PHYSICAL REVIEW B VOLUME 61, NUMBER 17 1 MAY 2000-I

Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted
chain approximation
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We use the quantum hypernetted chain approximation to calculate the ion-ion and electron-ion correlations
for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and
radial distribution functions, and also calculate the free-atom and metallic-atom form factors, focusing on how
bonding effects affect the interpretation of x-ray scattering experiments, especially measurements of the ion-
ion structure factor in the liquid metallic phase.

[. INTRODUCTION and partially because it includes both the physics of the ions
and the physics of the electrons, each of which is tradition-
Liquid metals are complex binary fluids consisting of ionsally treated with its own set of theoretical techniques.
in a sea of conduction electrons. While the ions can usually One of the simplest ways to treat the valence electrons in
be treated classically, the electrons are typically degenerateliquid metal is in a linear response formalism using a local
and must be treated quantum mechanically. Liquids are difpseudopotentidl.In fact, linear response has been shown to
ferentiated from gases by nontrivial structure at the level obe much more accurate than one wouldvei expect, a
two-body correlation functions; they are generally close inresult which stems in part from a recently discovered inter-
density to solid phases. For two-component systems thederence effect between an atomic length scale, the inverse
correlation functions are defined knspace as ionic length, and an electronic length scale, twice the Fermi
wave vector &r .3 This interference effect significantly re-
o duces the magnitude of the nonlinear response terms at the
—(NaNp)“8o. (1.9 normal densities of most liquid metals so that electron-ion
correlations emerge when the induced linear response elec-
The S,z(k) are referred to as static structure factors and thdron density is combined with standard liquid state tech-
operator niques to treat the iorfs.” This approach is easy to imple-
ment, can in some cases be remarkably accurate, and can
R a explain the qualitative trends in the shape of the electron-ion
pa(K)= '21 el fia (1.2)  structure factoS,,(k) for metallic liquids across the periodic
- table® The main obstacles to higher accuracy lie in the un-
is the Fourier transform of the one-particle density operatocertainty over the exadfiocal) pseudopotential, especially
of componenta. The indicesa and 8 refer to ions (), or  when nonlocal effects are importdhand also in the neglect
valence electronsef. The structure factor§, (k) can be  of nonlinear electron response and of ion-ion correlation ef-
related to the so-called radial distribution functiomss(r)  fects on the induced electron densitié$.
by The development ddib initio simulation techniques based
on density-functional theoryDFT) for the electrond! and
- molecular dynamics on the adiabatic electronic potential en-
Sap(k)= 5a5+(PaPﬁ)l/2fvdre'k 9ap(r)—1], (1.3 ergy surface for the ion provide probably the most accu-
rate and well-tested approach to electron-ion structure. How-
where thep; are the homogeneous average densities. ever, the drawback of these methods is their computational
The determination of the ion-ion structure fac®f(k)  cost; in practice only relatively small system sizes can be
and the electron-electron structure facBg(k) are interest- investigated and so far only results for Mg and Bi electron-
ing problems in their own rightone largely quantum me- ion correlations have been publish€dThe related orbital-
chanical, the other largely classigaind have been the focus free ab initio molecular-dynamics methad@F-AIMD) (Ref.
of much research: thg,;(k) because of their experimental 14) allows larger system sizes and significantly longer simu-
accessibility, theSe(k) (with the ions usually smeared into a lation times, and has been successfully applied to the
rigid neutralizing backgroundoecause of the importance of electron-ion correlations of Li, Na, Mg, and A};*° but the
the electron fluid. In contrast, the electron-ion structure fac- computational cost is still rather large.
tor S (k) has received considerably less attention, partially An alternative approach is the quantum hypernetted chain
because it is hard to measure, partially because its exa6@HNC) method of Chihara® which self-consistently com-
physical relevance remains largely unexplored and unknowrhines integral equation techniques from the theory of simple

(Pa(K)ps(—K))

S.a(k)=
a’B( ) (NaNﬁ)llz

N
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liquids with a Kohn-Sham-type treatment for the electrons.

The QHNC treats the electrons and ions on essentially equal Q[W¥1,¥,]=F[p1,p2]+ j drpy(r)Wa(r)
footing, does not require a pseudopotential approximation,

and is computationally relatively cheap. lon-ion and

electron-ion correlations emerge in the thermodynamic + | drpa(r)Wy(r), 2.3

limit—there are no finite-size effects. L ) )
In Sec. II. we use DFT to derive the basic form of the Which is in turn a unique functional of the two external po-
i tential fields¥, and¥,.

