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Plane-rotator lattice gas in an external orienting field
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We consider a lattice gas of particles that carry a two-component classical spin~i.e., a two-component unit
vector!. The pair interaction, restricted to nearest neighbors, implicitly includes hard-core repulsion, since each
site can host one particle at most, and also contains ferromagnetic interaction between spins as well as
nonmagnetic attraction between particles. We study thermodynamic properties and phase diagrams of the
model by means of mean-field and two-site cluster approximations, and also by grand-canonical Monte Carlo
simulations carried out for one value of the chemical potential; these aim at a quantitative check of the named
approximations, as well as a more detailed description. Both mean-field and two-site cluster approximations
were found to provide a qualitatively correct description for the thermodynamics of the model with nearest-
neighbor interactions, and the predictions of the two-site cluster approximation were in satisfactory quantitative
agreement with simulation results. According to both mean-field and two-site cluster treatments, the
temperature-density phase diagrams of the model at zero external field are similar to those of the Ising lattice
gas, but the effect of external field is quite different. In particular, at zero nonmagnetic attraction the field effect
on the gas-liquid critical temperature becomes nonmonotonic. Having compared the field effects in the Ising,
plane-rotator, and Heisenberg spin fluids, we conclude that the ability of the external field to decrease the
gas-liquid critical temperature weakens with increasing number of spin components.
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I. INTRODUCTION AND POTENTIAL MODEL

Statistical mechanical models consisting of quantum m
chanical spin operators, or of ‘‘classical spins’’~i.e., unit
vectors! associated with a lattice have been extensively st
ied in the literature, especially in their saturated-lattice~SL!
version, where each site is occupied by a particle; lattice-
~LG! extensions of these models can also be defined, w
each lattice site hosts one particle at most, and site occ
tion is also controlled by the chemical potentialm.

SL spin models are first defined here: we consider a c
sical system, consisting ofn-component unit vectorsuk ~usu-
ally n52,3), associated with ad-dimensional latticeZd, and
let uk

a denote Cartesian spin components; particle orien
tions are parametrized by usual polar angles$w j% (n52) or
$(w j ,u j )% (n53); moreover, for each lattice sitek, let qk
denote site parity, i.e.,qk561 depending on the sum of it
d coordinates being even or odd. Letz52d denote the first
coordination number of the lattice.

The interaction potential is assumed to be translation
invariant, ferromagnetic, and, in general, anisotropic in s
space

Wjk52eFauj
nuk

n1b (
a,n

uj
auk

aG ; e.0, a>0,

b>0, max~a,b!51, ~1.1!

and the Hamiltonian is
PRB 610163-1829/2000/61~17!/11379~12!/$15.00
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L5(
j ,k

Wjk5
1

2 (
j ,k

Wjk . ~1.2!

Here and in the following,( j ,k is restricted to nearest neigh
bors, the notation( j ,k means that each distinct pair
counted once, ande is a positive quantity setting energy an
temperature scales.

Whenn52, the pair potential in Eq.~1.1! can be gener-
alized to

Wjk,m52e@a cos~mw j !cos~mwk!

1b sin~mw j !sin~mwk!#, ~1.3!

where m is an arbitrary positive integer; one can eas
check1,2 that, for any given values ofa and b, the partition
function is independent ofm, and that various structura
properties can be defined in a way independent ofm, and
actually calculated using any convenient value of it. T
choice m51 defines the ferromagnetic interpretatio
whereasm52 can be interpreted as defining a nematoge
lattice model where three-component spins are constraine
lie in a plane by a suitable external field.3,4

Isotropic O(n)-symmetric models correspond toa5b,
Wjk52euj•uk and are referred to as plane rotators (n52)
or classical Heisenberg model (n53); the extremely aniso-
tropic andO(2)-symmetricxy model is defined byn53,
a50; other extremely anisotropic andO(1)-symmetric
models~hereafter calledA2 and A3) correspond ton52,
b50 and n53, b50, respectively. Whend51, or when
d52 and the interaction is isotropic in spin space, the pot
tial models produce orientational disorder and no order
11 379 ©2000 The American Physical Society
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transition at finite temperature;5,6 whend52, and the inter-
action is anisotropic in spin space, witha.b>0, the model
supports a ferromagnetic ordering transition at finite te
perature (FMT for short!; whend53, isotropic interactions
andxy model suffice to produce aFMT.5,6

Lattice-gas extensions of the continuous-spin poten
models considered here are defined by Hamiltonians

L5(
j ,k

~n jnk!~2l1Wjk!2mN, N5(
j

n j , ~1.4!

where n j50,1 denotes occupation numbers; notice thal
.0 reinforces the orientation-dependent term, whereal
,0 opposes it, and that a finite value ofl only becomes
immaterial in the SL limitm→1`.

Some rigorous results entailing existence or absence o
ordering transition are also known for LG models with co
tinuous spins.7–10 On the one hand, it has been proven th
when Wjk produces orientational disorder at all finite tem
peratures in the SL version, this also happens for its
extensions. On the other hand, in some cases whereWjk
produces aFMT in the SL version~e.g., isotropic interac-
tions in three dimensions, orA2 andA3 models in two di-
mensions!, this has also been proven to take place forl>0
and sufficiently largem.0; results entailing existence o
absence of aFMT are also known for long-range intera
tions andd51,2.

