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Quantum spin liquid: The Heisenberg antiferromagnet on the three-dimensional
pyrochlore lattice
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We calculate the correlation functions of theS5
1
2 Heisenberg antiferromagnet on the three-dimensional

pyrochlore lattice. We use a perturbative expansion in terms of spin blocks. This method is self-controlled by
the extracted correlation length. We find that the ground state is a spin-liquid state: the spin-spin correlation
functions decay exponentially with distance and the correlation length never exceeds the interatomic distance,
even atT50. The static structure factor becomes dispersive, indicating a selection of modes by thermal and
quantum fluctuations. We also calculate the magnetic neutron diffraction cross section in two planes of the
reciprocal space and we find a very good agreement with neutron experiments performed on Y~Sc!Mn2 and
CsNiCrF6.
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I. INTRODUCTION

The ground state of the quantum Heisenberg antife
magnet depends strongly on the geometry of the lattice.
simple lattices the results are well known: in on
dimensional ~1D! systems quantum fluctuations destr
long-range order and make a discrepancy between int
and half-integer spin;1 on the 2D square lattice, there is
critical point for all S at T50; for the 3D cubic lattice one
expects a positiveTc , for all spins. In contrast with thes
results, there exists a class of lattices where geometrical
straints prevent any ordering even atT50; this is the case
for the 2D kagome´ lattice and the 3D pyrochlore lattice2

These systems, known as fully frustrated lattices have
common the triangular cell as an elementary object of
structure. Thus at least one interaction cannot be satis
and the degeneracy of the low-energy configurations is v
high.3

Since Anderson proposed the resonant valence bond w
function for the triangular lattice,4 a lot of attention has bee
focused on frustrated structures, one of the main interest
ing the search for spin-liquid-like ground states in high
mensions, i.e., an absence of any critical point on lattice
two and three dimensions. First motivated by such consid
ations, it appeared later that many systems or compou
exhibit such unusual structures and their magnetic prope
are often nonconventional, involving noncollinear or inco
mensurate orderings5 or apparently broken ergodicity with
out structural disorder.6–12 Thus the study of the Heisenber
model on frustrated lattices has two main interests:~i! to
elaborate models where the universality class differs qua
tively from what is found on square or cubic~D52, D53!
lattices; ~ii ! to understand the unconventional behavior
several experimental systems.

In this paper, we will focus on these two aspects, restr
ing ourselves to the pyrochlore lattice. This structure is
PRB 610163-1829/2000/61~2!/1149~11!/$15.00
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three-dimensional arrangement of corner sharing tetrah
~Fig. 1!. According to the Lacorre definition of frustration13

it is probably the most frustrated structure known in co
pounds. Experimentally, several families of compounds
known to crystallize with this geometry. The first one is
oxide family with the general formulaA2

31B2
41O7 ~Refs. 14–

17! ~A is a rare earth andB is a transition metal!. The second
one concerns spinels of general formulaAB2O4 or A2B2O4
~Refs. 17–19! ~A is a rare earth andB is a transition metal!.
The third one concerns fluorides of general formu
AB21C31F6 ~Refs. 20, 21! ~A is an alkali metal,B andC are
transition metals!. The last one is the intermetallic Lave
phase compounds of general formulaAB2 ~Refs. 22, 23! ~A
is a rare earth,B is a transition metal!. Strictly speaking, the
only candidate that can be rigorously described by a loc
ized, uniform Heisenberg model is the first family, as th
system is well ordered with a uniform distribution of ma
netically localized ions. The second and third sets often p
sess positional or chemical disorder17,20 that should be taken
into account in the model and the last one is better descr
within an itinerant model.24 Among these compounds, a fe

FIG. 1. Structure of the pyrochlore lattice. Plain lines corr
spond toJ interactions, whereas dashed lines areJ8 interactions.
1149 ©2000 The American Physical Society
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1150 PRB 61BENJAMIN CANALS AND CLAUDINE LACROIX
order at a well-defined Ne´el temperature like FeF3,
5

Nd2Mo2O7, or Mn2Sb2O7,
15 while all the others have uncon

ventional magnetic properties. In this last set, it has b
experimentally observed that many common features cha
terize their behavior, justifying the use of localized sp
models. These features may be summarized as follows: t
is no magnetic ordering at any temperature or there is a s
glass-like transition; the associated freezing temperature
one or two orders of magnitude less than the coupling c
stants. As the glassy behavior is expected to derive from
highly degenerate ground state in absence of structural
order, most studies focused on the understanding of
Heisenberg antiferromagnet on the pyrochlore structure.