QHNC approximation by focusing first on the exact quantum : L
Ornstein-ZerikdQOZ) equations in Sec. Il A, and then out- The second functional derivative of the Helmholtz free-
' energy functional and the grand potential functional with re-

lining the approximations needed to derive the QHNC ap : . N
proximation in Sec. IIB. The numerical implementation of SPECt t0 the relevant fields are easily obtained:

the QHNC is detailed in the Appendix. Although parts of

these derivations have been described in the literature before, 5°F _ SV o(r) =y Yr.r") 2.4
most notably by Chihara and co-workers, including them to- Spa(r)Spg(t’)  Spp(r’y “TT T '
gether in a unified fashion based on DFT helps elucidate the
physical meaning of the approximations made. 520 8p (1)

In Sec. lll, we describe the ion-ion and electron-ion cor- —= ; =Xap(rr'"), (2.5
relations that emerge from the QHNC for our set of metals: W (r) oW g(r") W 4(r")
Li, Be, Na, Mg, Al, K, Ca, and Ga. Where the results are noiyhich defines the susceptibility matrix or matrix of the linear
included in the plots, they can be found in Ref. 17. response functiong,s(r,r'). Thus the two second func-

Even though the valence electron distributions argjonal derivatives are each others’ functional inverse, a natu-

changed in a bonded environment, x-ray scattering off liquida| consequence of having two generating functionals linked
metals has traditionally been interpreted with a free—atorrby a Legendre transforsf.

form factor. In Sec. 1V, we describe the difference between * the direct correlation function® 5(r.r") of an arbitrary
extracting ion-ion structure in x-ray scattering with a free-yo.component mixture are defined in the usual way as func-
atom form factor and extracting ion-ion structure with aiona| derivatives of the excess free enefdy:

metallic-atom form factor. The effects of bonding on the

coherent x-ray scattering intensity may be measured by com- -1 S2EeX
paring x-ray and neutron-scattering determinations of the — Caplrr')=————. (2.6
ion-ion structure factorS; (k). However, experiments and B 5pa(1)Spp(r’)

theory have yet to converge on this issue. _ If we then define £'%)) ~* as the inverse susceptibility ma-
Finally, we present some concluding remarks in Sec. Virix of the ideal system, we arrive, by combining E¢@.0),

and describe some details related to the numerical impleme@z 4), and (2.6), at the following relationship between two
tation of the QHNC in the Appendix. tw.o-E)y-two matrices:

Il. QUANTUM HYPERNETTED CHAIN APPROXIMATION 7Ca,8:(Xaﬁ)7l_ (Xf,ﬁ)*l, 2.7
(QHNC)
the QOZ relations. They follow from simple properties of the
two free-energy functionals and in this form they are valid
The quantum Ornstein-Zernik®O0O2) relations for a two-  for any two-component inhomogeneous quantum systeen
component system are most naturally derived in the contexjeneralization to more than two components is straightfor-
of density-functional theoryDFT).%8 First we define the ward). In the homogeneous limit the direct correlation func-
Helmholtz free energy for a two-component system, which igions of Eq.(2.6) reduce to the usual direct correlation func-
a unique functional of the two one-body density profifés: tions first introduced by Ornstein and Zern#é&>and it is in
this sense that we will be using them throughout the rest of
_ _ this paper.
F[pl,p2]=F'ld[pl]+F'2d[p2]+Fe"[pl,pz]. (2.1 For classical species, the fluctuation-dissipation theorem
relates the response functions to density-density correlation
functions*

A. Quantum Ornstein-Zernike relations

The functional is split in the usual way between idéabn-
interacting and excessinteracting parts. We then introduce lim x,5(k,0)= —ﬁ(papﬁ)llzsaﬁ(k), (2.9
the external potential field h—0

written here for a homogeneous system and in terms of the
W (1)=py— bo(r), (2.2 structure factors defined in Eq1.1). For a liquid metal,
where the ions are viewed as classical but the electrons quan-
tum mechanical, inverting the matrix in the QOZ relations of
which is defined in terms of the chemical potentia| of  EQq.(2.7), and applying the fluctuation-dissipation theorem of
speciesa and the external potentiab,(r) which acts on Eq. (2.8) for x; (k) andxe (k) results in
speciesa only. A Legendre transform with respect to these
external fields obtains the grand potential Si(k)=[1+x2(k)Cee(k)/B1/D(K)
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0 eff
p pe(rlvg)
Sei(k)=— \/Ixé%)(k)[Ceu(k)/B]/D(k) Qei(r)=————, (2.13
Pe Pe
0 effy ; H
_ 0 B wherepg(r|vg)) is the density of the unboun@r free va-
Xeel k)= Xee (K)[1=p1Cii (K) /D (k) lence electrons obtained from the wave functions that
©) emerge from a Kohn-Sham solution of the one-center radi-
D(K)=[1=p,C;i(K)][1+ xee (K)Cedk)/B] ally symmetric noninteracting Schiimger equation in the
) 5 external effective potential given by E¢.12.1* The ion-
*+p1xee (K)|Cei()|7 B, (2.9 ion radial distribution function follows from a direct solution

where Xg%)(k) is the well-known Lindhard functiof? the of the ion-ion Euler equation combined with the Percus-

response function of the noninteracting electron gas. In thi€Ntty:

limit that both species are classical, the QOZ relations reduce (rl) pO(r |veff)
to the usual classical two-component Ornstein-Zernike g, (r)= Pi = =exp:—,80ﬁﬁ(r)],
relations®3

