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Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted
chain approximation
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~Received 22 July 1999!

We use the quantum hypernetted chain approximation to calculate the ion-ion and electron-ion correlations
for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and
radial distribution functions, and also calculate the free-atom and metallic-atom form factors, focusing on how
bonding effects affect the interpretation of x-ray scattering experiments, especially measurements of the ion-
ion structure factor in the liquid metallic phase.
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I. INTRODUCTION

Liquid metals are complex binary fluids consisting of io
in a sea of conduction electrons. While the ions can usu
be treated classically, the electrons are typically degene
and must be treated quantum mechanically. Liquids are
ferentiated from gases by nontrivial structure at the leve
two-body correlation functions; they are generally close
density to solid phases. For two-component systems th
correlation functions are defined ink space as

Sab~k!5
^r̂a~k!r̂b~2k!&

~NaNb!1/2
2~NaNb!1/2dk,0 . ~1.1!

The Sab(k) are referred to as static structure factors and
operator

r̂a~k!5(
i 51

Na

eik•r ia ~1.2!

is the Fourier transform of the one-particle density opera
of componenta. The indicesa and b refer to ions (I ), or
valence electrons (e). The structure factorsSab(k) can be
related to the so-called radial distribution functionsgab(r )
by

Sab~k!5dab1~rarb!1/2E
V
dreik•r@gab~r !21#, ~1.3!

where ther i are the homogeneous average densities.
The determination of the ion-ion structure factorSII (k)

and the electron-electron structure factorSee(k) are interest-
ing problems in their own right~one largely quantum me
chanical, the other largely classical!, and have been the focu
of much research: theSII (k) because of their experimenta
accessibility, theSee(k) ~with the ions usually smeared into
rigid neutralizing background! because of the importance o
the electron fluid.1 In contrast, the electron-ion structure fa
tor SeI(k) has received considerably less attention, partia
because it is hard to measure, partially because its e
physical relevance remains largely unexplored and unkno
PRB 610163-1829/2000/61~17!/11400~11!/$15.00
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and partially because it includes both the physics of the i
and the physics of the electrons, each of which is traditi
ally treated with its own set of theoretical techniques.

One of the simplest ways to treat the valence electron
a liquid metal is in a linear response formalism using a lo
pseudopotential.2 In fact, linear response has been shown
be much more accurate than one would naı¨vely expect, a
result which stems in part from a recently discovered int
ference effect between an atomic length scale, the inve
ionic length, and an electronic length scale, twice the Fe
wave vector 2kF .3 This interference effect significantly re
duces the magnitude of the nonlinear response terms a
normal densities of most liquid metals so that electron-
correlations emerge when the induced linear response e
tron density is combined with standard liquid state tec
niques to treat the ions.4–7 This approach is easy to imple
ment, can in some cases be remarkably accurate, and
explain the qualitative trends in the shape of the electron-
structure factorSeI(k) for metallic liquids across the periodi
table.3 The main obstacles to higher accuracy lie in the u
certainty over the exact~local! pseudopotential, especiall
when nonlocal effects are important,8 and also in the neglec
of nonlinear electron response and of ion-ion correlation
fects on the induced electron densities.9,10

The development ofab initio simulation techniques base
on density-functional theory~DFT! for the electrons,11 and
molecular dynamics on the adiabatic electronic potential
ergy surface for the ions,12 provide probably the most accu
rate and well-tested approach to electron-ion structure. H
ever, the drawback of these methods is their computatio
cost; in practice only relatively small system sizes can
investigated and so far only results for Mg and Bi electro
ion correlations have been published.13 The related orbital-
freeab initio molecular-dynamics method~OF-AIMD! ~Ref.
14! allows larger system sizes and significantly longer sim
lation times, and has been successfully applied to
electron-ion correlations of Li, Na, Mg, and Al,10,15 but the
computational cost is still rather large.

An alternative approach is the quantum hypernetted ch
~QHNC! method of Chihara,16 which self-consistently com-
bines integral equation techniques from the theory of sim
11 400 ©2000 The American Physical Society
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liquids with a Kohn-Sham-type treatment for the electro
The QHNC treats the electrons and ions on essentially e
footing, does not require a pseudopotential approximat
and is computationally relatively cheap. Ion-ion a
electron-ion correlations emerge in the thermodynam
limit—there are no finite-size effects.

In Sec. II, we use DFT to derive the basic form of t
QHNC approximation by focusing first on the exact quant
Ornstein-Zernike~QOZ! equations in Sec. II A, and then ou
lining the approximations needed to derive the QHNC
proximation in Sec. II B. The numerical implementation
the QHNC is detailed in the Appendix. Although parts
these derivations have been described in the literature be
most notably by Chihara and co-workers, including them
gether in a unified fashion based on DFT helps elucidate
physical meaning of the approximations made.

In Sec. III, we describe the ion-ion and electron-ion c
relations that emerge from the QHNC for our set of meta
Li, Be, Na, Mg, Al, K, Ca, and Ga. Where the results are n
included in the plots, they can be found in Ref. 17.

Even though the valence electron distributions
changed in a bonded environment, x-ray scattering off liq
metals has traditionally been interpreted with a free-at
form factor. In Sec. IV, we describe the difference betwe
extracting ion-ion structure in x-ray scattering with a fre
atom form factor and extracting ion-ion structure with
metallic-atom form factor. The effects of bonding on t
coherent x-ray scattering intensity may be measured by c
paring x-ray and neutron-scattering determinations of
ion-ion structure factorSII (k). However, experiments an
theory have yet to converge on this issue.

Finally, we present some concluding remarks in Sec.
and describe some details related to the numerical implem
tation of the QHNC in the Appendix.

II. QUANTUM HYPERNETTED CHAIN APPROXIMATION
„QHNC…

A. Quantum Ornstein-Zernike relations

The quantum Ornstein-Zernike~QOZ! relations for a two-
component system are most naturally derived in the con
of density-functional theory~DFT!.9,18 First we define the
Helmholtz free energy for a two-component system, which
a unique functional of the two one-body density profiles:19

F@r1 ,r2#5F1
id@r1#1F2

id@r2#1Fex@r1 ,r2#. ~2.1!

