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We consider a lattice gas of particles that carry a two-component classicdi.spim two-component unit
vecton. The pair interaction, restricted to nearest neighbors, implicitly includes hard-core repulsion, since each
site can host one particle at most, and also contains ferromagnetic interaction between spins as well as
nonmagnetic attraction between particles. We study thermodynamic properties and phase diagrams of the
model by means of mean-field and two-site cluster approximations, and also by grand-canonical Monte Carlo
simulations carried out for one value of the chemical potential; these aim at a quantitative check of the named
approximations, as well as a more detailed description. Both mean-field and two-site cluster approximations
were found to provide a qualitatively correct description for the thermodynamics of the model with nearest-
neighbor interactions, and the predictions of the two-site cluster approximation were in satisfactory quantitative
agreement with simulation results. According to both mean-field and two-site cluster treatments, the
temperature-density phase diagrams of the model at zero external field are similar to those of the Ising lattice
gas, but the effect of external field is quite different. In particular, at zero nonmagnetic attraction the field effect
on the gas-liquid critical temperature becomes nonmonotonic. Having compared the field effects in the Ising,
plane-rotator, and Heisenberg spin fluids, we conclude that the ability of the external field to decrease the
gas-liquid critical temperature weakens with increasing number of spin components.

I. INTRODUCTION AND POTENTIAL MODEL 1
Statistical mechanical models consisting of quantum me- ) b
chanical spin operators, or of “classical spingi’e., unit  Here and in the followingZ; \ is restricted to nearest neigh-
vectors associated with a lattice have been extensively studbors, the notation=;., means that each distinct pair is
ied in the literature, especially in their saturated-lati8é)  counted once, and is a positive quantity setting energy and
version, where each site is occupied by a particle; lattice-gatemperature scales.
(LG) extensions of these models can also be defined, where Whenn=2, the pair potential in Eq.1.1) can be gener-
each lattice site hosts one particle at most, and site occupatized to
tion is also controlled by the chemical potentjal
SL spin models are first defined here: we consider a clas- Wi, m= — €[acog me;)cog mey)
sical system, consisting ofcomponent unit vectong, (usu- ; .
ally n=2,3), associated with ddimensional lattic&?, and Fbsinime))sinime)], (1.3
let u,’ denote Cartesian spin components; particle orientawhere m is an arbitrary positive integer; one can easily
tions are parametrized by usual polar andlkeg (n=2) or check? that, for any given values ai andb, the partition
{(¢;,6;)} (n=3); moreover, for each lattice site let g function is independent ofn, and that various structural
denote site parity, i.eq,= =1 depending on the sum of its properties can be defined in a way independentpfind
d coordinates being even or odd. L2t 2d denote the first actually calculated using any convenient value of it. The
coordination number of the lattice. choice m=1 defines the ferromagnetic interpretation,
The interaction potential is assumed to be translationallpvhereasn=2 can be interpreted as defining a nematogenic
invariant, ferromagnetic, and, in general, anisotropic in spirlattice model where three-component spins are constrained to
space lie in a plane by a suitable external field.
Isotropic O(n)-symmetric models correspond #=Db,
Wi, = —eu;-u and are referred to as plane rotatons=2)
W=~ au}‘uﬂ+b2 ufu|; e>0, a=o, or c!assmal Heisenberg modeH=3), t.he ex.tremely a_nlso—
a<n tropic andO(2)-symmetricxy model is defined byh=3,
a=0; other extremely anisotropic an®(1)-symmetric
models (hereafter calledA\2 and A3) correspond t=2,

b=0, maxa,b)=1, (1) ph=0 andn=3, b=0, respectively. Whemi=1, or when
d=2 and the interaction is isotropic in spin space, the poten-
and the Hamiltonian is tial models produce orientational disorder and no ordering
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transition at finite temperatur whend=2, and the inter- In the absence of the external magnetic fiehd=Q) the
action is anisotropic in spin space, widh-b=0, the model phase diagrams of Isifjand classical Heisenbé&fgfluids
supports a ferromagnetic ordering transition at finite tem-appear to be rather similar: at low temperatures, both fluids
perature EMT for shor); whend= 3, isotropic interactions become ferromagnetic as soon as the density exceeds certain

andxy model suffice to produce BMT.>® (T-dependentthreshold, and the resulting phase transition is
Lattice-gas extensions of the continuous-spin potentiabf the second order. At even lower temperatures this transi-
models considered here are defined by Hamiltonians tion becomes couplédiwith the gas-liquid segregation and