More recently, it has been proven that, for appropri
ranges of values ofl,0 andm.0, the ground state pos
sesses staggered positional order, where sites of a ce
parity are preferentially occupied, and that this survives up
some finite temperature.11

Spin LGs allow to describe various complex systems.
this paper we consider various spin LGs as models of an
tropic fluids,12 but let us note that they can be considered
many other frameworks, such as segregation in magn
alloys13,14 and absorption phenomena.15–20

The properties of anisotropic fluids,~for example, of liq-
uid crystals and ferrofluids! are determined by the interpla
of spatial and orientational degrees of freedom. In particu
an external magnetic field can initiate the spatial ordering
aligning the spins and, thus, influence the structure of
fluid. This allows to control properties of the anisotropic fl
ids dynamically. This possibility has inspired several stud
of effects of the external magnetic field in the fluids wi
Ising12,13,21and Heisenberg22–24 spins. Let us note that bot
the Ising and Heisenberg LGs can be described by the
neric Hamiltonian

L52(
j ,k

~n jnk!~l1euj•uk!2h•(
j

n juj2m(
j

n j

1(
j

n j@~kyuj
y!21~kzuj

z!2#; ~1.5!

hereuj5(uj
x ,uj

y ,uj
z) is a three-dimensional unit vector, an

h is the external~orienting! magnetic field. The ‘‘disorient-
ing’’ fields ky, kz introduce easy plane anisotropies and
low us to incorporate in Eq.~1.5! the Heisenberg (ky5kz

50), plane rotator (ky50, kz5`) and Ising (ky5kz5`)
lattice gases as special cases.
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In the absence of the external magnetic field (h50) the
phase diagrams of Ising12 and classical Heisenberg22 fluids
appear to be rather similar: at low temperatures, both flu
become ferromagnetic as soon as the density exceeds ce
(T-dependent! threshold, and the resulting phase transition
of the second order. At even lower temperatures this tra
tion becomes coupled25 with the gas-liquid segregation an
is of the first order.26,27The ordering external fieldh removes
the magnetic order-disorder transition; nevertheless the
order transitions between magnetically ordered phases of
ferent densities survive. And here qualitative differences
pear, i.e., the effect ofh on the transition depends on sp
model: atl50 the external field suppresses the gas-liq
transition in the Ising spin fluid, decreasing the critical te
perature~lowering the top of binodal!;12 in the fluid with
classical Heisenberg spins the field effect is nonmonoto
weak fields lower the top of binodal, stronger fields shift t
binodal up.22 These various behaviors make it interesting
study the plane rotator model, which is in some respe
intermediate between the Heisenberg and Ising models@see
Eq. ~1.5!#, and also to compare the LG with the magne
liquid, and thus investigate the effect of the underlying d
cretization.

In this paper we study the plane-rotator lattice gas us
various theoretical approaches, i.e., mean-field~MFA! and
two-site cluster~TCA! approximations, as well as Mont
Carlo simulation. In Sec. II we calculate the thermodynam
potentials of the model within MFA and TCA, and the r
sulting phase diagrams, for selected values of the relev
parameters, are presented and discussed in Sec. III.

Since the resulting phase diagrams depend on a numb
parameters, we decided to apply Monte Carlo simulation t
few specific values of them, so as to obtain a quantitative
of both the approximations, as well as a more detailed
scription. The simulation methodology is presented in S
IV, and in Sec. V its results are discussed and compared
MFA and TCA treatments. Conclusions are summarized
Sec. VI.

II. MEAN-FIELD AND TWO-SITE CLUSTER
TREATMENTS

Let us start from the explicit Hamiltonian of the plan
rotator LG in an external~ordering! field, i.e.,

L52
1

2
e(

j ,k
n jnkuj•uk2h•(

j
n juj

2
1

2
l(

j ,k
n jnk2m(

j
n j ; ~2.1!

here j ,k51•••V enumerate sites of the simple cubic lattic
V is the total number of sites, anduk5(uk

x ,uk
y) is a two-

component unit vector.
The Hamiltonian@Eq. ~2.1!# can be interpreted as describ

ing a two-component system consisting of interconvert
‘‘real’’ ( nk51) and ‘‘ghost,’’ ‘‘virtual’’ or ideal-gas par-
ticles (nk50); both kinds of particles have the same kine
energy,m denotes the excess chemical potential of ‘‘rea
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particles over ‘‘ideal’’ ones, and the total number of particl
equals the number of available lattice sites. The partit
function is

Z5Tr exp~2bL!, b51/~kBT!, ~2.2!

where the trace implies summation over all occupation p
terns and integration over all spin orientations

Tr X5 (
n150,1

E df1

2p
••• (

nV50,1
E dfV

2p
X. ~2.3!

Qualitative features of the model can be estimated using
MFA; probably, the simplest way to implement it involve
decomposing the variablesn j anduk as follows:

n j5r1dr j , n juj5M1dM j , ~2.4!

r5^n j&L , M5^n juj&L , ~2.5!

where ^•••&L5@Tr exp(2bL)#21Tr@exp(2bL)•••# denotes
a thermodynamic averaging. Upon substituting in Eq.~2.1!,
one obtains

L5
1

2
VJ0M•M2h̃•(

i
n iui1

1

2
VK0r22m̃(

i
n i

2
1

2
J0(

i j
dM i•dM j2

1

2
K0(

i j
dr idr j , ~2.6!

where

J05ze, K05zl, h̃5h1J0M , m̃5m1K0r.
~2.7!