The functional is split in the usual way between ideal~non-
interacting! and excess~interacting! parts. We then introduce
the external potential field

Ca~r !5ma2fa~r !, ~2.2!

which is defined in terms of the chemical potentialma of
speciesa and the external potentialfa(r ) which acts on
speciesa only. A Legendre transform with respect to the
external fields obtains the grand potential
.
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V@C1 ,C2#5F@r1 ,r2#1E drr1~r !C1~r !

1E drr2~r !C2~r !, ~2.3!

which is in turn a unique functional of the two external p
tential fieldsC1 andC2.

The second functional derivative of the Helmholtz fre
energy functional and the grand potential functional with
spect to the relevant fields are easily obtained:

d2F

dra~r !drb~r 8!
5

dCa~r !

drb~r 8!
5xab

21~r ,r 8!, ~2.4!

d2V

dCa~r !dCb~r 8!
5

dra~r !

dCb~r 8!
5xab~r ,r 8!, ~2.5!

which defines the susceptibility matrix or matrix of the line
response functionsxab(r ,r 8). Thus the two second func
tional derivatives are each others’ functional inverse, a na
ral consequence of having two generating functionals link
by a Legendre transform.20

The direct correlation functionsCab(r ,r 8) of an arbitrary
two-component mixture are defined in the usual way as fu
tional derivatives of the excess free energy:21

21

b
Cab~r ,r 8!5

d2Fex

dra~r !drb~r 8!
. ~2.6!

If we then define (xab
(0))21 as the inverse susceptibility ma

trix of the ideal system, we arrive, by combining Eqs.~2.1!,
~2.4!, and ~2.6!, at the following relationship between tw
two-by-two matrices:

21

b
Cab5~xab!212~xab

0 !21, ~2.7!

the QOZ relations. They follow from simple properties of th
two free-energy functionals and in this form they are va
for any two-component inhomogeneous quantum system~the
generalization to more than two components is straight
ward!. In the homogeneous limit the direct correlation fun
tions of Eq.~2.6! reduce to the usual direct correlation fun
tions first introduced by Ornstein and Zernike,22,23and it is in
this sense that we will be using them throughout the res
this paper.

For classical species, the fluctuation-dissipation theor
relates the response functions to density-density correla
functions:24

lim
\→0

xab~k,0!52b~rarb!1/2Sab~k!, ~2.8!

written here for a homogeneous system and in terms of
structure factors defined in Eq.~1.1!. For a liquid metal,
where the ions are viewed as classical but the electrons q
tum mechanical, inverting the matrix in the QOZ relations
Eq. ~2.7!, and applying the fluctuation-dissipation theorem
Eq. ~2.8! for x II (k) andxeI(k) results in

SII ~k!5@11xee
(0)~k!Cee~k!/b#/D~k!
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SeI~k!52Ar I

re
xee

(0)~k!@CeI~k!/b#/D~k!

xee~k!5xee
(0)~k!@12r ICII ~k!#/D~k!

D~k!5@12r ICII ~k!#@11xee
(0)~k!Cee~k!/b#

1r Ixee
(0)~k!uCeI~k!u2/b, ~2.9!

where xee
(0)(k) is the well-known Lindhard function,25 the

response function of the noninteracting electron gas. In
limit that both species are classical, the QOZ relations red
to the usual classical two-component Ornstein-Zern
relations.23

The QOZ relations for a liquid metal appear to have be
derived by Chihara.26 Later Ichimaruet al.27 derived similar
equations from a two-component linear response form
tion. The two formulations are equivalent if the definitions
the direct correlation functions of Eq.~2.6! are linked in the
usual way to the local-field factorsGab(k):

Cab~k!

b
52Vab~k!@12Gab~k!#, ~2.10!

whereVab(k) is the direct potential between species.

B. Quantum hypernetted chain approximation

To solve the QOZ relations for a liquid metal we reca
them into a slightly different form using two steps:9 The first
step is to use the Percus trick28 to relate the homogeneou
two-body pair-correlation functions to the one-body inhom
geneous density around one particle fixed at the origin.
the electron-ion pair-correlation function we fix an ion at t
origin to find

geI~0,r !5
re~r uI !

re
, ~2.11!

where re(r uI ) is the ~interacting! valence electron densit
induced by one ion at the origin. A similar relationship hol
for the ion-ion pair-correlation function, but for the electro
electron pair correlation function the Percus trick cannot
used in this form; one cannot ‘‘fix’’ an electron at the origi

The second step follows the basic ideas of the Ko
Sham scheme,11 namely that there exists a local singl
particle external potentialveff(r ) which will induce in a non-
interacting system the same one-particle densityr(r ) as is
found in the full interacting system. This idea holds both
quantum as well as for classical systems. The external ef
tive potential felt by speciesa when speciesb is fixed at the
origin follows directly from the Euler equations:

vab
eff ~r !5vab~r !1

dFex

dra~r !
2ma

ex , ~2.12!

wherevab(r ) is the direct interaction between species a
ma

ex is the excess chemical potential. Thus the electron-
radial distribution function follows from the indirect Kohn
Sham solution of the Euler-equation combined with the P
cus identity:
e
ce
e

n
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e
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r-

geI~r !5
re

0~r uveI
eff!

re
, ~2.13!

wherere
0(r uveI

eff) is the density of the unbound~or free! va-
lence electrons obtained from the wave functions t
emerge from a Kohn-Sham solution of the one-center ra
ally symmetric noninteracting Schro¨dinger equation in the
external effective potential given by Eq.~2.12!.11 The ion-
ion radial distribution function follows from a direct solutio
of the ion-ion Euler equation combined with the Percu
identity:

gII ~r !5
r I~r uI !

r I
5

r I
0~r uv II

eff!

r I
5exp@2bv II

eff~r !#,

~2.14!

where in the classical contextv II
eff(r ) is commonly referred to

as the potential of mean force. Next we expand the effec
potentialsv II

eff(r ) and veI
eff(r ) in a functional Taylor expan-

sion around the equilibrium homogeneous densities and
write Eq. ~2.12! as

vaI
eff~r !5vaI~r !2

1

b (
g

rgE Cag~ ur2r 8u!hgI~r !dr 8

1
1

b
BaI~r !, ~2.15!

where theCag(r ) are the homogeneous limits of Eq.~2.6!,
and the Percus trick was used to rewrite@rg(r uvgI)2rg# in
terms of the correlation functionshgI(r )5ggI(r )21. The
remaining third and higher-order functional derivative term
are lumped into the so-called bridge functionsBab(r ). We
note that these equations do not hold for the effect
electron-electron potentialvee(r ).

