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Nonadiabatic noncyclic geometric phase of a spin-particle subject to an arbitrary magnetic field
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We derive a formula of the nonadiabatic noncyclic Pancharathnam phase for a quantuén [Epitncle
subject to an arbitrary magnetic field. The formula is applied to three specific kinds of magneic(ijefs.
an orientated magnetic field, the Pancharatnam phase is derived ekiactpr a rotating magnetic field, the
evolution equation is solved analytically. The Aharonov-Anandan phase is obtained exactly and the Pancharat-
nam phase is computed numericalljii) We propose a kind of topological transition in one-dimensional
mesoscopic ring subject to an in-plane magnetic field, and then address the nonadiabatic noncyclic effect on
this phenomenon.

I INTRODUCTION iz (d/dt)|¥(t)y=H(t)|y(t)). Let us define a new state vec-

Berry’s phast and its generalization, the Aharonov- tor[#(t)) which differs from|y(t)) only in that its dynami-
Anandan(AA) phasé have attracted considerable attentioncal phase factor has been removed. The Pancharatnam phase
in recent years.It was discovered by Berry that a geometric difference between any two nonorthogonai(t)) can be
phaseyn(C)=isﬂic(n(li)lVﬁln(li)}-dli, in addition to the ©obtained by the following geodesig rulle: If one vyrites
usual dynamic phase; (1/4) [ JE.(R)dt, is accumulated on .<¢1|¢2>_p exp(y), p>0, the phgsgy Is given by the I|r;e
the wave function of a quantum system, provided that thdntegral of A; along any geodesic |ift fromd,) to | 42),
Hamiltonian is cyclic and adiabatic. This adiabatic geometridVNereAs=Im(a(s)|d/ds|¢(s)) with s as a parameter. Us-
phase has found many applications in physics, particularly if"d this rule, we are able to calculate the nonadiabatic non-
mesoscopic systems where the quantum interference is in?y‘?“? Pancharatnam phase accumulated in the evolution of a
portant. Loss and co-workers found that the persistent curSPinz particle subject to an arbitrary magnetic field; it is
rents can be induced by the adiabatic Berry phaseciosed ~ Worth noting that the Pancharatnam phase has physical real-
mesoscopic ring embedded in a static inhomogeneous mady only when the rotated part of the wave function is some-
netic field? Zhu, Wang, and Wang proposed an experimentiow made to interfere with another part that was not rotated.
to test the AA phase in a textured mesoscoppenring  The formulas to be derived can be used for all two-level
subject to a crownlike magnetic fie?dAn interesting kind of ~ systems because any two-level system can be mapped into a
topological transition induced by the interference of the adiasystem of the spi- in a specific magnetic fieltf
batic Berry phase was proposed in Ref. 6. Moreover, the On the other hand, with the advancement of nanotechnol-
geometric phase can be generalized to even noncycliggy, it is possible to fabricate mesoscopic rings of size
evolution/ and a very recent experiment to test the non-within the phase coherence length so that the phase memory
cyclic evolution is reported by Wagét al'® is retained by electrons throughout the whole system. In such

While dealing with the interference of light, Pancharat-systems, the electronic quantum transport is significantly af-
nam came up with a brlllla_nt |de.a regardmg a general phasgcted by the geometric phase which may not be cyclic or
of the evolution for a polarized ligHt, which was then gen-  ggjapatic. However, most theoretical studies of the geometric
eralized to an arbitrary quantum evaluatiof.When a sys-  phase in mesoscopic systems have so far been limited to the
tem evolves from an initial statgy(0)) to a final state cases of adiabatic or cyclic electronic transport. Therefore it
|4(t))=U(t)|#(0)) with U(t) a unitary evolutation opera- is quite useful and interesting to investigate theoretically the
tor and<¢//(0)|0(t)|¢(0))¢0, we refer toy, as the phase of noncyclic nonadiabatic geometric phase and its effect on the
|#(1)) relative to|y¢(0)) once we have electronic transport in mesoscopic systems. Motivated by

this, we study the noncyclic nonadiabatic Pancharatnam
- iy . phase of an electron and discuss the related quantum infer-
($(0)|U ()] 16(0)) =™ (y(O)[U(1)[¢(0))]. @ ence in a mesoscopic ring connected to current leads subject
_ ) ) to a magnetic field.
For an arbitrary quantum eyolutlon, the geometric Pancharat- Tpe paper is organized as follows. In Sec. II, we derive a
nam phase can be defined ag=vyi—vyq, Where v4  formula of the noncyclic nonadiabatic geometric Pancharat-
= —(Lh) [H{y(t)[H| (1) )dt is the dynamical phase with nam phase for a quantum particle of sgirsubject to an
as the Hamiltonian of the system. arbitrary magnetic field. In Sec. Ill, the formula is applied to