The QOZ relations for a liquid metal appear to have been (2.14
derived by Chihard® Later Ichimaruet al?” derived similar where in the classical Conteb(ﬁﬁ(r) is commonly referred to
equations from a two-component linear response formulaas the potential of mean force. Next we expand the effective
tion. The two formulations are equivalent if the definitions of potentialsv lelff(r) and vgf(r) in a functional Taylor expan-

the direct correlation functions of E(.6) are linked in the  gjon around the equilibrium homogeneous densities and re-

usual way to the local-field factos ,5(k): write Eq.(2.12 as
Cos(k) 1
Z == Vap(K[1=G,p(k)], (2.10 viff(f)=va|(r)—§ > pyJ CaplIr=r"Dhy(r)dr’
Y
whereV ,4(K) is the direct potential between species. 1
+ EBau(r), (2.19

B. tum h tted chai imation -
Quantum hypernetted chain approximati where theC,,(r) are the homogeneous limits of E@.6),

To solve the QOZ relations for a liquid metal we recastand the Percus trick was used to rewfite,(r|v ;) —p,] in
them into a slightly different form using two stephe first  terms of the correlation functions.,(r)=g,,(r)—1. The
step is to use the Percus trféko relate the homogeneous remaining third and higher-order functional derivative terms
two-body pair-correlation functions to the one-body inhomo-are lumped into the so-called bridge functioBg(r). We

geneous density around one particle fixed at the origin. Fofote that these equations do not hold for the effective
the electron-ion pair-correlation function we fix an ion at theglectron-electron potential.«(r).

origin to find Up to this point, our formulation is in principle exact.
However, since the exact free-energy functionals and the re-
Gei(0.F) = pe(r|l) 2.19) lated effective external potentials are unknown, some ap-
et™ Pe ' proximations must be made. In the language of the theory of

classical liquid$® we need a closure relation. For this we

where pe(r|l) is the (interacting valence electron density follow the approach developed by Chihara, which he named
induced by one ion at the Origin. A similar r6|ati0n5hip hOldSthe quantum hypernetted chain approximat(@'{[\lc)_lﬁ
for the ion-ion pair-correlation function, but for the electron- The main approximations made by Chihara &aughly in
electron pair correlation function the Percus trick cannot beyscending order of importance
used in this form; one cannot “fix” an electron at the origin. (i) The bare ion-ion potential is taken to be purely Cou-

The second step follows the basic ideas of the Kohniombic. This neglects core polarization effects, but these are
Sham schem& namely that there exists a local single- expected to be small in the metals we study.
particle external potentiali®®(r) which will induce in a non- (i) The ion-ion bridge functiom,,(r) is approximated by
interacting system the same one-particle dens(ty) as is  the one-component bridge function of an appropriate refer-
found in the full interacting system. This idea holds both forence state. This is commonly called the RHNC or MHNC
quantum as well as for classical systems. The external effe¢pproximatior?® and is expected to be quite accurate. We
tive potential felt by species when specieg is fixed atthe  yse the repulsive part of the one-component effective pair

origin follows directly from the Euler equations: potential solved in the Percus-Yevick approximation as a
o reference system to calculate the bridge funct{eee the
oF A dix for details
eff — _ . ex ppen 0
Vapl(N) =V ap(r)F Spalr) He (212 (iii) The electron-ion bridge functioB,,(r) is set to 0.

This is commonly called the hypernetted chaiiNC) ap-
whereuv ,4(r) is the direct interaction between species andproximation, and is generally also quite accurate, especially
wneXis the excess chemical potential. Thus the electron-ioras the electron-ion correlations are expected to be weaker
radial distribution function follows from the indirect Kohn- than the ion-ion correlations.

Sham solution of the Euler-equation combined with the Per- (iv) The local density approximatio(LDA) is used for
cus identity: the one-center electron-ion problem. The calculation of the
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electron-ion correlation function reduces to calculating the — 1 1
Schralinger equation in the external potential given by Eq. [ Be, T=AS7S K T
(2.15. This is similar to a self-consistent field all-electron PO01672 0. 1 ¥—
calculation for a single atom, except that the potential in- } ;
cludes not only the nuclear Coulomb contribution, but also |
terms reflecting the effect of the surrounding ions. We solve | ] J
this effective atomic problem in the LDA, which is widely L .
used in electronic structure calculations. The core electrons| = M'g ook 4+ ) u T'_QSSK ]
are treated explicitly, i.e., this is an all-electron calculation. | 000055 a0 00007950
However, the core and valence screening effects are sepa T '
rated in a manner similar to the linear unscreening proceduref
used to derive pseudopotentiafs. A
(v) The valence electron correlations are treated in thel
jellium approximation. To calculate the full effective poten- fa
tials, we need the electron-electron direct correlation func- |
tion C.«(k), which can be rewritten in terms of the so-called
local-field factors as was done in E@.10 where the non-
Coulombic correlation part has been subsumed into the
local-field factorG(k). In the QHNC approach, the local-
field factor is approximated to be that of jellium at the aver- |
age electron density, i.e., it is independent of ionic correla- 5 R
tions:

I
T ¥ T

Ca, T=1123K ¢
£,=0.00305 an.”

Ga, T=1278 K

Ced k)= —Bued KI[1—GL'(k;pe)]. (2.19 FIG. 1. lon-ion radial distribution functiong, (r) calculated by
means of the QHNC methogolid lineg and compared to x-ray
experiments(circles (Ref. 31). The dotted lines in the Ga panel
correspond to QHNC with the Ortiz-Ballor@(q) (Ref. 32. Re-
sults for the other metals in our set can be found in Ref. 17.

