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Cluster variation method and disorder varieties of two-dimensional Ising-like models

Alessandro Pelizzola
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Corso Duca degli Abruzzi 24, 10129 Torino, Italy
~Received 24 September 1999; revised manuscript received 14 December 1999!

I show that the cluster variation method, long used as a powerful hierarchy of approximations for discrete
~Ising-like! two-dimensional lattice models, yields exact results on the disorder varieties which appear when
competitive interactions are put into these models. I consider, as an example, the plaquette approximation of
the cluster variation method for the square lattice Ising model with nearest-neighbor, next-nearest-neighbor,
and plaquette interactions, and, after rederiving known results, report simple closed-form expressions for the
pair and plaquette correlation functions.
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I. INTRODUCTION

The cluster variation method~CVM! is a powerful hierar-
chy of approximations for lattice models of equilibrium st
tistical mechanics which has been invented by Kikuchi1 and
more recently rewritten by An2 and Morita.3 It is particularly
well suited to analyze complex phase diagrams of disc
classical models,4 but in some simple cases it is also know
to give exact results. Since the approximations involv
amount to neglecting correlations except for a finite ran
exact results are obtained whenever correlations have a
ticularly simple structure, as in treelike lattices5–8 or one-
dimensional strips.9

The purpose of the present paper is to study the beha
of the CVM in another situation in which correlations a
particularly simple, namely, in the case of disorder variet
of two-dimensional Ising-like models with competitive inte
actions. Disorder varieties are known since the papers
Stephenson10,11and have subsequently been studied by m
authors.12–19 On a disorder variety~which is a suitable sub
space in the whole parameter space of a model! the correla-
tion functions factorize in a simple way, which leads to
effective dimensional reduction of the model, so one co
expect that the CVM might be particularly accurate or ev
exact in such a case. This is indeed the case and I shall s
giving both general arguments and a detailed analysis
particular model, that the CVM is exact on disorder varieti

The plan of the paper is as follows: in Sec. II I sha
introduce disorder varieties and briefly recall some of
results which have been obtained in the past years; Sec
will be devoted to the definition and explanation of t
CVM; in Sec. IV the exactness of the CVM on disord
varieties will be shown and finally, conclusions will b
drawn in Sec. V.

II. DISORDER VARIETIES

A disorder variety is a subspace of the parameter spac
a model with competitive interactions, lying in the diso
dered phase, where the correlations have a particul
simple form and the model can then be integrated exac
One example of such a variety has been found
Stephenson10 in the anisotropic antiferromagnetic Isin
PRB 610163-1829/2000/61~17!/11510~4!/$15.00
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model on the triangular lattice. The Hamiltonian of th
model can be written in the form

H52(̂
i j &

Ji j s is j , ~1!

wheres i561 is the spin variable at sitei, the sum is over
all nearest-neighbor~NN! pairs, andJi j depends only on the
direction of the link between sitesi and j. The values ofJi j
along the three lattice directions will be denoted byJ1 , J2,
andJ3. In the antiferromagnetic model we haveJl,0 for l
51,2,3. Stephenson showed that when the condition

tanhK31tanhK1 tanhK250, Kl5Jl /kBT ~2!

~or one which is obtained from it by a cyclic permutation
the indices! holds, then the pair correlation along a lattic
direction has a simple exponential form, as for the on
dimensional model. Ifs i ands j are two spin variables sepa
rated by a distancek on a linear chain of the lattice in thel th
direction, their correlation̂s is j& is thekth power of the NN
correlation along the same direction. In particular, assum
J1,J2,J3,0, one haŝs is j&5@ tanh(K1)#k in direction 1,
^s is j&5@ tanh(K2)#k in direction 2 and ^s is j&
5@ tanh(2K3)#k in direction 3. Stephenson also showed th
the disorder variety separates a portion of the disorde
phase in which the pair correlation has an oscillating beh
ior from one in which it decreases monotonically. Simil
results have been obtained by the same author11 for the union
jack lattice and for certain one-dimensional lattices.

Later, Enting12 showed that the interaction round a fa
~IRF! model on the square lattice@and in particular the Ising
model with NN, next-nearest-neighbor~NNN!, and plaquette
interactions# has a disorder variety which can be mapp
onto an exactly solvable crystal-growth model. Peschel
Emery13 rederived Stephenson’s results for the correlatio
on the disorder variety of the triangular Ising model
means of a one-dimensional kinetic model and applied
technique also to the axial NNN Ising model. Peschel a
Rys14 solved the eight vertex model on one of its disord
varieties.