Upon neglecting the terms quadratic in fluctuations appe
ing in Eq. ~2.6!, one obtains the effective Hamiltonian

L→LMFA5
1

2
VJ0M•M2h̃•(

i
n iui1

1

2
VK0r22m̃(

i
n i ,

~2.8!

and hence the thermodynamic potential of the model wit
the MFA

V52b21ln Tr exp~2bLMFA!

52b21V ln@11exp~bm̃!i 0~buh̃u!#

1
1

2
VJ0M•M1

1

2
VK0r2; ~2.9!

herei m is a modified Bessel function of the first kind

i m~x!5
~21!m

p E
0

p

dfexp~2x cosf!cos~mf!.

~2.10!

By the underlying rotational invariance, the external field c
be taken as defining a coordinate axis, say thex axis, i.e.,
h5(h,0), so thatM5(M ,0); minimization with respect to
the two parametersr andM yields the self-consistency rela
tions ~2.5!, i.e., a system of two nonlinear equations,
n

t-

e

r-

n

n

r5
exp~bm̃!i 0~bh̃!

11exp~bm̃!i 0~bh̃!
, M5

exp~bm̃!i 1~bh̃!

11exp~bm̃!i 0~bh̃!
.

~2.11!

One can obtain thermodynamic quantities after solving
consistency equations~2.11! and calculating the thermody
namic potential~2.9!.

The MFA fails to describe some phenomena connec
with fluctuations. For example, it does not discern betwe
the magnetic properties of systems with quenched and
nealed disorder and does not describe percolation phen
ena in quenched systems. This can partially be recove
using the idea of ‘‘clusters,’’ whereby the partition functio
of a finite group of particles in an external field can be eva
ated explicitly. The contribution from ‘‘external’’ particles
may be expressed in terms of the effective field, to be eva
ated self-consistently. From such a point of view the MFA
a one-site cluster approximation, in which each cluster co
prises one site. Increasing the size of clusters one may ex
to obtain more accurate results. Indeed, the results of
two-site cluster approximation turn to be accurate for
one-dimensional systems29 and on the Bethe lattice.30 Below
we shall formulate such an approximation for the lattice g
with the nearest-neighbor interactions. For the sake of br
ity we shall not use the cluster expansion formulation wh
has some advantages, such as the possibility of calcula
corrections of a higher order and correlation functions of
model.31 Instead we shall rely on the first order approxim
tion, which has been proven to give good quantitative agr
ment with Monte Carlo simulations for various lattice g
models~see, e.g., Ref. 32!. Let us introduce the effective
field Hamiltonian of a single site

L i52h̃n iui
x2m̃n i , ~2.12!

whereh̃5h1zF, m̃5m1zC, F andC are effective fields
substituting for interactions with nearest-neighbor sites, a
z is the first coordination number of the lattice. In the tw
site Hamiltonian the interaction between a pair of t
nearest-neighbor sites is taken into account explicitly

L i j 52en in jui•uj2h̃8n iui
x2h̃8n juj

x

2ln in j2m̃8n i2m̃8n j , ~2.13!

whereh̃85h1z8F, m̃85m1z8C, andz85z21, since one
of the neighbors is already taken into account. The va
tional parametersF andC have to be found from the self
consistency conditions that require an equality of aver
values calculated with the one-site and two-site Hamil
nians. To determineF andC it is sufficient to impose these
conditions on the average values of spinM5^n iui

x&L and of
occupation numberr5^n i&L ,

^n i&L i
5^n i&L i j

; ^n iui
x&L i

5^n iui
x&L i j

. ~2.14!

The TCA leads to the following expression for the intern
energy:
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U/V5^L1mN&/V52
1

2
J0^n in jui•uj&L i j

2h^n iui
x&L i j

2
1

2
K0^n in j&L i j

, ~2.15!

whereJ05ze andK05zl are integral interaction strength
J0 and K0 denote, respectively, the magnetic coupling a
the nonmagnetic attraction between nearest-neighbor s
Expression~2.15! can be computed explicitly in terms of th
fields F andC and model parameters. The thermodynam
potentials can be found in a straightforward way. For e
ample, the grand thermodynamic potentialV of the model
satisfies the following Gibbs-Helmholtz equation:

]bV

]b
5U2mN. ~2.16!

Taking into account relations~2.14!, the solution of this dif-
ferential equation reads
s

ut

ttic
ns
a

o
-

e

ec
d
es.

c
-

bV/V5z8 ln Tr exp~2bL i !2
z

2
ln Tr exp~2bL i j !.

~2.17!

The traces in expressions involving one-site and two-
Hamiltonians (L i and L i j ) are easily computable. Expres
sions~2.17! and ~2.14! yield the thermodynamic potential

bV/V5z8ln Z12
z

2
ln Z2 , ~2.18!

and the self-consistency equations

xi0~bh̃!

Z1
5

yi0~bh̃8!1y2exp~bl!L

Z2
; ~2.19!

xi1~bh̃!

Z1
5

yi1~bh̃8!1y2exp~bl!L8

Z2
; ~2.20!

wherex5exp(bm̃), y5exp(bm̃8),
Z1511xi0~bh̃!, Z25112yi0~bh̃8!1y2exp~bl!L, ~2.21!

L5E
0

2pdf1

2p E
0

2pdf2

2p
exp@bh̃8~cosf11cosf2!1be cos~f12f2!#

5E
0

pdf1

p
exp@bh̃8cosf1# i 0SbA~ h̃8!21e212h̃8e cosf1D , ~2.22!