Thus the electron-electron direct-correlation function un-
couples from the other correlation functions in HG.9).
This approximation is similar in spirit to the LDA approxi-

mation and greatly simplifies part of the electronic problem, |, |ON-ION AND ELECTRON-ION CORRELATIONS
but it is probably the most serious and uncontrolled part of
the QHNC closure. A. lon-ion radial distribution function

The approximations for the bridge functions together with  Armed with the QHNC approach, we can now tackle the
Egs.(2.13, (2.14), (2.15, and the closure fo€eq(k) in Eq.  glectron-ion and ion-ion correlation functions for a set of
(2.16 reduce the QOZ relations of E(2.9) to a closed pair  simple metals from the first four rows of the periodic table.
of coupled equations for the radial distribution functions:  as 3 test of the approach, we compare in Fig. 1 the QHNC

ion-ion radial distribution function for part of our set of met-
1 als to the experimental x-ray data of the Waseda group.
pegel(r)zpe( Moe(r)=—=p, | Cel|r=r"hy(r)dr’ The QHNC provides a faithful representationgpf(r) for all
B the metals except Ga. The accuracy of the QHNC for the
other elements suggests that it can also be trusted for Be, for
Cee(|r—r’|)he,(r)dr’), (2.1 which no experimental data could be found. Our results are
the same as those of J. Chihara and co-workers for the metals
they studied.
The case of Ga, however, calls for closer examination.
g,,(r)zexp{ —ﬁv||(r)+P|f Ci(fr=r"hy(r)dr’ While the exact form ofy, (r) is sensitive to details of the
liquid state theory aspects of the closure, i.e., the form of the
1 bridge function, we tried various forms of the closure with-
+pef Cie(Jr=r"|)hg (r)dr’ — —B,l(r)) (2.18  out much improvement. On the other hand, when we used
B the Ortiz-Balloné? local-field factor instead of the Ichimaru-
Utsumi form?® a considerable improvement was obtained, in
which are solved self-consistently. This is the essence of thagreement with earlier studies based on effective ion-ion
QHNC approach: the original many-center problem has beepotentials’ This sensitivity of the QHNC approach to details
reduced to an effective one-center problem by replacing thef the local-field factoiG(q) suggests that approximatidw)
many-body ion-ion correlations with an effective externalof the previous section begins to break down. In addition, the
potential that depends self-consistently on the ion-ion corred electrons were very close to being unbound, which made
lations. The main advantages are tf@tno pseudo-potential the QHNC algorithm difficult to converge. This instability
is needed, i.e., it is an all-electron calculation dbdion-ion ~ may be attributed to the implicit separation of the exchange-
and electron-ion correlations emerge naturally and on theorrelation potential into bound and valence contributions in
same footing. Details of thérather complex numerical approximation(iv), i.e., the neglect of nonlinear-core correc-
implementation of the QHNC are described in the Appendixtions. The fact that the Ortiz-Ballon€(q) seems to work

1
- ’Epe
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T T T T It is instructive to compare the pseudo-atom density, in-
cluded in Fig. 2 asn(r)/pe, with the electron-ion radial
distribution functionge(r). The pseudoatom density goes to
zero for larger, as it is essentially localized around a given
ion, whilegg(r) goes to 1 for large, reflecting the fact that
outside the range of the ion’s own pseudoatgg)(r) sim-
ply probes the average density of the pseudoatoms around
the other ions so that the probability of finding a valence
electron a distanceaway is simply related to the probability
of finding an ion theregg(r) andn(r)/p. are essentially
identical for smallr, as one might expect, while at larger
the effect of the ion-ion weighted superposition of the sur-
rounding pseudoatoms amn,(r) is evident. Becausgg(r)
implicitly includes a spherical average, all angular bonding
FIG. 2. Electron-ion radial distribution function of Mg as ob- effects are effeCtiYEIy Wash_ed out, although an in_dication of
tained from the QHNC approximatidsolid lineg, the Orbital-free the effect of bonc_]mg can still be found by comparg@_(r)
method (Ref. 10 (open circles and Car-Parrinello molecular dy- and @ superposition of the free-atom electron densities.

namics(Ref. 13 (crosses The dashed lines represent the pseudoa- | he relationships between the pseudoatom, the ionic cor-
tom densityn(r)/p.. Results for the other metals in our set can beelations, and the electron-ion correlations become clearer in

found in Ref. 17. k space where the electron ion structure factor is simply the
product of the pseudoatom density and the ion-ion structure

better for Ga is most likely due to an accidental cancellatiorfactor, as shown in Eq3.1). The ion-ion structure factor is

of errors. It performs considerably worse than the LDA orsharply peaked at its first maximuky while the pseudoatom

Ichimaru-UtsumiG(q) (Ref. 33 for the other metals in our density goes through zero kg. If ko<k,, the product form

set. implies that the first peak o08,,(k) is negative, and the
electron-ion structure is in the so-called low valence class,

B. Pseudoatoms and electron-ion correlations while if ko>kp, then the first peak d,(k) is positive, and

the electron-ion structure is in the so-called high valence

class®® In Fig. 3 we plot both the electron-ion structure fac-

tors S; (k) and the pseudoatom densitiegk) for our set of
n(k) me_tals. Li, Be, Na, Mg, and K are in the low valence class,

Sei(k)=—=S;(k), (3.1  While Al and Ga straddle the two classes. Only Ca seems to
\/Z fall outside this taxonomy.

