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Monte Carlo study of the anisotropic Heisenberg antiferromagnet on the triangular lattice

W. Stephan* and B. W. Southern
Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

~Received 23 November 1999!

We report a Monte Carlo study of the classical antiferromagnetic Heisenberg model with easy axis exchange
anisotropy on the triangular lattice. Both the free energy cost for long-wavelength spin waves as well as for the
formation of free vortices are obtained from the spin stiffness and vorticity modulus, respectively. Evidence for
two distinct Kosterlitz-Thouless types of defect-mediated phase transitions at finite temperatures is presented.
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I. INTRODUCTION

The nature of phase transitions in frustrated systems
generally found to be quite different from those in conve
tional magnets.1 Frustration often leads to nontrivial ground
state degeneracies as in the case of the antiferromag
spin-1/2 Ising model on the triangular lattice.2,3 The classical
Heisenberg model on the two-dimensional triangular latt
with antiferromagnetic nearest-neighbor coupling and e
axis exchange anisotropy is another example where frus
tion leads to a ground-state degeneracy. Miyashita
Kawamura4 ~MK ! have investigated both the ground sta
and the nature of harmonic excitations at low temperature
this model. At zero temperature the spins lie in a plane wh
contains the easyz axis. In addition to theS1 degeneracy
related to the rotation of this plane about thez axis, there is
also a nontrivialS1 degeneracy of the ground state related
rotations of the spins within the plane. The planar spin c
figuration distorts as it is rotated about an axis normal to
plane but the energy remains constant. This degenerac
not broken by the harmonic excitations. Using Monte Ca
methods, MK measured the specific heat as well as var
susceptibilities and suggested that the system undergoes
successive phase transitions as the temperature is low
The two transitions indicated the onset of power-law cor
lations of the spin-spin correlation functions parallel and p
pendicular to the easy axis. More recently, Sheng
Henley5 have examined both the effects of finite temperat
and quantum fluctuations on this nontrivial degeneracy. T
predicted that the continuous degeneracy at finite temp
turesT is reduced to a discrete sixfold degeneracy and
an additional phase transition from a floating phase t
locked phase occurs at a temperature in between the u
and lower transitions for large values of the easy axis ani
ropy.

In the present work, we use a direct method to study
free energy cost of both spin wave and vortex formation
this system at low temperatures. We define a spin stiffn
and a vorticity modulus in terms of an equilibrium correl
tion function which can be evaluated using standard Mo
Carlo methods. Our results indicate that there are only
transitions and that both correspond to vortex unbind
transitions accompanied by power-law decay of spin co
lations.
PRB 610163-1829/2000/61~17!/11514~7!/$15.00
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II. MODEL

The Hamiltonian of the system is given by

H51(
i , j

@JxSi
xSj

x1JySi
ySj

y1JzSi
zSj

z#, ~1!

where Si
a ,a5x,y,z represents a classical three-compon

spin of unit magnitude located at each sitei of a triangular
lattice and the exchange interactionsJx5Jy5J,Jz5AJ are
restricted to nearest-neighbor pairs of sites. We shall c
sider the case where the parameter rangeA>1 represents an
easy axis anisotropy. The limitA→1 corresponds to the iso
tropic Heisenberg model6 whereas the limitA→` corre-
sponds to an infinite spin Ising model.7 Southern and Xu8

have previously studied the Heisenberg limit and found
rect evidence for a vortex unbinding transition at finite te
perature even though the spin stiffness vanishes on la
length scales. This latter fact indicates that the spin corr
tions decay exponentially at all finite temperaturesT. This
behavior is quite different from that which occurs in the co
responding two-componentxy model9 where power-law de-
cay of the correlations appear at low temperatures.

The triangular lattice can be decomposed into three s
latticesA,B, andC as shown in Fig. 1 with the three spins o
each triangle labeled asSA ,SB , andSC . A chirality vector10

for each upward pointing triangle is defined as follows:

KD5
2

3A3
~SA3SB1SB3SC1SC3SA!. ~2!