The problem of ordering in the pyrochlore lattice w
initiated by Anderson25 who predicted that only long-rang
interactions are able to stabilize a Ne´el-like ground state for
the Ising antiferromagnet on the pyrochlore lattice. More
cently, mean-field studies for Heisenberg spins26 have con-
firmed these predictions. As this system displays a class
ground state with macroscopic degeneracy, Villain27 argued
that it should behave as acooperative paramagnet, with only
short-range correlations down to low temperature. Class
Monte Carlo simulations on Ising and Heisenbe
spins12,28,29confirmed that this system does not order do
to zero temperature. However, any additional interacti
even very small,@easy plane anisotropy~XYspins!, deforma-
tions, second neighbor exchange, etc . . . # will remove the
degeneracy and induce magnetic ordering.30

Thus, the Heisenberg antiferromagnetic model w
nearest-neighbors interactions is now strongly believed
have no magnetic transition, even atT50. In this sense, it is
a strong deviation from the behavior of the classical Heis
berg model on the 3D cubic lattice. Using spin-wave cal
lation, Sobralet al.31 have shown that collinear fluctuation
are favored. In the pure quantum caseS5 1

2 , very little work
has been done. The first attempt was performed by Ha
et al.32 who showed that in theS5 1

2 case, the quantum fluc
tuations play a crucial role. Isodaet al.33 used a valence
bond solid approach and concluded that this system is
described by a superposition of four-sites singlets on tetra
dra. Recently, also forS5 1

2 , we have shown using a density
matrix perturbation expansion, that the system is never c
cal and the Heisenberg antiferromagnet takes into accou
large part of the physics of all compounds with the py
chlore structure.34 Here, we will give an extended version o
this work, detailing in Sec. II the model, and our method,
Sec. III the analytical results, in Sec. IV a comparison w
experimental results, and we will conclude in Sec. V.

II. MODEL AND METHOD

The Hamiltonian of the quantum Heisenberg model on
pyrochlore lattice is

H52J(
^ i , j &

Si•Sj , ~1!

where the summation is taken over the nearest neigh
sites.J is the negative exchange coupling. The pyrochlo
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structure is a non-Bravais lattice but it can be described b
face centered cubic lattice~fcc! with a tetrahedral unit cell,
i.e.,

H52J(
^ i , j &

(
n,m

Si
n
•Sj

m, ~2!

where ~i,j! belong to the fcc lattice and (n,m)P$1,2,3,4%2

describe the four sites of the tetrahedral unit cell. Thus,
Hamiltonian may be decomposed into two terms; the fi
one corresponds to the interactions within each unit cell
the second one to interactions between these cells~Fig. 1!,

H52J (
~ i , j !Punit cell

Si•Sj2J (
~ i , j ! between

unit cell

Si•Sj . ~3!

We now choose to set the interaction between different
rahedra equal toJ8, in order to make a formal expansio
with respect to the parameterl5J8/J. Of course the starting
model @Eq. ~2!# corresponds tol51.

H52J (
~ i , j !Punit cell

Si•Sj2J8 (
~ i , j ! between

unit cell

Si•Sj . ~4!

In order to perform this expansion, we first diagonalize e
actly each tetrahedron corresponding to a unit cell. The nu
ber of eigenstates for this unit cell is 16~four spins1

2!: these
16 levels split into a two-fold degenerate singlet~ground
state! with energy 3J/2 and excited states of energyJ/2
(degeneracy59) and 23J/2 (degeneracy55). The corre-
sponding 16 eigenstates are calculated analytically and f
a diagonal base for this small system~Appendix A!. We then
consider the second part of the Hamiltonian, which coup
all the sets of 16 levels together. At this stage, we have m
a correspondence between the Heisenberg Hamiltonian
the pyrochlore lattice and a quantum system formed by
fcc lattice where each site has 16 available states. IfJ85J
the correspondence is exact but unfortunately it cannot
solved. Our assumption is to consider thatl5J8/J is small
and to make an expansion in powers ofl. At the end of the
calculation, we putl51 again to recover the initial Heisen
berg Hamiltonian. The validity of this approximation
driven by the correlations that develop in the system: it
straightforward to see that for an ordered magnetic syst
this approximation will give an unreasonable conclusion
the correlation length will diverge; an infinite correlatio
length requires the expansion to be made to all orders inl.
But within a magnetically disordered ground state, with
small correlation length, this method should provide~indeed
it does! a good approximation as it exactly sums a lar
number of spin configurations. Furthermore, there is
boundary effects like in exact diagonalization approaches
none of the symmetries are broken here. Thus, as soon a
calculations are self justified~depending on the final correla
tion length deduced!, this method gives accurate resul
within a wide temperature range.

All the thermodynamical quantities can be obtained fro
the density operator, which we calculate in perturbation w
respect tol5J8/J

r5e2bH5r01¯1rn1Q~ln!, ~5!
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PRB 61 1151QUANTUM SPIN LIQUID: THE HEISENBERG . . .
wherern is of orderln:

rn5~21!nE
0

bE
0

b1
¯E

0

bn21
db1¯dbn

3e2~b2b1!H0H1¯e2~bn212bn!H0H1e2bnH0. ~6!

In order to evaluate the different terms of the develo
ment, we have made an analogy between these calcula
and the usual high-temperature~HT! expansions. In such ex
pansions, one has to define an equivalence relation on th
of graphs built on the underlying lattice. The way we did t
classification of the graphs is the following: for a give
graph, we number the sites$1,...,n%; we associate to each o
these sites its nearest neighbors. We finally obtain a
illustrated in Fig. 2 by a graph on the square lattice.