Consider a quantum system whose normalized state vecthe three systems subject to, respectively, three specific mag-

tor |(t)) evolves according to the Schiiager equation netic fields. For an orientated magnetic field, the Pancharat-
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nam phase is derived exactly. For a rotating magnetic fieldhe T operator ifBy (t) at different times commute. Once we
the evolution equation is solved analytically, and the geomety 4 1 operatoi(t) to diagonalizeO(t) in the based (t)

ric phase is computed numerically. In particular, a striking .,  ~ . .
topological transition in a mesoscopic ring subject to an in-— > _ (D Q(DS() =diagk1(t) A(1),A5(t)), we have the

plane magnetic field is addressed. The paper ends with geact solution:
brief summary.

n'(t)=8(t)e! 5 (t)n"(0). (4)
Il. GENERAL FORMULA
The Hamiltonian for a system of sphparticle subject to For a general initial state
an arbitrary magnetic fiel&(t) is given by
" # > e i¢il? cosﬁ
H)=-35B(1) 0, (3] 2
) |p(t))= . :
where u is the Bohr magneton, and=(oy,0y,0,) with e'¢il2 gin —
. . - . 2
oy.y,z @s Pauli matrices. The space of states of this system is o

the projective spac€ P"), which is diffeomorphic to the
unit sphereS? [CPM=S%U(1)=S?]. The point inS? as-  the state at the instantis
sociated with an arbitrary statpy) of the system isn

=<¢|&|¢>. Reciprocally, for a given vectane S?, param- A o(
eterized in a North chart by e iem/? CoS——
n=(ny,N,,N3)=(sind cose,siné sing, cosb), |[$(1))= o o(t)
e'¢'“ sin ——
we can associate this vector with the spin state 2

A unique curve n(¢) on the unit sphere S* is determined by
the evolution |¢(#)) with the initial point A of coordinates
n(¢;)=(sin 6, cos ¢;, sin &; sin ¢;, cos ;) and the final point P

e '¥2coq 6/2)
)= e“2sin(0/2) |
where subscript- denotes the spin space. The Sdinger . o . .
equation for the state|y(t)), (d/dt)]y(t))=—(i/ of coordinates n(z,) =(sin 6, cos ¢, sin & sin ¢, €os 6y).

ﬁ)l:|(t)|¢(t)>, can be expressed in the following form for The?’A |7’([)?:U([’O)|7)(O)> WiFh U(t,O)=Te.xp(—.(i/
the vector n(t): dn(t)/dt= —(,u/h)B(t)Xn(t).” This h)SoH(t")dt") as the unitary evolution operator which gives

. . . . —— N
equation can be rewritten in a matrix form as a curve AHP on the unit sphere S2, If<¢(0)|U([f’O)|¢(O)>
is not zero, the Pancharatnam phase y,(¢;) is defined by

dn'(t) . .
—gr = Bubn’(), 3
with <¢<0>|U(tf,o>|¢<0>>=e'7p“f>|<¢<0>|uaf,o>|¢(0>>|-( |
5
0 uBs(t)  —uBs() eary. o(t) 1o A phass.. f n(t)n(0)
. 1| — uBa(t) O B.(t Clearly, yp(t;) recovers the AA phaseaa if n(t;)=n(0
Bum(t)= 7 #Bs() #Ba() for t;= 7>0.2 For a noncyclic evolution, we can introduce a
pBa()  —uBy() O specific unitary operatod(r,t;) which makesn(r)=n(0)
after the evolution =0q(nt t¢)), and thus we
for B(t)=[B(t),Bx(t),B3(t)], where T represents the 5e (7)) =Ue(rto)] (1))
transposition of matrix.
The evolution from an initial state(0) to a final state A
n(t) corresponds to a curve on the sph&e This field- ($(0)|U(t5,0)| 4(0))
dependent curve may be very complicated. A cyclic evolu- ~ . .
tion of the state is represented by a closed curve on the =((0)|U{ (7,t)U(7,t)U(t1,0)](0))
sphere, that isn(7)=n(0) with = as a period of a cycle. -
Whether the evolution is cyclic or not is dependent on both =((0)|U¢ (7,10 p(7))
the magnetic field and the initial state. The evolution of the . fyan(7)
spin4 system is noncyclic in general although it is cyclic in =(#(0)|U¢ (7,t7)| ¢(0))e!7ax. 6)

