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Quantum spin liquid: The Heisenberg antiferromagnet on the three-dimensional
pyrochlore lattice
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We calculate the correlation functions of tﬁec% Heisenberg antiferromagnet on the three-dimensional
pyrochlore lattice. We use a perturbative expansion in terms of spin blocks. This method is self-controlled by
the extracted correlation length. We find that the ground state is a spin-liquid state: the spin-spin correlation
functions decay exponentially with distance and the correlation length never exceeds the interatomic distance,
even atT=0. The static structure factor becomes dispersive, indicating a selection of modes by thermal and
guantum fluctuations. We also calculate the magnetic neutron diffraction cross section in two planes of the
reciprocal space and we find a very good agreement with neutron experiments performésiciviny and
CsNiCrF;.

I. INTRODUCTION three-dimensional arrangement of corner sharing tetrahedra
(Fig. 1). According to the Lacorre definition of frustratibh
The ground state of the quantum Heisenberg antiferroit is probably the most frustrated structure known in com-
magnet depends strongly on the geometry of the lattice. Fgpounds. Experimentally, several families of compounds are
simple lattices the results are well known: in one-known to crystallize with this geometry. The first one is an
dimensional (1D) systems quantum fluctuations destroy Oxide family with the general formula3™B3* O, (Refs. 14—
long-range order and make a discrepancy between integdr) (Ais a rare earth anB is a transition metal The second
and half-integer spif;on the 2D square lattice, there is a ON€ concerns spinels of general formd&,0, or A;B,0,
critical point for all Sat T=0; for the 3D cubic lattice one (Refs. 17-19(Ais a rare earth anB is a transition metal
expects a positivd, for all spins. In contrast with these Th%+th3'r+d one concerns fluorides of general formula
results, there exists a class of lattices where geometrical coftB~ €~ Fe (Refs. 20, 21 (Ais an alkali metalB andC are

straints prevent any ordering evenTat0; this is the case trﬁnsition metal)sd Thfe last 0?? is ;‘; inéeqﬁme;llicz: LaAves
for the 2D kagomelattice and the 3D pyrochlore lattice. phase compounds of general formui&, (Refs. 22, 23 (

These systems, known as fully frustrated lattices have > & rare e_arthB IS a transition metal Strictly s_peakmg, the
only candidate that can be rigorously described by a local-

common the triangular cell as an elementary object of th?@ed’ uniform Heisenberg model is the first family, as this

structure. Thus at least one interaction cannot be satisfie stem is well ordered with a uniform distribution of mag-

and t3he degeneracy of the low-energy configurations is veryeyically ocalized ions. The second and third sets often pos-

high. sess positional or chemical disortfe?® that should be taken
Since Anderson proposed the resonant valence bond waygi account in the model and the last one is better described

function for the triangular latticka lot of attention has been \ithin an itinerant modet* Among these compounds, a few
focused on frustrated structures, one of the main interest be-

ing the search for spin-liquid-like ground states in high di-
mensions, i.e., an absence of any critical point on lattices in
two and three dimensions. First motivated by such consider-
ations, it appeared later that many systems or compounds
exhibit such unusual structures and their magnetic properties
are often nonconventional, involving noncollinear or incom-
mensurate orderingor apparently broken ergodicity with-
out structural disordét;*? Thus the study of the Heisenberg
model on frustrated lattices has two main interesis:to
elaborate models where the universality class differs qualita-
tively from what is found on square or cubib=2, D=23)
lattices; (ii) to understand the unconventional behavior of
several experimental systems.

In this paper, we will focus on these two aspects, restrict- FIG. 1. Structure of the pyrochlore lattice. Plain lines corre-
ing ourselves to the pyrochlore lattice. This structure is aspond toJ interactions, whereas dashed lines &rénteractions.
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order at a well-defined N# temperature like Fef®  structure is a non-Bravais lattice but it can be described by a
Nd,Mo,0,, or Mn,Sh,05,® while all the others have uncon- face centered cubic latticécc) with a tetrahedral unit cell,
ventional magnetic properties. In this last set, it has beeh€.,
experimentally observed that many common features charac-
terize their behavior, justifying the use of localized spin H=—Jz 2 S.gm )
models. These features may be summarized as follows: there {ijy nm
is no magnetic ordering at any temperature or there is a spin- . )
glass-likgtransition; thg assogiatedpfreezing temperature iFs) herg (i) belong to the fcc lattice andn(m)'e{1,2,3,42
one or two orders of magnitude less than the coupling con escrlbe 'the four sites of the tetrah_edral unit cell. Thus, 'the
stants. As the glassy behavior is expected to derive from thEl@miltonian may be decomposed into two terms; the first
highly degenerate ground state in absence of structural di&n€ corresponds to the interactions within each unit cell and
order, most studies focused on the understanding of th'® Second one to interactions between these Geits 1),
Heisenberg antiferromagnet on the pyrochlore structure.