In the present case of the easy axis antiferromagnet, the
temperature spin configuration on each triangle has the s
lying in a plane which includes thez axis and which is per-
pendicular to the chirality vector. We introduce a local sp
space coordinate system for each upward pointing trian
using the three unit vectorsK̂D , ẑ and�̂D5 ẑ3K̂D . Hence
the vectorsẑ and�̂D lie in the spin plane andK̂D is the local
normal to the plane. Theẑ is a global axis for all triangles
whereas theK̂D are only all aligned atT50. As T increases,
the local normal directions fluctuate and the spin plane
velops curvature. Hence local coordinates are needed
properly define the response properties of the system.

Information about the rigidity of the system against flu
tuations can be obtained from the spin-wave stiffness coe
11 514 ©2000 The American Physical Society
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cient. The spin stiffness~helicity! tensor is given by the sec
ond derivative of the free energy11,12with respect to the twist
angle about a particular direction in spin space. We app
twist about each of the local axes defined above and
corresponding average stiffness is given by

ra52
1

N (
i , j

~ êi j •û!2^JbSi
bSj

b1JgSi
gSj

g&

2
1

NT K F(
i , j

~ êi j •û!S Jb1Jg

2 D ~Si
bSj

g2Si
gSj

b!G2L ,

~3!

where the superscripts take the valuesa5'D ,z,KD and
a,b,g are to be taken in cyclic order.Si

a denotes the com
ponent of the spin at sitei in the average direction of th
corresponding local unit vectors of the upward pointing
angles to which the spin belongs,êi j are unit vectors along
neighboring bonds, andû is thedirection of the twist in the
lattice.

We employ compact clusters, as shown in Fig. 2, conta
ing N spins with periodic boundary conditions applied th
are consistent with the sublattice structure. The numbe
spins is related to the linear sizeL of the cluster asN
53L2. We have used a single spin-flip heat bath algorithm13

to update the spin directions at each Monte Carlo step an
thermal averages are replaced by time averages. For the
est value of the system sizeL560 studied we discard th
first 1.53104 Monte Carlo steps and perform averages o
the next 53105 steps.

The values of the stiffnesses at zero temperature ca
evaluated using the exact classical ground-state correla
functions. We find these values to be

rz /J5
2A11

2~11A!2
,

FIG. 1. The decomposition of the triangular lattice into thr
sublatticesA,B, andC. The sublattice labels on all black triangle
are the same and represent only one of the six possible choice
a
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-
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r' /J5A2
A12

2~11A!2
,

rK5rz1r' . ~4!

These three stiffnesses satisfy a perpendicular axis theo
which is consistent with the ground state being a planar s
arrangement. In the Heisenberg limit we haverz5r' but for
large values ofA they have different energy scales,rz /J
;1/A whereasr' /J;A/2. These limiting values can also b
obtained from the harmonic excitation spectrum.5 Figure 3
shows the results obtained for the three stiffnesses as a f
tion of T/J for various system sizesL with A52. As the
temperature increases towardsTc1

5(0.23160.005)J, the

stiffness corresponding to the smaller energy scalerz de-
creases abruptly and a strong dependence on system sizL is
evident indicating that above this temperature the system
no rigidity against twists of the spins about the easy ax
MK suggested that this transition corresponds to the unb

.

FIG. 2. Compact clusters of linear sizeL containingN53L2

spins used in the Monte Carlo calculations are indicated by the s
lines. In each case periodic boundary conditions are used which
compatible with the three sublattice structure.

FIG. 3. The three stiffnessesrz , r' , andrK in units of J as a
function of T/J for system sizesL510,20,30,40,60 whenA52.
The dashed curve represents the liner5(2/p)T.
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ing of vortices associated with the chirality vector which li
primarily in thexy plane. We will provide further support fo
this interpretation in Sec. IV.