some special cases, which we will discuss later on. The gen-

eral curven(t) can hardly be solved analytically, even if (4(0)|U7 (7,t;)|¢(0)) is real and positive, it is clear from
thoughn(t) may be exactly determined in some special con£gs. (5) and(6) that the Pancharatnam phase for the noncyc-
ditions. The solution of Eq(3) may be written formally as a Jic evolution is given by the AA phase of the specific cyclic
T exponentialn(t) =T exp(Q(t))n"(0) with T as the time-  evolution C determined by the operatdd (r,t;)U(t;,0),
ordering operator an@(t)= 5By (t')dt’. We can ignore i.e.,
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Yo(t1) = ¥aa(7). (7) Equation(11) is a central result of this paper, which provides
a very useful formula for computing the noncyclic nonadia-
batic geometric phase for any two-level system. We empha-

We now consider a special evolution operator U,(7,1y) size that Eq(11) can be used to any evolution of a sgin-

which makes the state pass from P to A along the shortest

e, particle subject to an arbitrary magnetic fidt).
path PSA (i.e., the geodesic curve) in the unit sphere of S2.
— —
Then, AHP and PSA forms a closed curve C on the surface Ill. APPLICATIONS TO THREE SPECIFIC SYSTEMS

S2. The geometric phase for this cycle is determined from

the surface area S closed by the curve C.'5 ic., We now apply Eq(11) to systems subject to an orientated

magnetic field, a rotating magnetic field, and a rotating plus

1 a constant magnetic field.

1
'YAA(T):_ESCZ_EJ n-ds.
Surface A. An orientated magnetic field

The surface integral can be transformed into a line integral The simplest system is that a sginparticle is subject to

by introducing a vector field\s such thatV X As=—n/2 on  an orientated magnetic field, which can be written Bas

the surface. It can be found that the vector poterigin) = (0,0B5). The Pancharatnam phase for this system can be

=[n2/2(1+n3),—n4/2(1+n3),0] describing the field of a obtained straightforwardly even for time-depend8at be-

monopole satisfies the requireméhiTherefore we have cause the magnetic mati, (t) at different times commute.
One can find that

Yaa(T)= é A;-dn .
c Cosgp; —sSing; O

2

ljffnlriz—nzril 5(t)e' WS L(t)=| sing, cose;, O,

o 1tn, YT g Asdn (9 0 0 1

) o where ;= — (2ul/f) [{B3(t')dt’. Thus for the initial state
where the dot denotes the time derivative, and the seco 0)=(sin# cosg;,siné sing, ,cosé), we have n(t)
line integral is performed along the shorter geodesic CUIVE_ [5in @ cosfe+¢,),siné sin(g+@),cosé] from Eq. (4).

from P to A. The equation to describe the geodesic curverperefore, it is straightforward from E¢L1) to find
through pointP to A can be expressed as

T 9 v (t)=—ﬂ(l— cos#;) +arctan sine:
tand= ncose+{sing’ © P 2 ' cof (6,/2) +cose,
. (12
with
We can rewrite Eq(12) as
7= Ny(t;)N3(t) —N3(ti)na(ty),
£=—ny(t)na(ts) +na(t)ny(ts), tar( Yp(t)— %cosai = —tan%cosei ,

=N (t)Nz(te) = Na(ti) Ny (ty). which recovers the result for the constant magnetic fid

o ) . ) reported in Ref. 10. This noncyclic geometric phase was in-
Substituting Eq. (9) into [754 A,-dn, we obtain deed detected in a well-performed polarized neutron inter-
ferometric experiment’

A,-dn=arctan sin(e— )
s “cot( 0p2)cot( 6;/2) +cos(p— ;)

B. A rotating magnetic field

(10) Consider a spir- quantum particle in a rotating magnetic
The evolution curve determined from the above operatofield. The Hamiltonian of the system is E() with the

Ug(7,t) is the geodesic curve, which indeed ensuregnagnetic field given by

($(0)|U (7.,t1)| $(0)) to be real and positive® Therefore _
we have, from Egs(7), (8), and(10), B=(Bocoswt,Bgsinwt,By), (13

whereB, andB; are constants.

