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Nonadiabatic noncyclic geometric phase of a spin-1
2 particle subject to an arbitrary magnetic field
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~Received 19 May 1999!

We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a quantum spin-1
2 particle

subject to an arbitrary magnetic field. The formula is applied to three specific kinds of magneic fields.~i! For
an orientated magnetic field, the Pancharatnam phase is derived exactly.~ii ! For a rotating magnetic field, the
evolution equation is solved analytically. The Aharonov-Anandan phase is obtained exactly and the Pancharat-
nam phase is computed numerically.~iii ! We propose a kind of topological transition in one-dimensional
mesoscopic ring subject to an in-plane magnetic field, and then address the nonadiabatic noncyclic effect on
this phenomenon.
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I. INTRODUCTION

Berry’s phase1 and its generalization, the Aharonov
Anandan~AA ! phase,2 have attracted considerable attenti
in recent years.3 It was discovered by Berry that a geometr
phasegn(C)5 i rC^n(RW )u¹RW un(RW )&•dRW , in addition to the
usual dynamic phase,2(1/\)*0

tEn(RW )dt, is accumulated on
the wave function of a quantum system, provided that
Hamiltonian is cyclic and adiabatic. This adiabatic geome
phase has found many applications in physics, particularl
mesoscopic systems where the quantum interference is
portant. Loss and co-workers found that the persistent
rents can be induced by the adiabatic Berry phase in aclosed
mesoscopic ring embedded in a static inhomogeneous m
netic field.4 Zhu, Wang, and Wang proposed an experim
to test the AA phase in a textured mesoscopicopen ring
subject to a crownlike magnetic field.5 An interesting kind of
topological transition induced by the interference of the ad
batic Berry phase was proposed in Ref. 6. Moreover,
geometric phase can be generalized to even noncy
evolution,7–9 and a very recent experiment to test the no
cyclic evolution is reported by Waghet al.10

While dealing with the interference of light, Panchara
nam came up with a brilliant idea regarding a general ph
of the evolution for a polarized light,11 which was then gen-
eralized to an arbitrary quantum evaluation.7,12 When a sys-
tem evolves from an initial stateuc(0)& to a final state
uc(t)&5Û(t)uc(0)& with Û(t) a unitary evolutation opera
tor and^c(0)uÛ(t)uc(0)&Þ0, we refer tog t as the phase o
uc(t)& relative touc(0)& once we have

^c~0!uÛ~ t !uc~0!&5eig tu^c~0!uÛ~ t !uc~0!&u. ~1!

For an arbitrary quantum evolution, the geometric Pancha
nam phase can be defined asgp5g t2gd , where gd

52(1/\)*0
t ^c(t)uĤuc(t)&dt is the dynamical phase withĤ

as the Hamiltonian of the system.
Consider a quantum system whose normalized state

tor uc(t)& evolves according to the Schro¨dinger equation
PRB 610163-1829/2000/61~2!/1142~7!/$15.00
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i\(d/dt)uc(t)&5Ĥ(t)uc(t)&. Let us define a new state vec
tor uf(t)& which differs fromuc(t)& only in that its dynami-
cal phase factor has been removed. The Pancharatnam p
difference between any two nonorthogonaluf(t)& can be
obtained by the following geodesic rule: If one write
^f1uf2&5r exp(ig), r.0, the phaseg is given by the line
integral of As along any geodesic lift fromuf1& to uf2&,

7

whereAs5Im^f(s)ud/dsuf(s)& with s as a parameter. Us
ing this rule, we are able to calculate the nonadiabatic n
cyclic Pancharatnam phase accumulated in the evolution
spin-12 particle subject to an arbitrary magnetic field; it
worth noting that the Pancharatnam phase has physical
ity only when the rotated part of the wave function is som
how made to interfere with another part that was not rotat
The formulas to be derived can be used for all two-le
systems because any two-level system can be mapped i
system of the spin-1

2 in a specific magnetic field.13

On the other hand, with the advancement of nanotech
ogy, it is possible to fabricate mesoscopic rings of s
within the phase coherence length so that the phase mem
is retained by electrons throughout the whole system. In s
systems, the electronic quantum transport is significantly
fected by the geometric phase which may not be cyclic
adiabatic. However, most theoretical studies of the geome
phase in mesoscopic systems have so far been limited to
cases of adiabatic or cyclic electronic transport. Therefor
is quite useful and interesting to investigate theoretically
noncyclic nonadiabatic geometric phase and its effect on
electronic transport in mesoscopic systems. Motivated
this, we study the noncyclic nonadiabatic Pancharatn
phase of an electron and discuss the related quantum in
ence in a mesoscopic ring connected to current leads su
to a magnetic field.