The remaining two stiffnesses do not vanish atTc1
but do

exhibit a rapid decrease followed by a more steady decre
until a higher temperatureTc2

5(0.7560.03)J. At this

higher temperature, the strong dependence of the stiffnesrK
on system sizeL indicates that the system loses rigidi
against rotations about the local chirality axes. T
Kosterlitz-Thouless~KT! theory14–16for thexy model in two
dimensions predicts a universal value for the ratiorc /Tc
equal to 2/p. The dashed line in Fig. 3 corresponds tor/T
52/p and intersects the stiffnesses at temperatures w
finite-size effects first appear. The stiffnessesrz andrK in-
dicate two temperatures where rigidity of the system ab
thez axis is first lost followed by a loss of rigidity about th
local chirality axis with an apparent universal value for t
ratio rc /Tc in each case. The third stiffnessr' has a change
in curvature at the two transitions but remains finite to h
temperatures. Similar behavior is found for other values oA
as well. Figures 4~a! and 4~b! show our results forrK and
rz , respectively, for the valuesA52,4,6,8. The dashed lin
plotted in both figures corresponds tor/T52/p and in each
case this line intersects the stiffnesses at the tempera
where finite-size effects first become significant. These
sults indicate that the ratiorc /Tc appears to have the unive

FIG. 4. The spin stiffnesses~a! rK and ~b! rz in units of J as a
function ofT/J for system sizesL510,20,30 withA52,4,6,8. The
dashed curve in both cases represents the liner5(2/p)T.
se

e

re

t

res
-

sal value 2/p for both stiffnesses for all values ofA.1. We
have used this criterion to estimate the values ofTc1

andTc2
.

In the same way that the spin stiffness is a measure of
response of the spin system to a twist over the length of
lattice, a vorticity8 can be defined as the response of the s
system to an imposed twist about a given axisa in spin
space along a closed path which encloses a vortex core.
is essentially the response of the system to an isolated vo
and can be calculated as the second derivative of the
energy with respect to the strength of the vortex, or wind
numberm, evaluated atm50. We obtain the following ex-
pression:

Va52
A3

4p (
i , j

S êi j •f̂i

r i
D 2

^JbSi
bSj

b1JgSi
gSj

g&

2
A3

4pT K F(
i , j

S êi j •f̂i

r i
D S Jb1Jg

2 D @Si
bSj

g2Si
gSj

b#G2L ,

~5!

wherer i is the distance of sitei from the vortex core andf̂i
is tangent to the circularpath in the latticepassing through
the sitei and enclosing the vortex. Herea,b,g are defined in
the same way as for the stiffnesses and indicate the axi
rotation of the vortex.

TheVa contain both a core contribution and a part whi
is proportional to lnL. By comparing systems of differen
lattice sizesL1 andL2 we can extract the vorticity modulu
va defined as follows:

Va5Ca1valn L ~6!

using

va5
Va~L2!2Va~L1!

ln~L2 /L1!
, ~7!

where theva are normalized so that they have the sa
zero-temperature values as the corresponding stiffnes
Our approach does not require any change in boundary
ditions and is applied directly to the antiferromagne
model.

Figure 5 shows our results for the vorticity moduli o
tained by comparing systems of different sizes whenA52.
The behavior of the moduli as a function of increasing te
perature is identical to the spin stiffnesses shown in Fig
The vorticity modulusv' is only weakly sensitive to the two
transitions and is not plotted. The vanishing of the vortic
moduli vz andvK at Tc1

andTc2
, respectively, indicates tha

free vortices appear at these two transition temperatures.
results are also consistent with a universal valuevc /Tc
52/p. Similar behavior is found for the valuesA52,4,6,8.

The results presented so far do not indicate directly t
power-law decay of correlations are present below these
transition temperatures. In the next section we present res
for the spin-spin structure factor which are also consist
with KT transitions.
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III. STRUCTURE FACTOR

We have also studied the spin-spin structure factor
various system sizesL

Saa~q!5
1

N (
i , j

^Si
aSj

a&eiq.(r i2r j ), ~8!

where a5x,y,z . In particular, we have studiedS'5Sxx

1Syy andSzz as a function of bothq andT. In both cases the
Fourier componentQ5(4p/3,0) exhibits a divergence a
and below the two transition temperaturesTc1

and Tc2
, re-

spectively. Other values ofq only exhibit a maximum. This
Fourier component corresponds to the three-sublattice s
ture associated with the triangles. If we assume power-
decay of the spin-spin correlation functions, then the str
ture factors should depend on the system sizeL as follows:

Szz~Q!;L22hz,

S'~Q!;L22h', ~9!

where hz and h' are the corresponding correlation leng
exponents.