is of the first ordef®?’ The ordering external field removes
the magnetic order-disorder transition; nevertheless the first
A:jZk (72 (= A+ W) — uN, N:; vi» (14 order transitions between magnetically ordered phases of dif-
ferent densities survive. And here qualitative differences ap-
where v;=0,1 denotes occupation numbers; notice that pear, i.e., the effect of on the transition depends on spin
>0 reinforces the orientation-dependent term, wheneas model: at\=0 the external field suppresses the gas-liquid
<0 opposes it, and that a finite value ®fonly becomes transition in the Ising spin fluid, decreasing the critical tem-
immaterial in the SL limitu— + . perature(lowering the top of binodaj®? in the fluid with
Some rigorous results entailing existence or absence of atlassical Heisenberg spins the field effect is nonmonotonic:
ordering transition are also known for LG models with con-weak fields lower the top of binodal, stronger fields shift the
tinuous sping:=*° On the one hand, it has been proven that,binodal up?® These various behaviors make it interesting to
when Wj, produces orientational disorder at all finite tem- study the plane rotator model, which is in some respects
peratures in the SL version, this also happens for its LGntermediate between the Heisenberg and Ising mddels
extensions. On the other hand, in some cases wite Eq. (1.9], and also to compare the LG with the magnetic
produces &MT in the SL version(e.g., isotropic interac- liquid, and thus investigate the effect of the underlying dis-
tions in three dimensions, &2 andA3 models in two di- cretization.
mensiony, this has also been proven to take placeNerQ In this paper we study the plane-rotator lattice gas using
and sufficiently largeu>0; results entailing existence or various theoretical approaches, i.e., mean-fi@liFA) and
absence of &MT are also known for long-range interac- two-site cluster(TCA) approximations, as well as Monte
tions andd=1,2. Carlo simulation. In Sec. Il we calculate the thermodynamic
More recently, it has been proven that, for appropriatePotentials of the model within MFA and TCA, and the re-
ranges of values ok<0 and x>0, the ground state pos- Sulting phase diagrams, for selected values of the relevant
sesses staggered positional order, where sites of a certapdrameters, are presented and discussed in Sec. lIl.
parity are preferentially occupied, and that this survives up to  Since the resulting phase diagrams depend on a number of
some finite temperature. parameters, we decided to apply Monte Carlo simulation to a
Spin LGs allow to describe various complex systems. Infew specific values of them, so as to obtain a quantitative test
this paper we consider various spin LGs as models of anisgf both the approximations, as well as a more detailed de-
tropic fluids? but let us note that they can be considered inscription. The simulation methodology is presented in Sec.
many other frameworks, such as segregation in magnetit/, and in Sec. V its results are discussed and compared with
alloys'*'*and absorption phenomefha2° MFA and TCA treatments. Conclusions are summarized in
The properties of anisotropic fluidgor example, of lig-  Sec. VL.
uid crystals and ferrofluidsare determined by the interplay
of spatial and orientational degrees of freedom. In particular,
an external magnetic field can initiate the spatial ordering by Il. MEAN-FIELD AND TWO-SITE CLUSTER
aligning the spins and, thus, influence the structure of the TREATMENTS

fluid. This allows to control properties of the anisotropic flu- | ot s start from the explicit Hamiltonian of the plane

ids dynamically. This possibility has inspired several studiesyiator LG in an externalordering field, i.e
of effects of the external magnetic field in the fluids with B

Ising*?>!*?and Heisenberd=?*spins. Let us note that both

the Ising and Heisenberg LGs can be described by the ge- 1
neric Hamiltonian A=- §6§ Vi Vk“i‘uk_h'; Vil
1
A:_;k(Vij)()\"’ij'Uk)_h'; VjUj_M; Vi _E)\E Vij—,LLZ Vi, (2.1
ik i
T(YuY)2 Zu%)?271: . . . . .
+; vil(uf) "+ ()7L (1.5 herej,k=1---V enumerate sites of the simple cubic lattice,

V is the total number of sites, ang,= (ug,u)) is a two-
hereu;=(u;’,u ,u) is a three-dimensional unit vector, and component unit vector.
h is the externalorienting magnetic field. The “disorient- The HamiltoniarfEq. (2.1)] can be interpreted as describ-
ing” fields «Y, «* introduce easy plane anisotropies and al-ing a two-component system consisting of interconverting
low us to incorporate in Eq(1.5 the Heisenberg¥=«*  ‘“real” ( v,=1) and “ghost,” “virtual” or ideal-gas par-
=0), plane rotator £¥=0, k*=«) and Ising (¥= k*=x) ticles (v,=0); both kinds of particles have the same kinetic

lattice gases as special cases. energy,u denotes the excess chemical potential of “real”
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particles over “ideal” ones, and the total number of particles exn B0)i~(Bh exn B0)i(Bh
equals the number of available lattice sites. The partiton p= q'g'ul O_(B )~ , M= qﬂ’ul l_(’B )~ _
function is 1+exp(Bu)io(Bh) 1+exp(Bu)io(Bh)
(2.11
Z=Trexp(—BA), B=1(KkgT), (2.2

One can obtain thermodynamic quantities after solving the
where the trace implies summation over all occupation patconsistency equation@.11) and calculating the thermody-
terns and integration over all spin orientations namic potential2.9).

The MFA fails to describe some phenomena connected
Trx=3 % > %X 2.3 with fluctuations. For example, it does not discern between
' ' the magnetic properties of systems with quenched and an-
nealed disorder and does not describe percolation phenom-
Qualitative features of the model can be estimated using thena in guenched systems. This can partially be recovered
MFA; probably, the simplest way to implement it involves ysing the idea of “clusters,” whereby the partition function

,,1:0'1 27T VV:Oxl 2’7T

decomposing the variableg andu, as follows: of a finite group of particles in an external field can be evalu-
ated explicitly. The contribution from “external” particles
vi=p+dpj, viu;=M+5My, (2.4 may be expressed in terms of the effective field, to be evalu-
ated self-consistently. From such a point of view the MFA is
p=(vpr, M=(yjupy, (2.5  aone-site cluster approximation, in which each cluster com-

prises one site. Increasing the size of clusters one may expect
to obtain more accurate results. Indeed, the results of the
two-site cluster approximation turn to be accurate for the
one-dimensional systeRtsand on the Bethe lattic&.Below
1 1 we shall formulate such an approximation for the lattice gas
A==VIM-M—=h-D vu+=VKop2— 7> v, with the nearest-neighbor interactions. For the sake of brev-
2 [ 2 [ ity we shall not use the cluster expansion formulation which
1 has some advantages, such as the possibility of calculating
Jo2 M- 8M;— =Ko, 8pidp;, (2.6)  corrections of a higher order and correlation functions of the
ij 279 model®! Instead we shall rely on the first order approxima-
tion, which has been proven to give good quantitative agree-

where (- - YA =[Trexp(—BA)] T exp(—BA)---] denotes
a thermodynamic averaging. Upon substituting in Exjl),
one obtains