Up to this point, our formulation is in principle exac
However, since the exact free-energy functionals and the
lated effective external potentials are unknown, some
proximations must be made. In the language of the theor
classical liquids,23 we need a closure relation. For this w
follow the approach developed by Chihara, which he nam
the quantum hypernetted chain approximation~QHNC!.16

The main approximations made by Chihara are~roughly in
ascending order of importance!

~i! The bare ion-ion potential is taken to be purely Co
lombic. This neglects core polarization effects, but these
expected to be small in the metals we study.

~ii ! The ion-ion bridge functionBII (r ) is approximated by
the one-component bridge function of an appropriate re
ence state. This is commonly called the RHNC or MHN
approximation,29 and is expected to be quite accurate. W
use the repulsive part of the one-component effective p
potential solved in the Percus-Yevick approximation as
reference system to calculate the bridge function~see the
Appendix for details!.

~iii ! The electron-ion bridge functionBeI(r ) is set to 0.
This is commonly called the hypernetted chain~HNC! ap-
proximation, and is generally also quite accurate, especi
as the electron-ion correlations are expected to be we
than the ion-ion correlations.

~iv! The local density approximation~LDA ! is used for
the one-center electron-ion problem. The calculation of
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electron-ion correlation function reduces to calculating
Schrödinger equation in the external potential given by E
~2.15!. This is similar to a self-consistent field all-electro
calculation for a single atom, except that the potential
cludes not only the nuclear Coulomb contribution, but a
terms reflecting the effect of the surrounding ions. We so
this effective atomic problem in the LDA, which is widel
used in electronic structure calculations. The core electr
are treated explicitly, i.e., this is an all-electron calculatio
However, the core and valence screening effects are s
rated in a manner similar to the linear unscreening proced
used to derive pseudopotentials.30

~v! The valence electron correlations are treated in
jellium approximation. To calculate the full effective pote
tials, we need the electron-electron direct correlation fu
tion Cee(k), which can be rewritten in terms of the so-calle
local-field factors as was done in Eq.~2.10! where the non-
Coulombic correlation part has been subsumed into
local-field factorG(k). In the QHNC approach, the loca
field factor is approximated to be that of jellium at the av
age electron density, i.e., it is independent of ionic corre
tions:

Cee~k!52bvee~k!@12Gee
jell~k;re!#. ~2.16!

Thus the electron-electron direct-correlation function u
couples from the other correlation functions in Eq.~2.9!.
This approximation is similar in spirit to the LDA approx
mation and greatly simplifies part of the electronic proble
but it is probably the most serious and uncontrolled part
the QHNC closure.

The approximations for the bridge functions together w
Eqs.~2.13!, ~2.14!, ~2.15!, and the closure forCee(k) in Eq.
~2.16! reduce the QOZ relations of Eq.~2.9! to a closed pair
of coupled equations for the radial distribution functions:

regeI~r !5reS r uveI~r !2
1

b
r IE CeI~ ur2r 8u!hII ~r !dr 8

2
1

b
reE Cee~ ur2r 8u!heI~r !dr 8D , ~2.17!

gII ~r !5expS 2bv II ~r !1r IE CII ~ ur2r 8u!hII ~r !dr 8

1reE CIe~ ur2r 8u!heI~r !dr 82
1

b
BII ~r ! D ~2.18!

which are solved self-consistently. This is the essence of
QHNC approach: the original many-center problem has b
reduced to an effective one-center problem by replacing
many-body ion-ion correlations with an effective extern
potential that depends self-consistently on the ion-ion co
lations. The main advantages are that~a! no pseudo-potentia
is needed, i.e., it is an all-electron calculation and~b! ion-ion
and electron-ion correlations emerge naturally and on
same footing. Details of the~rather complex! numerical
implementation of the QHNC are described in the Append
e
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III. ION-ION AND ELECTRON-ION CORRELATIONS

A. Ion-ion radial distribution function

Armed with the QHNC approach, we can now tackle t
electron-ion and ion-ion correlation functions for a set
simple metals from the first four rows of the periodic tab
As a test of the approach, we compare in Fig. 1 the QH
ion-ion radial distribution function for part of our set of me
als to the experimental x-ray data of the Waseda grou31

The QHNC provides a faithful representation ofgII (r ) for all
the metals except Ga. The accuracy of the QHNC for
other elements suggests that it can also be trusted for Be
which no experimental data could be found. Our results
the same as those of J. Chihara and co-workers for the m
they studied.

The case of Ga, however, calls for closer examinati
While the exact form ofgII (r ) is sensitive to details of the
liquid state theory aspects of the closure, i.e., the form of
bridge function, we tried various forms of the closure wit
out much improvement. On the other hand, when we u
the Ortiz-Ballone32 local-field factor instead of the Ichimaru
Utsumi form,33 a considerable improvement was obtained,
agreement with earlier studies based on effective ion-
potentials.5 This sensitivity of the QHNC approach to detai
of the local-field factorG(q) suggests that approximation~v!
of the previous section begins to break down. In addition,
d electrons were very close to being unbound, which ma
the QHNC algorithm difficult to converge. This instabilit
may be attributed to the implicit separation of the exchan
correlation potential into bound and valence contributions
approximation~iv!, i.e., the neglect of nonlinear-core corre
tions. The fact that the Ortiz-BalloneG(q) seems to work

FIG. 1. Ion-ion radial distribution functionsgII (r ) calculated by
means of the QHNC method~solid lines! and compared to x-ray
experiments~circles! ~Ref. 31!. The dotted lines in the Ga pane
correspond to QHNC with the Ortiz-BalloneG(q) ~Ref. 32!. Re-
sults for the other metals in our set can be found in Ref. 17.
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11 404 PRB 61J. A. ANTA AND A. A. LOUIS
better for Ga is most likely due to an accidental cancellat
of errors. It performs considerably worse than the LDA
Ichimaru-UtsumiG(q) ~Ref. 33! for the other metals in ou
set.