The paper is organized as follows. In Sec. II, we deriv
formula of the noncyclic nonadiabatic geometric Pancha
nam phase for a quantum particle of spin-1

2 subject to an
arbitrary magnetic field. In Sec. III, the formula is applied
the three systems subject to, respectively, three specific m
netic fields. For an orientated magnetic field, the Pancha
1142 ©2000 The American Physical Society
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nam phase is derived exactly. For a rotating magnetic fi
the evolution equation is solved analytically, and the geom
ric phase is computed numerically. In particular, a striki
topological transition in a mesoscopic ring subject to an
plane magnetic field is addressed. The paper ends wi
brief summary.

II. GENERAL FORMULA

The Hamiltonian for a system of spin-1
2 particle subject to

an arbitrary magnetic fieldB(t) is given by

Ĥ~ t !52
m

2
B~ t !•sW , ~2!

where m is the Bohr magneton, andsW 5(sx ,sy ,sz) with
sx,y,z as Pauli matrices. The space of states of this syste
the projective spaceCP(1), which is diffeomorphic to the
unit sphereS2 @CP(1).S3/U(1).S2#. The point inS2 as-
sociated with an arbitrary stateuc& of the system isn
5^cusW uc&. Reciprocally, for a given vectornPS2, param-
eterized in a North chart by

n5~n1 ,n2 ,n3!5~sinu cosw,sinu sinw, cosu!,

we can associate this vector with the spin state

uc&5S e2 iw/2 cos~u/2!

eiw/2 sin~u/2!
D

s

,

where subscripts denotes the spin space. The Schro¨dinger
equation for the state uc(t)&, (d/dt)uc(t)&52( i /
\)Ĥ(t)uc(t)&, can be expressed in the following form fo
the vector n(t): dn(t)/dt52(m/\)B(t)3n(t).14 This
equation can be rewritten in a matrix form as

dnT~ t !

dt
5B̂M~ t !nT~ t !, ~3!

with

B̂M~ t !5
1

\ S 0 mB3~ t ! 2mB2~ t !

2mB3~ t ! 0 mB1~ t !

mB2~ t ! 2mB1~ t ! 0
D

for B(t)5@B1(t),B2(t),B3(t)#, where T represents the
transposition of matrix.

The evolution from an initial staten(0) to a final state
n(t) corresponds to a curve on the sphereS2. This field-
dependent curve may be very complicated. A cyclic evo
tion of the state is represented by a closed curve on
sphere, that is,n(t)5n(0) with t as a period of a cycle
Whether the evolution is cyclic or not is dependent on b
the magnetic field and the initial state. The evolution of t
spin-12 system is noncyclic in general although it is cyclic
some special cases, which we will discuss later on. The g
eral curve n(t) can hardly be solved analytically, eve
thoughn(t) may be exactly determined in some special co
ditions. The solution of Eq.~3! may be written formally as a
T̂ exponential:nT(t)5T̂ exp„Q̂(t)…nT(0) with T̂ as the time-
ordering operator andQ̂(t)5*0

t B̂M(t8)dt8. We can ignore
d,
t-

-
a
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-
e

h
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-

the T̂ operator ifB̂M(t) at different times commute. Once w
find an operatorŜ(t) to diagonalizeQ̂(t) in the base:Î (t)
5Ŝ21(t)Q̂(t)Ŝ(t)5diag„l1(t),l2(t),l3(t)…, we have the
exact solution:

nT~ t !5Ŝ~ t !eÎ (t)Ŝ21~ t !nT~0!. ~4!

For a general initial state

uf~ t i !&5S e2 iw i /2 cos
u i

2

eiw i /2 sin
u i

2

D
s

,

the state at the instantt is

uf~ t !&5S e2 iw(t)/2 cos
u~ t !

2

eiw(t)/2 sin
u~ t !

2

D
s

.