The problem of ordering in the pyrochlore lattice was H=-J >, S-S—J > S-S. 3
initiated by Andersof® who predicted that only long-range (i.j) e unit cell (i,j) between
interactions are able to stabilize a &dike ground state for unit cel
the Ising antiferromagnet on the pyrochlore lattice. More re\We now choose to set the interaction between different tet-
cently, mean-field studies for Heisenberg spirsave con- rahedra equal td’, in order to make a formal expansion
firmed these predictions. As this system displays a classicatith respect to the parameter=J'/J. Of course the starting
ground state with macroscopic degeneracy, Viflamrgued model[Eq. (2)] corresponds ta. = 1.
that it should behave ascamoperative paramagnetvith only

short-range correlations down to low temperature. Classical B ,
Monte Carlo simulations on Ising and Heisenberg H= J(i’j)gﬂt cell S-S~ (i’j)%tweensi'si' @)
sping?#29¢confirmed that this system does not order down unit cell

to zero temperature. However, any additional interactionjn order to perform this expansion, we first diagonalize ex-
even very smalljeasy plane anisotropiXY spins, deforma- 4ty each tetrahedron corresponding to a unit cell. The num-
tions, second neighbor exchangeg et.] will remove the et of eigenstates for this unit cell is Wur spinsd): these
degeneracy and induce magnetic orderthg. , 16 levels split into a two-fold degenerate singlground
Thus, the Heisenberg antiferromagnetic model W'thstate) with energy 3/2 and excited states of energy?2
nearest-neighbors interg_ctions is now strongly belieygd t?degeneracy9) and —3J/2 (degeneracy5). The corre-
have no magnetic transition, evenTat 0. In this sense, itis  snonding 16 eigenstates are calculated analytically and form
a strong deviation from the behavior of the classical Heiseng diagonal base for this small systéAppendix A). We then
berg model on th%13D cubic lattice. Using spin-wave calcuonsider the second part of the Hamiltonian, which couples
lation, Sobralet al** have shown that collinear fluctuations 4 the sets of 16 levels together. At this stage, we have made
are favored. In the pure quantum c&es, very little work a correspondence between the Heisenberg Hamiltonian on
has 5’29'3” done. The first attemlft was performed by Harrigye pyrochlore lattice and a quantum system formed by an
et al” who showed that in th&=3 cases,sthe quantum fluc-  ¢¢ [attice where each site has 16 available stated’ #J
tuations play a crucial role. Isodet al™ used a valence he correspondence is exact but unfortunately it cannot be
bond solid approach and concluded that this system is welly\yed. Our assumption is to consider that J'/J is small
described by a superposition of four-sites singlets on tetraheyng 1o make an expansion in powers\ofAt the end of the
dra. Recently, also fo= 2 we have shown using a density- cg|cylation, we puh =1 again to recover the initial Heisen-
matrix perturbation expansion, that the system is never Critiperg Hamiltonian. The validity of this approximation is
cal and the Heisenberg antiferromagnet takes 'into account &iven by the correlations that develop in the system: it is
large part of thf physics of all compounds with the pyro-gyraightforward to see that for an ordered magnetic system,
chlore structuré._ Here, we will give an extended version of his approximation will give an unreasonable conclusion as
this work, detailing in Sec. Il the model, and our method, inyhe correlation length will diverge; an infinite correlation
Sec. I.II the analytical results, in Sec. IV a comparison W'thlength requires the expansion to be made to all ordess in
experimental results, and we will conclude in Sec. V. But within a magnetically disordered ground state, with a
small correlation length, this method should provideleed
it doeg a good approximation as it exactly sums a large
Il MODEL AND METHOD number of spin configurations. Furthermore, there is no
The Hamiltonian of the quantum Heisenberg model on thd?oundary effects like in exact diagonalization approaches as
pyrochlore lattice is none of the symmetries are broken here. Thus, as soon as the
calculations are self justifie@epending on the final correla-
tion length deduced this method gives accurate results
within a wide temperature range.
H= _‘]2 S-S, @ All the thermodynamical quantities can be obtained from
0y the density operator, which we calculate in perturbation with
respect tan=J"/J
where the summation is taken over the nearest neighbors
sites.J is the negative exchange coupling. The pyrochlore p=e Al=po+---+p,+ O, (5)
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example, here each order in sums an infinite number of
5 P terms and this guarantees the convergence of the series at all
temperatures.
={{1,{2,4},(2,{1,3}},{3,{2.4,5,7}},
7 {4,{1,3}}1,{5.{3,61}.{6.{5,7} },.{7.{3.6} } }
5 3 Il. RESULTS: SPIN-SPIN CORRELATION FUNCTIONS
. . AND STATIC STRUCTURE FACTOR