1
2

where ment with Monte Carlo simulations for various lattice gas
~ ~ models(see, e.g., Ref. 32 Let us introduce the effective-
Jo=z€, Ko=2z\, h=h+JM, p=p+ KoP-(2 2 field Hamiltonian of a single site
Upon neglecting the terms quadratic in fluctuations appear- Ai=—hyul=ur, (2.12
ing in Eq.(2.6), one obtains the effective Hamiltonian
1 1 whereh=h+z®, u=u+2z¥, ® and¥ are effective fields
A_>AMFA:§VJOM M _E.Z iU+ EVKO,JZ—ILEi Vi, substituting for interactions with nearest-neighbor sites, and

z is the first coordination number of the lattice. In the two-
(28 site Hamiltonian the interaction between a pair of the

and hence the thermodynamic potential of the model withif'€arest-neighbor sites is taken into account explicitly
the MFA
Q= B nTrexg — BAMFA) A= et U= Ui R

=— B WIn[1+exp Bur)io(Bh)] —Avivj—u'vi—u'yy, (2.13

whereh’ =h+2z'®, u'=u+2z'¥, andz’ =z— 1, since one

of the neighbors is already taken into account. The varia-

tional parameter® andW¥ have to be found from the self-

herei,, is a modified Bessel function of the first kind consistency conditions that require an equality of average
values calculated with the one-site and two-site Hamilto-
nians. To determiné andW it is sufficient to impose these
conditions on the average values of sMn=(»;u}), and of

(2.10  occupation numbep={v;), ,

1 1
+ 5 VM- M+ EVKOpZ; (2.9

(="

w

im(X)=

J'ﬂd pexp(—Xx cosg)cogma).
0

By the underlying rotational invariance, the external field can _ « «

be taken as defining a coordinate axis, saythexis, i.e., oA =(a (U A=)y - (2.14
h=(h,0), so thatM =(M,0); minimization with respect to

the two parameters andM yields the self-consistency rela- The TCA leads to the following expression for the internal
tions (2.5), i.e., a system of two nonlinear equations, energy:
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1 z
U/IV=(A+uN)/V=— §J°<V‘ ZE u,—)Aij - h(vmf)Au BQIN=2"InTrexp(—BA;)— Eln Trexp(—BAj)).
1 (2.17
_§K0<vivl~>Aij, (2.15  The traces in expressions involving one-site and two-site

Hamiltonians (\; and Aj;) are easily computable. Expres-
whereJy=ze andK,=2z\ are integral interaction strengths, sions(2.17 and(2.14 yield the thermodynamic potential
Jo and K, denote, respectively, the magnetic coupling and
the nonmagnetic attraction between nearest-neighbor sites. BAIN=2'InZ,— Eln Z,, (2.18
Expression2.15 can be computed explicitly in terms of the 2
fields ® and'¥ and model parameters. The thermodynamicang the self-consistency equations
potentials can be found in a straightforward way. For ex-
ample, the grand thermodynamic potentialof the model Xio(Bh) yio(,BB’)erzexp(,B)\)L

satisfies the following Gibbs-Helmholtz equation: 7 Z (2.19
1 2
aﬁﬂ—u N (2.16 i(8h i (Bh')+ V2 '
B #N. : Xlléﬂh):yll(ﬂh )+; AL
Taking into account relation@.14), the solution of this dif- 1~ 5 2
ferential equation reads wherex=expBu), y=expBu'),
|
Zi=1+xio(BR),  Z,=1+2yio(Bh')+yZexg AL, (2.21)
_ 27d¢1f2ﬂ'd¢)2 o’
L—fo 27 ) 5. EXH BN’ (Cosh,+COS¢y) + Be COd h1— ¢) ]
=d ~ = =
=f %exr{ﬁh’cos¢l]io<ﬂ\/(h’)2+62+2h’ecos¢l , (2.22
0
27Td¢1 27Td¢)2 ~
L’zf —f ——cos¢,exd Bh’ (cos¢,+cosg,)+ Be cog ¢1— d,) ]
0 2 0 21
=d ~ = =
=f %cosmexp[ﬂh’cos(ﬁl]i()(ﬂ\/(h’)2+52+2h’ecos¢1 . (2.23
0

The resulting phase diagrams are presented and discussioh with the Curie line. For sufficiently smajk (seeu=
in the following sections. The reliability of MFA and TCA —1.2 in Fig. 1 the dependencg(t) contains a jump show-
for the plane rotator lattice gas is also tested by computeihg discontinuoug(first orde) transition between ferromag-
simulations; this will be carried out fox=0 and for one netic and paramagnetic phases. The bold convex line resting
value of the chemical potentiap=0.1, yielding a rather gn the points(0,0) and (1,0) in the phase diagram is a bin-
detailed description of static properties. odal, which confines the region B, where the homogeneous
lattice gas is unstabl@r metastableand must separate into
phases of different densities. As a resuylft) lines jump
over this region. Within the magnetofluid interpretation of
the current model the binodal separates the liquid and vapor