Baxter15 analyzed the disorder varieties of the IRF mod
on the square lattice. He showed that the eigenvector of
~diagonal to diagonal! transfer matrix corresponding to th
11 510 ©2000 The American Physical Society



th

er

-
ex
he
he

g
e
e

er
-
m

od

e
b-
y

c
in

in
th
o
gy

es

or

a

ich
VM
ike
for
p-

-

of
x
the

n in
ble

one
he
he
ette
-

ch
sing

del

PRB 61 11 511CLUSTER VARIATION METHOD AND DISORDER . . .
largest eigenvalue can be written in a simple form as
product of a sequence of two-site~NN! factors. Ruja`n16 stud-
ied the relations between different techniques and consid
several models~vertex models, staggered IRF model,q-state
Potts models, random bond models!.

Jaekel and Maillard17 found a local criterion which char
acterizes disorder varieties for any dimensionality and
plains the effective dimensional reduction occurring in t
model: the Boltzmann weight of an elementary cell of t
lattice, summed over some~suitably chosen! spins~or what-
ever degrees of freedom!, is independent of the remainin
spins. Georgeset al.18 used this local criterion to calculat
correlation functions on the disorder varieties of thre
dimensional Ising models.

To conclude this~certainly not exhaustive! brief survey of
the existing literature, we mention that recently, Mey
Anglès d’Auriac, and Maillard19 studied the disorder variet
ies of the eight vertex model in the framework of a rando
matrix theory approach to the transfer matrix.

III. CLUSTER VARIATION METHOD

The cluster variation method~CVM! is a hierarchy of
approximation techniques for discrete classical lattice m
els, which has been invented by Kikuchi.1 In its modern
formulation2,3 the CVM is based on the truncation of th
cumulant expansion of the variational principle of equili
rium statistical mechanics, which says that the free energF
of a model defined on the latticeL is given by

F5minF@rL#5min Tr~rLH1rL ln rL!, ~3!

whereH is the Hamiltonian of the model,kBT51 for sim-
plicity, and the minimization must be performed with respe
to a density matrix obeying the normalization constra
Tr(rL)51.

If the model under consideration has only short-range
teractions and the maximal clusters are sufficiently large
Hamiltonian can be decomposed into a sum of cluster c
tributions Ha and the approximate variational free ener
takes the form

F@$ra ,aPM %#5 (
aPM

@Tr~raHa!2aaSa#, ~4!

where a is a cluster of sites,ra5TrL\arL is the cluster
density matrix (TrL\a denotes a summation over all degre
of freedom except those belonging to the clustera), Sa
52Tr(ra ln ra) is the cluster entropy and the coefficientsaa
can be easily obtained from the set of linear equations2,3

(
b#aPM

aa51, ;bPM . ~5!

The cluster density matrices must satisfy the following n
malization and compatibility conditions

Tr ra51, ;aPM and ra5Trb\arb , ;a,bPM . ~6!

Notice that Eq.~4! would still be exact if the density
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matrix rL of the whole lattice could be written exactly as
product of cluster density matrices in the form

rL5 )
aPM

~ra!aa. ~7!

IV. EXACTNESS OF THE CLUSTER VARIATION
METHOD ON DISORDER VARIETIES

There are two properties of the disorder varieties wh
suggest, at least for two-dimensional models, that the C
might be exact on them. One is the one-dimensional-l
character of the pair correlations. In fact, it is known that
a one-dimensional model with NN interactions, the pair a
proximation of the CVM~that is, the approximation in which
the maximal clusters are the NN pairs!, which is equivalent
to the Bethe-Peierls approximation, is exact.1,20

The other property, still valid for two-dimensional mod
els, is related to a result by Baxter.15 He showed that the
eigenvector~corresponding to the largest eigenvalue! of the
diagonal to diagonal transfer matrix is simply the product
a sequence of two-site~NN! factors. Since the density matri
of a diagonal cluster is the square of this eigenvector also
density matrix has a product structure. As we have see
the previous section, when the density matrix has a suita
product structure the CVM becomes exact. Therefore
can hope to find a CVM approximation which is exact on t
disorder variety of a given two-dimensional model. In t
square lattice case a good candidate is the plaqu
approximation,1,21 which is equivalent to the Kramers
Wannier approximation,22 which in turn has long been
known to correspond to a variational approximation in whi
the largest eigenvalue of the transfer matrix is searched u
a restricted space of factorized vectors.23

In the case of the plaquette approximation for a mo
defined on the square lattice the condition~7!, which implies
the exactness of the approximation, becomes

rL5

)
plaq

rplaq)
site

rsite

)
pair

rpair

, ~8!