For another graph, we also built its characteristic list.
we are able to find a permutation that identifies the sec
list to the first one, then the graphs will belong to the sa
class. This is the main idea of this equivalence relation
fact, we have to add other indices because we have in
duced a formal anisotropy when we do a differentiation
tween the four types of sites~1, 2, 3, or 4! in the nonbipartite
pyrochlore lattice. We also give an illustration for the squa
lattice on Fig. 3, where we have considered a graph b
within a four-sites unit-cell lattice.

These indices are not affected by the permutation as
reflect an arbitrary choice for the calculation. Given t
classes corresponding to a particular order inl, we evaluate
all graphs analytically by implementing all the calculatio
on a workstation in aMATHEMATICA code.35 The advantage
is that we obtain analytical results, i.e., functions depend
analytically on the parametersb, J, andJ8.

The main difference between this method and a stand
HT development is the absence of divergence at zero t
perature. While in usual HT, one has to use low-tempera
approximations of the HT results~Padéapproximants for

FIG. 2. Example of a graph in thebipartite square lattice. The
list is built with the number of each site and its correspond
neighbors.

FIG. 3. Illustration of a list when the unit cell is a group of fou
sites~as it is the case in the pyrochlore lattice!. The number of sites
are no longer sufficient~big numbers! to identify a link; we need to
consider the type of each site~small numbers in circles! to know the
nature of a bond.
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example!, here each order inl sums an infinite number o
terms and this guarantees the convergence of the series
temperatures.

III. RESULTS: SPIN-SPIN CORRELATION FUNCTIONS
AND STATIC STRUCTURE FACTOR

Let us consider a reference siteS0 on the lattice. We
define^S0•Sd&5Cd as the correlation function between th
site and a site at a distanced in the lattice. This function is
easily evaluated as

Cd5
1

Z
Sp@S0•Sdr#, ~7!

whereZ is the partition function. The development was ma
up to second order inl, which allows us to calculateCd up
to the sixteenth neighbors. Making a development inl2 in
Cd is equivalent to making a development inl3 for Z. Ex-
plicitly, one has to computer to third order as

r5r01r11r21r3 , ~8!

wherern is given by Eq.~6!, and

Z5Sp~r!5Z01Z11Z21Z3, where Zn5Sp~rn!. ~9!

The initial base for the computation of the spur is t
tensorial product of all the diagonal eigenstates ofN exactly
diagonalized tetrahedra, i.e.,

u10&5)
i

^

u10
i &, ~10!

whereu10
i & is one of the 16 eigenstates of thei th tetrahedron.

The way we did the computations and the geometrical al
rithm we build are described in Appendix B. But one can s
immediately that each ordern in l involves the same numbe
n of bounds of the fcc lattice, and eachH1 operator acts on a
base constituted by the product of two eigenstates of ne
boring tetrahedron. Thus, each ordern involves the evalua-
tion of (16316)n terms. This means that the third order i
volves (16316)3516 777 216 terms and this is multiplie
by the number of geometrical diagrams one can find in an
lattice. Moreover, inl3 calculations, each term is forme
with a triple integral. Of course, the main difficulty is t
calculate all the terms of the series. For example, the ev
ation of the spin-spin correlation functions from the first
the sixteenth neighbors took approximately one month an
half of CPU time. This is in fact the limiting factor in ou
approach.

Using our method, we evaluate the spin-spin correlat
functions for d50 ~auto correlation!, d51 ~nearest-
neighbors correlations!, . . ., d55 ~sixteenth neighbors cor
relations!. We have reported in Fig. 4 the geometry of t
lattice, including only the sites up to the seventh neighb
for clarity. We observe that for some distances, there ex
different topologies, therefore we introduce a numbering t
includes this particular point, for example 31 and 32 for
which d51 ~see Fig. 4!.

To look for the possibility of a critical point, we hav
studied the variation of these correlation functions with te
perature. First, their signs remain constant, i.e., for one gi
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1152 PRB 61BENJAMIN CANALS AND CLAUDINE LACROIX
distance, the amplitude is varying with the temperature
the sign of the correlation is constant over all the tempera
range. The corresponding distances and signs are report
Table I.

As none of these correlation functions exhibit a critic
behavior, we have studied the behavior of these functi
with the separation distance in the lattice. As shown in F
5, whatever the temperature, the correlations decay expo
tially with the separation distance. This characteristic w
already observed in thekagome´ lattice.36 One can see that fo
a given distance, there might be several points. This is
due to numerical uncertainties but to the geometry of
lattice that allows different topologies for a given distanc
For each temperature, we extract a correlation length defi
as Cd}e2d/j. This length is temperature dependent a
never exceeds one interatomic distance down to zero t
perature~see Fig. 2 in Ref. 34!; the broad feature atT'J
shows, as expected, that this method is less controlled w
T,J. Assuming thatj could be underevaluated forT<J by
our method, we extrapolatedj(T) from theT>J regime to

FIG. 4. Geometry of the lattice up to the seventh neighbors.
black point is the ‘‘origin’’ site. The numbers in the white poin
indicate thenth neighbors. The indices differenciate the types
neighbors as explained in the text.
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the low-T regime. Whatever the law we used~algebraic, ex-
ponential, stretched exponential!, we found a saturation o
the correlation length around the interatomic distance. Th
our calculations are self-consistently controled as the va
of j at T50 is much smaller than the real spatial extens
of our development~five interatomic distances!.