Figure 6 shows the values of 22hz and 22h' as a func-
tion of T/J obtained by comparing systems of different siz
with A52. The dashed line indicates the valueh51/4 pre-
dicted by the KT theory and intersects both exponents
temperatures where a strong dependence on system size
appears. Similar results were obtained for other values oA.
The universal value ofhz5h'51/4 is consistent with the
universal value ofrc /Tc52/p andvc /Tc52/p obtained in
Sec. II.

We have used these two criteria to obtain the tempe
turesTc1 andTc2 as a function ofA as shown in Fig. 7. The
values obtained from the stiffnesses and the structure fac
agree with each other fairly well. The error bars inTc reflect
contributions from the statistical uncertainty of the Mon
Carlo measurements, as well as estimated systematic co
butions due to finite-size effects. If we make the simple

FIG. 5. The vorticity modulivK andvz in units of J as a func-
tion of T/J obtained using various pairs of system sizes whenA
52. The solid curves represent the average of all pairs for e
modulus. The dashed curve represents the linev5(2/p)T.
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sumption that the dependence ofTc1
and Tc2

on A is the

same as the zero-temperature values ofrz and r' , respec-
tively, then we have

Tc1
5Tc

4~2A11!

3~11A!2
,

Tc2
5Tc

4A2~A12!

3~11A!2
, ~10!

where the values ofTc1
andTc2

in the isotropic limitA51

are both equal toTc5(.3056.005)J.8 These expressions ar
plotted as the solid curves in Fig. 7 and the agreement w
the data points is remarkable.

The limit A→` of the present model is equivalent to th
S→` limit of the antiferromagnetic spinS Ising model on
the same lattice with couplingAJ. The solid curve forTc2

h

FIG. 6. The correlation function exponents 22h' and 22hz as
a function ofT/J obtained by comparing various system sizes w
A52. The dashed line corresponds toh51/4.

FIG. 7. The transition temperaturesTc1
/J ~lower! and Tc2

/J
~upper! as a function ofA determined using the universal value
the stiffnessr and the universal value ofh are shown by the
squares and circles, respectively. The value at the Heisenberg
(A51) is indicated by the diamond and was obtained from pre
ous vorticity results. The solid curves are obtained by assuming
these two temperatures are proportional to theT50 values ofrz

andr' , respectively.
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11 518 PRB 61W. STEPHAN AND B. W. SOUTHERN
approaches the valueTc2 /AJ;.4076.007 in this limit. This
value is also in excellent agreement with that obtained
Nagai, Horiguchi, and Miyashita17 for theS5` Ising model.
In the next section we give a more detailed microscopic
scription of these phases.

IV. MICROSCOPIC PROPERTIES

The three spinsSA ,SB , and SC on each triangle can b
expressed in terms of the following three vectors

M05SA1SB1SC ,

MR5SA2
1

2
SB2

1

2
SC,

M I5
A3

2
~SB2SC!. ~11!

The vectorsMR andM I are the real and imaginary parts
the complex Fourier componentMQ5MR1 iM I where Q
5(4p/3,0). In addition, the chirality for each triangle can b
written asK5 4

9 MR3M I .
In the ground state the three spins lie in a plane wh

includes thez axis. We denote the angle that each sublatt
spin makes with thez axis byua , and define

c5~uA1uB1uC!/3, ~12!

where 0<c<2p. We measurec relative to thez axis in the
counterclockwise direction. As discussed by Sheng
Henley,5 the nontrivial degeneracy of the ground state can
parameterized in terms of the anglec. It has been previously
pointed out that both the energy and the magnitude ofM0 are
constant in the ground-state manifold.5,18 However, it is easy
to show that the modulus of the complex vectorMQ is also
constant. In the Appendix we give some exact results for
components of these vectors in the ground state. The',z
components of these two vectors depend onc in quite dif-
ferent ways. The components ofM0 have periodicity 2p/3
whereas the vectorsMR andM I have period 2p.