Figure 1 shows phase diagrams of the plane rotator latticegaseous phases. One can see that\at 0 the vapor is al-
gas within the TCA and the MFA. First note the two regionsways paramagnetic and the liquid is always ferromagnetic.
in the temperature-density space: at high temperatures ambove the top of the binoddlt>0.25 (MFA) or t>0.201
low densities the system is paramagnéBaegion, whereas (TCA)] there is no gas-liquid transition, but the orientational
at low temperatures and high densities the spontaneous otansition survives up té=0.5 (MFA) (or t=0.406 within
entational order appear®i(0) and the system is ferromag- TCA). Comparing the TCA phase diagrathick solid lines
netic (F region. The boundary between these regidttsee  in Fig. 1) with the MFA result(dashed linesone can see that
Curie ling is a locus of Curie points, where the second ordeffluctuations taken into account within the TCA significantly
phase transitions take place. At positiugle.g.,u=0.1, see lower both the binodal and the Curie line.
the thin line in Fig. 1 the dependence(t) (where t Figure 2a) shows the temperature-density phase diagram
=kgT/Jp) is smooth except a jump of slope at the intersec-of the model within the MFA at different model parameters.

Ill. MEAN-FIELD AND TWO-SITE CLUSTER PHASE
DIAGRAMS
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line, the liquid is ferromagnetic and the gas is paramagnetic.
At largev the top of binodal deviates from the Curie line in
the paramagnetic region.

The external field destroys the ferromagnetic transition
and therefore eliminates the Curie line. The gas-liquid bin-
odals in presence of the external magnetic field are depicted
with thin lines. The attached numbers are strengths of the
field h/Jy. At v=0 the field effect is nonmonotonic—as the
strength of field grows, first the top of binodal lowers (
=0.01,, 0.13y), but then it begins to raisehE& 0.5, ).
Thus, the gas-liquid critical temperatugehich is the ordi-
nate of the binodal tgpis a nonmonotonic function of the
field. Atv =1 this phenomenon remains, but the effect of the
binodal lowering weakens. At large (e.g.,v =2) the bin-
odal lowering disappears and the external field monotoni-
cally raises the binodal.

FIG. 1. The dependence of density=N/V) on temperature In Fig. 2(b) one can see that the TCA yields quantitative
(t=KkgT/Jp) at constant chemical potential (thin lines and phase  differences, as well as some qualitative corrections to the
diagram (thick solid lines of plane-rotator lattice gas at=0 MFA results. Within the TCA the Curie line becomes
within the TCA. Thin long-short-dashed line represents the jump ofslightly concave, and the nonmagnetic attraction between
density atu=—1.2,t=0.15. Symbols P, F, and B mark paramag- particles increases the Curie temperature. The latter effect
netic, ferromagnetic, and binodal regions, respectively. Dashedgn pe justified by qualitative arguments. Indeed, the non-
lines represent the phase diagram within the MFA. magnetic attraction augments the probability that a randomly

chosen pair of nearest-neighbor sites is occupied. Since at
One can see how the nonmagnetic attraction and externgtese sites the particles interact magnetically, the magnetic
field change the phase diagram. There are three families dfiteraction becomes more efficient, and the Curie tempera-
lines for three values of the nonmagnetic interaction strengthure increases too. The MFA does not capture this effect
v=MNe=Ky/Jy. The bold lines correspond to the zero-field because it completely disregards the last two terms in Eq.
case (=0). One can see that the Curie lines corresponding2.6) which describe the interaction of fluctuations. Taking
to differentv overlap, because within the MFA the Curie into account of density fluctuations in the TCA leads to the
points lay on the straight line and its slope is independent oflependence of the Curie temperaturevoriWhen y— +©
v. The nonmagnetic attraction between particles, of coursehe lattice is saturatedp(~1), density fluctuations are ab-
favors the phase separation—the binodal moves upward witbent, and the Curie temperature becomes independent of the
increasing. At smallv the top of binodal lays on the Curie nonmagnetic attraction.

0 0.2 0.4 06 0.8 1

0.6 1 _ @ 0.6 1t (b)

0+ ; : : } P 04 } t : : p
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG. 2. Phase diagrams of the plane-rotator lattice gas within the mean(djedshd two-site clustetb) approximations. Picturéb)
represents TCA results for the model with the nearest-neighbor interactions on the simple cubicziatigeThe MFA resultgpicture(a)]
are independent of interaction range and lattice structure. Three families of lines are built for three values of nonmagnetic interaction
=Ky /Jo. The thick lines are binodals and Curie lines at zero external field. The thin lines with attached numbers represent the binodals at
nonzero values of the external fighdJ,.
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TCA predictions concerning the effect of the field support 0.5 +¢
the MFA results. Taking into account that the MFA is accu-
rate in the limit of Kac potentiafs one can be sure that the
observedv dependence of phase diagrams and field effects 1
does take place for systems with long-range potentials. The
TCA captures main features of systems with nearest-gas 1
neighbor interactions and makes us think that these effects

0.45 +-

survive also in models with short-range interactions. 0.3 |

The observed variety of field effects may be explained by .
the existence of two concurrent tendencie® On the one 0251 0.
hand, the external field aligns the spins, leading to a more .
efficient attraction between particlflet us recall that mag- ) 0.39 +
netic interaction between particles with nearly parallel spins ; ;5 | 0.385 7 0.01

. . . . . 0.38 1+ .