L85E
0

2pdf1

2p E
0

2pdf2

2p
cosf1exp@bh̃8~cosf11cosf2!1be cos~f12f2!#

5E
0

pdf1

p
cosf1exp@bh̃8cosf1# i 0SbA~ h̃8!21e212h̃8e cosf1D . ~2.23!
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The resulting phase diagrams are presented and discu
in the following sections. The reliability of MFA and TCA
for the plane rotator lattice gas is also tested by comp
simulations; this will be carried out forl50 and for one
value of the chemical potential,m50.1, yielding a rather
detailed description of static properties.

III. MEAN-FIELD AND TWO-SITE CLUSTER PHASE
DIAGRAMS

Figure 1 shows phase diagrams of the plane rotator la
gas within the TCA and the MFA. First note the two regio
in the temperature-density space: at high temperatures
low densities the system is paramagnetic~P region!, whereas
at low temperatures and high densities the spontaneous
entational order appears (MÞ0) and the system is ferromag
netic ~F region!. The boundary between these regions~the
Curie line! is a locus of Curie points, where the second ord
phase transitions take place. At positivem ~e.g.,m50.1, see
the thin line in Fig. 1! the dependencer(t) ~where t
5kBT/J0) is smooth except a jump of slope at the inters
sed

er

e

nd

ri-

r

-

tion with the Curie line. For sufficiently smallm ~seem5
21.2 in Fig. 1! the dependencer(t) contains a jump show-
ing discontinuous~first order! transition between ferromag
netic and paramagnetic phases. The bold convex line res
on the points~0,0! and ~1,0! in the phase diagram is a bin
odal, which confines the region B, where the homogene
lattice gas is unstable~or metastable! and must separate int
phases of different densities. As a result,r(t) lines jump
over this region. Within the magnetofluid interpretation
the current model the binodal separates the liquid and va
~gaseous! phases. One can see that atl50 the vapor is al-
ways paramagnetic and the liquid is always ferromagne
Above the top of the binodal@ t.0.25 ~MFA! or t.0.201
~TCA!# there is no gas-liquid transition, but the orientation
transition survives up tot50.5 ~MFA! ~or t50.406 within
TCA!. Comparing the TCA phase diagram~thick solid lines
in Fig. 1! with the MFA result~dashed lines! one can see tha
fluctuations taken into account within the TCA significant
lower both the binodal and the Curie line.

Figure 2~a! shows the temperature-density phase diagr
of the model within the MFA at different model paramete
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One can see how the nonmagnetic attraction and exte
field change the phase diagram. There are three familie
lines for three values of the nonmagnetic interaction stren
v5l/e5K0 /J0. The bold lines correspond to the zero-fie
case (h50). One can see that the Curie lines correspond
to different v overlap, because within the MFA the Cur
points lay on the straight line and its slope is independen
v. The nonmagnetic attraction between particles, of cou
favors the phase separation—the binodal moves upward
increasingv. At small v the top of binodal lays on the Curi

FIG. 1. The dependence of density (r5N/V) on temperature
(t5kBT/J0) at constant chemical potentialm ~thin lines! and phase
diagram ~thick solid lines! of plane-rotator lattice gas atl50
within the TCA. Thin long-short-dashed line represents the jump
density atm521.2, t50.15. Symbols P, F, and B mark parama
netic, ferromagnetic, and binodal regions, respectively. Das
lines represent the phase diagram within the MFA.
al
of
th

g

f
e,
ith

line, the liquid is ferromagnetic and the gas is paramagne
At large v the top of binodal deviates from the Curie line
the paramagnetic region.

The external field destroys the ferromagnetic transit
and therefore eliminates the Curie line. The gas-liquid b
odals in presence of the external magnetic field are depi
with thin lines. The attached numbers are strengths of
field h/J0. At v50 the field effect is nonmonotonic—as th
strength of field grows, first the top of binodal lowers (h
50.01J0 , 0.1J0), but then it begins to raise (h50.5J0 , `).
Thus, the gas-liquid critical temperature~which is the ordi-
nate of the binodal top! is a nonmonotonic function of the
field. At v51 this phenomenon remains, but the effect of t
binodal lowering weakens. At largev ~e.g.,v52) the bin-
odal lowering disappears and the external field monoto
cally raises the binodal.

In Fig. 2~b! one can see that the TCA yields quantitati
differences, as well as some qualitative corrections to
MFA results. Within the TCA the Curie line become
slightly concave, and the nonmagnetic attraction betw
particles increases the Curie temperature. The latter ef
can be justified by qualitative arguments. Indeed, the n
magnetic attraction augments the probability that a rando
chosen pair of nearest-neighbor sites is occupied. Sinc
these sites the particles interact magnetically, the magn
interaction becomes more efficient, and the Curie tempe
ture increases too. The MFA does not capture this eff
because it completely disregards the last two terms in
~2.6! which describe the interaction of fluctuations. Takin
into account of density fluctuations in the TCA leads to t
dependence of the Curie temperature onv. Whenm→1`
the lattice is saturated, (r→1), density fluctuations are ab
sent, and the Curie temperature becomes independent o
nonmagnetic attraction.

f

d

raction
nodals at
FIG. 2. Phase diagrams of the plane-rotator lattice gas within the mean-field~a! and two-site cluster~b! approximations. Picture~b!
represents TCA results for the model with the nearest-neighbor interactions on the simple cubic lattice (z56). The MFA results@picture~a!#
are independent of interaction range and lattice structure. Three families of lines are built for three values of nonmagnetic intev
5K0 /J0. The thick lines are binodals and Curie lines at zero external field. The thin lines with attached numbers represent the bi
nonzero values of the external fieldh/J0.
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TCA predictions concerning the effect of the field supp
the MFA results. Taking into account that the MFA is acc
rate in the limit of Kac potentials33 one can be sure that th
observedv dependence of phase diagrams and field effe
does take place for systems with long-range potentials.
TCA captures main features of systems with neare
neighbor interactions and makes us think that these eff
survive also in models with short-range interactions.