Gl

T T T

o

o

The electron-ion structure factor, defined by EQl), can
always be rewritten in the following fashion:

which defines a new objeat(k). By taking the Fourier
transform we find, using Eq.l1.3), the electron-ion radial-
distribution function:

IV. USING FREE-ATOM FORM FACTORS VS
METALLIC-ATOM FORM FACTORS

Neutron scattering probes the fluctuations of the nuclei,
, s while x-ray scattering probes the fluctuations of all the elec-
pege,(r)=n(r)+p?fvn(|r—r Dan(ridr’, 32 yons. In 1974, Egelstafét al®* suggested exploiting this
difference to extract electron-ion correlations for liquid met-
which is proportional to the probability of finding an electron als. In 1987, Chihard re-examined the x-ray scattering
a distancea away from an ion located at the origin. Thus a problem, demonstrating that a careful analysis of elastic and
natural interpretation ofi(r) is the density of a “pseudoa- inelastic contributions leads to the following coherent scat-
tom,” which, when superimposed according the ion-iontering intensity*°
radial-distribution functiorg,,(r) gives the correct value of
the valence electron distribution. The pseudoatom is inde- Ix(K)=f,(k)+n(k)[*Sy(k), (4.1
pendent of ionic correlations only to first order in the
electron-ion potential, at higher orders it implicitly includes
three-body and higher-order ionic averagés.

In the QHNC approximation, the electron-ion radial-
distribution function follows directly from the solution of the
one-body Schidinger equatiofEq. (2.13]. In Fig. 2 we
show the electron-ion radial-distribution functiogg(r) for
our set of metals. Wherge possible, they have been compar
f e}b initio Kohn-Sha'rﬁ {;md OE-AIMD'(Re'f. 10 results. L (K) = |f a(K)[2S(K), 4.2

s is the case for the ion-ion radial distribution functions, the
QHNC approximation gives similar results to other methodswhere f 5(k) is the free-atom form factor, or the free-atom
for all the elements except Ga, where once again an imelectron density.
proved agreement is obtained when the Ortiz-Ball@{eg) The difference between the two structure factSggk)
is used. and Sy(k) stems from the difference between the two form

where Sy(k) is the nucleus-nucleus structure factor which
emerges, for example, from neutron scatterifigk) is the
ionic form factor, i.e., the ionic electron density, am(k) is
the pseudoatom density. We shall call the objégi(k)
=f,(k) +n(k) the metallic-atom form factor. Traditionally
the structure factor from x-ray scatteririg(k) has been
ee&dracted from scattering intensity as follows:
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factorsf (k) andfy,(k)=f,(k) +n(k), and provides a mea- slightly lower than the peak height f@&y(k) and the two

sure of the change in electron density upon bonding. In Figstructure factors are virtually identical away frokg. As

4 we plot the full free-aton{solid lineg, metallic (dashed was anticipated in Ref. 3, the largest difference is for Be,
lines), and ionic (dotted line$ form factors for our set of whereSy(k,) is about 5% lower thaiSy(k,). However, Be
metals. Also included are the pseudoatom densitibsin s extremely toxic, and for that reason its static structure has
lines). The ionic form factor is essentially the same in the ot yet been measured. Perhaps the best chance of observing
metallic and the free-atom environments, so the differencg yitference betweeBy (k) andSy(k) is for Li, Mg, or Al,

between the metallic and free-atom form factors stems frorﬂ}vhere the difference &, is about 2%. Another possibility
the difference between the pseudoatom density and the P

valence-electron density of the free atom. !ncludes liquid metallic Si, whe_re the_yratio 03:3.5)_, andk
Because x-rays scatter off all the electrons, not just th X expected to be greater thhﬁ'("e}’ Si's electron-ion struc-

valence electrons, the effects of bonding are most pro-ure |s.expected to be in the high valence clas® that

nounced when the ratio of the number of valence electfons Sx(kp) is expected to be larger tha (k) and the structure

o the total number of electror&, is high. Thus, as can be factor may peak in a region where the two form factors differ

seen in Fig. 4, the effects are largest in Li and Be, where tth a larger amount than is the case for the low valence class