B. Pseudoatoms and electron-ion correlations

The electron-ion structure factor, defined by Eq.~1.1!, can
always be rewritten in the following fashion:

SeI~k!5
n~k!

AZ
SII ~k!, ~3.1!

which defines a new objectn(k). By taking the Fourier
transform we find, using Eq.~1.3!, the electron-ion radial-
distribution function:

regeI~r !5n~r !1r i
0E

V
n~ ur2r 8u!gII ~r 8!dr 8, ~3.2!

which is proportional to the probability of finding an electro
a distancer away from an ion located at the origin. Thus
natural interpretation ofn(r ) is the density of a ‘‘pseudoa
tom,’’ which, when superimposed according the ion-i
radial-distribution functiongII (r ) gives the correct value o
the valence electron distribution. The pseudoatom is in
pendent of ionic correlations only to first order in th
electron-ion potential, at higher orders it implicitly include
three-body and higher-order ionic averages.3,8,9

In the QHNC approximation, the electron-ion radia
distribution function follows directly from the solution of th
one-body Schro¨dinger equation@Eq. ~2.13!#. In Fig. 2 we
show the electron-ion radial-distribution functionsgeI(r ) for
our set of metals. Where possible, they have been comp
to ab initio Kohn-Sham13 and OF-AIMD ~Ref. 10! results.
As is the case for the ion-ion radial distribution functions, t
QHNC approximation gives similar results to other metho
for all the elements except Ga, where once again an
proved agreement is obtained when the Ortiz-BalloneG(q)
is used.

FIG. 2. Electron-ion radial distribution function of Mg as ob
tained from the QHNC approximation~solid lines!, the Orbital-free
method~Ref. 10! ~open circles! and Car-Parrinello molecular dy
namics~Ref. 13! ~crosses!. The dashed lines represent the pseud
tom densityn(r )/re . Results for the other metals in our set can
found in Ref. 17.
n
r

e-

ed

s
-

It is instructive to compare the pseudo-atom density,
cluded in Fig. 2 asn(r )/re , with the electron-ion radial
distribution functiongeI(r ). The pseudoatom density goes
zero for largerr, as it is essentially localized around a give
ion, while geI(r ) goes to 1 for larger, reflecting the fact that
outside the range of the ion’s own pseudoatom,geI(r ) sim-
ply probes the average density of the pseudoatoms aro
the other ions so that the probability of finding a valen
electron a distancer away is simply related to the probabilit
of finding an ion there.geI(r ) and n(r )/re are essentially
identical for smallr, as one might expect, while at largerr
the effect of the ion-ion weighted superposition of the s
rounding pseudoatoms ongeI(r ) is evident. BecausegeI(r )
implicitly includes a spherical average, all angular bondi
effects are effectively washed out, although an indication
the effect of bonding can still be found by comparinggeI(r )
and a superposition of the free-atom electron densities.13

The relationships between the pseudoatom, the ionic
relations, and the electron-ion correlations become cleare
k space where the electron ion structure factor is simply
product of the pseudoatom density and the ion-ion struc
factor, as shown in Eq.~3.1!. The ion-ion structure factor is
sharply peaked at its first maximumkp while the pseudoatom
density goes through zero atk̄0. If k̄0,kp , the product form
implies that the first peak ofSeI(k) is negative, and the
electron-ion structure is in the so-called low valence cla
while if k̄0.kp , then the first peak ofSeI(k) is positive, and
the electron-ion structure is in the so-called high valen
class.3,9 In Fig. 3 we plot both the electron-ion structure fa
tors SeI(k) and the pseudoatom densitiesn(k) for our set of
metals. Li, Be, Na, Mg, and K are in the low valence cla
while Al and Ga straddle the two classes. Only Ca seem
fall outside this taxonomy.

IV. USING FREE-ATOM FORM FACTORS VS
METALLIC-ATOM FORM FACTORS

Neutron scattering probes the fluctuations of the nuc
while x-ray scattering probes the fluctuations of all the el
trons. In 1974, Egelstaffet al.34 suggested exploiting this
difference to extract electron-ion correlations for liquid me
als. In 1987, Chihara35 re-examined the x-ray scatterin
problem, demonstrating that a careful analysis of elastic
inelastic contributions leads to the following coherent sc
tering intensity:10

I X~k!5u f I~k!1n~k!u2SN~k!, ~4.1!

where SN(k) is the nucleus-nucleus structure factor whi
emerges, for example, from neutron scattering,f I(k) is the
ionic form factor, i.e., the ionic electron density, andn(k) is
the pseudoatom density. We shall call the objectf M(k)
5 f I(k)1n(k) the metallic-atom form factor. Traditionally
the structure factor from x-ray scatteringSX(k) has been
extracted from scattering intensity as follows:

I X~k!5u f A~k!u2SX~k!, ~4.2!

where f A(k) is the free-atom form factor, or the free-ato
electron density.

The difference between the two structure factorsSN(k)
andSX(k) stems from the difference between the two for

-



. 2,
tom
,
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FIG. 3. Electron-ion structure factorsSeI(k).
The symbols have the same meaning as in Fig
the dashed lines again represent the pseudoa
densityn(k), but now ink space. For the scale
note that n(k50)5Z, the number of valence
electrons.
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factors f A(k) and f M(k)5 f I(k)1n(k), and provides a mea
sure of the change in electron density upon bonding. In F
4 we plot the full free-atom~solid lines!, metallic ~dashed
lines!, and ionic ~dotted lines! form factors for our set of
metals. Also included are the pseudoatom densities~chain
lines!. The ionic form factor is essentially the same in t
metallic and the free-atom environments, so the differe
between the metallic and free-atom form factors stems fr
the difference between the pseudoatom density and
valence-electron density of the free atom.

Because x-rays scatter off all the electrons, not just
valence electrons, the effects of bonding are most p
nounced when the ratio of the number of valence electronZ
to the total number of electronsZA is high. Thus, as can b
seen in Fig. 4, the effects are largest in Li and Be, where
ratios (Z:ZA) are~1:3! and~1:2!, respectively, and the effec
becomes smaller for the other elements, where the ratios
Na: ~1:11!, Mg: ~1:6!, Al:(1:4.3̄), K: ~1:19!, Ca: ~1:10!, and
Ga:(1:10.3̄).