_ o _ Let us consider a reference sifiy on the lattice. We
_ FIG. 2. Example of a graph in thisipartite square lattice. The  jefine(s,. ;)= C,4 as the correlation function between this
list is built with the number of each site and its correspondlngsite and a site at a distandein the lattice. This function is

neighbors. easily evaluated as
wherep, is of order\™: 1
Cy=5 SHSo- Surl, 0
N B (B Bn-1
pn=(—1) A dBy--dg, whereZ is the partition function. The development was made

up to second order iR, which allows us to calculat€y up
X e~ (B=BUHoH ... (An-17BnHoy e Fto (6)  to the sixteenth neighbors. Making a developmenk #nin
C4 is equivalent to making a development)n for Z. Ex-
In order to evaluate the different terms of the develop-plicitly, one has to comput to third order as
ment, we have made an analogy between these calculations
and the usual high-temperatuiéT) expansions. In such ex- p=potp1tp2tps, (8)
pansions, one has to define an equivalence relation on the Sgherep,, is given by Eq.(6), and
of graphs built on the underlying lattice. The way we did the
classification of the graphs is the following: for a given Z=Spp)=2Zg+2Z,+2Z,+2Z3, where Z,=Spp,). (9
graph, we number the sitg4,...n}; we associate to each of
these sites its nearest neighbors. We finally obtain a list, The initial base for the computation of the spur is the
illustrated in Fig. 2 by a graph on the square lattice. tensorial product of all the diagonal eigenstateNadxactly
For another graph, we also built its characteristic list. Ifdiagonalized tetrahedra, i.e.,
we are able to find a permutation that identifies the second o
list to the first one, then the graphs will belong to the same 1 _H i 10
class. This is the main idea of this equivalence relation. In 100 = i 10, (10
fact, we have to add other indices because we have intro- _
duced a formal anisotropy when we do a differentiation bewhere|1p) is one of the 16 eigenstates of tih tetrahedron.
tween the four types of sitég, 2, 3, or 4 in the nonbipartite ~ The way we did the computations and the geometrical algo-
pyrochlore lattice. We also give an illustration for the squarefithm we build are described in Appendix B. But one can see
lattice on Fig. 3, where we have considered a graph builtmmediately that each orderin \ involves the same number
within a four-sites unit-cell lattice. n of bounds of the fcc lattice, and eakh operator acts on a
These indices are not affected by the permutation as thelyase constituted by the product of two eigenstates of neigh-
reflect an arbitrary choice for the calculation. Given theboring tetrahedron. Thus, each ordemvolves the evalua-
classes corresponding to a particular ordex,inve evaluate tion of (16X 16)" terms. This means that the third order in-
all graphs analytically by implementing all the calculationsVvolves (16<16)*=16 777 216 terms and this is multiplied
on a workstation in aMATHEMATICA code®® The advantage by the number of geometrical diagrams one can find in an fcc
is that we obtain analytical results, i.e., functions dependindattice. Moreover, in\® calculations, each term is formed
analytically on the paramete J, andJ’. with a triple integral. Of course, the main difficulty is to
The main difference between this method and a standaréalculate all the terms of the series. For example, the evalu-
HT development is the absence of divergence at zero ten@tion of the spin-spin correlation functions from the first to
perature. While in usual HT, one has to use low-temperaturéhe sixteenth neighbors took approximately one month and a
approximations of the HT result@adeapproximants for half of CPU time. This is in fact the limiting factor in our
approach.

Using our method, we evaluate the spin-spin correlation
functions for d=0 (auto correlation d=1 (nearest-
neighbors correlations. . ., d=5 (sixteenth neighbors cor-

= ({10254, 14250011, 310.834,(25,4,.5,, 7)) relationg. We have reported in Fig. 4 the geometry of the

(0131, 6 B, 61116, B, T3 U, 86,00 lattice, including only the sites up to the seventh neighbors
for clarity. We observe that for some distances, there exists
different topologies, therefore we introduce a numbering that
FIG. 3. lllustration of a list when the unit cell is a group of four includes this particular point, for example &nd 3, for

sites(as it is the case in the pyrochlore latticEhe number of sites Which d=1 (see Fig. 4.

are no longer sufficientbig numbersto identify a link; we need to To look for the possibility of a critical point, we have

consider the type of each sitemall numbers in circlédo know the  studied the variation of these correlation functions with tem-

nature of a bond. perature. First, their signs remain constant, i.e., for one given
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the low-T regime. Whatever the law we uséalgebraic, ex-
ponential, stretched exponenjialve found a saturation of
the correlation length around the interatomic distance. Thus,
our calculations are self-consistently controled as the value
of ¢ at T=0 is much smaller than the real spatial extension
of our developmentfive interatomic distances

The total spin can be obtained from the spin-spin correla-
tion function as

N 2
<(21 S) >=NS(S+1)+6NC1+12NC2+-~-,
11

whereN is the number of sites an@; andC, the nearest-

and next-nearest-neighbors correlation functions. Since we
] ) have shown that these correlation functions are rapidly de-
FIG. 4. Geometry of the lattice up to the seventh neighbors. Th%reasing with distance, we can retain only a few terms in this

black point is the “origin” site. The numbers in the white points o hangjon. Cutting the summation to the second neighbors,
indicate thenth neighbors. The indices differenciate the types ofWe verify that the ground state is a sing?fét:

neighbors as explained in the text.