The total spin can be obtained from the spin-spin corre
tion function as

K S (
i 51

N

Si D 2L 5NS~S11!16NC1112NC21¯ ,

~11!

whereN is the number of sites andC1 andC2 the nearest-
and next-nearest-neighbors correlation functions. Since
have shown that these correlation functions are rapidly
creasing with distance, we can retain only a few terms in t
expansion. Cutting the summation to the second neighb
we verify that the ground state is a singlet:37

1

N K S (
i 51

N

Si D 2L ~T50!>20.02. ~12!

This negative value is of course an artifact but one has
take into account that we cut the sum to the second o
~with C1'20.186 andC2'0.029 atT50!. In fact, this sum
is an alternated one as the sign of the correlations is osci
ing with distance~see Table I!. Furthermore, this method i
not supposed to be accurate in this temperature range.
prisingly, it is even satisfactory at low temperature as
obtained total spin value is negligible compared toS(S
11). This is essentially because the correlations inside e
unit cell are calculated exactly, and in a quantum spin liqu
only short-range correlations are important.

Nevertheless, this calculatedC1 is certainly overesti-
mated. Comparing with Harriset al.32 ~who found a ground-
state energy,E'20.49uJu! and Isodaet al.33 ~who found
E'20.46uJu!, our C1 givesE'20.56uJu. These three val-
ues are obtained through different types of expansions
J8/J, and should be compared with other methods: for

e

f

pond-
TABLE I. Signs of spin-spin correlations as a function of intersite distance in the lattice. The corres
ing number of steps is also reported.

Neighbor

Intersite distance
and number of steps

in the lattice

Sign
of

correlations Neighbor

Intersite distance
and number of steps

in the lattice
Sign

of correlations

1 1, 1 2 93 2),4 1

2 ),2 1 101 A13,4 1

31 2, 2 1 102 A13,4 2

32 2, 3 2 11 A15,5 2

4 A5,3 2 121 4, 4 1

5 A7,3 2 122 4, 5 2

6 2&,4 1 131 A17,5 2

71 3, 3 2 132 A17,5 2

72 3, 4 1 14 A19,5 2

8 A11,4 1 15 A21,5 2

91 2),5 2 16 5, 5 2

92 2),5 1
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FIG. 5. Evolution of the spin-spin correlationCd5u^S0 .Sd&u with the intersite distance at different temperatures.
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ample, preliminary results using exact diagonalization fo
16-site cluster38 give E'20.55uJu, but it would be neces-
sary to study larger clusters.

We also point out that the control of the calculations v
the calculated correlation length does not exclude other ty
of ordering within this model. Order parameters involvin
three or four spins like dimer-dimer, spin Peierls, or chir
cannot be tested with our method~see, for example, Ref. 32!.

With the correlation functions calculated above, we c
evaluate the static structure factor. Usually, in magnetic s
tems the maximum of the structure factor indicates wh
magnetic structure is stabilized at the mean-field Ne´el tem-
perature. For classical spins treated in a mean-field appr
mation~MFA! in the pyrochlore lattice, this quantity is ver
peculiar: it possesses two branches of zero-energy mo
completely flat over the entire Brillouin zone, and two oth
dispersive branches.26 In MFA, this means that the system
can move from one state to another without energy cost
soon as the temperature is below the mean-field critical t
perature. So this temperature does not correspond to a m
netic ordering, it only means that the system acquires a lo
magnetization but macroscopic degeneracy is still pres
thus the system remains magnetically disordered.

In order to study the effect of quantum and thermal flu
tuations~not taken into account in MFA! on the flat modes,
we evaluated the structure factor,

Sm,n~q!5(
d

Cdeiq•Rd
m,n

, ~13!

wherem andn are the indices of a site in a tetrahedral u
cell @(m,n)P$1,2,3,4%2#. Cd is defined in Eq.~7!, q is a
vector of the first Brillouin zone, andRd

m,n is the vector of
a

es

,

n
s-
h

xi-

es,
r

as
-

ag-
al
t;

-

t

lengthd that links the sites of typem andn. As this lattice is
not a Bravais Lattice, for eachq this structure factor will be
a 434 matrix, whose eigenvalues give the fluctuation mod
of the system, the lowest energy mode corresponding to
largest eigenvaluevM(q). To first order inl, vM(q) re-
mains nondispersive over the entire Brillouin zone~BZ!, and
degeneracy is not lifted. To the second order, a maxim
appears on the axisD ~see Fig. 3 in Ref. 34! of the Brillouin
zone. This maximum corresponds to a collinear phase wh
the total spin vanishes on each tetrahedron and the p
between two neighboring tetrahedra is equal top. This type
of ‘‘order by disorder,’’39,40 i.e., the selection of a particula
mode with respect to the others, was already observed on
S5 1

2 kagome´ system and conjectured with classical spins
the pyrochlore lattice. Nevertheless, we note that the deg
eracy is very weakly lifted~1/106 of the width of the spec-
trum!. This is also a point in common with thekagome´ sys-
tem. But as in thekagome´ case, we cannot exclude that th
next order inl will modify the dispersion curve. Despite
this, the fact that the selected mode corresponds to the p
cipal one appearing in neutron cross sections~see Sec. IV! is
a good indication of the relevance of this result. Finally, w
emphasise that this result is not a numerical artifact~as the
tiny dispersion could suggest! since in our method, this
structure factor is calculated analytically so that the precis
can be as small as we want.