In crystalline systems, x-ray studies of charge densi
only provide information on the bonding density for certa
fixed scattering peaks. Similarly, in liquids the scattering
strongest at the first peak of the structure factor~at wave
numberkp), so to observe a difference betweenSX(k) and
SN(k) it is important that the free-atom and the metall
atom form factors differ nearkp . This is demonstrated fo
Be in Fig. 5. Even though the difference between the fr
atom and metallic-atom form factors is largest atk’s less
than kp , the experimentally accessible difference,SX(k)
2SN(k), is largest atkp .

In Fig. 6 the difference,SX(k)2SN(k), is shown for our
whole set of metals. Generally the peak height forSX(k) is
.
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e
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e
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slightly lower than the peak height forSN(k) and the two
structure factors are virtually identical away fromkp . As
was anticipated in Ref. 3, the largest difference is for B
whereSX(kp) is about 5% lower thanSN(kp). However, Be
is extremely toxic, and for that reason its static structure
not yet been measured. Perhaps the best chance of obse
a difference betweenSX(k) andSN(k) is for Li, Mg, or Al,
where the difference atkp is about 2%. Another possibility
includes liquid metallic Si, where the ratio is~1:3.5!, andk̄0
is expected to be greater thankp ~i.e., Si’s electron-ion struc-
ture is expected to be in the high valence class!, so that
SX(kp) is expected to be larger thanSN(kp) and the structure
factor may peak in a region where the two form factors dif
by a larger amount than is the case for the low valence c
metals.

Measuring these differences will be extremely challen
ing, since they require two completely different scatteri
techniques, which implies subtracting two different sets
systematic corrections. In particular, the removal of incoh
ent scattering effects from the total scattering remains un
discussion.36,35,37We note that a series of experiments me
suring the differences between x-ray and neutron-scatte
determinations ofSII (k) have been reported for Li,36 Na,
Mg, Al, Zn, Ga, Sn, Te, Tl, Pb, and Bi.38 Except for the case
of Li, these measurements typically show differences that
at best five to ten times larger than expected from theoret
treatments of the bonding effects, such as those shown
the QHNC in Fig. 6.10 In fact, for some of the heavier ele
ments, where theSX(k)2SN(k) is expected to be very sma
due to the large number of core electrons, the differences
several orders of magnitude larger. In Fig. 6, we inclu
explicitly the combined x-ray and neutron data of Olbri
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et al.36 for Li. Even though their differences are smaller th
any of the differences measured in the other references c
in Ref. 38~in fact, they are the only measurements which
within the scale of our graphs,10! Olbrich et al.36 claim that
experimental errors are too large to see bonding effect
SII (k). For these reasons, the interpretation of the meas
ments in Ref. 38 has been called into question by a num
of authors.44,39,5,10,3,15The theoretical results are very robus
with simple linear response theories in some cases agre
quantitatively with the much more sophisticatedab initio
Kohn-Sham calculations.3 In a crystalline environment, the
Kohn-Sham approach has been shown to agree quantitat
to several significant figures with highly accurate experim
tal measurements of the bonding densities,40 suggesting that
the electron densities calculated within the Kohn-Sham
proach for the liquid state analogon of these solid state m
surements should be highly accurate as well. In fact, for
Kohn-Sham-type simulations, finite size and statistical fin
simulation time effects on the ion-ion structure probab
cause larger errors than errors arising from the determina
of the electron densities. However, these simulation er
are well understood, and will at most contribute a few re
tive percent to the differenceSX(k)2SN(k). The consider-

FIG. 4. Free-atom form factorsf A(k) ~solid lines!, metallic-
atom form factorsf M(k)5 f I(k)1n(k) ~dashed lines!, and ionic
form factorsf I(k) ~dotted lines!, as predicted by the QHNC theory
The chain lines represent the pseudoatom densityn(k). Results for
the other metals in our set can be found in Ref. 17.
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ations above, coupled with the difficulties in dealing with t
subtraction of two very different sets of systematic corre
tions to the data,41 lead us to conclude that the experimen
cited have not yet attained an accuracy sufficient to mea
the effects of bonding in liquid metals.

However, the advent of new high-accuracy x-ray and n
tron beam sources coming on line, together with the i
provement of other techniques such as anomalous x
scattering,42 may bring the measurement of these differenc
within experimental reach, at least for a few of the metals
our set. It seems increasingly unlikely that this could be m
sured for many other elements where the ratioZ/ZA is
smaller and the core electrons wash out any bonding effe

V. CONCLUDING REMARKS

We have carried out QHNC calculations for Li, Be, N
Mg, Al, K, Ca, and Ga. The QHNC formalism, introduce
and mainly developed by Chihara26,16,43,44is a closure to the
QOZ relations, which are easily derived in the context
DFT. Ion-ion and electron-ion correlations naturally emer
in a unified fashion, and the interpretation of liquid metals
terms of a ‘‘pseudoatom’’ helps clarify the meaning of th
electron-ion radial distribution functions and structure fa
tors.

The most serious approximation in the QHNC is proba
approximation~v! from Sec. II B, where the electron-electro
direct-correlation functionCee(k) is approximated by the jel-
lium form, making it independent of the ion-ion an
electron-ion correlations. The sensitivity to the local-fie
factor Gee(k) found for Ga may stem from a breakdown
approximation~v!, but also from the neglect of nonlinea
core corrections implicit in approximation~iv!. Future work
will address both these issues.