ratios (Z:Z,) are(1:3) and(1:2), respectively, and the effect metals. : . .
becomes smaller for the other elements, where the ratios are Me?‘su””g these @fferences will be exjremely challeng-
= Ing, since they require two completely different scattering
Na: (1:11), Mg: (1:6), Al:(1:4.3), K: (1:19), Ca:(1:10, and  echniques, which implies subtracting two different sets of
Ga:(110.3). systematic corrections. In particular, the removal of incoher-
In crystalline systems, x-ray studies of charge densitiegnt scattering effects from the total scattering remains under
only provide information on the bonding density for certain discussior?®>>*’We note that a series of experiments mea-
fixed scattering peaks. Similarly, in liquids the scattering issuring the differences between x-ray and neutron-scattering
strongest at the first peak of the structure fadr wave determinations ofS; (k) have been reported for £f, Na,
numberk,), so to observe a difference betwesp(k) and Mg, Al, Zn, Ga, Sn, Te, T, Pb, and Bf Except for the case
Sn(K) it is important that the free-atom and the metallic- of Li, these measurements typically show differences that are
atom form factors differ neak,. This is demonstrated for at best five to ten times larger than expected from theoretical
Be in Fig. 5. Even though the difference between the freetreatments of the bonding effects, such as those shown for
atom and metallic-atom form factors is largestkat less  the QHNC in Fig. 6 In fact, for some of the heavier ele-
than k,, the experimentally accessible differencgy(k) ments, where th&y(k) — Sy(k) is expected to be very small
—S\(K), is largest ak, . due to the large number of core electrons, the differences are
In Fig. 6 the differenceSy(k) — Sy(k), is shown for our  several orders of magnitude larger. In Fig. 6, we include
whole set of metals. Generally the peak height3g(k) is  explicitly the combined x-ray and neutron data of Olbrich
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L L L FIG. 5. The structure factor§y(k) (solid line) and Sx(k)
300 - (dashed ling of liquid Be. The dotted line corresponds to the dif-
B K, T=343 K i ferenceSy(k) — Sy(k). The metallic-atom and the free-atom form
20,0 factor of Li are also included in the figure. Similar results for Li can
“F be found in Ref. 17.
10.0 ations above, coupled with the difficulties in dealing with the
subtraction of two very different sets of systematic correc-
ook tions to the dat4! lead us to conclude that the experiments
‘ cited have not yet attained an accuracy sufficient to measure

the effects of bonding in liquid metals.

However, the advent of new high-accuracy x-ray and neu-
tron beam sources coming on line, together with the im-
FIG. 4. Free-atom form factor§,(k) (solid lineg, metallic- provement of other techniques such as anomalous x-ray

atom form factorsf,,(k)=f,(k)+n(k) (dashed lines and ionic S(;at_tering“,2 may bring the measurement of these differencc_es
form factorsf, (k) (dotted line, as predicted by the QHNC theory. Within experimental reach, at least for a few of the metals in

The chain lines represent the pseudoatom demgity. Results for ~ OUr Set. It seems increasingly unlikely that this could be mea-
the other metals in our set can be found in Ref. 17. sured for many other elements where the rafit?, is

smaller and the core electrons wash out any bonding effects.
et al3® for Li. Even though their differences are smaller than
any of the differences measured in the other references cited V. CONCLUDING REMARKS
in Ref. 38(in fact, they are the only measurements which fit
within the scale of our grapH$) Olbrich et al®® claim that We have carried out QHNC calculations for Li, Be, Na,
experimental errors are too large to see bonding effects iMg, Al, K, Ca, and Ga. The QHNC formalism, introduced
S, (K). For these reasons, the interpretation of the measurend mainly developed by ChihgPa®4344

is a closure to the
ments in Ref. 38 has been called into question by a numbe@OZ relations, which are easily derived in the context of
of authors39510.3.15The theoretical results are very robust, DFT. lon-ion and electron-ion correlations naturally emerge
with simple linear response theories in some cases agreeirig a unified fashion, and the interpretation of liquid metals in
quantitatively with the much more sophisticatad initio  terms of a “pseudoatom” helps clarify the meaning of the
Kohn-Sham calculationsin a crystalline environment, the electron-ion radial distribution functions and structure fac-
Kohn-Sham approach has been shown to agree quantitativelgrs.

to several significant figures with highly accurate experimen- The most serious approximation in the QHNC is probably
tal measurements of the bonding densiffesuggesting that approximation(v) from Sec. Il B, where the electron-electron
the electron densities calculated within the Kohn-Sham apéirect-correlation functiolC (k) is approximated by the jel-
proach for the liquid state analogon of these solid state medium form, making it independent of the ion-ion and
surements should be highly accurate as well. In fact, for thelectron-ion correlations. The sensitivity to the local-field
Kohn-Sham-type simulations, finite size and statistical finitefactor G.¢(k) found for Ga may stem from a breakdown of
simulation time effects on the ion-ion structure probablyapproximation(v), but also from the neglect of nonlinear-
cause larger errors than errors arising from the determinatiopore corrections implicit in approximatiofiv). Future work

of the electron densities. However, these simulation errorgill address both these issues.

are well understood, and will at most contribute a few rela- The QHNC reduces to a linear-response formalism if the
tive percent to the differencBy(k) — Sy(k). The consider- direct-correlation functiorCe(r)/8 is approximated by its
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low-density or long-range form-v,,(r), suggesting that the thanks Ministerio de Educaaioy Cultura of Spain for finan-
accuracy of the QHNC probably benefits from an interfer-cial support in Oxford.

ence effect which reduces the nonlinear response téfms.
For metallic hydrogen, where the lack of core electrons im-
plies no interference effedGe (r)/ B will differ significantly
from its low-density limit. The relative importance of non-
linear response terms also suggests that approximétipn 1. Overview of the implementation
may be poor for H. In addition, Xet al*® showed that smalll
changes irC, (r)/B can have a large effect when input into self-consistency.