(ui-u;>0) leads to their attraction, whereas particles with 0.375 1
opposite spinsu;-u;<<0) repel each othé¢rThis raises the 0.1+ 0.37 +
binodal (for example, in simple nonmagnetic fluids the bin- 0.365 4
odal goes up when the interaction increas@n the other  0.05 0.36 * * i
hand, if the susceptibility of the rarefied phase is larger than 0.3 0.5 0.7 0.9
that of the coexisting dense phase, then magnetization anc 0 F i f = p
consequently, effective attraction between particles grow 0 0.2 0.4 0.6 0.8 1

better in the rarefied phase, thus decreasing the energetical FIG. 3. Phase diagram of the modelwat 1.5 within the MFA.

gain of the phase separation. Therefore the second tenden‘mick lines correspond th=0; thin lines are binodals at different

suppresses the gas-liquid separation in the fluid and countefz,es of external fielti/J, (see attached numbgrThe inset show
acts the first tendency. The second tendency is very strong gliails of the upper part df=0 binodal.

h=0 andv=0 near the top of binodal, because in this case

the vapor(paramagneticbranch of binodal almost coincides waalg*?and dipolaf®?*fluids. Within the MFA[Fig. 3a)]

with the Curie line(where the susceptibility tends to infin- our model ath=0 andt=0.37 undergoes two first-order
ity), whereas the branch of the coexistent liquid phase rapphase transitions. At this temperature the fluid can be in three
idly deviates from the Curie line. As a result, the externalphases: paramagnetic gés p<0.40), paramagnetic liquid
field lowers the top of the binodal. If both the liquid and (9.6<p<0.69) and ferromagnetic liquid p0.86). The
vapor phases are paramagnetic, the susceptibility of the ligrca predicts the similar phase diagraimot reported heje

uid phase is larger, and the secoftdwering tendency is  \we would like to emphasize that weak external fieldsy.,
absent. The behavior of the binodal for=2 (see Fig. 2 1/3,=0.01) raise the binodal gi=0.5 and lower it atp
demonstrates this feature. Other factors can also change-ag g. such a behavior completely fit into the “bitendency”
relation between the susceptibilities. For example, a shortaypanation: app=0.5 andh=0 both phases are paramag-
range character of the interactions levels the susceptibilitiegetic, the lowering tendency is absent, therefore the external
and weakens the lowering tenderféyas can be observed fig|d favors the phase separation;pat 0.8 the lowering ten-

from the field effect ab=1: in Fig. 2a) (the MFA resull  gency wins at small fields, like in the case-1 (see Fig. 2
the top of binodal ah=0 is higher than that abt=0.1J,,

whereas in Fig. @) (TCA) these binodals have nearly equal
heights. Since the MFA results are correct for long-range
potentials, whereas for the model with nearest-neighbor in- LG models involving continuous spirf&€q. (1.4)] have
teractions the TCA is much more accurate, the correctionseldom been studied by simulatidhin contrast with their
provided by the TCA have to be attributed to differencesSL counterparts, and with LG models with discrete spins.
between the systems with the long-range and short-range po- The simulation step used here consisted of different con-
tentials. secutive stages, as discussed in detail in Ref. 34; each of
Comparing different spin fluids one can note that the rolehem being attempted irrespectively of the outcome of the
of the binodal lowering tendency decreases in the sequencprevious ones; the methodologies used here have been dis-
Ising, plane rotator, Heisenberg fluids. This follows from thecussed and then applied in a number of papers, both for
observation of the effect of the field in fluids without the lattice and off-lattice modelgge.g., Refs. 35—-46 as well as
nonmagnetic attractionv0): in the Ising L3? the exter- reviewed in standard reference books on simulatiofh®
nal field monotonically decreases the critical temperatyre some recent grand-canonical or semi-grand-canonical simu-
(lowers the top of the gas-liquid binodain the plane rotator lations can be found in Refs. 50 and 51.
LG (see Fig. 2weak fields lowet,., but at larger fields the The stages aré) canonical attempt on a randomly cho-
increasing tendency wins, so thath=) is nearly equal to sen site, supplemented by overrelaxafiér® and (b)
t.(h=0), andt, is minimal at a finite value of the field; in semi-grand-canonicdiattempt: a lattice sitk is chosen ran-
the Heisenberg fluid the increasing tendency is still more domly, and an attempt is made to changeo vy, i.e., from
pronouncedt.(h=) is much higher than.(h=0). zero to one or vice versa; the quantity involved in the Me-
At intermediatev (e.g.,v =1.5) phase diagrams of a spe- tropolis procedure is now
cial topology appear, similar to those previously reported for
the Ising lattice ga$® as well as off-lattice Ising-van der AA=—AN(Bg-u+pu), AN=pn -y, (4D

IV. SIMULATION
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where B,=3/v;u; denotes the local field produced by the but it has been showfsee, e.g., Refs. 59 and $6that, in
nearest neighbors. Note that particles are distinguishable, arsiimulation, its finite-lattice estimates are given by

that the choice of a strict grand-canonical interpretation

would require adding a kinetic-energy teMdkgT/2 in Eq.
(1.4), and hence the corresponding tetkiNkgT/2 in Eq.
4.0.

In addition to these basic stages, it was sometimes foun

beneficial to implement two moréc) another canonical at-

tempt; and(d) exchange of places between “real” and “vir-

tual” particles: a pair of lattice siteg andk, such thaty,

# vy, IS chosen randomly, and an attempt is made to swap

the two “particles.®6:37:56

in the ordered region,

x=[X1’ 4.10

X2

et us also note that, for an arbitrary configuration, the quan-
ity F defines a unit vectoi=F/|F|; one can then define

in the disordered region.

1 1
Slzﬁ 2 v(Uy- ), Szzﬁ 2 vk[2(f-uk)2—l]
" K
(4.11)

Simulations were carried out on periodically repeated cUnng hences, and's,; notice thats, differs from M by the

bic samples, consisting &= L2 sites,L =12, 16, 20. Equili-
bration runs took between 25000 and 50 000 cy¢lesere
one cycle or sweep involves V stgpsind production runs

for estimating ensemble averages took between 100 000 arpg

density p. Moreover, one can construct the singlet orienta-
tional distribution functiof'=%3(SODB S(¢) for individual
spins around the magnetization vedtowhered is the angle
tween the individual spin and the magnetization unit vec-

250 000; macrostep averages for evaluating statistical errogy ¢ ranging between 0 and-. This was evaluated at

were taken over 1000 cycles.