N 2
distance, the amplitude is varying with the temperature but £< ( E 3) >(T=0)E—O 02 (12)
the sign of the correlation is constant over all the temperature N\\i=2 o
range. The corresponding distances and signs are reported in
Table I. This negative value is of course an artifact but one has to
As none of these correlation functions exhibit a critical take into account that we cut the sum to the second order
behavior, we have studied the behavior of these functionéwith C;~ —0.186 andC,~0.029 atT =0). In fact, this sum
with the separation distance in the lattice. As shown in Figis an alternated one as the sign of the correlations is oscillat-
5, whatever the temperature, the correlations decay exponeimg with distance(see Table)l Furthermore, this method is
tially with the separation distance. This characteristic wasot supposed to be accurate in this temperature range. Sur-
already observed in tHeagomdattice >® One can see that for prisingly, it is even satisfactory at low temperature as the
a given distance, there might be several points. This is notbtained total spin value is negligible compared $(S
due to numerical uncertainties but to the geometry of thet 1). This is essentially because the correlations inside each
lattice that allows different topologies for a given distance.unit cell are calculated exactly, and in a quantum spin liquid,
For each temperature, we extract a correlation length defineahly short-range correlations are important.
as Cqce”%¢. This length is temperature dependent and Nevertheless, this calculate@, is certainly overesti-
never exceeds one interatomic distance down to zero tenmated. Comparing with Harriet al>2 (who found a ground-
perature(see Fig. 2 in Ref. 34 the broad feature at~J state energyE~ —0.49J|) and Isodaet al® (who found
shows, as expected, that this method is less controlled whele~ —0.46J|), our C, givesE~—0.5J|. These three val-
T<J. Assuming tha¥ could be underevaluated fdr<J by = ues are obtained through different types of expansions in
our method, we extrapolateg{T) from the T=J regime to  J'/J, and should be compared with other methods: for ex-

TABLE I. Signs of spin-spin correlations as a function of intersite distance in the lattice. The correspond-
ing number of steps is also reported.

Intersite distance Sign Intersite distance
and number of steps of and number of steps Sign
Neighbor in the lattice correlations  Neighbor in the lattice of correlations
1 1,1 - 9, 2v3,4 +
2 V3,2 + 10, V13,4 +
3, 2,2 + 10, V13,4 -
3, 2,3 - 11 V15,5 -
4 J5.,3 - 12, 4, 4 +
5 V7.3 - 12, 4,5 -
6 2v2,4 + 13, V17,5 -
7. 3,3 - 13, V17,5 -
7, 3,4 + 14 V19,5 -
8 V11,4 + 15 V21,5 -
9; 2v3,5 - 16 55 -

9, 2V3,5

+




PRB 61 QUANTUM SPIN LIQUID: THE HEISENBERG . . . 1153

1 T L e R A A T T 1 T T — T T T
. T=0.01] . T=1.0J
0.1
0.1F
E * * 0
Ca | = . C4 001 .
s o e . * ¢
0.01F . PRI £
E . 400 & 0 O 0001 .o *
*0 * *
. & 6 o0
*0 * *
0.001 . . . . A 0.0001 , . . N N
0 1 2 3 4 5 6 0 1 N 3 4 5 6
intersite distance (in lattice units) intersite distance (in lattice units)
1 S B S L B
: . T=2.0J o1r . T=10.0J
0.1 E |
[ 0.001 .o
0.01F o0
C C
d L . d -5 e o o
. 10
0.001 * ¢
4 - oo oo
N CX 2 2 (23 .
0.0001 E s 107F
’ E *e ¢ O 0
s o 00 e+ o
s R . [ 2N 2N T . RN
10 0 1 2 3 4 5 6 0 1 2 3 4 5 6
intersite distance (in lattice units) intersite distance (in lattice units)

FIG. 5. Evolution of the spin-spin correlatid®,= (S, .Sy)| with the intersite distance at different temperatures.

ample, preliminary results using exact diagonalization for dengthd that links the sites of type andn. As this lattice is
16-site clustef give E~—0.55J|, but it would be neces- not a Bravais Lattice, for eadhthis structure factor will be
sary to study larger clusters. a 4Xx 4 matrix, whose eigenvalues give the fluctuation modes

We also point out that the control of the calculations viaof the system, the lowest energy mode corresponding to the
the calculated correlation length does not exclude other typdargest eigenvaluevy,(q). To first order in\, wy(q) re-
of ordering within this model. Order parameters involving mains nondispersive over the entire Brillouin zdB&), and
three or four spins like dimer-dimer, spin Peierls, or chiral,degeneracy is not lifted. To the second order, a maximum
cannot be tested with our meth¢gke, for example, Ref. 32 appears on the axis (see Fig. 3 in Ref. 34of the Brillouin