IV. COMPARISON WITH EXPERIMENTS:
MAGNETIC NEUTRON CROSS SECTION

From the spin-spin correlation functions obtained via o
method, we are able to compute the magnetic neutron c
section in the reciprocal space~Fig. 6!. This neutron mag-
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1154 PRB 61BENJAMIN CANALS AND CLAUDINE LACROIX
netic cross section is related to the spin-spin correlations
the expression

d2s

dVdv
5 (

m,n

$1,2,3,4%2

e2 i k.~Tm2Tn!Um,n~Q,v!, ~14!

where

Um,n~Q,v!5(
i , j

e2 iq.~Ri2Rj !

3(
m,n

e2 iq.~Tm2Tn!E
2`

1`

^Si ,m~0!Sj ,n~ t !&e2 ivtdt.

~15!

Tm andRi are the translations which determine the posit
of a site of typem in the unit celli of the space groupFd3̄m;
Q5k1q, wherek is a vector of the reciprocal lattice andq
belongs to the first BZ. From the static correlation functio
calculated above, we obtain the total magnetic cross sec
ds/dV. We have calculated the neutron cross section in
planes of the reciprocal lattice, namely the (@00h#,@hh0#)
plane and the (@h00#,@0h0#) plane shown, respectively, i
Figs. 6 and 7. The intensity in the (@00h#,@hh0#) plane is

maximum around the pointsQ15@200#6@ 3
4

3
4 0# or Q18

5@002#6@ 3
4

3
4 0#. These maxima describe correlations th

correspond to an ordered structure where consecutive t
hedra are in phase. This is in contradiction with the res
obtained from the static structure factor in the preceding s
tion. Nevertheless, the study of the other plane provides
explanation of this phenomena: in the (@h00#,@0h0#) plane,
the maximum intensity is aroundQ25@210#, which corre-
sponds to a phasep between consecutive tetrahedra, as
pected from the static structure factor. Thus our conclusio
the following: there exist two characteristic modes in th

FIG. 6. Neutron magnetic cross section in the (@00h#,@hh0#)
plane. The superimposed structure is the trace of the extended
louin zone of the fcc lattice in this plane.
y

s
on
o

t
ra-
ts
c-
n

-
is

system, ap-dephased one and an in-phase one. When c
paring the intensities of these modes, we observe that
first one has the larger weight in agreement with the res
of Sec. III. This compatibility of the two approaches is n
straightforward as Eq.~15! shows that the four branches o
the static structure factor contribute to the cross section.

It is interesting to compare our results with both expe
mental and previous theoretical results: experiments p
formed on Y~Sc!Mn2 by Ballouet al.41 and on CsCrNiF6 by
Harris et al.20 are well reproduced by our calculations~Figs.
6 and 7!; in both cases, these results were obtained fo
given energyv but the shape of the neutron cross section
reciprocal space was found to be nearly independent of
energy,41 as if x(q,v)5 f (q)g(v). Thus, integrating the ex
perimental results over the energy does not change thq
dependence and we can make a direct comparison betw
our calculations~based on equal time correlations! and the
measured map:~i! First we reproduce all the main feature
previously obtained, i.e., the absence of signal in the first
associated with the singlet ground state and the maxim
Q1 andQ18 . ~ii ! Second, we find ap-dephased mode in th
(@h00#,@0h0#) plane that was also observed in the sa
compound.42 The existence of these two modes could e
plain the first-order character of the transition observed in
pure YMn2 compound. When Sc is absent, this compou
undergoes a structural transition at 100610 K, which is sup-
pressed in the presence of Sc. At the transition, a Ne´el or-
dering appears, corresponding to thep-dephased phase
which was found to have the largest intensity in the calcu
tion. We attribute this first-order transition to the freezing
this mode at the same temperature, as its weight is slig
larger than the in-phase mode. However we point out ag
that a phase transition can occur only if other interactions
present in the system. In this case, this could be the ma
toelastic interactions.43 ~iii ! Third, the half-width of each

ril-

FIG. 7. Neutron magnetic cross section in the (@h00#,@0h0#)
plane. The superimposed structure is the trace of the extended
louin zone of the fcc lattice in this plane.
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peak provides information on the correlation length: it
found to be around one interatomic distance in experime
as well as in our calculations.