Figure 8 shows ground state spin configurations of

FIG. 8. Ground-state spin configurations for values ofc in the
range 0<c<2p/3 for A52 andA@1. The horizontal and vertica
axes are' and z, respectively. The corresponding directions ofc
andM0 are independent of the value ofA and are indicated in the
middle row by the solid and dashed arrows, respectively.
y
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sublattices in the',z plane for values ofc in the range 0
<c<2p/3. The top row corresponds toA52 and the bot-
tom row toA→`. Also shown are the corresponding dire
tions of c andM0 which are independent of the value ofA.
Rotations of the anglec by 2p/3 correspond to interchange
of the sublattice spin directions and to a complete rotation
M0 by 2p. Hence vortexlike configurations ofM0 simply
correspond to switches of the sublattice magnetizations.
large values of the easy axis anisotropy, the spin configu
tions become more Ising-like. In the range 0<c<p/3, sub-
latticesA andB remain locked parallel to the easy axis whi
sublattice C simply follows M0. In the rangep/3<c
<2p/3, the roles are interchanged with sublatticeA follow-
ing the direction ofM0. These sublattice changes as a fun
tion of c are similar to the domain transition regions d
scribed by Wannier2 for the S51/2 Ising model atT50. In
this latter case, the transition regions contribute to the m
roscopic entropy of the system and to the power-law de
of correlations with wave vectorQ.3

The moduli of the complex numbersMQ
z 5MR

z 1 iM I
z and

MQ
'5MR

'1 iM I
' are not constant in the ground state but t

combination

MQ
z 1 iM Q

'5A~4A12!~A12!

~11A!2
eiC ~13!

has constant modulus and a phase angleC which has a lead-
ing term linear inc but with an additional small sixfold
modulation. At low temperatures the chirality vector lies
thexy plane and it can be described by the complex num

Kx1 iK y5AKx
21Ky

2eiQ, ~14!

where the modulus is not constant but exhibits only a we
cos(6c) variation in the ground state. These two phase ang
Q andC describe the complex order parameters associa
with the transitions atTc1

andTc2
, respectively.

Our Monte Carlo procedure permits us to take snapsh
of the spin configurations at various temperatures. In orde
separate the topological defects from the continuous de
mations of the spin configurations, we first raise the tempe
ture to some fixed value and allow the system to reach e
librium. We then rapidly quench the system to lo
temperatures and allow the system to approach a nonequ
rium configuration. The topological defects are metastabl
low temperatures and require a much longer time to dis
pear than the continuous deformations. In Figs. 9 and 10
show snapshots of the spin configuration at very low te
peratures obtained by heating the system aboveTc1

andTc2
,

respectively, and then rapidly quenching. In both cases,~a!
describes the spatial variation of the chirality angleQ and
~b! describes the anglec.

Figure 9 shows snapshots of the spin configuration fo
cluster of sizeL520 with A52 after quenching from a tem
perature ofT50.5J, just aboveTc1

. Vortices associated with

the angleQ are clearly visible in~a! whereas only continu-
ous distortions of the anglec are visible in~b!. These vor-
tices inQ only persist at lowT if the system is first heated to
a T.Tc1

and then quenched. They are metastable config

tions at this lower temperature but become stable atTc1
. Our
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results provide direct evidence for a vortex unbinding tra
sition atTc1

involving the chirality vector. Figure 10 show
similar snapshots when the system is first heated to a t
peratureT53J, well aboveTc2

, and then rapidly quenched

Vortices in bothQ andc are clearly visible in this case. Th
vortices in c are only visible after quenching from abov
Tc2

. Hence the upper transition corresponds to a vortex
binding transition associated with the sublattice order
vectorMQ .

We have also studied how the sublattice magnetizati
change as we update the spin configurations. In the temp
ture rangeT,Tc2

there is a continuous sublattice switchin
that occurs. The time scale for the switching depends both
T and system sizeL increasing withL and 1/T. We have not
been able to determine a scaling form for this time sca
Similar behavior has been reported previously for other fr
trated systems on the triangular lattice. The antiferrom
netic spin 1/2 Ising model with both nearest- a
next-nearest-neighbor interactions19,20 as well as the antifer-
romagneticS5` nearest-neighbor model7,21,22 exhibit this
phenomena in the temperature range where a KT phase
curs. In our case, the switching is due to the wavelike va
tions in c which can produce ‘‘vortexlike’’ variations in the

FIG. 9. Snapshots of~a! the chirality angleQ and~b! the angle
c at very low temperature following a quench from just aboveTc1

for A52 andL520. The dots indicate the positions of the bla
triangles shown in Fig. 1 and the lines indicate the local direction
eitherQ or c.