Ny No— Nol
1] wdt The adiabatic and cyclidBerry phase for this system has

7p(tf): ) 0

1+ng been found to ber 1Q¢ with Qc=2m(1— cosa) as the
Sin( @;— 1) solid angle thaC subtends to the center of the unit sphkre,
+arctan f ¥ ) where a=arctanBy/B,) is the fixed tilt angle. A general
cot( 8;/2)cot( 6,/2) + cog ¢s— ;) evolution follows a nonadiabatic, and even a noncyclic one.

(11)  The magnetic matri,, can now be expressed as
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0 ) —wq Sinwt d A
. ' ° —uT(H)=B,uT(v),
By(t)=| @1 0 woCoOSwt || dt
wgSinwt  —wycoswt 0
A with u™(0)=n"(0) and
with w;= uB;/f. Though the matrice8y,(t) at different
times do not commute, we can still solve this problem ex-

actly. Let us introduce a new vector: A 0 wot+tw; 0
= —(w+ 0
cosot  sinwt 0O By (0t o) ®o
. 0 —Wp 0
u'(t)=| —sinwt coswt 0 |nT(t). (14)
0 0 1

Note that the matrice8, at different times commute be-
Equation (3) for n"(t) can be replaced by an equivalent cause of its time-independence, from E@®.and (14), the
equation curven(t) is derived exactly as

1
. sir? y+coy cosmst cosysinwst = si —
coswt —sinwt 0 X XEDS0s XSS 7 Sin2x(1- coswsl)

n'(t)=| sinwt coswt 0 —cosy Sinwt CoSwt siny sinwgt n'(0), (15
0 0 1

1 o .
> sin2y(1— coswgt) — SNy Sinwgt cog x + Sirfy coswt

where wg= w2+ (w+w;)? and y=arctafiwy/(w,+w)].  first terms of the right-hand side of E€L6). In the adiabatic
From Egs.(15) and (11), the Pancharatnam phase can belimit, we have y—a (w/w;—0), and 3—0 (¢;—0 and
readily computed analytically or numerically, which will be ¢;— ) becausea(t) aligns withBe(t). Therefore the adia-
useful in studing the interference effect on the nonadiabati®atic Berry phase is recovered.
noncyclic electronic transport across a mesoscopic The Pancharatnam phasg(t;) [and &(t;) defined latey
Aharonov-Bohm ring connected to the current ledfisee  versus the timet; is plotted in Fig. 1 with ;= /6, 6,
also, e.g., Sec. lllA =57/12, a=n/3, =50 Hz, and wg=2w (solid line),
For a cyclic evolution, the above result can be further\3w (dotted line, respectively. If we define a function
simplified. The evolution can be cyclic if the frequencies  &(tf) = y,(ts) — ¥p(77) with »=Int[t;/7], we can see from
and w are commensurable, that i®s=mw/k with m andk
as irrational integers. Under this condition, the corresponding 30
Pancharatnam phase accumulated in one cycle with the ini

tial state [ 7 e @ oS QPY(3)0
25

|4(0))=(e '*"2cog 6;/2) €' “"sin(6,/2))] [ .

can be obtained explicitly:

©=20

20 |

¥p(7) = Yaa(7) =mm(1—cosB)—km(1—cosy cosp),
(16)

where 7=2km/w=2mm/wgs, and cogB= Ccos# cosy
+sin @ sin y cosg; . If we define an effective magnetic field
in the spherical coordinate®¢s(t) =(Bess,x,wt) with
Beti=hws/u, B is just a constant angle between the vectors
n(t) andB,(t).'® Note that the evolution given by E¢L5)

is basically the superposition of two rotations. The first one
is that the effective magnetic field rotates around zteis
with the angley and the angular frequenay. The second E
one is the spin precession around the direction of the effec: °'°o_0 05 1.0 15 20 25 3.0 35
tive magnetic field with an anglg and a precession angular Time t, (2n/a)

frequencyws. The combination of the two rotations leads to

a cyclic evolution only if the frequencies; andw are com- FIG. 1. The Pancharatnam phagg(t;) versus the time; for
mensurable. Obviously, the geometric phases induced by thg,/w=2 (solid line), \3 (dotted ling. The inset shows thai(t;)
first and second rotations are, respectively, the second an@rsus the time; for ws/w=2.