With the correlation functions calculated above, we canzone. This maximum corresponds to a collinear phase where
evaluate the static structure factor. Usually, in magnetic systhe total spin vanishes on each tetrahedron and the phase
tems the maximum of the structure factor indicates whichbetween two neighboring tetrahedra is equatrtarhis type
magnetic structure is stabilized at the mean-fieldINem-  of “order by disorder,”%%j.e., the selection of a particular
perature. For classical spins treated in a mean-field approximode with respect to the others, was already observed on the
mation (MFA) in the pyrochlore lattice, this quantity is very S=3 kagomesystem and conjectured with classical spins on
peculiar: it possesses two branches of zero-energy modeithie pyrochlore lattice. Nevertheless, we note that the degen-
completely flat over the entire Brillouin zone, and two othereracy is very weakly lifted1/10° of the width of the spec-
dispersive branchés.In MFA, this means that the system trum). This is also a point in common with theagomesys-
can move from one state to another without energy cost, aem. But as in th&kagomecase, we cannot exclude that the
soon as the temperature is below the mean-field critical temmext order inA will modify the dispersion curve. Despite
perature. So this temperature does not correspond to a matis, the fact that the selected mode corresponds to the prin-
netic ordering, it only means that the system acquires a localipal one appearing in neutron cross secti@ee Sec. 1Yis
magnetization but macroscopic degeneracy is still presentl good indication of the relevance of this result. Finally, we
thus the system remains magnetically disordered. emphasise that this result is not a numerical artifastthe

In order to study the effect of quantum and thermal fluc-tiny dispersion could suggessince in our method, this
tuations(not taken into account in MPAon the flat modes, structure factor is calculated analytically so that the precision

we evaluated the structure factor, can be as small as we want.
Sm,n(q)zz Cdeiq'Rgm, (13 IV. COMPARISON WITH EXPERIMENTS:
d MAGNETIC NEUTRON CROSS SECTION

wherem andn are the indices of a site in a tetrahedral unit  From the spin-spin correlation functions obtained via our
cell [(m,n) €{1,2,3,4?]. Cq is defined in Eq.7), g is a method, we are able to compute the magnetic neutron cross
vector of the first Brillouin zone, an&j"" is the vector of section in the reciprocal spac¢€ig. 6). This neutron mag-
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FIG. 6. Neutron magnetic cross section in tfi@@h],[hh0]) FIG. 7. Neutron magnetic cross section in th@q0],[0h0])
plane. The superimposed structure is the trace of the extended Brilane. The superimposed structure is the trace of the extended Bril-
louin zone of the fcc lattice in this plane. louin zone of the fcc lattice in this plane.

netic cross section is related to the spin-spin correlations b%ystem, am-dephased one and an in-phase one. When com-
the expression paring the intensities of these modes, we observe that the

112342 first one has the larger weight in agreement with the results
d?o B 2 ik (T Tol (14 of Sec. lll. This compatibility of the two approaches is not
dQde & € mn(Q, @), straightforward as Eq(15) shows that the four branches of

the static structure factor contribute to the cross section.

It is interesting to compare our results with both experi-
mental and previous theoretical results: experiments per-
U n(Qw)= e 1%Ri-R) formed on YSoMn, by Ballou et al*! and on CsCrNif by

’ ] Harris et al?° are well reproduced by our calculatioffigs.

where

o 6 and 7; in both cases, these results were obtained for a
X D efiq-<Tm*Tn>f (S m(0)S; n(t)ye '“'dt.  given energyw but the shape of the neutron cross section in
m.n - reciprocal space was found to be nearly independent of the
(15)  energy:* as if x(q,) = f(q)g(w). Thus, integrating the ex-
) ) ) ~ perimental results over the energy does not changeqthe
T, andR; are the translations which determine theﬂos't'ondependence and we can make a direct comparison between
of a site of typemin the unit celli of the space groupd3m;  our calculationgbased on equal time correlatiorand the
Q=«+d, wherex is a vector of the reciprocal lattice amd  measured map(i) First we reproduce all the main features
belongs to the first BZ. From the static correlation functionsprevious|y obtained, i.e., the absence of signal in the first BZ
calculated above, we obtain the total magnetic cross $eCti%sociated with the singlet ground state and the maxima at
do/dQ. We have _calculated_the neutron cross section in tw%1 andQ}. (i) Second, we find ar-dephased mode in the
planes of the reciprocal lattice, namely tr[é)()h],[th]) . ([h00],[0Nh0]) plane that was also observed in the same
Eliar;e Gar;(:u;h? m;gg]é?emg]n) F)iLa?ﬁ Qi{%%vﬂ,hrheos]gecltglriyi,sm compound?? The existence of these two modes could ex-
9 ; ' y P P ) plain the first-order character of the transition observed in the
maximum around the point®;=[200]+[330] or Qi  pyre YMn, compound. When Sc is absent, this compound
=[002]+[$30]. These maxima describe correlations thatundergoes a structural transition at #000 K, which is sup-
correspond to an ordered structure where consecutive tetraressed in the presence of Sc. At the transition,” al Ne-
hedra are in phase. This is in contradiction with the resultglering appears, corresponding to thedephased phase,
obtained from the static structure factor in the preceding seowhich was found to have the largest intensity in the calcula-
tion. Nevertheless, the study of the other plane provides ation. We attribute this first-order transition to the freezing of
explanation of this phenomena: in tHn00],[ 0hO]) plane, this mode at the same temperature, as its weight is slightly
the maximum intensity is aroun@,=[210], which corre- larger than the in-phase mode. However we point out again
sponds to a phase between consecutive tetrahedra, as exthat a phase transition can occur only if other interactions are
pected from the static structure factor. Thus our conclusion ipresent in the system. In this case, this could be the magne-
the following: there exist two characteristic modes in thistoelastic interaction$’ (iii) Third, the half-width of each
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peak provides information on the correlation length: it isspins chainswhere there is a gap in singlet excitations. In
found to be around one interatomic distance in experiment8D (the pyrochlore cagethis question is still open and mo-
as well as in our calculations. tivates further studies by exact diagonalization.