The observed variety of field effects may be explained
the existence of two concurrent tendencies.12,22 On the one
hand, the external field aligns the spins, leading to a m
efficient attraction between particles@let us recall that mag-
netic interaction between particles with nearly parallel sp
(ui•uj.0) leads to their attraction, whereas particles w
opposite spins (ui•uj,0) repel each other#. This raises the
binodal ~for example, in simple nonmagnetic fluids the bi
odal goes up when the interaction increases!. On the other
hand, if the susceptibility of the rarefied phase is larger th
that of the coexisting dense phase, then magnetization
consequently, effective attraction between particles gr
better in the rarefied phase, thus decreasing the energe
gain of the phase separation. Therefore the second tend
suppresses the gas-liquid separation in the fluid and cou
acts the first tendency. The second tendency is very stron
h50 andv50 near the top of binodal, because in this ca
the vapor~paramagnetic! branch of binodal almost coincide
with the Curie line~where the susceptibility tends to infin
ity!, whereas the branch of the coexistent liquid phase r
idly deviates from the Curie line. As a result, the extern
field lowers the top of the binodal. If both the liquid an
vapor phases are paramagnetic, the susceptibility of the
uid phase is larger, and the second~lowering! tendency is
absent. The behavior of the binodal forv52 ~see Fig. 2!
demonstrates this feature. Other factors can also chan
relation between the susceptibilities. For example, a sh
range character of the interactions levels the susceptibil
and weakens the lowering tendency,22 as can be observe
from the field effect atv51: in Fig. 2~a! ~the MFA result!
the top of binodal ath50 is higher than that ath50.1J0,
whereas in Fig. 2~b! ~TCA! these binodals have nearly equ
heights. Since the MFA results are correct for long-ran
potentials, whereas for the model with nearest-neighbor
teractions the TCA is much more accurate, the correcti
provided by the TCA have to be attributed to differenc
between the systems with the long-range and short-range
tentials.

Comparing different spin fluids one can note that the r
of the binodal lowering tendency decreases in the seque
Ising, plane rotator, Heisenberg fluids. This follows from t
observation of the effect of the field in fluids without th
nonmagnetic attraction (v50): in the Ising LG12 the exter-
nal field monotonically decreases the critical temperaturetc
~lowers the top of the gas-liquid binodal!; in the plane rotator
LG ~see Fig. 2! weak fields lowertc , but at larger fields the
increasing tendency wins, so thattc(h5`) is nearly equal to
tc(h50), andtc is minimal at a finite value of the field; in
the Heisenberg fluid22 the increasing tendency is still mor
pronounced:tc(h5`) is much higher thantc(h50).

At intermediatev ~e.g.,v51.5) phase diagrams of a sp
cial topology appear, similar to those previously reported
the Ising lattice gas,18 as well as off-lattice Ising-van de
t
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Waals21,28and dipolar23,24fluids. Within the MFA@Fig. 3~a!#
our model ath50 and t50.37 undergoes two first-orde
phase transitions. At this temperature the fluid can be in th
phases: paramagnetic gas~at r,0.40), paramagnetic liquid
(0.6,r,0.69) and ferromagnetic liquid (r.0.86). The
TCA predicts the similar phase diagram~not reported here!.
We would like to emphasize that weak external fields~e.g.,
h/J050.01) raise the binodal atr50.5 and lower it atr
50.8. Such a behavior completely fit into the ‘‘bitendency
explanation: atr50.5 andh50 both phases are parama
netic, the lowering tendency is absent, therefore the exte
field favors the phase separation; atr50.8 the lowering ten-
dency wins at small fields, like in the casev51 ~see Fig. 2!.

IV. SIMULATION

LG models involving continuous spins@Eq. ~1.4!# have
seldom been studied by simulation,34 in contrast with their
SL counterparts, and with LG models with discrete spins

The simulation step used here consisted of different c
secutive stages, as discussed in detail in Ref. 34; eac
them being attempted irrespectively of the outcome of
previous ones; the methodologies used here have been
cussed and then applied in a number of papers, both
lattice and off-lattice models,~e.g., Refs. 35–46!, as well as
reviewed in standard reference books on simulation;47–49

some recent grand-canonical or semi-grand-canonical si
lations can be found in Refs. 50 and 51.

The stages are~a! canonical attempt on a randomly cho
sen site, supplemented by overrelaxation;52–55 and ~b!
semi-grand-canonical51 attempt: a lattice sitek is chosen ran-
domly, and an attempt is made to changenk to nk8 , i.e., from
zero to one or vice versa; the quantity involved in the M
tropolis procedure is now

DL52DN~Bk•uk1m!, DN5nk82nk , ~4.1!

FIG. 3. Phase diagram of the model atv51.5 within the MFA.
Thick lines correspond toh50; thin lines are binodals at differen
values of external fieldh/J0 ~see attached numbers!. The inset show
details of the upper part ofh50 binodal.
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where Bk5( j8n juj denotes the local field produced by th
nearest neighbors. Note that particles are distinguishable,
that the choice of a strict grand-canonical interpretat
would require adding a kinetic-energy termNkBT/2 in Eq.
~1.4!, and hence the corresponding termDNkBT/2 in Eq.
~4.1!.