Theoretically, we recover the results concerning class
Monte Carlo simulations3,20 performed on the pyrochlore lat
tice and dealing with the magnetic fluctuations in t
(@hh0#,@00h#) plane of the reciprocal lattice. We also giv
evidences for another type of magnetic fluctuations in
(@h00#,@0h0#) plane that was not obtained in previous cla
sical calculations. This means that the most important f
tures of the magnetic modes are coming from the struct
as our quantum localized model is able to explain exp
mental results performed on both localized and itinerant s
tems, and to reproduce results obtained for classical
systems.

V. DISCUSSION

In this paper we have presented an analytical expan
for the quantum Heisenberg antiferromagnet on the py
chlore lattice. Our results show that there is no magn
transition in this three-dimensional system, even atT50.
The spin-spin correlations are exponentially decaying w
distance at all temperatures and the correlation length is
ways finite. The static structure factor becomes dispers
but the amplitude of its dispersion is extremely small, e
cluding any mean-field analysis. The calculated neut
cross sections correspond to the experimental ones. We
shown that two magnetic modes coexist in this system
with different amplitudes.

All these results are very unusual as the same Ha
tonian usually exhibits a transition on regular lattices. So t
behavior is not only quantitatively different butqualitatively
different. We attribute this strong deviation from the conve
tional behavior to the complete frustration of the Heisenb
model on the pyrochlore lattice. This absence of order se
to be very similar to the one predicted theoretically on
two-dimensionalkagome´ lattice, at least concerning the spin
spin correlations and the static structure factor. Concern
the magnetic cross section, we notice that the fluctuation
the (@hh0#,@00h#) plane are similar to the one in th
kagome´ plane.36,44 This is not surprising as the section alon
the ~111! axis of the pyrochlore structure is akagome´ plane.

More surprising is the coincidence of the theoretical
sults obtained via our localized model and the measurem
performed on Y~Sc!Mn2 ~Ref. 41! which is usually described
as an itinerant system. Even the quantum nature of the s
does not seem to play an important role as the class
Monte Carlo simulations3 provide much information close to
the characteristics obtained in the quantum case~neutron
structure and spin-spin correlations!. Thus this indicates tha
the low-energy part of the physics in the pyrochlo
structure-based compounds is mainly related to the geom
of the lattice and that this geometry prevents any magn
ordering in localized as well as in itinerant systems.

This lack of ordering, or spin-liquid behavior, address
the question of the structure of the low-lying levels in suc
localized model. It is now believed that in 2D~the kagome´
case! there is a spin gap, but the singlet excitations are b
with a continuum starting from the ground state.36 This is
strikingly different from the usual 1D case~Haldane integer
ts
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spins chains! where there is a gap in singlet excitations.
3D ~the pyrochlore case!, this question is still open and mo
tivates further studies by exact diagonalization.

The spin-glass behavior observed experimentally is a
an exciting problem as, up to now, no dynamical calculat
has been done on the quantum Heisenberg antiferroma
on the pyrochlore lattice and Monte Carlo simulations ha
not reproduced a broken ergodicity within the isotrop
Heisenberg antiferromagnet on this lattice.3 In the classical
case, this discrepancy with the experimental observati
raises the importance of the dynamics. We must note
despite an absence of broken ergodicity, Moessner
Chalker3 have shown that the low-energy density of states
high, which is an expected ingredient for a spin-glass-l
behavior. As the experimental measurements have a thr
old below which it is impossible to detect structural disord
it may be possible to attribute this glassy behavior to
sensitivity of the low-energy part of the spectrum to a ve
small structural perturbation. Thus, such an unconventio
modification of the dynamics should be studied with the a
propriate tools of spin-glass theory and no longer within
frame of the isotropic Heisenberg model~quantum or classi-
cal!.

These two points, dynamics and low-energy physics,
probably the more promising investigations for the near
ture in order to find a more accurate description and und
standing of this family of compounds.

APPENDIX A: EIGENVALUES AND EIGENVECTORS
OF THE UNIT CELL: EXACT DIAGONALIZATION

OF ONE TETRAHEDRON

We show below the structure of the eigenstates as lin
combinations of initial 4-spin up-down states.

u1&5
1

2
~2u1212&1u2112&1u1221&

2u2121&),

u2&5
2

A12
~ u1122&2u1212&2u2112&

2u1221&2u2121&1u2211&),

u3&5
1

&
~2u1112&1u1121&),

u4&5
1

A6
~2u1112&2u1121&12u1211&),

u5&5
1

A12
~2u1112&2u1121&2u1211&

13u2111&),

u6&5
1

&
~2u2112&1u1221&),
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u7&5
1

&
~2u1122&1u2211&),

u8&5
1

&
~2u1212&1u2121&),

u9&5
1

&
~2u2221&1u2212&),

u10&5
1

A6
~2u2221&2u2212&12u2122&),

u11&5
1

A12
~2u2221&2u2212&2u2122&

13u1222&),

u12&5u1111&,

u13&5
1

2
~ u1112&1u1121&1u1211&1u2111&),

u14&5
1

A6
~ u1122&1u1212&1u2112&

1u1221&1u2121&1u2211&),

u15&5
1

2
~ u2221&1u2212&1u2122&1u1222&),

u165u2222&.