The QHNC reduces to a linear-response formalism if
direct-correlation functionCeI(r )/b is approximated by its

FIG. 5. The structure factorsSN(k) ~solid line! and SX(k)
~dashed line!, of liquid Be. The dotted line corresponds to the d
ferenceSX(k)2SN(k). The metallic-atom and the free-atom form
factor of Li are also included in the figure. Similar results for Li ca
be found in Ref. 17.
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FIG. 6. Differences between using a fre
atom and a metallic-atom form factor to interpr
x-ray scattering determinations of the static stru
ture factorSII (k) for a number of systems as pre
dicted by the QHNC theory~note the change in
scale from panel to panel!. Alternatively, this can
be viewed as the difference between x-ray a
neutron-diffraction determinations of the ion-io
structure factor. Also included are the experime
tal differences between x-ray and neutron diffra
tion for the ion-ion structure factors of Li from
Ref. 36.
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low-density or long-range form2veI(r ), suggesting that the
accuracy of the QHNC probably benefits from an interf
ence effect which reduces the nonlinear response term9,3

For metallic hydrogen, where the lack of core electrons
plies no interference effect,CeI(r )/b will differ significantly
from its low-density limit. The relative importance of non
linear response terms also suggests that approximation~v!
may be poor for H. In addition, Xuet al.45 showed that smal
changes inCeI(r )/b can have a large effect when input in
DFT theories of the freezing of monatomic H. We expect
DFT theories to be relatively less sensitive to changes
CeI(r )/b when applied to the simple metals in our set.

The differences between x-ray measurements of the
ion structure factorSII (k) interpreted with a free-atom o
with a metallic-atom form factor are the main experimenta
relevant quantities we calculate. This difference, which
flects the effects of metallic bonding of the valence electro
is largest for elements with a large ratio of valence to c
electrons, such as Li, Be, Mg, Al, and maybe Si. To d
these bonding effects have not been convincingly obser
but with new higher precision instruments coming on lin
they may soon be experimentally accessible.
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APPENDIX: PRACTICAL IMPLEMENTATION OF THE
QHNC APPROXIMATION

1. Overview of the implementation

In the practical implementation, we follow two steps
self-consistency.

Step 1: the ion-ion loop.For a givengeI(r ) andCeI(r ), an
effective one-component ion-ion effective potential is calc
lated and the one-component RHNC integral equation
solved self-consistently forgII (r ).

Step 2: the electron-ion loop.For a givengII (r ) and the
old geI(r ) and CeI(r ), an effective electron-ion potentia
veI

eff(r ) is calculated from Eq.~2.15!. The self-consistent
Schrödinger equation is then solved to give a newgeI(r ) via
Eq. ~2.13!, and the procedure is repeated to obtain se
consistency ingeI(r ). These two steps are then repeated u
full self-consistency is obtained between the two loops.

2. Details of the the ion-ion loop

We first rewrite the ion-ion problem as an effective on
component system with the same radial distribution functi

gII ~r !5exp@v II
eff~r !#5g~r !5exp@v1

eff~r !#, ~A1!

wherev II
eff(r ) is the effective potential of mean force for th

ions, given by Eq.~2.15!, andv1
eff(r ) is the effective poten-

tial of mean force for the one-component system. The eq
ity of the two radial-distribution functions then implies tha
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2bv II ~r !1hII ~r !2CII ~r !1BII ~r !

52bv1~r !1h~r !2C~r !1B~r !, ~A2!

where v1(r ) is the bare potential of the effective on
component system,C(r ) is its direct correlation function
and BII (r ) and B(r ) are the bridge functions of the two
component and effective one-component systems, res
tively. We follow Chihara and make the approximation46

BII ~r !'B~r !, ~A3!

which, together with the QOZ relations of Eq.~2.9!, implies
that

v1~r !5v II ~r !2
xee

(0)~k!uCeI~k!/bu2

11xee
(0)~k!Cee~k!/b

. ~A4!

Note that if the electron-ion direct correlation function
replaced by its low density or long-range limit,CeI(r )/b
52veI(r ), and Eq.~2.16! is used forCee(k), the effective
one-component potential reduces to the usual linear scr
ing form.2

Having now reduced the problem to an effective on
component form@by assuming a fixedgeI(r ) and CeI(r )#,
we solve the self-consistent RHNC equations in the us
way.23,47,48The bridge function is obtained using as a ref
ence system the repulsive part of thev1(r ) solved in the
Percus-Yevick approximation49 which is known to perform
well for short-range potentials.23 The bridge function ob-
tained in this way gives very similar results to the stand
RHNC approximation~where the reference system is th
hard-sphere fluid! for the systems here studied but with th
advantage that no optimization of the hard-sphere diamet
required. This feature is specially recommended in the c
text of the QHNC theory, where the RHNC equatio
is solved in combination with the ion-electron integr
equation.

3. Details of the electron-ion loop

For a givengII (r )5g(r ), and an oldgeI(r ) andCeI(r ),
the new effective electron-ion potential follows from E
~2.15!:

veI
eff~r !5veI~r !2reE Cee~ ur2r 8u!

b
heI~r !dr 8

2r IE CeI~ ur2r 8u!
b

hII ~r !dr 8, ~A5!

where the first termveI(r ) is the bare electron-ion interac
tion, the second term describes the screening by the val
electrons, both those of the central ion as well as those o
nating from the pseudoatom densities of the surround
ions, and the third term describes the interaction of the e
trons with the other ions. For the local-field factors implic
in Cee(k), we used the Ichimaru-Utsumi form,33 but except
for Ga, the simpler LDA form also performed quite well. F
the bare electron-ion interaction we follow Chihara43

and write
c-

n-

-

al
-

d

is
n-

ce
i-
g
c-

veI~r !52
ZAe2

r
1E vee~ ur2r 8u!re

b~r !dr 8

1mXC@re
b~r !1re#2mXC@re#, ~A6!

whereZA is the nuclear charge,mXC@r(r )# is the exchange-
correlation part of the free energy functional~we take the
usual LDA parameterization of Perdew and Zunger50 of the
Ceperley-Alder quantum Monte Carlo simulations51!, and
rb(r ) is the bound electron density obtained from the so
tion of the Schro¨dinger equation. This form is not exac
within the LDA, as its derivation implies a linear unscree
ing process, neglecting the so-called nonlinear-c
corrections.30 In fact, this linear unscreening process is n
necessary, and the full screening from the combined vale
and core electron densities can be taken into account, but
will be addressed in a later publication.