In addition to these basic stages, it was sometimes fo
beneficial to implement two more:~c! another canonical at
tempt; and~d! exchange of places between ‘‘real’’ and ‘‘vir
tual’’ particles: a pair of lattice sitesj and k, such thatn j
Þnk , is chosen randomly, and an attempt is made to sw
the two ‘‘particles.’’36,37,56

Simulations were carried out on periodically repeated
bic samples, consisting ofV5L3 sites,L512, 16, 20. Equili-
bration runs took between 25 000 and 50 000 cycles~where
one cycle or sweep involves V steps!, and production runs
for estimating ensemble averages took between 100 000
250 000; macrostep averages for evaluating statistical er
were taken over 1000 cycles.

Calculations were carried out in cascade, in order of
creasing temperature; as an additional check, a few runs w
carried out in order of decreasing temperature, and both
procedures found to yield the same results to within stat
cal errors.

Calculated observables include mean Hamiltonian~or to-
tal energy! per site and its temperature derivative~specific
heat at constantm and V), density and its derivative with
respect to the chemical potential, defined by

H̄5~1/V!^L&, ~4.2!

r5~1/V!^N&, ~4.3!

and by the fluctuation formulas35,43,57,58

rm5~]r/]m!TV5~b/V!@^N2&2^N&2#, ~4.4!

CmV

kB
5

1

kBV S ]^L&
]T D

mV

5~b2/V!@^L2&2^L&2#. ~4.5!

We also calculated mean magnetic moment per site, m
netic susceptibility, as well as first- and second-rank orien
tional order parameters~per spin!, and singlet orientationa
distribution function. The magnetization~per site! is defined
by

M5~1/V!^AF•F&, F5(
k

nkuk ; ~4.6!

as for the susceptibilityx, let us first define the two quanti
ties

x15
b

V
~^F•F&2^uFu&2!, ~4.7!

x25
b

V
^F•F&; ~4.8!

the susceptibility per site is defined by

x5b lim
V→`

1

V
~^F•F&2^F&•^F&!, ~4.9!
nd
n

d

p

-

nd
rs

-
re

he
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g-
-

but it has been shown~see, e.g., Refs. 59 and 60! that, in
simulation, its finite-lattice estimates are given by

x5H x1 , in the ordered region,

x2 , in the disordered region.
~4.10!

Let us also note that, for an arbitrary configuration, the qu
tity F defines a unit vectorf5F/uFu; one can then define

s15
1

N (
k

nk~uk•f!, s25
1

N (
k

nk@2~ f•uk!
221#

~4.11!

and hences̄1 and s̄2; notice thats̄1 differs from M by the
densityr. Moreover, one can construct the singlet orien
tional distribution function61–63 ~SODF! S(f) for individual
spins around the magnetization vectorf, wheref is the angle
between the individual spin and the magnetization unit v
tor f, ranging between 0 andp. This was evaluated att
50.23, on a sample ofV5203 sites, by analyzing a configu
ration every fourth cycle and producing a 1001 bin his
gram. Note also that the SODF is usually considered for
nematic counterparts.61–63

A cubic sample ofV sites containszV/253V distinct
nearest-neighboring pairs of lattice sites; we worked out p
occupation probabilities, i.e., the mean fractionsPjh of pairs
being both empty„Pee5^(12n i)(12nk)&…, both occupied
(Poo5^n ink&), or consisting of an empty and an occupie
site (Peo512Poo2Pee). Orientational order at short rang
was defined by means of the quantities

Cm5^~n jnk!cos@m~f j2fk!#&nn , m51,2 ~4.12!

at nearest-neighbor separation; the mean interaction en
per site is just2(z/2)(eC11lPoo).

In order to allow for the possibility of staggered position
order, we evaluated

s5~2/V!K (
k

nkqkL , ~4.13!

and found it to be essentially zero, in keeping with the a
sence of purely positional terms in the interaction potent

The positional correlation function

h~r !5^n jnk&, ~4.14!

as a function of the distance between sitesj and k, r 5uxj
2xku, was calculated forL520 and at a few temperature
i.e., t50.23 andt50.25, together with its orientational coun
terparts

Gm~r !5Gm~r !/h~r !,

Gm~r !5^~n jnk!cos@m~f j2fk!#&, m51,2. ~4.15!

V. SIMULATION RESULTS

It is generally known that mean field theories undere
mate fluctuations. This, as a rule, leads to overestimation
range of existence of ordered phases, in particular, to o
estimation of the order-disorder transition temperatu
Sometimes, this leads to qualitatively incorrect results.
example, the MFA does not describe percolation phenom
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FIG. 4. Temperature dependence of the densityr and orientational short-range order parametersC1 , C2. Simulation estimates obtaine
with different sample sizes were found to agree to within the statistical errors, so that we just plot here their averages over the
sample sizes~crosses!. Solid and dashed lines represent the results of the TCA and the MFA, respectively. Results in all the figures
section refer tol50, andm50.1.
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in quenchedLG with magnetic nearest-neighbor interactio
~i.e., whose translational degrees of freedom are frozen, s
both number and positions of particles are fixed!, where it
wrongly predicts the existence of spontaneous magnetic
der atanydensity. In anyannealedspin LG both orientation
and density fluctuations are present. We want to kn
whether they and their correlations cause significant diffic
ties for the mean field theories. Fluctuations are especi
large near second-order phase transitions, and therefor
test both the MFA and the TCA in the ferromagne
~second-order! transition region.