Pancharatham Phase yp(t,)
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08 |-

oer (a) o/0=100

04 |-

02

Transmission Coefficient Tg

FIG. 2. A ring connected to current leads in a uniform external g0
magnetic fieldB, and a tangent magnetic fieRl, as described by 10}
the Hamiltonian(18).

08 |-
the inset of Fig. 1 thag(ts) is a periodic function of; with
period 7=27/w for ws=2w. AlSO yaa=vyp(ts) = vp(ts
—7)=0.61 is the AA phase for the cyclic evolution. How-
ever, the dotted line in Fig. 1 does not have the above prop:
erties because the evolution is not cyclic during finite time.

06 |-

Coefficient Tg

(b) wf0=10

04 |

Sion

02|

Transmis:

C. Topological transition in a mesoscopic ring subject
to an in-plane magnetic field 00

Recently, Lyanda-Geller investigated the adiabatic Berry '°

phase induced by the spin-orbit interaction in low dimen- _
sional or lowered symmetry conductors, and proposed ar, °2
interesting phenomenon: topological transitfokiere, we _
propose that this phenomenon may occur in a mesoscopi
ring subject to an in-plane magnetic field, which may be
easier to be observed. As an application of &d), we also
analyze whether or not this topological transition exists in’
nonadiabatic noncyclic cases.

Consider a mesoscopic ring with radiusconnected to
current leads in a static magnetic field, as shown in Fig. 2. oo
We assume that the motion of electrons in the whole systen
is ballistic, however, we include the spin-flip processes in- o, /oy
duced by the inhomogeneous magnetic field, which is a big . - _
merit to consider the Pancharatnam phase rather than the FI_G. 3. The transmission coefficienty versus the ratiao, / o,
cyclic AA phase or the adiabatic Berry phase, where an ar'®" differento /oy
tificial restriction that spin-up and spin-down electrons

n

fficie

06

Coe

smission

02

Tran

traverse the ring independently is requifefl. T 2€% sir(kearr ) (1+ cosy)
An incoming electron wave incident from the left lead is '9~ 2, p2 1 2, 2 '
splitted into two beams at the left junction and recombined at [a*+b* cosy— (1= e)cog 2kemr) ]+ €° sir(2ky Tr(r1)7)

the right junction into the outgoing wave through the right

lead. As a consequence, the motion of spialectron in the  where a=+ (J1—2e—1)/2, b=+ (\J1—2e+1)/2 with 0
textured ring is equivalent to a quantum sginin a rotating <e<1/2, and y=27dag/ o+ Yp is the total geometric
magnetic field in time. For a beam of electron wave withphase withg,g as the AB flux andp,=h/e as the usual flux
Fermi velocity Vi=#k¢/m,, wherek; is the Fermi wave quantum. Here the parameter stands for the coupling
vector andm, is the effective electron mass, the time for strength of the ring to two leads, and=0 in the weak-
electrons to traverse ballistically one round in the ringgis  coupling limit while e=1/2 in the strong-coupling limit.
=2mr/Vy, which is the interval that the electron moves in  The time-dependent Hamiltonian describing the spin mo-
the magnetic field.In this situation, the Pancharatnam phasetion in Fig. 2 is given by

mentioned above in addition to the usual Aharonov-Bohm

(AB) phase due to the coupling of electrons to the conven- A=gu[oy(—B,sinwt+ B,)+ o,B; coswst], (18
tional electromagnetic gauge potential, is accumulated on the

electron wave function. In such a system, the quantum transwherew;=2m/t, andg is the gyromagnetic ratio. A natural
port isrfignifi\s\?ntly aﬁect(?d by th(le' AtB tp;]has_e apdbPancharaibasis for A consists of|n, (t)) and [n_(t)) that satisfy
nam phase. We assume for simplicity the ring to be symmets _ .
ric. Following the method originally given by Biiker, Imry, H(t)|nj(t)>_Ej(t)|nj(,t)> (="+.-) 'S given by <nj(t_)|
and Azbel!® the transmission coefficient affected by the geo-— (N2)(LEj /h[wx+iw explwt)]) with corresponding
metric phase can be obtained as eigenenergies E; = jfi\o{ + w;— 20w, Sinot - and o
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=guB;4/h. Within the adiabatic approximation, the Berry of the solid angle that the magnetic field trajectory subtends
phaseygerry accumulated on the wave function is found to at degeneracyi.e., atB=0 point. Then YBerry=0 for w,