^f~0!uÛ~ t f ,0!uf~0!&5eigp(t f )u^f~0!uÛ~ t f ,0!uf~0!&u.
~5!

Clearly, gp(t f) recovers the AA phasegAA if n(t f)5n(0)
for t f5t.0.2 For a noncyclic evolution, we can introduce
specific unitary operatorÛc(t,t f) which makesn(t)5n(0)
after the evolutionuf(t)&5Ûc(t,t f)uf(t f)&, and thus we
have

^f~0!uÛ~ t f ,0!uf~0!&

5^f~0!uÛc
1~t,t f !Ûc~t,t f !Û~ t f ,0!uf~0!&

5^f~0!uÛc
1~t,t f !uf~t!&

5^f~0!uÛc
1~t,t f !uf~0!&eigAA(t). ~6!

If ^f(0)uÛc
1(t,t f)uf(0)& is real and positive, it is clear from

Eqs.~5! and~6! that the Pancharatnam phase for the nonc
lic evolution is given by the AA phase of the specific cycl
evolution C determined by the operatorÛc(t,t f)Û(t f ,0),
i.e.,
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gp~ t f !5gAA~t!. ~7!

gAA~t!52
1

2
SC52

1

2ESur f ace
n•dS.

The surface integral can be transformed into a line integ
by introducing a vector fieldAs such that¹3As52n/2 on
the surface. It can be found that the vector potentialAs(n)
5@n2/2(11n3),2n1/2(11n3),0# describing the field of a
monopole satisfies the requirement.16 Therefore we have

~8!

where the dot denotes the time derivative, and the sec
line integral is performed along the shorter geodesic cu
from P to A. The equation to describe the geodesic cu
through pointP to A can be expressed as

tanu5
2k

h cosw1z sinw
, ~9!

with

h5n2~ t i !n3~ t f !2n3~ t i !n2~ t f !,

z52n1~ t i !n3~ t f !1n3~ t i !n1~ t f !,

k5n1~ t i !n2~ t f !2n2~ t i !n1~ t f !.

~10!

The evolution curve determined from the above opera
Ûg(t,t f) is the geodesic curve, which indeed ensu

^f(0)uÛg
1(t,t f)uf(0)& to be real and positive.7,9 Therefore

we have, from Eqs.~7!, ~8!, and~10!,

gp~ t f !52
1

2E0

t f n1ṅ22n2ṅ1

11n3
dt

1arctan
sin~w f2w i !

cot~u f /2!cot~u i /2!1cos~w f2w i !
.

~11!
al

nd
e
e

r
s

Equation~11! is a central result of this paper, which provide
a very useful formula for computing the noncyclic nonad
batic geometric phase for any two-level system. We emp
size that Eq.~11! can be used to any evolution of a spin-1

2

particle subject to an arbitrary magnetic fieldB(t).

III. APPLICATIONS TO THREE SPECIFIC SYSTEMS

We now apply Eq.~11! to systems subject to an orientate
magnetic field, a rotating magnetic field, and a rotating p
a constant magnetic field.

A. An orientated magnetic field

The simplest system is that a spin-1
2 particle is subject to

an orientated magnetic field, which can be written asB
5(0,0,B3). The Pancharatnam phase for this system can
obtained straightforwardly even for time-dependentB3 be-
cause the magnetic matrixB̂M(t) at different times commute
One can find that

Ŝ~ t !eÎ (t)Ŝ21~ t !5S cosw t 2 sinw t 0

sinw t cosw t 0

0 0 1
D ,

wherew t52(2m/\)*0
t B3(t8)dt8. Thus for the initial state

n(0)5(sinui coswi ,sinui sinwi ,cosui), we have n(t)
5@sinui cos(wi1wt),sinui sin(wi1wt),cosui# from Eq. ~4!.
Therefore, it is straightforward from Eq.~11! to find

gp~ t !52
w t

2
~12 cosu i !1arctan

sinw t

cot2 ~u i /2! 1cosw t

.

~12!