In this section we present theoretical and simulation
sults for the plane rotator model defined byl50 and m

50.1. MC results for a number of observables, such asH̄
~not reported here!, r, Cm , Pjh were found to evolve with
temperature in a smooth way, and to be independen
sample sizes; in these cases, we simply plotted the aver
over the examined sample sizes; other quantities (CmV , rm ,
and the susceptibility, not shown here! demonstrate a more
pronounced sample-size dependence, especially aroun
transition temperaturet'0.237. The named approxima
treatments predict ferromagnetic order-disorder transition
tC50.247~TCA! or tC50.258~MFA!. Results for densityr
and orientational short-range order parametersC1 andC2 are
reported in Fig. 4. In Fig. 4~a! one can see that there is
good agreement between the theories and the MC sim
tions in the ferromagnetic phase. Discrepancies appear
near the Curie temperaturetC. In Fig. 4~b! this critical region
is shown in detail, and one can see that the TCA results
much more accurate than those of the MFA. For exam
within the TCA the Curie temperature,@corresponding to a
jump in the slope of ther(t) plot in Fig. 4# agrees with the
simulation prediction to about 4%~vs 9% for the MFA!. The
density at which orientational transition takes placerC
50.616 is also much closer to the MC valuerC'0.68 than
the MFA result rC50.520. Note that, according to bot
simulations and TCA, the orientational short-range order
rametersC1 , C2 do not vanish in the paramagnetic phase,
ce
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contrast to the MFA where they equal zero. In Fig. 5 the p
occupation probabilitiesPjh are presented. One can see th
there is a satisfactory quantitative agreement between s
lation estimates and TCA results. The MFA results are rat
in qualitative agreement with the simulations. Drawbacks
the MFA become more visible in Fig. 6 where we prese
correlation functions. Positional nearest-neighbor corre
tions of particles are described by the quantityh(1)2h(`)
5Poo2r2 @Fig. 6~a!#. Let us note that the correspondin
particle-hole and hole-hole correlations@described byPeo/2
2r(12r) and Pee2(12r)2# are not independent quant
ties because

Poo2r252@Peo/22r~12r!#5Pee2~12r!2. ~5.1!

Quantities that describe the nearest-neighbor orientatio
correlationsGm(1)2Gm(`) are presented in Fig. 6~b!. One
can see that the MFA prediction for these quantities is ze
The quantityG1(1)2G1(`)5C1 /Poo2 s̄1

2 has a peak at the

FIG. 5. Simulation estimates~crosses!, results of the TCA~solid
lines! and the MFA~dashed lines! for pair occupation probabilities
Poo , Peo , Pee; see also Fig. 4, and see the text for their defi
tions.
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Curie point, where the system loses orientational stab
and simulation estimates for the magnetic susceptib
show a pronounced increase with increasing sample s
pointing to its divergence in the thermodynamic limit. On t
other hand, the quantityG2(1)2G2(`)5C2 /Poo2 s̄2

2 does

not have a maximum at phase transition sinces̄2 is far less
affected by the ordering transition.

Strong orientational correlations near the Curie tempe
ture enhance density correlations, as manifested by the
of the nearest-neighbor correlation functionh(1)2h(`)
@Fig. 6~a!#. Note that atm50.1 the system remains mechan
cally stable at all temperatures~since the compressibilityL
5rm /r is always finite, as can be seen in Fig. 9! and we
have only the orientational phase transition of the sec
order.

We have also shown in a previous section that large d
sity fluctuations near the Curie point result in the gas-liq
transition at a smallerm. Let us note that both the simula
tions and the TCA predict that the peak of nearest-neigh
positional correlation function@Fig. 6~a!# is somewhat

FIG. 6. Simulation estimates~crosses! and results of TCA~solid
lines! and MFA ~dashed lines! for the nearest-neighbor correlatio
functionsh(1)2h(`) ~a! and Gm(1)2Gm(`) ~b! plotted against
the scaled temperaturet (t5t for MC results,t50.96t for the
TCA, andt50.92t for the MFA!. The thin vertical line marks the
Curie temperature.
y
y
e,

-
ak
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n-

or

shifted to lower temperatures and lays in the ferromagn
phase.

Figure 7 presents the temperature dependence of lo
range orientational order parameters. In order to comp
curve shapes within different approximations we plot the
quantities against the scaled temperaturet (t5t for MC
results,t50.96t for the TCA andt50.92t for the MFA!.
Similarly we plot the specific heatCmV ~Fig. 8!, andrm ~Fig.
9!. All the figures again show good quantitative agreem
between the MC and the TCA and qualitative agreem
with the MFA.

A less severe comparison between MFA prediction a
simulation results can be obtained by plottings̄2 versuss̄1,
thus eliminating their explicit temperature dependences;
is done in Fig. 10, which again shows a reasonable ag

FIG. 7. Simulation estimates for the first-rank and second-r
order parameters obtained with different sample sizes: triangleL
512; squares:L516; circles:L520. Solid and dashed lines are th
results of the TCA and the MFA, respectively.