Theoretically, we recover the results concerning classical The spin-glass behavior observed experimentally is also
Monte Carlo simulations?® performed on the pyrochlore lat- an exciting problem as, up to now, no dynamical calculation
tice and dealing with the magnetic fluctuations in thehas been done on the quantum Heisenberg antiferromagnet
([hhO],[00N]) plane of the reciprocal lattice. We also give on the pyrochlore lattice and Monte Carlo simulations have
evidences for another type of magnetic fluctuations in thenot reproduced a broken ergodicity within the isotropic
([h00],[0h0]) plane that was not obtained in previous clas-Heisenberg antiferromagnet on this lattfcn the classical
sical calculations. This means that the most important feaease, this discrepancy with the experimental observations
tures of the magnetic modes are coming from the structurgaises the importance of the dynamics. We must note that
as our quantum localized model is able to explain experidespite an absence of broken ergodicity, Moessner and
mental results performed on both localized and itinerant sysChalkef have shown that the low-energy density of states is
tems, and to reproduce results obtained for classical spihigh, which is an expected ingredient for a spin-glass-like
systems. behavior. As the experimental measurements have a thresh-

old below which it is impossible to detect structural disorder,
it may be possible to attribute this glassy behavior to the
V. DISCUSSION sensitivity of the low-energy part of the spectrum to a very

In this paper we have presented an analytical expansioﬁma” structural perturbation. Thus, such an unconventional
for the quantum Heisenberg antiferromagnet on the pyromodlflcatlon of the dynamics should be studied with the ap-

chlore lattice. Our results show that there is no magneti(?
transition in this three-dimensional system, evenTatO. r

The spin-spin correlations are exponentially decaying Withcalzl;h . q ) dl hvsi
distance at all temperatures and the correlation length is al- |"€S€ Wo points, dynamics and low-energy pnysics, are

ways finite. The static structure factor becomes dispersinr()t)‘_”lbly the more promising |nvest|gat|on§ fqr the near fu-
but the amplitude of its dispersion is extremely small, ex-lre in order to fmd_a more accurate description and under-
cluding any mean-field analysis. The calculated neutrorst@nding of this family of compounds.
cross sections correspond to the experimental ones. We have
shown that two magnetic modes coexist in this system but APPENDIX A: EIGENVALUES AND EIGENVECTORS
with different amplitudes. OF THE UNIT CELL: EXACT DIAGONALIZATION

All these results are very unusual as the same Hamil- OF ONE TETRAHEDRON
tonian usually exhibits a transition on regular lattices. So this
behavior is not only quantitatively different bgtialitatively
different. We attribute this strong deviation from the conven-
tional behavior to the complete frustration of the Heisenberg 1
model on the pyrochlore lattice. This absence of order seems |1)=S(—|+—+ =)+ =+ +=)+]|+——+)
to be very similar to the one predicted theoretically on the 2
two-dimensionakagoméattice, at least concerning the spin-

ropriate tools of spin-glass theory and no longer within the
ame of the isotropic Heisenberg modgluantum or classi-

We show below the structure of the eigenstates as linear
combinations of initial 4-spin up-down states.

spin correlations and the static structure factor. Concerning “l=t =)
the magnetic cross section, we notice that the fluctuations in
the (hh0],[00h lane are similar to the one in the 2
sy 2)= (44 =)=l =+ )| )

kagomeplane®®#4This is not surprising as the section along J12
the (111) axis of the pyrochlore structure iskagomeplane.
More surprising is the coincidence of the theoretical re- ==ty |+ )|+ +)),
sults obtained via our localized model and the measurements
performed on YSoMn, (Ref. 41) which is usually described 1
as an itinerant system. Even the quantum nature of the spins I3)=—(—|+++—-)+|++—+)),
does not seem to play an important role as the classical V2
Monte Carlo simulatiorsprovide much information close to
the characteristics obtained in the quantum c@sautron 1
structure and spin-spin correlationhus this indicates that |4)= T( —[H++ o)) +2[+ -+ ),
the low-energy part of the physics in the pyrochlore 6
structure-based compounds is mainly related to the geometry
of the lattice and that this geometry prevents any magnetic 1
ordering in localized as well as in itinerant systems. |5)= \/TZ( |+ o)) )
This lack of ordering, or spin-liquid behavior, addresses
the question of the structure of the low-lying levels in sgch a +3|—+++)),
localized model. It is now believed that in 2Ehe kagome
cas@ there is a spin gap, but the singlet excitations are built
with a continuum starting from the ground stdteThis is I6)= i(_|_ )+ —— ),
strikingly different from the usual 1D cagélaldane integer V2
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7= (=l + = =)= =+ 4+,