The local Hamiltonian may be rewritten in term of the loc
total spin:

H5 2
J

2
~S223!

with the three eigenvalues:

H~S52!52
3J

2
, H~S51!5

J

2
, H~S50!5

3J

2
.

For each value of the total spin, the subeigenspace is mad
the previous eigenstates:

S50:u1&,u2& ~two singlets!,

S51:u3&,u4&,u5&,u6&,u7&,u8&,u9&,u10&,u11&

~ three triplets!,

S52:u12&,u13&,u14&,u15&,u16&, ~one 5-uplet!,

APPENDIX B: DETAILS OF THE METHOD FOR THE
COMPUTATION OF GEOMETRICAL DIAGRAMS

The method we use is a generalization of the usual h
temperature algorithm. For a given lattice, one should:~i!
identify all the possible geometrical diagrams in the latt
l

of

-

for a given order of the development;~ii ! classify these dia-
grams in order to avoid evaluation of equivalent diagram
~iii ! evaluate the remaining diagrams. We have first to der
the properties that allow the evaluation of any diagram wi
out cost in time and energy. For this purpose, we deriv
three properties, sufficient to write all possible diagrams i
very simple way.

Derivation of the properties

A diagram is defined by a number of sites, linked by
number of links, one or more. For example, Figs. 8 and
show diagrams of the second order. In the diagram of Fig
all sites of the tetrahedra are shown, whereas in Fig. 9, e
point is one tetrahedron, i.e., a 16-states system. The m
difference with the usual HT is that each site~point here! is
not a site of the original lattice but a set of 16 states~see
Appendix A!, representing the physics of one tetrahedr
Thus, the rules are no longer the same and one has to p
erly establish these rules.

Property 1: If in a diagram one site is only one tim
connected, then the spur of this diagram vanishes.

Consider a diagram where one site is only once conne
~Fig. 10!. Let b2 be the site that appears only once. It belon
to the bond b5$b1 ,b2%. The associated operator ish1

b

5Sb1
.Sb2

. In order to evaluate the spur, one has to introdu

as many closure relations as there areH1 operators in the
considered term:

15(
u l 08&

u l 08&^ l 08u5(
u l 08&

S )
u

^ U l 08
uL S )

v

^ U l 08
vL . ~B1!

As b2 appears only once in the expression, one can iso
the integrand

FIG. 8. Two types of connections between two nearest-neigh
tetrahedra;~a! is a 1–2 type and~b! is a 2–3 type. This formal
anisotropy disappears when computing any physical quantity.

FIG. 9. Three diagrams of orderl2. Each ‘‘site’’ represents 16
states, i.e., one tetrahedron.



n
to
te
rm
ur
tr

io

he
l

rre

e

he
,
to

th

e
ot
us,
of

al

ly

is.

ke
s to
rst

an-
of
are
e

ten

ith
the

re

lly
-

ll

ble

PRB 61 1157QUANTUM SPIN LIQUID: THE HEISENBERG . . .
e2~bn2bn11!@E~ l 0
9b1!1E~ l 0

b2!#^ l 0
9b1u^ l 0

b2uSb1
.Sb2

u l 0
8b1&u l 0

b2&
~B2!

from the complete expression involving all operators a
integrations. Here,E( l 0

u) is the eigenvalue corresponding
the energy of thel 0

u state, i.e., one of the nonperturbed sta
of the uth tetrahedron. This expression is the only te
where theb2 site appears. In the computation of the sp
one can make the summation over this site, and also res
this sum to each eigenspace whereE( l 0

b2) is constant. In this

way, one has just to compute^ l 0
b2uSb2

u l 0
b2& without any pref-

actor, and this is equal to zero due to the spin conservat
this is the required result.

Property 2: In the complete sum corresponding to t
spur, the number of distinct states on a single site is equa
the number of connections reaching this site in the co
sponding diagram.

Let us consider a diagram where the siteb2 is twice con-
nected~Fig. 11!. The first step is to insert all the closur
relations. Then, one gets a term of the type

^ l 0
-8b1u^ l 0

-8b2uSb1
.Sb2

u l 0
-b1&u l 0

-b2&¯

3^ l 0
9b1u^ l 0

9b2uSb1
.Sb2

u l 0
8b1&u l 0

8b2&. ~B3!

In the total expression, this is the only operator whereb2
appears. All the other terms are diagonal for this site as t
are constituted byH0-based operators orH1-based operators
without b2 . But all the states not separated by an opera
independent ofb2 have to be equal; this means that

u l 0
-8b2&5u l 0

b2&;u l 0
-b2&5u l 0

9b2&;u l 0
8b2&5u l 0

b2&. ~B4!

Finally, the term where theb2 site appears will be

^ l 0
-8b1u^ l 0

-b2uSb1
.Sb2

u l 0
-b1&u l 0

9b2&¯

3~ l 0
9b1u^ l 0

9b2uSb1
.Sb2

u l 0
8b1&u l 0

b2&, ~B5!

and it contains two distinct types of statesu l 0
b2& and u l 0

9b2&.
For a n-connected site, the demonstration is exactly
same, so we have the desired results.