FIG. 8. Simulation estimates, obtained with different sam
sizes, and theoretical results for the specific heat per site; s
notations as in Fig. 7. Thin long-short-dashed line represents
jump of Cm,V /kB at the Curie temperature.
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ment; notice that MFA predicts for the SODF the maximu
entropy expressionSMF(f)5SME,1(f)}exp(A1 cosf), ~see
below!, so that the MFA plot was obtained by calculatings̄1

and s̄2 over a wide range ofA1.
The SODF ~calculated at t50.23, and not shown

here!61–63 can be formally expanded as

S~f!}expF (
m.0

Am cos~mf!G
5~1/p!F112(

k.0
s̄k cos~kf!G , ~5.2!

where f is the angle between the individual spin and t
magnetization vector, ranging between 0 andp, and the co-
efficientss̄k define order parameters.

FIG. 9. Simulation estimates, obtained with different syst
sizes, and theoretical results forJ0rm ; same notations as in Fig. 7
Thin long-short-dashed line represents the jump ofJ0rm at the Cu-
rie temperature.

FIG. 10. Plots of second-rank order parameter versus first-r
order parameter, obtained with different sample sizes; same m
ing of symbols as in Fig. 7; the thin line is the mean-field pred
tion, i.e., corresponding to a singlet distributionSMF(f)
5SME,1(f)}exp(A1 cosf).
-

Both the simulatedS(f) and its maximum entropy
estimates,64–66 based ons̄1 and s̄2, were found to decreas
monotonically with increasingf; the maximum entropy es
timates are defined by

SME,1~f!}exp~A1 cosf!, ~5.3!

SME,2~f!}exp@B1 cosf1B2 cos~2f!#; ~5.4!

here proportionality factors allow for normalization cond
tions, andA or B parameters were determined by appropri
consistency constraints, i.e., by requestingSME,1 to repro-
duce s̄1, or requestingSME,2 to reproduce boths̄1 and
s̄2;64–66 notice also that MFA predicts the functional form
SMF(f)5SME,1(f).

For SME,2(f), we foundB151.392,B2520.067, i.e.,B2
turned out to be small but not negligible: compariso
showed thatSME,1 yields a good but not perfect agreeme
with simulation results, and thatSME,2 produces a recogniz
able improvement.

As for correlation functions,h(r ) ~not reported! was
found to quickly decay to its long-range limitr2, reflecting
the fact thatl50, i.e., the absence of purely positional i
teractions. Simulation results for the orientational correlat
functions are plotted in Fig. 11; note that bothh(r ) andG(r )
have a maximum atr 52, similar to that in off-lattice fluids.
In LGs the effect probably correlates with the fact that t
path along the lattice bonds to the fourth coordination sh
(r 52) is shorter~two steps! than that to the third one~three
steps,r 5A3). The same peak is observed in off-lattice flui

k
n-

-

FIG. 11. Simulation estimates forGm(r ) obtained withL520
and at different temperatures: circles:G1(r ) at t50.23; squares:
G2(r ) at t50.23; triangles:G1(r ) at t50.25; diamonds:G2(r ) at

t50.25; the dashed line corresponds to the square ofs̄1, and the

dotted one to the square ofs̄2.
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~near separation of two hard core diameters!, and just sug-
gests hidden geometrical effects resulting from short-ra
order in real fluids.

VI. CONCLUSIONS

We have performed a study of the plane-rotator latt
gas, based on theoretical methods: MFA and TCA have b
used to construct overall phase diagrams, and to investi
field effects; computer simulation has been used forl50
andm50.1, as a mean to assess the quantitative accurac
both MFA and TCA, and also to obtain a more detail
description. The theories appear to be able to describe t
modynamic properties of the model with nearest-neigh
interactions with satisfactory accuracy: the MFA is in qua
tative agreement with the simulation results, the TCA give
good quantitative description. For example, in the case c
sidered in Sec. V the temperature of orientational order
predicted by the TCA~MFA! agrees with the simulation re
sult to about 4%~9%!. The TCA also manages to describ
nearest-neighbor correlations, which makes this theory u
ful for description of scattering data. Near the Curie tempe
ture, simulation as well as TCA results show the significa
growth of nearest-neighbor correlations for both orien
tional and density fluctuations@G1(1)2G1(`) and h(1)
2h(`), respectively#, and also the onset of long-range or
entational correlations (x→`). The peak ofG1(1)2G1(`)
takes place at the Curie point, whereas the maximum
h(1)2h(`) is shifted into the ferromagnetic phase.

Within both the TCA and the MFA we have constructe
the temperature-density phase diagrams of the model at
ferent values of isotropic attraction between particles.
zero external field the obtained sequence of phase diagr
is ~topologically! the same as in the Ising lattice gas; yet t
field effect qualitatively differs. For example, in the plan
rotator LG without an isotropic attraction (v50) the field
effect on the gas-liquid binodal is nonmonotonic: weak fie
e

e
en
te

of

er-
r

a
n-
g

e-
-
t
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of

if-
t
ms

s

lower the critical temperature~corresponding to the top o
binodal!, whereas strong fields slightly shift the binodal u
ward; in the Ising LG such behavior takes place only at s
ficiently large v, at v50 the external field monotonically
lowers the binodal. The variety of the field effects on t
gas-liquid binodal can be qualitatively explained by the ‘‘b
tendency’’ mechanism proposed in Ref. 22. Our results sh
that the lowering tendency decreases in the sequence: I
plane-rotator, Heisenberg fluids. In other words, the exter
field loses its ability to decrease the gas-liquid critical te
perature when the number of possible spin orientations
creases.

One can see that the lattice gas approach may be suc
fully used for description of complex fluids when continuo
approaches lead to too complex calculations or do not g
satisfactory results. For example, the TCA describes the
fect of the nonmagnetic attraction on the Curie temperatu
current liquid state theories21–24,28do not have such a capa
bility.
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