=0.23, on a sample of = 20° sites, by analyzing a configu-

Calculations were carried out in cascade, in order of m'ration every fourth cycle and producing a 1001 bin histo-

creasing temperature; as an additional check, a few runs weggam Note also that the SODF is usually considered for the
carried out in order of decreasing temperature, and both thga matic counterparf&.‘GS

procedures found to yield the same results to within statisti-

cal errors.

Calculated observables include mean Hamiltor{i@nto-
tal energy per site and its temperature derivati{@ecific
heat at constantc and V), density and its derivative with
respect to the chemical potential, defined by

H=(1N)(A), 4.2
p=(INV)(N), 43
and by the fluctuation formuldz*3°7:8
p = (dplap)rv=(BIV)[(N®)—(N)?], (4.4
Cov 1 [HKA)),
k_l;_kB_V(T JSEIIHADAY] 4

A cubic sample ofV sites containszV/2=3V distinct
nearest-neighboring pairs of lattice sites; we worked out pair
occupation probabilities, i.e., the mean fractidhs, of pairs
being both empty(Pee={((1—»;)(1—y))), both occupied
(Poo={¥i¥y)), or consisting of an empty and an occupied
site (Peo=1—P,,— Pee). Orientational order at short range
was defined by means of the quantities

Cm:<(Vij)Coim(¢j_¢k)]>nna m=1,2 (4.12

at nearest-neighbor separation; the mean interaction energy
per site is just—(z/2) (eC1+APgy).

In order to allow for the possibility of staggered positional
order, we evaluated

0'=(2N)< % uqu> , (4.13

We also calculated mean magnetic moment per site, magind found it to be essentially zero, in keeping with the ab-
netic susceptibility, as well as first- and second-rank orientasence of purely positional terms in the interaction potential.

tional order parameterger spin, and singlet orientational
distribution function. The magnetizatigper sitg is defined

by

M = (IN)(\JF-F), F=; RIS (4.6)

as for the susceptibility, let us first define the two quanti-

ties
P 2
x1=y ((F-F)=([F)?), (4.7
X2:€<F'F>? (4.9
the susceptibility per site is defined by
1
x=B1im G (F-F)=(F)-(F), (4.9

Voo

The positional correlation function

h(r):<1}j1/k>, (414)

as a function of the distance between sitemndk, r=|x;
—Xx|, was calculated fot =20 and at a few temperatures,
i.e.,,t=0.23 and = 0.25, together with its orientational coun-
terparts

Fin(r)=Gm(r)/h(r),

Gm(r)={((vjr)cogm(p;— ) 1), m=12. (4.19

V. SIMULATION RESULTS

It is generally known that mean field theories underesti-
mate fluctuations. This, as a rule, leads to overestimation of a
range of existence of ordered phases, in particular, to over-
estimation of the order-disorder transition temperature.
Sometimes, this leads to qualitatively incorrect results. For
example, the MFA does not describe percolation phenomena
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0.23
FIG. 4. Temperature dependence of the densignd orientational short-range order parame@ysC,. Simulation estimates obtained
with different sample sizes were found to agree to within the statistical errors, so that we just plot here their averages over the examined

sample sizegcrosses Solid and dashed lines represent the results of the TCA and the MFA, respectively. Results in all the figures of this
section refer tov=0, andu=0.1.

in quenched.G with magnetic nearest-neighbor interactions contrast to the MFA where they equal zero. In Fig. 5 the pair
(i.e., whose translational degrees of freedom are frozen, sinagccupation probabilitie®,,, are presented. One can see that
both number and positions of particles are fixegthere it  there is a satisfactory quantitative agreement between simu-
wrongly predicts the existence of spontaneous magnetic ofation estimates and TCA results. The MFA results are rather
der atany density. In anyannealedspin LG both orientation in qualitative agreement with the simulations. Drawbacks of
and density fluctuations are present. We want to knowthe MFA become more visible in Fig. 6 where we present
whether they and their correlations cause significant difficul-correlation functions. Positional nearest-neighbor correla-
ties for the mean field theories. Fluctuations are especiallyions of particles are described by the quankifyl) —h(<)
large near second-order phase transitions, and therefore weP,,— p? [Fig. 6a)]. Let us note that the corresponding
test both the MFA and the TCA in the ferromagnetic particle-hole and hole-hole correlatiofdescribed byP /2
(second-ordgrtransition region. —p(1—p) and Pee— (1—p)?] are not independent quanti-
In this section we present theoretical and simulation reties because
sults for the plane rotator model defined hy=0 and u