8= (—[+ =+ =) |+ ),

1

N=—(—|-——+)+|-——+-)),

19) 7 | )+ )

1

10= (|- = =)=l =+ )2l -+ o)),
B 1 FIG. 8. Two types of connections between two nearest-neighbor
|11>_ \/TZ(_ | =)= | =t )= | —+==) tetrahedra;(a) is a 1-2 type andb) is a 2—3 type. This formal
anisotropy disappears when computing any physical quantity.

3+ =),

for a given order of the developmerit;) classify these dia-
[12)=[++++), grams in order to avoid evaluation of equivalent diagrams;
(iii ) evaluate the remaining diagrams. We have first to derive
the properties that allow the evaluation of any diagram with-
out cost in time and energy. For this purpose, we derived
three properties, sufficient to write all possible diagrams in a

|13)=%(|+++—>+|++—+)+|+—++>+|—+++)),

| 1 | | | very simple way.
14)y=—(|++——)+|+—+—)+|—-++—-
) @( ) ) )
Derivation of the properties
A — )y — ) =), o -
A diagram is defined by a number of sites, linked by a
1 number of links, one or more. For example, Figs. 8 and 9
|19 ==(|-——+)+|-—+—=)+|-+——)+|+———=)),  show diagrams of the second order. In the diagram of Fig. 8,
2
all sites of the tetrahedra are shown, whereas in Fig. 9, each
_ oint is one tetrahedron, i.e., a 16-states system. The main
|16=-——-) y d

difference with the usual HT is that each sfpoint here is
The local Hamiltonian may be rewritten in term of the local not a site of the original lattice but a set of 16 statese
total spin: Appendix A), representing the physics of one tetrahedron.
Thus, the rules are no longer the same and one has to prop-
erly establish these rules.
Property 1 If in a diagram one site is only one time
connected, then the spur of this diagram vanishes.
Consider a diagram where one site is only once connected
3] J 3] (Fig. 10. Letb, be the site that appears only once. It belongs
H(S=2)=——, H(S=1)==, H(S=0)=—. to the bondb={b;,b,}. The associated operator I
2 2 2 =$,,.S,- In order to evaluate the spur, one has to introduce
For each value of the total spin, the subeigenspace is made a6 many closure relations as there arg operators in the

H= J523
—2( )

with the three eigenvalues:

the previous eigenstates: considered term:
S=0:]1),]2) (two singlets, R .
— INIL! | = ru v
S=113)14)./5),/6),]7).18).19)./10)|11) 1=3 551=3. (fu[ . >(H o > By
0 0
(three triplets,
As b, appears only once in the expression, one can isolate
APPENDIX B: DETAILS OF THE METHOD FOR THE
COMPUTATION OF GEOMETRICAL DIAGRAMS I ——e H \ 3 >

The method we use is a generalization of the usual high-

temperature algorithm. For a given lattice, one shodilg: FIG. 9. Three diagrams of ordaP. Each “site” represents 16

identify all the possible geometrical diagrams in the latticestates, i.e., one tetrahedron.
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[~ =

b FIG. 12. Three representatives of all possible topologically
equivalent diagrams of order®. Only the last one gives a contri-
bution.

FIG. 10. General diagram with an isolated slitg. This site
represents 16 states, i.e., one tetrahedron. The dashed line repre-As a corollary of this property, we can show that the

sents any geometrical diagram connected tolthsite. exponential prefactor is also simplified. We have to write not
only the operators but the total integrand of each term. Thus,
e_(ﬁn_ﬂn+l)[E(|gbl) + E(Igz)]<| gb1|<|gz|sol.soz|I(’)bl>|lgz> the prefactor will be the exponential factor with the energy of

(B2)  each state.

o , Property 3 If M is the number of sites in a diagram aNd
from the complete expression involving all operators andhe nymber of sites in the effective lattice, then the final

integrations. HereE(lg) is the eigenvalue corresponding to expression will havay'“" as prefactor, where, is the par-
the energy of théy state, i.e., one of the nonperturbed statesijtion function of one tetrahedron.
of the uth tetrahedron. This eXpreSSion is the Only term This result is easy to obtain. We remark that the On|y
where theb, site appears. In the computation of the spur,effective operators on the nonperturbed states areHthe
one can make the summation over this site, and also restrigiperators. For a given diagram, these act only on theM
this sum to each eigenspace WhEr(égz) is constant. In this  sites. Then, the remainird-M sites are modified only by the
way, one has just to Compu(982|sb2||22> without any pref- € #n~An+=1Ho operators, which are diagonal in this basis.
actor, and this is equal to zero due to the spin conservatior ;0" €ach statée {1,2,..N—1N\{M siteg we obtain the
this is the required result. product
Property 2 In the complete sum corresponding to the
spur, the number of distinct states on a single site is equal to
the number of connections reaching this site in the corre-
sponding diagram. (B6)
Let us consider a diagram where the giteis twice con-
neCted(F|g 11) The first Step is to insert all the closure And after the summation over E“llc()% this term will givezo.
relations. Then, one gets a term of the type As it appears\-M times, we will finally obtainz) ™, this is

