratjo. /T appears to have the univer- with KT transitions.
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FIG. 5. The vorticity modulivk andv, in units of J as a func- FIG. 6. The correlation function exponents-%, and 2— 7, as
tion of T/J obtained using various pairs of system sizes when a function ofT/J obtained by comparing various system sizes with
=2. The solid curves represent the average of all pairs for eacA=2. The dashed line corresponds#e-1/4.
modulus. The dashed curve represents theding2/m)T.

sumption that the dependence le and T, on A is the

same as the zero-temperature valuepoéndp, , respec-

We have also studied the spin-spin structure factor fotively, then we have
various system sizes

Ill. STRUCTURE FACTOR

4(2A+1)
1 o~ Te 3(1+A)2
s*(@) =5 2 (SISHe ), ®
h AA2(A+2)
i gl XX e, = Tc 5 (10
where a=X,y,z . In particular, we have studie§ =S 2 3(1+A)

+SY andS** as a function of botly andT. In both cases the . . Lo

Fourier componenQ=(4/3,0) exhibits a divergence at Where the values df;, andT,, in the isotropic limitA=1

and below the two transition temperaturgg and T, re- ~ are both equal td .= (.305+.005)).° These expressions are
spectively. Other values af only exhibit a maximum. This plotted as the solid curves in Fig. 7 and the agreement with

Fourier component corresponds to the three-sublattice strud?e ﬂat? points is re;mr?rkable. i val h
ture associated with the triangles. If we assume power-law T € m_ut A—w® 0 t e present mOde. IS equiva ent to the
decay of the spin-spin correlation functions, then the struc>—> limit of the antiferromagnetic spii$ Ising model on

ture factors should depend on the system &izes follows: the same lattice with couplingJ. The solid curve forT02

4r

SHQ~L2 7

SH(Q)~L2 7, ©) 3

where 7, and n, are the corresponding correlation length

exponents. T/ 2
Figure 6 shows the values of-25, and 2— 5, as a func-

tion of T/J obtained by comparing systems of different sizes

with A=2. The dashed line indicates the valye 1/4 pre- 1

dicted by the KT theory and intersects both exponents at

temperatures where a strong dependence on system size firs

appears. Similar results were obtained for other values. of ok

The universal value ofy,= n, =1/4 is consistent with the

universal value op./T.=2/7 andv./T.=2/7 obtained in

Sec. Il. FIG. 7. The transition temperaturds /J (lowen and T, /J

We have used these tvyo criteria to Obtain t.he tempera('uppeb as a function ofA determined using the universal value of
turesT,; andTe, as a function oA as shown in Fig. 7. The  (he siiffnessp and the universal value of are shown by the
values obtained from the stiffnesses and the structure factokgyares and circles, respectively. The value at the Heisenberg point

agree with each other fairly well. The error barsTigreflect  (A=1) is indicated by the diamond and was obtained from previ-
contributions from the statistical uncertainty of the Monte ous vorticity results. The solid curves are obtained by assuming that
Carlo measurements, as well as estimated systematic contthese two temperatures are proportional to The0 values ofp,
butions due to finite-size effects. If we make the simple asandp, , respectively.
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j \ . sublattices in thel ,z plane for values off in the range 0
A= ) A A <y=<2m/3. The top row corresponds #®=2 and the bot-
LN Y v ,;{____“;/ ] tom row toA— . Also shown are the corresponding direc-
,/ N\ / [ \ N\ tions of ¢y andM  which are independent of the value Af
=0 y=n/6 y=n/3 y=n/2 y=2n/3 Rotations of the angles by 2/3 correspond to interchanges
; of the sublattice spin directions and to a complete rotation of
i \ < o M, by 27. Hence vortexlike configurations dfl, simply
: ' ~ correspond to switches of the sublattice magnetizations. For

large values of the easy axis anisotropy, the spin configura-

j tions become more Ising-like. In the ranges @< /3, sub-
A>>1 | — A latticesA andB remain locked parallel to the easy axis while
| 1[ sublattice C simply follows M,. In the range 7/3<y

[ [ 1 [ <2/3, the roles are interchanged with sublatticéollow-

ing the direction oM. These sublattice changes as a func-
FIG. 8. Ground-state spin configurations for valuesjoh the  tion of ¢ are similar to the domain transition regions de-

range O< y<2/3 for A=2 andA>1. The horizontal and vertical ~scribed by Wanniérfor the S=1/2 Ising model af=0. In

axes arelL andz, respectively. The corresponding directionsyof  this latter case, the transition regions contribute to the mac-

andM, are independent of the value Afand are indicated in the roscopic entropy of the system and to the power-law decay

middle row by the solid and dashed arrows, respectively. of correlations with wave vectd@.3

The moduli of the complex numbeMg=Mgz+iM{ and

approaches the valuk.,/AJ~.407=.007 in this limit. This ;. _ Mk+iM: are not constant in the ground state but the
value is also in excellent agreement with that obtained bY:o(r?nbination

Nagai, Horiguchi, and Miyashitafor the S= Ising model.