FIG. 10. Snapshots of~a! the chirality angleQ and~b! the angle
c at very low temperature following a quench from aboveTc2

for
A52 andL520. The dots indicate the positions of the black t
angles shown in Fig. 1 and the lines indicate the local direction
eitherQ or c.
-

-

n-
g

s
ra-

n

.
-
-

c-
-

local magnetization vectorM0. In the range ofA that we
have studied, we have not observed a transition from sub
tice switching to a partially ordered phase where one of
sublattices is locked in the1z direction, another in the2z
direction, and the third perpendicular to thez axis. Sheng and
Henley5 predicted that such a locking transition might occ
at low enough temperature.

V. SUMMARY

We have presented strong evidence for the occurenc
two distinct Kosterlitz-Thouless types of defect-mediat
phase transitions in the Heisenberg antiferromagnet on
triangular lattice with easy axis anisotropy. A numerical a
proach was used to calculate the rigidity of the syst
against both spin-wave deformations and the formation
free vortices at low temperatures for several values of
easy axis anisotropy. In each case a universal value of
stiffness or vorticity modulus,rc /Tc5vc /Tc52/p, was
found. In addition, the spin-correlation length exponent h
the universal valueh51/4. These are the same values th
are predicted by the Kosterlitz-Thouless theory for def
unbinding transitions in two dimensions. The two pha
angles identified in Eqs.~13! and~14! in Sec. IV describe the
complex order parameters associated with the transition
Tc2

andTc1
, respectively.

We find that the spin stiffnesses and the correspond
vorticity moduli behave identically for the easy axis caseA
.1. In contrast, at the isotropic Heisenberg limit, the sp
stiffness vanishes at large length scales whereas the vort
moduli are nonzero at lowT and vanish abruptly at a finite
temperature.8 Our previous work on thexy model9 also in-
dicated that the vorticity and stiffness behave identica
This corresponds to theA→2` limit where there are again
two transitions but they are very close in temperature w
the upper transition corresponding to an Ising-like transit
and the lower to a Kosterlitz-Thouless transition. Rec
work by Capriottiet al.23 has also found similar behavior i
the range 0,A,1. Hence the Heisenberg point is a mul
critical point where four phase transition lines meet. ForA
.1 there are two KT transition lines whereas as forA,1
there is an Ising and KT line.
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APPENDIX

Miyashita and Kawamura4 identified the nontrivial degen
eracy of the ground-state configuration. Other groups5,18

have studied the effects of quantum fluctuations on this
generacy. One indicator of the degeneracy is that the ma
tization vectorM0 has a constant magnitude in the grou
state independent of the value ofc. In particular we find the
following exact relations

M0
'52S A21

A11D sin~3c!,

f

f



on
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M0
z52S A21

A11D cos~3c!,

M0•M05S A21

A11D 2

, ~A1!

wherec is measured counterclockwise from thez axis in the
',z plane. A rotation ofM0 by 2p corresponds to rotatingc
by 2p/3 which is simply a cyclic permutation of the sublat-
tices on the triangle. Hence vortices inM0 can be associated
with sublattice switching.

In addition toM0, the complex vectorMQ also has con-
stant modulus,

MQ•MÀQ5MR•MR1M I•M I5
4A2110A14

~11A!2
. ~A2!
J

o

The moduli of the components ofMQ , as well as the
chirality, are not constant in the ground state but depend
c as follows

uMQ
z u25

3A216A

~11A!2
1S A21

A11D 2

cos2~3c!,

uMQ
'u25

6A13

~11A!2
1S A21

A11D 2

sin2~3c!,

uK u25
4

3A3
S A2A1A2

~A11!2
~21A!cos2~3c!

1
A112A

~11A!2
~112A!sin2~3c!D . ~A3!
.

n.

.
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