Using this effective electron-ion potential, the on
electron Schro¨dinger equation,

F2
\2

2me
¹21veI

eff~r !Gce
i ~r !5ee

i ce
i ~r !, ~A7!

is solved for the effective potential of Eq.~A5!. The bound
electron density is then calculated by means of

re
b~r uveI

eff!5re
b~r !5(

i (b)
uce

i (b)~r !u2, ~A8!

where the index~b! refers to bound states, whilere
f (r ), the

unbound density directly related togeI(r ) through Eq.~2.13!
corresponds to the continuum part of the eigenvalue sp
trum ~positive energies! and is calculated as a superpositio
of scattering states. In atomic units this is given by52,53

re
f ~r uveI

eff!5re1
1

p2E0

kF
dkk2(

l
~2l 11!@Rkl

2 ~r !2 j l
2~rk !#,

~A9!

wherekF is the Fermi wave vector andRkl(r ), the radial part
of the wave function, is a solution of the equation

d2~rRkl!

dr2
1Fk22

l ~ l 11!

r 2
22veI

eff~r !G rRkl~r !50.

~A10!

Rkl(r ) must be normalized by its asymptotic limit, i.e.,

lim
r→`

@rRkl~r !#5 j l~rk !cosh l~k!1nl~rk !sinh l~k!,

~A11!

where j l(x) and nl(x) are spherical Bessel functions an
h l(k) is the phase shift. The phase shifts at the Fermi le
fulfill the Friedel sum rule:43

2

p (
l

~2l 11!h l~kF!5ZSII ~0!, ~A12!

whereZ is the ionic charge andSII (0) the long-wavelength
limit of the ion-ion structure factor.

We solve the Schro¨dinger equation in two stages:
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~i! We first look for bound states and the eigenvalues
Eq. ~A7! using the predictor-corrector method on a logarit
mic grid.54

~ii ! Once the bound density is computed@needed to obtain
the electron-ion bare interaction via Eq.~A6!#, we solve Eq.
~A10! for scattering states on a Hermann-Skillmann me
using the Numerov method. Both the logarithmic and t
Hermann-Skillmann grids, as well as the linear mesh
which the correlation functions are stored, span the sa
range of 40.96 a.u.~see below for numerical details!. We
follow Chihara and introduce a cutoff radiusr cut outside
which the solutions are taken to be of the usual Friedel
cillatory form:

v1~r !}
1

4pr 3
cos~2kFr !, r .r cut, ~A13!

wherer cut is typically equal to around 4–5 times the electro
Wigner-Seitz radius. This procedure avoids difficulties wi
the long-range nature of the potentials while keeping t
number of mesh points needed at a manageable level. T
cally, we needed four or five iterations of the ion-ion an
electron-ion loops for a maximum tolerance of 0.1% err
between successive solutions to converge. The screening
lation

E re
f ~r !dr5Z ~A14!

is fulfilled with an error around 0.1% for the lower valenc
metals, and less than 1% for Ga or Al. Although this
somewhat unsatisfactory, and is a larger error than that
ported in previous studies,52,53 we found that it does not af-
fect the shape of the correlation functions or the effecti
pair potential at short and intermediate distances. Fut
work will address this issue in more detail.

We use a linear grid of 4096 points for the ion-ion an
electron-ion correlation functions~i.e., a grid size of 0.01 a.u.
for a maximum distance of 40.96 a.u.!. The logarithmic grid
contains 983 points whereas the Hermann-Skillmann g
comprises five blocks of typically 80, 40, 40, 90, and 80
points, respectively. This corresponds to a grid size
k

s

d
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f
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h
e
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e

s-

e
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r
re-
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e
re

id

f

0.0015 a.u. for the first block. The Schro¨dinger equation for
scattering states is solved for 25 equally spacedk points be-
tween 0 andkF and up to 11 plane waves (l max510). Then,
the integral in Eq.~A9! is computed using Simpson’s rule
with the same number ofk points. An interpolation by cubic
splines is employed to swap between the different grids
volved in the calculation~linear for correlation functions and
logarithmic and Hermann-Skillmann grids to solve th
Schrödinger equation!. Fast Fourier transforms are used
convert correlation functions from real to reciprocal space.
addition, we have implemented Ng’s method55 in the ion-ion
and the ion-electron loops to accelerate the convergence

4. Details of the initial setup

As mentioned before, the implementation of this iterati
procedure requires an initial effective pair potential. Follow
ing Chihara,44 we make use of the so-called jellium-vacanc
model ~JVM! to obtain such initial potential. The JVM can
be derived directly from the QHNC approach by the follow
ing two approximations:

~i! The ion-ion correlation function approximated as
step function,

hII ~r !5H 21 for r ,R,

0 for r .R,
~A15!

where R is the ion Wigner-Seitz radius, i.e.,R
5@3/(4pr I)#1/3.

~ii ! The electron-ion DCF used in the effective electro
ion interaction of Eq.~A5! is approximated to be of a purely
Coulombic form,

CeI~r !/b5
ZIe

2

r
. ~A16!

These two approximations result in an electron-ion poten
veI

eff(r ) which is independent on the ion-ion correlations.44

The Schro¨dinger equation that follows from this effective
potential can then be solved self-consistently as descri
above, and the ensuinggeI(r ) and newCeI(r ) used to derive
an effective ion-ion pair-potential from Eq.~A4!, for use in
the initial ion-ion loop.
s.:

.

*Present address: Department of Chemistry, Imperial College
Science, Technology and Medicine, Exhibition Road, Londo
SW7 2AY, UK.

1Compared to the classical liquid, electron liquids are more wea
correlated @see, e.g., N.W. Ashcroft, inDensity Functional
Theory, edited by E.K.U. Gross and R. M. Dreizler~Plenum
Press, New York, 1995!#, which is why we refer to them as
fluids instead of liquids.

2N.W. Ashcroft and D. Stroud, Solid State Phys.33, 1 ~1978!; R.
Evans, inElectrons in Disordered Metals and at Metal Surface,
Vol. 42 of NATO Advanced Study Institute, Series B: Physics,
edited by P. Phariseau, B.L. Gyorffy, and L. Scheire~Plenum
Press, New York, 1979!.

3A.A. Louis and N.W. Ashcroft, Phys. Rev. Lett.81, 4456~1998!;
see also A. A. Louis and N. W. Ashcroft, J. Non-Cryst. Soli
~to be published!.