We can rewrite Eq.~12! as

tanS gp~ t !2
w t

2
cosu i D52tan

w t

2
cosu i ,

which recovers the result for the constant magnetic fieldB3
reported in Ref. 10. This noncyclic geometric phase was
deed detected in a well-performed polarized neutron in
ferometric experiment.10

B. A rotating magnetic field

Consider a spin-12 quantum particle in a rotating magnet
field. The Hamiltonian of the system is Eq.~2! with the
magnetic field given by

B5~B0 cosvt,B0 sinvt,B1!, ~13!

whereB0 andB1 are constants.
The adiabatic and cyclicBerry phase for this system ha

been found to be7 1
2 VC with VC52p(12 cosa) as the

solid angle thatC subtends to the center of the unit spher1

where a5arctan(B0 /B1) is the fixed tilt angle. A genera
evolution follows a nonadiabatic, and even a noncyclic o
The magnetic matrixB̂M can now be expressed as
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B̂M~ t !5S 0 v1 2v0 sinvt

v1 0 v0 cosvt

v0 sinvt 2v0 cosvt 0
D ,

with v i5mBi /\. Though the matricesB̂M(t) at different
times do not commute, we can still solve this problem e
actly. Let us introduce a new vector:

uT~ t !5S cosvt sinvt 0

2sinvt cosvt 0

0 0 1
D nT~ t !. ~14!

Equation ~3! for nT(t) can be replaced by an equivale
equation
b
e
at
p

e

in
in

d

or

n

fe
r
to

t
a

-

d

dt
uT~ t !5B̂u uT~ t !,

with uT(0)5nT(0) and

B̂u5S 0 v1v1 0

2~v1v1! 0 v0

0 2v0 0
D .

Note that the matricesB̂u at different times commute be
cause of its time-independence, from Eqs.~4! and ~14!, the
curven(t) is derived exactly as
nT~ t !5S cosvt 2sinvt 0

sinvt cosvt 0

0 0 1
D S sin2 x1cos2x cosvst cosx sinvst

1

2
sin 2x~12 cosvst !

2cosx sinvst cosvst sinx sinvst

1

2
sin 2x~12 cosvst ! 2 sinx sinvst cos2 x1sin2x cosvst

D nT~0!, ~15!
where vs5Av0
21(v1v1)2 and x5arctan@v0 /(v11v)#.

From Eqs.~15! and ~11!, the Pancharatnam phase can
readily computed analytically or numerically, which will b
useful in studing the interference effect on the nonadiab
noncyclic electronic transport across a mesosco
Aharonov-Bohm ring connected to the current leads17~see
also, e.g., Sec. III A!.

For a cyclic evolution, the above result can be furth
simplified. The evolution can be cyclic if the frequenciesvs
andv are commensurable, that is,vs5mv/k with m andk
as irrational integers. Under this condition, the correspond
Pancharatnam phase accumulated in one cycle with the
tial state

uf~0!&5„e2 iw i /2 cos~u i /2! eiw i /2 sin~u i /2!…s
T

can be obtained explicitly:

gp~t!5gAA~t!5mp~12cosb!2kp~12cosx cosb!,
~16!

where t52kp/v52mp/vs , and cosb5 cosui cosx
1sinui sinx coswi . If we define an effective magnetic fiel
in the spherical coordinatesBe f f(t)5(Be f f ,x,vt) with
Be f f5\vs /m, b is just a constant angle between the vect
n(t) andBe f f(t).

18 Note that the evolution given by Eq.~15!
is basically the superposition of two rotations. The first o
is that the effective magnetic field rotates around thez axis
with the anglex and the angular frequencyv. The second
one is the spin precession around the direction of the ef
tive magnetic field with an angleb and a precession angula
frequencyvs . The combination of the two rotations leads
a cyclic evolution only if the frequenciesvs andv are com-
mensurable. Obviously, the geometric phases induced by
first and second rotations are, respectively, the second
e
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ic

r

g
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s

e

c-

he
nd

first terms of the right-hand side of Eq.~16!. In the adiabatic
limit, we have x→a (v/v1→0), and b→0 (w i→0 and
u i→x) becausen(t) aligns withBe f f(t). Therefore the adia-
batic Berry phase is recovered.