be ygerry=m for wy<wi, ygermy=m/2 for o,=w;, and <y, because the magnetic-field trajectory circuit does not
Ygerry=0 for w,>w; .° It is interesting to note that the adia- enciose the degeneracy. On the other hayh,,= 7 for

batic Berry phase does not continuously vary with the magz,, > w, since the degeneracy is enclosed and the solid angle
netic field. Substituting the Berry phase into El7) (¢as  of the magnetic circuit is- 2. In the nonadiabatic noncyc-
=0), the transmission coefficieffty versus magnetic field |Jic cases, however, the Pancharatham phase induced by the
can be obtained as spin precession is significant, which oscillates quickly
around w,/w;=1, with the first part almost unchanged.

0, for wy=< ey Therefore we may conclude that the Pancharatnam phase in-
8 sirf(ksarr) duced by the spin precession destroys the topological transi-
Tg: T . 5 for w,=w, (19 tion.
1+ 8 sirf(k¢arr)

Finally, we wish to point out whether or not the topologi-
1, for w,>w; cal transition exists in nonadiabatic noncyclic motion may be
tested by a well designed mesoscopic experiment, in which

n thg strong-coupling limit. Equat|0|(119) gives a math- .B; may be induced by a long straight current-carrying wire
ematical argument for the existence of a topological transi-

tion in this system which characters the destructivg, ( pass through normally the center of the ring as shown in Fig.

=0) to constructive Tg=1) interference in quantum trans- 2. For the ballistic motion in a gold ring with1 pm and

port affected by adiabatic Berry phase. According to thevfwlor5 m/s, g~1, it is required that the corresponding

Landauer-Bttiker formula?* the conductance through the Eel%aihoullfdth%e;gti;] ];grtr?()atwg)kfj ﬁgd i;ld?:fu;\jor “I);
system ist(ezlﬁ)Tg. Therefore the conductance as a fr g g Cwr

function of eitherB, or B, has steplike character if the other :ﬁgl?ggljjir%ﬁ?nzgéiztgazawfgéijI?nt:; s(laafélscsrr;)(;ag ;;elempafh
is fixed. This steplike current-magnetic field character, which bout two ordefsthan that predicted for the ballistic case.

stems from the topological geometric phase, is referred to a n the other handy~ 15 in a GaAs ring, the required mag-

the topological transition. o : =
Does this topological transition still exist in nonadiabatic netic field may be less than 10 T in the casgw¢=100

noncyclic cases? To answer this question, we compute the e for ballistic motion. Therefore the results reported here
Pancharatnam p.hase and substituted it intc’)(H?d) without ~ may be tested in both ballistic and diffusive conditions.
using the adiabatic approximation or cyclic condition. For

the case that the initial state is an eigenstate, the transmission IV. SUMMARY

coefficientTy againstw,/w; for w;/w;=100,10,1 are plot- A useful formula of the noncyclic nonadiabatic geometric
ted in Fig. 3, wherew;=10" Hz,”” kyr=n+1/2 with na  phase for a quantum spiin an arbitrary magnetic field has
non-negative integer. From Fig(e, the rather sharp topo- peen derived exactly, which can be used in any two-level
logical transition occurs aby/w =1 for w/w;=100 under  system. The formula has been applied to three specific kinds
which the adiabatic conditions>w; is well satisfied.  of magnetic fields. The evolution equations of the shin-
However, for/w=1,10[Figs. 3b) and 3c)] the adiabatic  particle in an orientated and in a rotating magnetic field have
conditions are not well satisfied, we cannot observe the topeen solved, respectively, and the Pancharatnam phases are
pological transition. The above result coincides with a georomputed. We have also found that the nonadiabatic noncyc-

metric point of view. We can roughly decompose the Paniic phase has a significant impact on the topological transi-
charatnam phase into two parts, the phase induced by thgyn in a mesoscopic system.

magnetic field trajectory circuit and the spin precession
around the magnetic field. In the adiabatic condition, the
later one is approximately zero because the spin direction is
along the direction of the magnetic field. Then we only need We gratefully acknowledge helpful discussions with Pro-
to analyze the first part. It was pointed out that the adiabati¢essor Hua-Zhong Li and Dr. Shi-Dong Liang. This work is
Berry phase for a spig-particle in a magnetic field is a half supported by a RGC grant of Hong Kong.
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