In the next section we give a more detailed microscopic de-
scription of these phases. MZ+iML= (4A+2)(A+2)emf (13)
e e (1+A)2

has constant modulus and a phase adglhich has a lead-
The three spinS,,Ss, andSc on each triangle can be ing term linear iny but with an additional small sixfold

IV. MICROSCOPIC PROPERTIES

expressed in terms of the following three vectors modulation. At low temperatures the chirality vector lies in
thexy plane and it can be described by the complex number
Mo=Sa+Sg+ ., :
Ky +iK,=VKZ+K2e®, (14
1 1
Mr=S2— 35S~ 55 where the modulus is not constant but exhibits only a weak

cos(6)) variation in the ground state. These two phase angles
J3 G). and ¥ desc_:r_ibe the complex order pa.rameters associated
M|=7(SB—Sc)- (11  with the transitions af, and Te,, res;.)ecuvely.

Our Monte Carlo procedure permits us to take snapshots
The vectorsMy and M, are the real and imaginary parts of of the spin configurations at various temperatures. In order to
the complex Fourier componeM o=Mg+iM; where Q separate the topological defects from the continuous defor-
=(4/3,0). In addition, the chirality for each triangle can be mations of the spin configurations, we first raise the tempera-
written asK = e Mgx M, . ture to some fixed value and allow the system to reach equi-

In the ground state the three spins lie in a plane whicHibrium. We then rapidly quench the system to low
includes thez axis. We denote the angle that each sublatticdemperatures and allow the system to approach a nonequilib-

spin makes with the axis by 6,,, and define rium configuration. The topological defects are metastable at
low temperatures and require a much longer time to disap-
= (0p+ Og+ 6c)/3, (12 pear than the continuous deformations. In Figs. 9 and 10 we

show snapshots of the spin configuration at very low tem-
N 8eratures obtained by heating the system amYeinchz,

éespectively, and then rapidly quenching. In both ca&as,
describes the spatial variation of the chirality an@leand
(b) describes the anglé.

Figure 9 shows snapshots of the spin configuration for a

where O< ¢y<27. We measure/ relative to thez axis in the
counterclockwise direction. As discussed by Sheng a
Henley? the nontrivial degeneracy of the ground state can b
parameterized in terms of the angtelt has been previously
pointed out that both the energy and the magnitudd gare
constant in the ground-state manifaItf However, it is easy : . .
to show that the modulus of the complex veckdg, is also cluster of size. =20 with A=2 after quenching from a tem-
constant. In the Appendix we give some exact results for th@erature off =0.5J, just aboveTcl. Vortices associated with
components of these vectors in the ground state. The the angle® are clearly visible in(a) whereas only continu-
components of these two vectors dependdo'm quite dif- ous distortions of the angl$ are visible in(b). These vor-
ferent ways. The Components MO have per|0d|c|ty 2rl3 tices in® Only perSiSt at lowl if the SyStem is first heated to
whereas the vectomslz andM, have period . aT>Te, and then quenched. They are metastable configura-

Figure 8 shows ground state spin configurations of theions at this lower temperature but become stablB.atOur



PRB 61 MONTE CARLO STUDY OF THE ANISOTRORT . .. 11519

~ local magnetization vectoM,. In the range ofA that we
have studied, we have not observed a transition from sublat-
tice switching to a partially ordered phase where one of the

i sublattices is locked in the z direction, another in the-z

El direction, and the third perpendicular to thaxis. Sheng and

> Henley predicted that such a locking transition might occur
at low enough temperature.
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V. SUMMARY

<

We have presented strong evidence for the occurence of
two distinct Kosterlitz-Thouless types of defect-mediated

