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Diamagnetic susceptibility and current distributions in granular superconductors at percolation

Henning Arendt Knudsen* and Alex Hansen†

Department of Physics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
~Received 9 June 1999!

We study a two-dimensional granular superconducting network at the percolation threshold under the influ-
ence of an external perpendicular magnetic field. By numerical simulations on the full nonlinear problem, we
determine the scaling exponent for the magnetic susceptibility. Further, we report on the scaling properties of
the current distribution. The scaling of the current is found to be independent of the value of the magnetic field.
Our results are in contradiction with previous numerical results based on linearized equations. We find a value
for the susceptibility exponent which does not agree with existing theoretical suggestions, but agrees perfectly
with renormalization-group calculations.
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Superconducting networks have been subject to invest
tion in various topologies and approximations over the ye
The granular superconducting network at the percola
threshold is the main concern of this text. In such a sys
under the influence of an external magnetic field, the sca
of the magnetic susceptibility obeys a power law. There e
two theoretical predictions for the value of the scali
exponent.1,2 Previously numerical work has been done in o
der to decide which theoretical prediction is correct.3,4 This
work was approximate due to linearizations of the govern
equations. We demonstrate in this paper that numerical w
on the nonlinear equations give different current distributio
in the network. There exists further an estimate for the s
ing exponent of the susceptibility based on renormalizati
group calculations.5 Our simulations provide a value for thi
exponent that differs from the two theoretical suggestio
but agrees with the renormalization-group estimate. Attem
to compare with experimental result have been made,
they were not conclusive in favor of any theoretic
prediction.6,7

Bulk superconductors as well as granular superconduc
networks have been modeled by division into discrete no
between which current can flow. Below a critical tempe
tureTc the amplitude of the superconducting order parame
is constant over the network, whereas the phase of the o
parameter obtains, in principle, a different value at ea
node. The current flowing between two neighboring node
then a function of the phase difference between the nod

More generally, disordered or granular superconduc
are studied in the same way — as a regular network
nodes. The obvious physical difference in topology betwe
the bulk superconductor and, e.g., the random super
ductor insulator-mixture constitutes no mathematical diff
ence. Randomness and disorder are incorporated by allo
each pair of neighboring nodes to be either connected
disconnected. The individual connection between nodes
the network contacts, are treated as Josephson junctions
sephson junctions appear in many shapes. In this pape
use the so-called resistively shunted junction~RSJ! model.8

Some authors use the term RSJ when referring to the m
general resistively and capacitively shunted junction~RCSJ!
model. However, these models are fully equivalent in
physical situation considered here.
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In this paper we study the random superconduct
insulator in two dimensions at the percolation threshold9 in a
constant perpendicular external magnetic field. In equi
rium there will flow electric current in every closed supe
conducting loop in the network. This constitutes a critic
phenomenon situation where the transport properties bec
highly nontrivial. Furthermore, we emphasis the importan
of the nonlinearity of the transport equations. In particul
we find the scaling exponents belonging to the moments
the current distribution, and, more important, the scaling
ponent of the diamagnetic susceptibility.

The model is a two-dimensional square array of nod
Each node is with probabilityp50.5 connected to each of it
four nearest neighbors by bonds. All bonds are modeled
RSJ contacts. The phase of the superconducting order pa
eter at nodej is denotedf j . The constant perpendicula
magnetic fieldB is represented by the vector potentialA. We
choose the Landau gauge for convenience. Then the cu
i jk between two neighboring nodesj andk is

i jk5ejksin~f j2fk2Ajk!, ~1!

where

Ajk5E
j

k

Adl ~2!

is the line integral from nodej to nodek of the vector po-
tential. Hereejk is one or zero dependent on whether there
an RSJ contact between nodesj andk or not. The transport
equations for the current in the network result from t
Kirchhoff current law, for nodej,

(
k

ejksin~f j2fk2Ajk!50. ~3!