4S. Cusack, N.H. March, M. Parrinello, and M.P. Tosi, J. Phys
of
n,

ly

s

F

6, 749~1976!; K. Hoshino and M. Watabe, J. Phys. Soc. Jpn.61,
1663 ~1992!.

5M. Boulahbak, J.F. Wax, N. Jakse, and J.L. Bretonnet, J. Phy
Condens. Matter9, 4017~1997!.

6J.F. Wax, N. Jakse, and J.L. Bretonnet, Phys. Rev. B55, 12 099
~1997!.

7N.H. March and M. Tosi, Laser Part. Beams16, 71 ~1998!; N.H.
March, Curr. Sci.75, 1246~1998!.

8S.K. Lai, K. Horii, and M. Iwamatsu, Phys. Rev. E58, 2227
~1998!.

9A.A. Louis, Ph.D. thesis, Cornell University, 1998~available at
http://ket.ch.cam.ac.uk/people/ardlouis/Thesis/PhDthesis.html!.

10J.A. Anta, B.J. Jesson, and P.A. Madden, Phys. Rev. B58, 6124
~1998!.

11W. Kohn and L.J. Sham, Phys. Rev.140, A1133 ~1965!.
12R. Car and M. Parrinello, Phys. Rev. Lett.55, 2471~1985!.
13G.A. de Wijs, G. Pastore, A. Selloni, and W. van der Lugt, Phys

Rev. Lett.75, 4480~1995!.



e

a

er
on

. A

x

Y.

on-

ting
r-

o
-

. 6

s.:

ion
.

11 410 PRB 61J. A. ANTA AND A. A. LOUIS
14M. Pearson, E. Smargiassi, and P.A. Madden, J. Phys.: Cond
Matter 5, 3221~1993!.

15J.A. Anta and P.A. Madden, J. Phys.: Condens. Matter11, 6099
~1999!.

16J. Chihara, Prog. Theor. Phys.59, 76 ~1978!.
17http://xxx.lanl.gov/abs/ cond-mat/9909116~unpublished!.
18H. Xu and J.-P. Hansen, Phys. Rev. E57, 211 ~1998!.
19N.D. Mermin, Phys. Rev.137, A1441 ~1965!.
20J. Zinn-Justin,Quantum Field Theory and Critical Phenomen

~Oxford University Press, Oxford, 1989!.
21This is actually the definition ofC(r ,r 8)/b ~whereb215kBT), a

notation that stems from the classical context. At zero temp
ture, only this ratio is well defined and given by the relati
~2.6!; C(r ,r 8) itself is not.

22L.S. Ornstein and F. Zernike, Proc. R. Acad. Sci. Amsterdam17,
793 ~1914!.

23J.-P. Hansen and I. R. McDonald,Theory of Simple Liquids, 2nd
Ed. ~Academic Press, London, 1986!.

24R. Kubo, Rep. Prog. Phys.19, 255 ~1966!.
25N.W. Ashcroft and N.D. Mermin,Solid State Physics~Holt, Rine-

hart and Winston, New York, 1976!.
26J. Chihara, Prog. Theor. Phys.55, 340 ~1976!.
27S. Ichimaru, S. Mitake, S. Tanaka, and X-Z. Yan, Phys. Rev

32, 1768~1985!.
28J.K. Percus, Phys. Rev. Lett.8, 462~1962!; see also the appendi

of J. Chihara, J. Phys.: Condens. Matter3, 8715~1991!.
29Y. Rosenfeld and N.W. Ashcroft, Phys. Rev. A20, 1208~1979!.
30J. Hafner,From Hamiltonians to Phase Diagrams~Springer Ver-

lag, Berlin, 1987!.
31IAMP database of@SCM-LIQ#, http://www.iamp.tohoku.ac.jp.
32G. Ortiz and P. Ballone, Phys. Rev. B50, 1391~1994!.
33S. Ichimaru and K. Utsumi, Phys. Rev. B24, 7385~1981!.
34P.A. Egelstaff, N.H. March, and N.C. McGill, Can. J. Phys.52,

1651 ~1974!.
35J. Chihara, J. Phys. F17, 295 ~1987!.
36H. Olbrich, H. Ruppersberg, and S. Steeb, Z. Naturforsch. A38,

1328 ~1983!.
37H. Sinnet al., Phys. Rev. Lett.78, 1715~1997!.
ns.

a-

38S. Takeda, S. Tamaki, and Y. Waseda, J. Phys. Soc. Jpn.54, 2552
~1985! ~Bi, Sn!; S. Takeda, S. Harada, S. Tamaki, and
Waseda,ibid. 55, 184~1986! ~Zn, Pb!; S. Takedaet al., ibid. 55
3437 ~1986!~Ga, Tl!; 58, 3999 ~1989! ~Na!; 60, 2241 ~1991!
~Al !; 62, 4277 ~1993! ~Te!; 63, 1794 ~1994! ~Mg!; S. Takeda
et al., J. Non-Cryst. Solids207, 365 ~1996! ~Na, Mg, Al!.

39L.E. Gonzalez, D.J. Gonzalez, and K. Hoshino, J. Phys.: C
dens. Matter5, 9261~1993!.

40Z.W. Lu, A. Zunger, and M. Deutsch, Phys. Rev. B47, 9385
~1993!.

41For example, small differences in standard recipes for compu
resolution functions in neutron diffraction easily cause diffe
ences in the firstSII (k) peak of order 1 to 2%, roughly equal t
the effect of bonding for Li, Mg, or Al, P. Salmon private com
munication.

42D.L. Price, M.L. Saboungi, and A.C. Barnes, Phys. Rev. Lett.81,
3207 ~1998!.

43J. Chihara, J. Phys. C18, 3103~1985!.
44J. Chihara, Phys. Rev. A40, 4507 ~1989!; M. Ishitobi and J.

Chihara, J. Phys.: Condens. Matter4, 3679~1992!.
45H. Xu, J.P. Hansen, and D. Chandler, Europhys. Lett.36, 419

~1994!.
46The implications of this approximation are discussed in Chap

of Ref. 9.
47E. Lomba, Mol. Phys.68, 87 ~1989!.
48C. Martı́n, E. Lomba, J.A. Anta, and M. Lombardero, J. Phy

Condens. Matter5, 379 ~1993!.
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