The Pancharatnam phasegp(t f) @andj(t f) defined later#
versus the timet f is plotted in Fig. 1 withw i5p/6, u i
55p/12, a5p/3, v550 Hz, and vs52v ~solid line!,
A3v ~dotted line!, respectively. If we define a function
j(t f)5gp(t f)2gp(ht) with h5Int@ t f /t#, we can see from

FIG. 1. The Pancharatnam phasegp(t f) versus the timet f for
vs /v52 ~solid line!, A3 ~dotted line!. The inset shows thatj(t f)
versus the timet f for vs /v52.
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the inset of Fig. 1 thatj(t f) is a periodic function oft f with
period t52p/v for vs52v. Also gAA5gp(t f)2gp(t f
2t)50.61 is the AA phase for the cyclic evolution. How
ever, the dotted line in Fig. 1 does not have the above p
erties because the evolution is not cyclic during finite tim

C. Topological transition in a mesoscopic ring subject
to an in-plane magnetic field

Recently, Lyanda-Geller investigated the adiabatic Be
phase induced by the spin-orbit interaction in low dime
sional or lowered symmetry conductors, and proposed
interesting phenomenon: topological transition.6 Here, we
propose that this phenomenon may occur in a mesosc
ring subject to an in-plane magnetic field, which may
easier to be observed. As an application of Eq.~11!, we also
analyze whether or not this topological transition exists
nonadiabatic noncyclic cases.

Consider a mesoscopic ring with radiusr connected to
current leads in a static magnetic field, as shown in Fig
We assume that the motion of electrons in the whole sys
is ballistic, however, we include the spin-flip processes
duced by the inhomogeneous magnetic field, which is a
merit to consider the Pancharatnam phase rather than
cyclic AA phase or the adiabatic Berry phase, where an
tificial restriction that spin-up and spin-down electro
traverse the ring independently is required.4–6

An incoming electron wave incident from the left lead
splitted into two beams at the left junction and recombined
the right junction into the outgoing wave through the rig
lead. As a consequence, the motion of spin-1

2 electron in the
textured ring is equivalent to a quantum spin-1

2 in a rotating
magnetic field in time. For a beam of electron wave w
Fermi velocity Vf5\kf /me , where kf is the Fermi wave
vector andme is the effective electron mass, the time f
electrons to traverse ballistically one round in the ring ist0
52pr /Vf , which is the interval that the electron moves
the magnetic field.5 In this situation, the Pancharatnam pha
mentioned above in addition to the usual Aharonov-Bo
~AB! phase due to the coupling of electrons to the conv
tional electromagnetic gauge potential, is accumulated on
electron wave function. In such a system, the quantum tra
port is significantly affected by the AB phase and Pancha
nam phase. We assume for simplicity the ring to be symm
ric. Following the method originally given by Bu¨ttiker, Imry,
and Azbel,19 the transmission coefficient affected by the ge
metric phase can be obtained as

FIG. 2. A ring connected to current leads in a uniform exter
magnetic fieldBx and a tangent magnetic fieldBt , as described by
the Hamiltonian~18!.
p-
.

y
-
n

ic

.
m
-
ig
he
r-

t
t

e

-
he
s-
t-
t-

-

Tg5
2e2 sin2~kfpr !~11cosg!

@a21b2 cosg2~12e!cos~2kfpr !#21e2 sin2~2kfpr !
,

~17!

where a56(A122e21)/2, b56(A122e11)/2 with 0
<e<1/2, and g52pfAB /f01gp is the total geometric
phase withfAB as the AB flux andf05h/e as the usual flux
quantum. Here the parametere stands for the coupling
strength of the ring to two leads, ande50 in the weak-
coupling limit while e51/2 in the strong-coupling limit.

The time-dependent Hamiltonian describing the spin m
tion in Fig. 2 is given by20

Ĥ5gm@sx~2Bt sinv f t1Bx!1syBt cosv f t#, ~18!

wherev f52p/t0 andg is the gyromagnetic ratio. A natura
basis for Ĥ consists of un1(t)& and un2(t)& that satisfy
Ĥ(t)unj (t)&5Ej (t)unj (t)& ( j 51,2) is given by ^nj (t)u
5(1/A2)„1,Ej /\@vx1 iv t exp(ivft)#… with corresponding

eigenenergies Ej5 j \Av t
21vx

222v tvx sinvft and v t,x

FIG. 3. The transmission coefficientsTg versus the ratiovx /v t

for different v t /v f .

l
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5gmBt,x /\. Within the adiabatic approximation, the Berr
phasegBerry accumulated on the wave function is found
be gBerry5p for vx,v t , gBerry5p/2 for vx5v t , and
gBerry50 for vx.v t .6 It is interesting to note that the adia
batic Berry phase does not continuously vary with the ma
netic field. Substituting the Berry phase into Eq.~17! (fAB
50), the transmission coefficientTg versus magnetic field
can be obtained as

Tg55
0, for vx,v t

8 sin2~kfpr !