FIG. 1. The 333 square and the zigzag chain.
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11 512 PRB 61ALESSANDRO PELIZZOLA
whererL denotes the density matrix of the whole lattice a
the products are to be intended over all plaquettes, pairs,
sites of the lattice. The above equation should, however
taken with some care, since it is known that not all loc
thermodynamic states~i.e., density matrices! can be ex-
tended to the whole lattice.24 Consider as an example
model of Ising spinss i561 in its disordered phase, whic
will be studied in detail below. One can easily check
small lattices that, using a generic plaquette density ma
and the pair and site matrices derived from it by par
traces, Eq.~8! leads to arL which is not correctly normal-
ized. In the case of open boundary conditions@with this
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choice the sites and the pairs lying at the boundary do
enter the products in Eq.~8!# the correct normalization is
achieved only if d5c2, where c5^s is j&NN and d
5^s is j&NNN are the NN and NNN correlations, respective

When the conditiond5c2 holds, the procedure of extend
ing local-density matrices to larger clusters is well define
in the sense that by partial traces one can reobtain the lo
density matrices which were used to build the larger ones
addition, one can verify that the density matrix of any clus
admits a decomposition into a product of plaquette, pair,
site density matrices, with exponents given by the CV
rules. For instance, with reference to Fig. 1, in the case of
333 square we have
r9~t1 , . . . ,t9!5
rplaq~t1 ,t2 ,t5 ,t4!rplaq~t2 ,t3 ,t6 ,t5!rplaq~t4 ,t5 ,t8 ,t7!rplaq~t5 ,t6 ,t9 ,t8!rsite~t5!

rpair~t2 ,t5!rpair~t5 ,t8!rpair~t4 ,t5!rpair~t5 ,t6!
, ~9!

while for the zigzag chain

rchain~s1 ,s2 , . . . ,sL!5
rpair~s1 ,s2!rpair~s2 ,s3! . . . rpair~sL21 ,sL!

rsite~s2!rsite~s3! . . . rsite~sL21!
. ~10!
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As a consequence, also the pair-correlation function ha
very simple product form, that is~labeling the spin variables
by the site coordinates!

g~x,y!5^s~x0 ,y0!s~x01x,y01y!&5cuxu1uyu. ~11!

The result~10! is equivalent to the result by Baxter15 that,
on disorder varieties, the eigenvector of the diagonal to
agonal transfer matrix, corresponding to the largest eig
value, can be written as a product of NN pair terms.rchain is
just the square of this eigenvector, and the site factors wh
appear in the denominator can be easily associated, in a
metric way, to the adjacent pairs. This shows~although this
is not a rigorous proof! that when the plaquette approxim
tion is exact for a model of Ising spins on the square latti
then the model is at a point of the disorder variety in
parameter space.

Let us finally study in detail the square lattice Ising mod
with NN, NNN, and plaquette interactions. The Hamiltoni
of the model can be written in the form

H52J1(̂
i j &

s is j2J2 (
^^ i j &&

s is j2J4(
k
j
h l

i
s is jsks l ,

~12!

whereJ1 , J2, andJ4 are the NN, NNN, and plaquette cou
plings, respectively. This is a special case of the mod
studied in Refs. 12, 15, 16, and 19. We shall first use
plaquette approximation of the CVM. Notice that this a
proximation has already been applied to the same mode
Refs. 21 and 25–27. In particular, Sanchez21 reported closed-
form expressions for the equilibrium density matrices a
the momentum space pair-correlation function in the dis
dered phase. Mora´n-López, Aguilera-Granja, and Sanchez25

observed qualitatively the existence of a disorder locus in
phase diagram. Cirilloet al.27 calculated again the momen
a
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tum space pair-correlation function, and on this basis th
determined the location of the disorder line. Their pa
correlation function coincides with that by Sanchez exc
for a misprint,28 and they obtained a disorder line which
only very close to the exact one, instead of coincident a
should be on the basis of the results of the present pa
because of an additional approximation.

As a first step one can, at least at the numerical le
verify that the approximation is exact on the disorder vari
using only the CVM. A simple way is to consider a hierarc
of approximations like the so-called C series,29 in which the
maximal cluster is a rectangle made of 23L sites, withL
>2 ~the plaquette approximation is the first element of the
series!. It is found, with extremely high precision, that
sequence of approximations in this series gives identical
sults on the disorder variety of the model. Inspection of
pair correlations shows that Eq.~11! is also satisfied.