o~ (B=BUEI) g~ (B1—B2E(). ..o~ BE(I) — o= BE(E)

l////bl |//Ilb2 I//lbl |//Ib2 the reqUired result.
(1ol |S°1'Sﬂz| o Mo This set of properties allows a very quick way to make
by /1oy 1byy |y 7 by calculations. Coming back to the second order, one has to
x(lg |<|0 |S°1'S°2||0 Mg ?)- (B3) evaluate three kinds of diagrams shown in Fig. 12: the first

property indicates that only the third diagram does not van-
ish. This diagram involves two sites, this is the number of
istinct states that will appear in the spur. The prefactors are
given by the corollary of property 2. We now write these
rules in a geometrical wafFig. 13: on an horizontal line we
write the bound. The operator acting on this bound is written

In the total expression, this is the only operator whise
appears. All the other terms are diagonal for this site as the
are constituted byl ,-based operators ¢f,-based operators,
without b,. But all the states not separated by an operato
independent ob, have to be equal; this means that

||’(;”b2>:||gz>;||g’b2>:||gb2>;||(’)b2>:||gz>_ (B4) a and acts twic_e. Thus tw_o types of stat_es will appggr
and|l ). Each timea is applied, the bound is “promoted” to
Finally, the term where thb, site appears will be another state. The prefactor is given by the exponential with
rbet b bee i b the corresponding state of the promoted bound. Then the
(I Mg S0, S,llg DTG 2+ geometrical diagram can be algebraically written as
nbyy /by AL
X115, 1D 12, (89 o5 e "

and it contains two distinct types of statkkgz) and|lgb2).
For a n-connected site, the demonstration is exactly the%) e e
same, so we have the desired results.

[%) ) K 2! 22
a
\—. or > *——o i‘> *—=e = o—0
b b b, b, b, b, b,
2 2

FIG. 13. Geometrical method for computing analytically all
FIG. 11. Two diagrams of Ordwz. In both cases, the Slth is types of diagrams_b]-’bz, represents one tetrahedroﬂ_i (|
twice connected and will generate two distinct types of St¢l§9$, =1,2,..n) is the temperature appearing as an integration variable
and|lgb2> as explained in the text. [see Eq(B8)].
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With this method, one can evaluate high-order diagrams, as

N—2 b b b b . K
AN > (161 2S0, So,llg Do 2 long as the effective model preserves the total “local” spin.
O 5oy 115201167011 This i i
o 1Tty ity procedure can be applied to any kind of model where
b b b by . _ b, one can define a perturbative component in the Hamiltonian
X(1o (1o %Sy, - Sp, |1l g2) e~ A= AVIENGD+EMlD] and where the complete solution of a local part of the Hamil-

N " X . tonian can provide enough information for the global Hamil-

X @~ (BL=BE(y H+E(l )] g~ Bl E(IGH+E( )] (B7)  tonian. The last point is to get rid of the formal anisotropy

] ] ] . that we have introduced through the arbitrary choice of num-

where (b) is the number of bounds in the lattice. Here this pering of the 4 sites in one tetrahedron. As illustrated in Fig.

number is easy to compute as there ldrgites and each site g gne sees that between two tetrahedra, there are different
gives 12 bounds, each of them being counted twice. Thuges of operators:

there are 6l bounds and the final result is obtained by inte-
grating with respect to the temperature: Lo ) )
012=St1~Stz; 0= Stl'§2; o= S‘l'sfz;
N—2 b b b b
6NZO ‘bl |bz%b1 \ ' 02 <|01|<|02|SC11'502||(’) 1>||é 2>
15,1102, 1778y 1772
AL RAL AL 2B_ 2 3. ~24_2 b. ~34_a3 .
b b by (b by b, ° _Stl 332' ° Stl sz, ° Stl SﬁZ’
’ ! —
X171 7218y, S, 1912y e ALE g+ Bl
wheret, andt, are two disconnected tetrahedra and the up-
% jﬁdﬁlefﬁl[E(léblHE(I(;bz)fE(Igl)fE(lgz)] per indices correspond to the type of site in the unit cell.
0 These operators do not coincide within our notations, so we
have to take care of these differences. Nevertheless, as soon
v f’gldﬁzefﬁz[alglwE<|22)7E(|g'1)75(|(’)b2)]_ (Bg)  @as we calculate a physical quantity, this artificial anisotropy
0 disappears as it should, so our approach is coherent.
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