118 sin2~kfpr !
, for vx5v t

1, for vx.v t

~19!

in the strong-coupling limit. Equation~19! gives a math-
ematical argument for the existence of a topological tran
tion in this system which characters the destructive (Tg
50) to constructive (Tg51) interference in quantum trans
port affected by adiabatic Berry phase. According to t
Landauer-Bu¨ttiker formula,21 the conductance through th
system isG5(e2/\)Tg . Therefore the conductance as
function of eitherBt or Bx has steplike character if the othe
is fixed. This steplike current-magnetic field character, whi
stems from the topological geometric phase, is referred to
the topological transition.

Does this topological transition still exist in nonadiabat
noncyclic cases? To answer this question, we compute
Pancharatnam phase and substituted it into Eq.~17! without
using the adiabatic approximation or cyclic condition. F
the case that the initial state is an eigenstate, the transmis
coefficientTg againstvx /v t for v t /v f5100,10,1 are plot-
ted in Fig. 3, wherev f5109 Hz,20 kfr 5n11/2 with n a
non-negative integer. From Fig. 3~a!, the rather sharp topo-
logical transition occurs atvx /v t51 for v t /v f5100 under
which the adiabatic conditionsv t@v f is well satisfied.
However, forv t /v f51,10@Figs. 3~b! and 3~c!# the adiabatic
conditions are not well satisfied, we cannot observe the
pological transition. The above result coincides with a ge
metric point of view. We can roughly decompose the Pa
charatnam phase into two parts, the phase induced by
magnetic field trajectory circuit and the spin precessi
around the magnetic field. In the adiabatic condition, t
later one is approximately zero because the spin directio
along the direction of the magnetic field. Then we only ne
to analyze the first part. It was pointed out that the adiaba
Berry phase for a spin-1

2 particle in a magnetic field is a hal
o

k

B

-

i-

e

h
as

he

r
ion

o-
-
-
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n
e
is
d
ic

of the solid angle that the magnetic field trajectory subten
at degeneracy~i.e., atBW 50 point!.1 Then gBerry50 for v t
,vx because the magnetic-field trajectory circuit does n
enclose the degeneracy. On the other hand,gBerry5p for
v t.vx since the degeneracy is enclosed and the solid an
of the magnetic circuit is62p. In the nonadiabatic noncyc
lic cases, however, the Pancharatnam phase induced by
spin precession is significant, which oscillates quick
around vx /v t51, with the first part almost unchanged
Therefore we may conclude that the Pancharatnam phas
duced by the spin precession destroys the topological tra
tion.

Finally, we wish to point out whether or not the topolog
cal transition exists in nonadiabatic noncyclic motion may
tested by a well designed mesoscopic experiment, in wh
Bt may be induced by a long straight current-carrying w
pass through normally the center of the ring as shown in F
2. For the ballistic motion in a gold ring withr;1 mm and
Vf;105 m/s, g;1, it is required that the correspondin
field should be;1 T for v t;v f and ;102 T for v t
;100v f . If the motion in the gold ring is diffusive,v f is
replaced byvD5( l /2pr )v f ( l is the elastic mean free path!,
the required magnitude field may be less by a factorl /2pr
~about two orders! than that predicted for the ballistic case
On the other hand,g;15 in a GaAs ring, the required mag
netic field may be less than 10 T in the casev t /v f5100
even for ballistic motion. Therefore the results reported h
may be tested in both ballistic and diffusive conditions.

IV. SUMMARY

A useful formula of the noncyclic nonadiabatic geometr
phase for a quantum spin-1

2 in an arbitrary magnetic field has
been derived exactly, which can be used in any two-le
system. The formula has been applied to three specific ki
of magnetic fields. The evolution equations of the spin1

2

particle in an orientated and in a rotating magnetic field ha
been solved, respectively, and the Pancharatnam phase
computed. We have also found that the nonadiabatic nonc
lic phase has a significant impact on the topological tran
tion in a mesoscopic system.
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