FIG. 10. General diagram with an isolated siteb2 . This site
represents 16 states, i.e., one tetrahedron. The dashed line
sents any geometrical diagram connected to theb2 site.

FIG. 11. Two diagrams of orderl2. In both cases, the siteb2 is
twice connected and will generate two distinct types of states,u l 0

b2&
and u l 0

9b2& as explained in the text.
d
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As a corollary of this property, we can show that th
exponential prefactor is also simplified. We have to write n
only the operators but the total integrand of each term. Th
the prefactor will be the exponential factor with the energy
each state.

Property 3: If M is the number of sites in a diagram andN
the number of sites in the effective lattice, then the fin
expression will havez0

N-M as prefactor, wherez0 is the par-
tition function of one tetrahedron.

This result is easy to obtain. We remark that the on
effective operators on the nonperturbed states are theH1
operators. For a given diagram, theseH1 act only on theM
sites. Then, the remainingN-M sites are modified only by the
e2(bn2bn11)H0 operators, which are diagonal in this bas
For each statekP$1,2,...,N21,N%\$M sites% we obtain the
product

e2~b2b1!E~ l 0
k
!e2~b12b2!E~ l 0

k
!
¯e2bnE~ l 0

k
!5e2bE~ l 0

k
!.

~B6!

And after the summation over allu l 0
k&, this term will givez0 .

As it appearsN-M times, we will finally obtainz0
N2M , this is

the required result.
This set of properties allows a very quick way to ma

calculations. Coming back to the second order, one ha
evaluate three kinds of diagrams shown in Fig. 12: the fi
property indicates that only the third diagram does not v
ish. This diagram involves two sites, this is the number
distinct states that will appear in the spur. The prefactors
given by the corollary of property 2. We now write thes
rules in a geometrical way~Fig. 13!: on an horizontal line we
write the bound. The operator acting on this bound is writ
a and acts twice. Thus two types of states will appearu l 0&
andu l 08&. Each timea is applied, the bound is ‘‘promoted’’ to
another state. The prefactor is given by the exponential w
the corresponding state of the promoted bound. Then
geometrical diagram can be algebraically written as

pre-

FIG. 12. Three representatives of all possible topologica
equivalent diagrams of orderl2. Only the last one gives a contri
bution.

FIG. 13. Geometrical method for computing analytically a
types of diagrams.b1 ,b2 , represents one tetrahedron.b i ( i
51,2,...,n) is the temperature appearing as an integration varia
@see Eq.~B8!#.
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z0
N22(

~b!
(

u l
0

b1&,u l
0

b2&,u l
0
8b1&,u l

0
8b2&

^ l 0
b1u^ l 0

b2uSb1
•Sb2

u l 0
8b1&u l 0

8b2&

3^ l 0
8b1u^ l 0

8b2uSb1
•Sb2

u l 0
b1&u l 0

b2&e2~b2b1!@E~ l
0

b1!1E~ l
0

b2!#

3e2~b12b2!@E~ l
0
8b1!1E~ l

0
8b2!#e2b2@E~ l

0

b1!1E~ l
0

b2!#, ~B7!

where ~b! is the number of bounds in the lattice. Here th
number is easy to compute as there areN sites and each site
gives 12 bounds, each of them being counted twice. T
there are 6N bounds and the final result is obtained by in
grating with respect to the temperature:

6Nz0
N22 (

u l
0

b1&,u l
0

b2&,u l
0
8b1&,u l

0
8b2&

^ l 0
b1u^ l 0

b2uSb1
.Sb2

u l 0
8b1&u l 0

8b2&

3^ l 0
8b1u^ l 0

8b2uSb1
.Sb2

u l 0
b1&u l 0

b2&e2b@E~ l
0

b1!1E~ l
0

b2!#

3E
0

b

db1e2b1@E~ l
0
8b1!1E~ l

0
8b2!2E~ l

0

b1!2E~ l
0

b2!#

3E
0

b1
db2e2b2@E~ l

0

b1!1E~ l
0

b2!2E~ l
0

b
81!2E~ l

0
8b2!#. ~B8!
ns

im

. E

.
.
gn

-

. E
P

h

s
-

With this method, one can evaluate high-order diagrams
long as the effective model preserves the total ‘‘local’’ sp
This procedure can be applied to any kind of model wh
one can define a perturbative component in the Hamilton
and where the complete solution of a local part of the Ham
tonian can provide enough information for the global Ham
tonian. The last point is to get rid of the formal anisotro
that we have introduced through the arbitrary choice of nu
bering of the 4 sites in one tetrahedron. As illustrated in F
8, one sees that between two tetrahedra, there are diffe
types of operators:

o125St1
1
•St2

2 ; o135St1
1
•St2

3 ; o145St1
1
•St2

4 ;

o235St1
2
•St2

3 ; o245St1
2
•St2

4 ; o345St1
3
•St2

4 ,

wheret1 and t2 are two disconnected tetrahedra and the
per indices correspond to the type of site in the unit c
These operators do not coincide within our notations, so
have to take care of these differences. Nevertheless, as
as we calculate a physical quantity, this artificial anisotro
disappears as it should, so our approach is coherent.
.
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