DFT theories of the freezing of monatomic H. We expect thg Step 1: the ion-ion loogFor a givenge(r) andCqg(r), an

DFT theories to be relatively less sensitive to changes Rffective one-component ion-ion effective potential is calcu-

Ce)(r)/p when applied to the simple metals in our set. ~ |5t04 and the one-component RHNC integral equation is
The differences between x-ray measurements of the iong . - 4 self-consistently fog,, ()

ion structure factorS,, (k) interpreted with a free-atom or Step 2: the electron-ion loofzor a giveng,(r) and the

with a metallic-atom form factor are the main experimentallyOld gel(r) and C.,(r), an effective electron-ion potential

relevant quantities we calculate. This difference, which re-Ugflf(r) is calculated from Eq(2.15. The self-consistent

flects the effects of metallic bonding of the valence eleCtronSSchr't]jinger equation is then solved to give a ngw(r) via

is largest for elements with a large ratio of valence to coreEq (2.13, and the procedure is repeated to obtain self-

electrons, such as Li, Be, Mg, Al, and maybe Si. To date ; : .
these bonding effects have not been convincingly observe onsistency |_rge|(r). These two steps are then repeated until
ull self-consistency is obtained between the two loops.

but with new higher precision instruments coming on line,
they may soon be experimentally accessible.

APPENDIX: PRACTICAL IMPLEMENTATION OF THE
QHNC APPROXIMATION

In the practical implementation, we follow two steps to

2. Details of the the ion-ion loop

ACKNOWLEDGMENTS We first rewrite the ion-ion problem as an effective one-
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for a critical reading of the manuscript, and J. Chihara for gn(n=exdoi(r]=g(r)=exdvi(n], (Al
help with some details of the implementation. A.A.L. thanks

N. W. Ashcroft for his insight in early stages of this work, Wherev(r) is the effective potential of mean force for the
and P. A. Madden for hospitality at Oxford, where some ofions, given by Eq(2.19, andufﬁ(r) is the effective poten-
this work was completed. A.A.L. also thanks the EEC fortial of mean force for the one-component system. The equal-
support through Grant No. EBRFMBICT972464. J.A.A. ity of the two radial-distribution functions then implies that
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= Boy(r)+hy(r)=Cy(r)+By(r) . (r):_ZAez
— — Bus(H)+h(—C(N+B(r),  (A2) °

+jvee<|r—r'|>p2<r>dr'

b
where v,(r) is the bare potential of the effective one- T ixclpe(r) + pel = pxcl pel, (A6)
component systemC(r) is its direct correlation function, whereZz, is the nuclear charggyyc[p(r)] is the exchange-
and B (r) and B(r) are the bridge functions of the two- correlation part of the free energy function@ae take the
component and effective one-component systems, respegsual LDA parameterization of Perdew and Zuriger the
tively. We follow Chihara and make the approximaﬁ%n Ceper|ey_A|der quantum Monte Carlo simu|ati6:hs and
p°(r) is the bound electron density obtained from the solu-
B, (r)=B(r), (A3)  tion of the Schrdinger equation. This form is not exact
within the LDA, as its derivation implies a linear unscreen-
which, together with the QOZ relations of EQ.9), implies  ing process, neglecting the so-called nonlinear-core

that corrections? In fact, this linear unscreening process is not
necessary, and the full screening from the combined valence
O k)| Ce (k) B|? and core electron densities can be taken into account, but this
Xee el . . . .
va(r)=vy(r)— TNOTNI (A4)  will be addressed in a later publication.
Xee (K)CeedK)/B Using this effective electron-ion potential, the one-

Note that if the electron-ion direct correlation function is electron Schrdinger equation,

replaced by its low density or long-range limi€.(r)/8 22
=—vg(r), and Eq.(2.16 is used forCq4(k), the effective —
one-component potential reduces to the usual linear screen-

; 2

ing form. _ is solved for the effective potential of EA5). The bound
Having now reduced the problem to an effective one-goctron density is then calculated by means of

component formby assuming a fixede,(r) and Cg(r)],

we solve the self-consistent RHNC equations in the usual ,
way234748The bridge function is obtained using as a refer- p2(r|veh=pl(r)=2> [¢P(r)|?, (A8)
ence system the repulsive part of the(r) solved in the ()

Percus-Yevick approximati(‘.i_?ﬁ which is known to perform hare the indexb) refers to bound states, whij(r), the
well for short-range potentiafS. The bridge function ob-  5png density directly related ¢,(r) through Eq(2.13
tained in this way gives very similar results to the standar orresponds to the continuum part of the eigenvalue spec-

RHNC approximation(where the reference_ system _is the trum (positive energigsand is calculated as a superposition
hard-sphere fluidfor the systems here studied but with the of scattering states. In atomic units this is giver?45y
advantage that no optimization of the hard-sphere diameter is '

required. This feature is specially recommended in the con- 1 (k
text of the QHNC theory, where the RHNC equation ,f(r|, M=, + _f dek22 21+ D[RZ(r)—j&(rk)],
is solved in combination with the ion-electron integral w?Jo [

V2+08l(r) | wia(r) = epe(r), (A7)