=0.1. MC results for a number of observables, suctHas Poo— p*=—[Ped2— p(1—p)]=Pee—(1-p)* (5.1)
(not reported heve p, C,, P, were found to evolve with . , . , )
temperature in a smooth way, and to be independent OQuantltl_es that describe the nearest-nel_ghb_or orientational
sample sizes; in these cases, we simply plotted the averagg@rrelationsl’n(1)—T'(«) are presented in Fig.(). One
over the examined sample sizes; other quantit@s,(, p,, . can see that the MFA prediction for tﬁgse guantities is zero.
and the susceptibility, not shown hgmemonstrate a more The quantityl’;(1)—T'y()=C,/P,,—s] has a peak at the
pronounced sample-size dependence, especially around the
transition temperaturé~0.237. The named approximate
treatments predict ferromagnetic order-disorder transition at
tc=0.247(TCA) or tc=0.258(MFA). Results for density

and orientational short-range order parame@randC, are
reported in Fig. 4. In Fig. @ one can see that there is a
good agreement between the theories and the MC simula-
tions in the ferromagnetic phase. Discrepancies appear only
near the Curie temperatutg. In Fig. 4(b) this critical region

is shown in detail, and one can see that the TCA results are
much more accurate than those of the MFA. For example,
within the TCA the Curie temperaturggorresponding to a
jump in the slope of the(t) plot in Fig. 4] agrees with the
simulation prediction to about 4% s 9% for the MFA. The
density at which orientational transition takes plagg
=0.616 is also much closer to the MC valpg~0.68 than FIG. 5. Simulation estimatgsrosse results of the TCAsolid
the MFA result pc=0.520. Note that, according to both Jines) and the MFA(dashed linesfor pair occupation probabilities
simulations and TCA, the orientational short-range order papP,,, P.,, P..; see also Fig. 4, and see the text for their defini-
rameters<C,, C, do not vanish in the paramagnetic phase, intions.
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0.014 + h(1) — A(e0) @ 08 ~~u___
+ N RIS
+ ey T~
0.012 + d 4 0.7 4 .
, \
0.01 4 + ., 0.6 \
4 +
A\
0.008 + 051
0.006 + — 047
0.004 + 031 %
0.2 - A
0.002 + A
o A
0 — — +T 0.11 o g g
0.21 0.23 0.25 0.27 0 TR T
0.5 — ) 0.21 0.22 0.23 0.24 0.25
045 + FIG. 7. Simulation estimates for the first-rank and second-rank
i 38 + order parameters obtained with different sample sizes: triangles:
04+ _"_" + =12; squarest. = 16; circles:L = 20. Solid and dashed lines are the
035 4 + results of the TCA and the MFA, respectively.
hy (D) -T()
0.3+ P _ . .
i shifted to lower temperatures and lays in the ferromagnetic
0.25 + + phase
+ o
02 + Figure 7 presents the temperature dependence of long-
+ 5 range orientational order parameters. In order to compare
0.15 + I . . .
*“Ha,q curve shapes within different approximations we plot these
0.1% - ‘4 guantities against the scaled temperatarér=t for MC
0.05 4 (1) =T, (=) results,7=0.9a for the TCA andr=0.92 for the MFA).
Similarly we plot the specific hea , (Fig. 8), andp,, (Fig.
0 — - =7 9). All the figures again show good quantitative agreement
0.21 0.23 0.25 0.27

FIG. 6. Simulation estimatggrossesand results of TCAsolid
lines) and MFA (dashed linesfor the nearest-neighbor correlation
functionsh(1)—h(x) (a) andI',(1)—T' () (b) plotted against
the scaled temperature (7=t for MC results, 7=0.9@ for the
TCA, and7=0.92 for the MFA). The thin vertical line marks the

Curie temperature.

between the MC and the TCA and qualitative agreement
with the MFA.

A less severe comparison between MFA prediction and
simulation results can be obtained by plottiggversuss,,
thus eliminating their explicit temperature dependences; this
is done in Fig. 10, which again shows a reasonable agree-

10 7 Cp [k /

Curie point, where the system loses orientational stability
and simulation estimates for the magnetic susceptibility
show a pronounced increase with increasing sample size,
pointing to its divergence in the thermodynamic limit. On the
other hand, the quantityz(l)—Fz(w):C2/P00—§§ does

not have a maximum at phase transition sisgas far less
affected by the ordering transition.

Strong orientational correlations near the Curie tempera-
ture enhance density correlations, as manifested by the peak
of the nearest-neighbor correlation functidr{1)—h(e)
[Fig. 6(@)]. Note that afu=0.1 the system remains mechani-
cally stable at all temperaturésince the compressibility
=p,/p is always finite, as can be seen in Fig.d&hd we
have only the orientational phase transition of the second
order.

We have also shown in a previous section that large den-

0.21 0.23 0.25 0.27

sity fluctuations near the Curie point result in the gas-liquid FiG. 8. Simulation estimates, obtained with different sample
transition at a smallep.. Let us note that both the simula- sizes, and theoretical results for the specific heat per site; same
tions and the TCA predict that the peak of nearest-neighbofiotations as in Fig. 7. Thin long-short-dashed line represents the

positional correlation function[Fig. 6(a@)] is somewhat

jump of C,, \ /kg at the Curie temperature.
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5 40Py ' : 0

log M | A4

0 t t t t t | T ’ %%
24
021 022 023 024 025 026 027 - 0
FIG. 9. Simulation estimates, obtained with different system ¢
sizes, and theoretical results fagp,, ; same notations as in Fig. 7. - %
Thin long-short-dashed line represents the jumggf, at the Cu- ®
rie temperature. 5 . . L% . . .
0] 4 8
ment; notice that MFA predicts for the SODF the maximum- r
entropy expressioly () = Sug,i($) *exp@, cose), (Sge FIG. 11. Simulation estimates fdt(r) obtained withL =20
below), so that the MFA plot was obtained by calculatiyg and at different temperatures: circlds;(r) at t=0.23; squares:
andgz over a wide range oA,. I'5(r) att=0.23; trianglesI ;(r) att=0.25; diamondsI',(r) at
The SODEF (calculated att=0.23, and not shown t=0.25; the dashed line corresponds to the squars;0énd the
hera®1-%3can be formally expanded as dotted one to the square sf.
Jxce E A cogmd) Both the simulatedS(¢) and its maximum entropy
oC — J—
S(¢)eex oM mé estimate$*-¢ based ors, ands,, were found to decrease