FIG. 9. Snapshots df) the chirality angle® and(b) the angle  phase transitions in the Heisenberg antiferromagnet on the
4 at very low temperature following a quench from just abdye  triangular lattice with easy axis anisotropy. A numerical ap-
for A=2 andL=20. The dots indicate the positions of the black proach was used to calculate the rigidity of the system
triangles shown in Fig. 1 and the lines indicate the local direction ofagainst both spin-wave deformations and the formation of
either® or ¢. free vortices at low temperatures for several values of the
easy axis anisotropy. In each case a universal value of the

results provide direct evidence for a vortex unbinding tran-Stiffness or vorticity modulus,p./Tc=v./Tc=2/m, was
sition atTcl involving the chirality vector. Figure 10 shows found..ln addition, the spin-correlation length exponent has
similar snapshots when the system is first heated to a ten® universal value;=1/4. These are the same values that

_ ; are predicted by the Kosterlitz-Thouless theory for defect
peratureT =3J, well aboveTe,, and then rapidly quenched. unbinding transitions in two dimensions. The two phase

Vortices in both® and are clearly visible in this case. The angles identified in Eq¢13) and(14) in Sec. IV describe the

vortices in ¢ are only visible after quenching from above complex order parameters associated with the transitions at
Te,- Hence the upper transition corresponds to a vortex uny_ andT,,, respeciively.

binding transition associated with the sublattice ordering ZWe find that the spin stiffnesses and the corresponding
vectorMgq, . , . . vorticity moduli behave identically for the easy axis case
We have also studied how the sublattice magnetizations. ; | contrast, at the isotropic Heisenberg limit, the spin

change as we update the spin configurations. In the tempergitness vanishes at large length scales whereas the vorticity
ture rangeT<T, there is a continuous sublattice switching o 4uli are nonzero at oW and vanish abruptly at a finite
that occurs. The time scale for the switching depends both ofemperaturd. Our previous work on thery modef also in-

T and system size increasing withl and 1T. We have not  dicated that the vorticity and stiffness behave identically.
been able to determine a scaling form for this time scaleThis corresponds to th@— — o limit where there are again
Similar behavior has been reported previously for other frustwo transitions but they are very close in temperature with
trated systems on the triangular lattice. The antiferromagthe upper transition corresponding to an Ising-like transition
netic spin 1/2 Ising model with both nearest- andand the lower to a Kosterlitz-Thouless transition. Recent
next-nearest-neighbor interactiofié’ as well as the antifer- work by Capriottiet al?® has also found similar behavior in
romagneticS=c nearest-neighbor modél"? exhibit this  the range @ A<1. Hence the Heisenberg point is a multi-
phenomena in the temperature range where a KT phase ogritical point where four phase transition lines meet. Por
curs. In our case, the switching is due to the wavelike varia=>1 there are two KT transition lines whereas as Aor 1
tions in ¢ which can produce “vortexlike” variations in the there is an Ising and KT line.
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eracy of the ground-state configuration. Other grédps
have studied the effects of quantum fluctuations on this de-
generacy. One indicator of the degeneracy is that the magne-
(a) (b) tization vectorM, has a constant magnitude in the ground
state independent of the value #f In particular we find the
following exact relations

N
1
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FIG. 10. Snapshots @8) the chirality angle® and(b) the angle
¢ at very low temperature following a quench from abc'ﬁg; for
A=2 andL=20. The dots indicate the positions of the black tri-
angles shown in Fig. 1 and the lines indicate the local direction of M-
either® or . 0
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A-1

A+1

z

Mo

cog3¢),

2
: (A1)

A-1
A+1

wherey is measured counterclockwise from thaxis in the
1,z plane. A rotation oM by 27r corresponds to rotating
by 27/3 which is simply a cyclic permutation of the sublat-
tices on the triangle. Hence vorticeshy can be associated
with sublattice switching.

In addition toM,, the complex vectoM g also has con-
stant modulus,

Mo'MOZ

4A%2+10A+ 4

Mg-M_g=Mg-Mg+M,-M,=
Q Q R MR 1+ M (1+A)2

(A2)
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The moduli of the components dfl,, as well as the
chirality, are not constant in the ground state but depend on
¢ as follows

2

2
3A2+6A 02 (30),

A-1
z1|2
Mgl A+1

= +
© (1+A)7

6A+3

A-1
IMg2=
(1+A)

A+1
4 [ \2A+A?
33| (A+1)?

N V1+2A

(1+A)?

2
Sin(3y),

(2+A)cog(3y)

(1+2A)sinz(3¢)>. (A3)
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