2mg

equation. (A9)
_ _ wherekg is the Fermi wave vector ari@(r), the radial part
3. Details of the electron-ion loop of the wave function, is a solution of the equation
For a giveng;,(r)=g(r), and an oldg(r) andCg(r), )
the new effective electron-ion potential follows from Eq. d“(rRy) I(1+1)
(2.15: gz KT T 208N [ IRa() =0,
(A10)
eff Cee(|r_r,|) ' . . T
Ve (1) =ve|(r)—pe Tha(f)df Ry (r) must be normalized by its asymptotic limit, i.e.,
Ceo(Jr=r'] , im[rRy(r)]=j,(rk)cosn (k) +n(rk)sin k),
_Plf hy, (r)dr’, (A5) r—o
B (Al11)

where the first termv,(r) is the bare electron-ion interac- where j;(x) and n,(x) are spherical Bessel functions and
tion, the second term describes the screening by the valenag(k) is the phase shift. The phase shifts at the Fermi level
electrons, both those of the central ion as well as those origiulfill the Friedel sum ruleg

nating from the pseudoatom densities of the surrounding

ions, and the third term describes the interaction of the elec- 2

trons with the other ions. For the local-field factors implicit P Z (21+1) m(ke) =25,(0), (A12)

in Coo(k), we used the Ichimaru-Utsumi forfi,but except

for Ga, the simpler LDA form also performed quite well. For whereZ is the ionic charge an8,(0) the long-wavelength
the bare electron-ion interaction we follow Chit&ra limit of the ion-ion structure factor.

and write We solve the Schidinger equation in two stages:
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(i) We first look for bound states and the eigenvalues 0f0.0015 a.u. for the first block. The Schiinger equation for
Eq. (A7) using the predictor-corrector method on a logarith-scattering states is solved for 25 equally spak@aints be-
mic grid > tween 0 andkg and up to 11 plane waves$,{,,=10). Then,

(ii) Once the bound density is compuferteded to obtain the integral in Eq.(A9) is computed using Simpson’s rule
the electron-ion bare interaction via E@6)], we solve Eq.  with the same number d&f points. An interpolation by cubic
(A10) for scattering states on a Hermann-Skillmann mestsplines is employed to swap between the different grids in-
using the Numerov method. Both the logarithmic and thevolved in the calculatiorilinear for correlation functions and
Hermann-Skillmann grids, as well as the linear mesh inlogarithmic and Hermann-Skillmann grids to solve the
which the correlation functions are stored, span the sam8chralinger equation Fast Fourier transforms are used to
range of 40.96 a.u(see below for numerical detailsWe  convert correlation functions from real to reciprocal space. In
follow Chihara and introduce a cutoff radius,, outside addition, we have implemented Ng’s metAdih the ion-ion
which the solutions are taken to be of the usual Friedel osand the ion-electron loops to accelerate the convergence.
cillatory form:

4. Details of the initial setup

(1) 1 COL2Ker), > oy (A13) As mentioned before, the implementation of this iterative

rs procedure requires an initial effective pair potential. Follow-
. . . ing Chihara* we make use of the so-called jellium-vacancy
wherer o,,is typically equal to around 45 times the electron model (JVM) to obtain such initial potential. The JVM can

Wigner-Seitz radius. This procedure avoids difficulties with : . _
the long-range nature of the potentials while keeping thg&%ﬁgvggp?giﬁgt{;ﬂ:_ the QHNC approach by the follow

number of mesh points negdeq ata manageablle Ieyel. Typi- (i) The ion-ion correlation function approximated as a
cally, we needed four or five iterations of the ion-ion and .

: . step function,
electron-ion loops for a maximum tolerance of 0.1% error

between successive solutions to converge. The screening re- -1 for r<R,
i h = Al
lation n(r) 0 for r>R, (A15)
f _ where R is the ion Wigner-Seitz radius, i.e.R
pe(r)dr=2 (A14) ' '
f ¢ =[3/(4mp)]*~.

(i) The electron-ion DCF used in the effective electron-

is fulfilled with an error around 0.1% for the lower valence . ‘. ) . .
metals, and less than 1% for Ga or Al. Although this is'on ||ntert?ct|]§)n of EQ(AS) is approximated to be of a purely
’ Coulombic form,

somewhat unsatisfactory, and is a larger error than that re

ported in previous studie$;>>we found that it does not af- z,e?

fect the shape of the correlation functions or the effective Ceo(r)B=——. (Al6)
pair potential at short and intermediate distances. Future '

work will address this issue in more detail. These two approximations result in an electron-ion potential

We use a linear grid of 4096 points for the ion-ion andvgf,f(r) which is independent on the ion-ion correlatidfis.
electron-ion correlation functior(ge., a grid size of 0.01 a.u. The Schrdinger equation that follows from this effective
for a maximum distance of 40.96 a.uThe logarithmic grid  potential can then be solved self-consistently as described
contains 983 points whereas the Hermann-Skillmann gricibove, and the ensuing,(r) and newC, (r) used to derive
comprises five blocks of typically 80, 40, 40, 90, and 800an effective ion-ion pair-potential from E¢A4), for use in
points, respectively. This corresponds to a grid size ofhe initial ion-ion loop.
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