On the other hand, using published results21 it requires
only a long but straightforward calculation to check that
the ~known12,14,19! disorder variety of the model one obtain
the exact free energy. Looking at the pair correlations o
also sees that the conditiond5c2 @see Eq.~11!# is satisfied
on the variety of equation

cosh~2J1!5
exp~2J4!cosh~4J2!1exp~22J2!

exp~2J2!1exp~2J4!
, ~13!

which is precisely the disorder variety of the model.12,19 The
free energy per site can be written as

f 52 ln@exp~2J4!1exp~J422J2!#, ~14!

and again coincides with the exact one, while the NN cor
lation is
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c5
exp~24J2!2cosh~2J1!

sinh~2J1!
, ~15!

the NNN correlationd5c2, and the plaquette correlation

q5^s is jsks l&5
exp~4J4!@12exp~8J2!#14exp~2J2!@exp~2J4!2exp~2J2!#

exp~4J4!@12exp~8J2!#14exp~2J2!@exp~2J4!1exp~2J2!#
. ~16!
by
rr

b

he
In
N,
the
ed
the
or-
act
er

t is
ny
of

ust
the
.

Finally, since all the pair correlations are given simply
Eq. ~11! we can easily calculate the momentum space co
lation function, or structure factor. We first rewrite Eq.~11!
as g(x,y)5exp@2(uxu1uyu)/j#, wherej52(ln c)21. After a
Fourier transform one findsS(px ,py)5S1(px)S1(py), where

S1~p!5
sinh~1/j!

cosh~1/j!2cosp
. ~17!

It can be verified that the structure factors calculated
Sanchez21 and~except for the misprint! Cirillo et al.27 reduce
to the above expression on the disorder line.
p

e-

y

V. CONCLUSIONS

I have shown that the CVM gives exact results on t
disorder varieties of two-dimensional Ising-like models.
particular, I have considered the Ising model with NN, NN
and plaquette interactions on the square lattice, in
plaquette approximation of the CVM. In the disorder
phase of the model, imposing the simple condition that
NNN pair correlation equals the square of the NN pair c
relation, the CVM plaquette approximation becomes ex
and it is shown that this condition holds on the disord
variety, where the model can be solved in closed form. I
important to notice that, using the CVM, one can obtain a
correlation function, due to the fact that the procedure
extending the local thermodynamic state is well defined j
on the disorder variety. Similar results can be obtained on
triangular lattice as well as other two-dimensional lattices
. A

.

J.

.

1R. Kikuchi, Phys. Rev.81, 988 ~1951!.
2G. An, J. Stat. Phys.52, 727 ~1988!.
3T. Morita, J. Stat. Phys.59, 819 ~1990!.
4For a recent review see the volume Prog. Theor. Phys. Su

115, 1 ~1994!.
5M. Kurata, R. Kikuchi, and E. Watari, J. Chem. Phys.21, 434

~1953!.
6C. Domb, Adv. Phys.9, 823 ~1960!.
7T. Morita, Physica A83, 411 ~1976!.
8S. J. Singer and J. D. Weeks, Phys. Rev. B36, 2228~1987!.
9A. Pelizzola, Nucl. Phys. B Proc. Suppl.~to be published!.

10J. Stephenson, J. Math. Phys.11, 420 ~1970!.
11J. Stephenson, Phys. Rev. B1, 4405~1970!.
12I. G. Enting, J. Phys. C10, 1379~1977!.
13I. Peschel and V. J. Emery, Z. Phys. B: Condens. Matter43, 241

~1981!.
14I. Peschel and F. Rys, Phys. Lett.91A, 18 ~1982!.
pl.

15R. J. Baxter, J. Phys. A17, L911 ~1984!.
16P. Ruján, J. Stat. Phys.29, 231 ~1982!; 29, 247 ~1982!; 34, 615

~1984!.
17M. T. Jaekel and J. M. Maillard, J. Phys. A18, 1229~1985!.
18A. Georges, D. Hansel, P. Le Doussal, J. M. Maillard, J. Phys

20, 5299~1987!.
19H. Meyer, J.-C. Angle`s d’Auriac, and J.-M. Maillard, Phys. Rev

E 55, 5380~1997!.
20H. J. Brascamp, Commun. Math. Phys.21, 56 ~1971!.
21J. M. Sanchez, Physica A111, 200 ~1982!.
22H. A. Kramers and G. H. Wannier, Phys. Rev.60, 263 ~1941!.
23R. J. Baxter, J. Stat. Phys.19, 461 ~1978!.
24A. G. Schlijper, J. Stat. Phys.40, 1 ~1985!; 50, 689 ~1988!.
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