monotonically with increasing; the maximum entropy es-

= (1) 1_1_2‘(20;'((:03'(@ ' (5.2 timates are defined by
>
where ¢ is the angle between the individual spin and the Sua($)* €XHA; COSh), .3
magnetization vector, ranging between 0 andand the co-
efficientss, define order parameters. Sme,2(¢)=exd By cos¢p+ B, cog24)]; (5.4
0355, here proportionality factors allow for normalization condi-
tions, andA or B parameters were determined by appropriate
031 consistency constraints, i.e., by requestBgg ; to repro-
duce s;, or requestingSyg, to reproduce boths; and
0.25 1 '5,;%47%¢ notice also that MFA predicts the functional form
Svr(#) =Sue ().
02 ¢ For Sye o ¢), we foundB;=1.392,B,=—0.067, i.e. B,
turned out to be small but not negligible: comparisons
015 7 showed thatSyg ; yields a good but not perfect agreement
with simulation results, and th&,,e , produces a recogniz-
0.1 1 able improvement.
As for correlation functionsh(r) (not reported was
0.05 found to quickly decay to its long-range limpf, reflecting
s the fact that\ =0, i.e., the absence of purely positional in-
o — teractions. Simulation results for the orientational correlation
0 08 functions are plotted in Fig. 11; note that batfr) andI'(r)

FIG. 10. Plots of second-rank order parameter versus first-ranR@Ve€ & maximum at=2, similar to that in off-lattice fluids.

order parameter, obtained with different sample sizes; same meah) LGS the effect probably correlates with the fact that the
ing of symbols as in Fig. 7; the thin line is the mean-field predic-Path along the lattice bonds to the fourth coordination shell

tion, i.e., corresponding to a singlet distributioBye(¢)  (r'=2) is shorter(two step$ than that to the third onéhree
=Sue1( @) xexp@y cose). stepsy = \/3). The same peak is observed in off-lattice fluids
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(near separation of two hard core diameteed just sug- lower the critical temperaturécorresponding to the top of
gests hidden geometrical effects resulting from short-rangbinoda), whereas strong fields slightly shift the binodal up-
order in real fluids. ward; in the Ising LG such behavior takes place only at suf-
ficiently largev, at v=0 the external field monotonically
VI. CONCLUSIONS lowers the binodal. The variety of the field effects on the
_gas-liquid binodal can be qualitatively explained by the “bi-
We have performed a study of the plane-rotator latticeengency” mechanism proposed in Ref. 22. Our results show
gas, based on theoretical methods: MFA and TCA have beeat the lowering tendency decreases in the sequence: Ising,
used to construct overall phase diagrams, and to investigajfane-rotator, Heisenberg fluids. In other words, the external
field effects; computer simulation has been usedNer0  fig|qg |oses its ability to decrease the gas-liquid critical tem-
andu=0.1, as a mean to assess the quantitative accuracy grature when the number of possible spin orientations in-
both MFA and TCA, and also to obtain a more detailed¢reases.
description. The thepries appear to be gble to descripe ther- one can see that the lattice gas approach may be success-
modynamic properties of the model with nearest-neighbokyly ysed for description of complex fluids when continuous
interactions with satisfactory accuracy: the MFA is in quali- approaches lead to too complex calculations or do not give
tative agreement with the simulation results, the TCA gives agtisfactory results. For example, the TCA describes the ef-

good quantitative description. For example, in the case Confect of the nonmagnetic attraction on the Curie temperature;
sidered in Sec. V the temperature of orientational orderingrent liquid state theori®s2428do not have such a capa-

predicted by the TCAMFA) agrees with the simulation re- pjjity.
sult to about 4%9%). The TCA also manages to describe
nearest-neighbor correlations, which makes this theory use-
ful for description of scattering data. Near the Curie tempera-
ture, simulation as well as TCA results show the significant R.S. thanks Tatiana Sokolovska for helpful discussions
growth of nearest-neighbor correlations for both orienta-and valuable advice. The present calculations were carried
tional and density fluctuationfI';(1)—I'1(e¢) and h(1)  out, on, among other machines, a cluster of DEC computers,
—h(«), respectively, and also the onset of long-range ori- belonging to the Sezione di Pavia of INFMstituto Nazio-
entational correlationsy(—®). The peak ofl (1) —1T"1() nale di Fisica Nucleaje computer time was allocated by
takes place at the Curie point, whereas the maximum o€INECA (Centro Interuniversitario Nord-Est di Calcolo Au-
h(1)—h(«) is shifted into the ferromagnetic phase. tomatico, Casalecchio di Reno—Bolognwithin INFM ini-
Within both the TCA and the MFA we have constructed tiative on parallel computing; allocation of computer time by
the temperature-density phase diagrams of the model at dithe Computer Center of Pavia University and CILE®Bon-
ferent values of isotropic attraction between particles. Atsorzio Interuniversitario Lombardo per I' Elaborazione Au-
zero external field the obtained sequence of phase diagran@matica, Segrate—Milanis also gratefully acknowledged.
is (topologically) the same as in the Ising lattice gas; yet theS.R. also acknowledges partial financial support by Minis-
field effect qualitatively differs. For example, in the plane-tero dell’ Universita® e della Ricerca Scientifica e Tecno-
rotator LG without an isotropic attractiorv £0) the field logica (M.U.R.S.T), through project Cofin MURST 97
effect on the gas-liquid binodal is nonmonotonic: weak fieldsCFSIB.
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