The sum is taken over the neighbor nodes. These equa
are equivalent to the ones obtained by minimizing the Ham
tonian of the system.10,4

The diamagnetic susceptibility is given by4,11
11 336 ©2000 The American Physical Society
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x5
]M

]B
52

1

S (
^ j ,k&

ejkFcosc jkS ]c jk

]B D 2

1sinc jkS ]2c jk

]B2 D G ,

~4!

where

c jk5f j2fk2Ajk . ~5!

Here the sum is to be taken over all nearest-neighbor pair
nodes.S represents the area of the network. The suscept
ity is obtained from Eq.~4! in the limit B→0. In this limit
the second term of Eq.~4! vanishes becausec jk is odd inB.

Given a value for the magnetic field, the transport eq
tions ~3! can be solved forf j , the phase of the order param
eter at each nodej. In turn, the current in each bond is foun
from Eq. ~1!. The current distribution thus found is not mu
tifractal. This is surprising as previous work on the lineariz
case showed multifractality.12,13,9 The concept of multifrac-
tals can be explained as follows. Having calculated the c
rents in the network bonds, the momentsMl of the current
distribution are found,

Ml5 (
^ j ,k&

i jk
l 5 (

^ j ,k&
ejk@sin~f j2fk2Ajk!# l . ~6!

The sum is over all nearest-neighbor pairs of nodes. N
the question arises about how these moments scale with
linear sizeL of the networks considered. If each mome
obeys a power law:

Ml;Lt l, ~7!

where the exponentst l do not have the formt l5al1b, then
the current distribution is multifractal.

FIG. 1. The first current moment as a function of the magne
vector potentialA0. We show the moments for different networ
sizesL as shown in the legend of Fig. 2.

FIG. 2. The same data as in Fig. 1, where each curve has
normalized with respect to its maximum value. We observe
good quality of the data-collapse.
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Hansen and Roux4 have calculated the multifractal expo
nents resulting from the linearized version of Eq.~3!,

(
k

ejk~f j2fk2Ajk!50. ~8!

It would seem that this approximation is valid for smallB.
We are interested in the behavior of the system in the li
L→`. This linearization process is in fact so that we fir
take the limitB→0 and then the limitL→`. That isnot the
same as takingL→`, thenB→0. We report the results from
the solution of the nonlinear equations~3! and find a differ-
ent set of exponents valid for allB. Likewise in the linear
case, Eq.~8!, a similar linearization of Eqs.~4! and~6! shows
that the diamagnetic susceptibility is equal to the second
ment of the current distribution, implying that the suscep
bility scales as does the second current moment.

This easy relationship between the current distribut
and the susceptibility is a direct result of the linearizatio
There is no reason why this should hold also in the non
earized case. Actually another set of coupled equations m
be solved for (]c jk /]B) which appears in Eq.~4!, before the
susceptibility can be calculated. This set of equations
found by realizing that the left-hand side of Eq.~3! is in fact
an invariant with respect to the magnetic fieldB. Thus the
derivative of this expression with respect toB must be zero,
for nodej havingk neighbors

(
k

ejkcosc jk

]c jk

]B
50. ~9!

By the solution of Eq.~3! the cosine factor in Eq.~9! is
evaluated, and the equations become linear in the unkn
partial derivatives.

TABLE I. The table gives the scaling exponents of the mome
of the current distribution. The results are given for both previo
linear results and present nonlinear results.

Moment l t l ~linear! t l ~nonlinear!

1 2.26 2.01
2 3.03 2.00
4 4.75 2.00
6 6.68 2.01
8 8.61 2.01

c

en
e

FIG. 3. Scaling of first, second, and fourth moments of the c
rent distribution. The straight lines are best power-law fits. T
scaling exponents are found in Table I.
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Numerically, we have analyzed ensembles of seven
ferent system sizes. The networks in the ensembles are a
percolation threshold, meaning that each bond connectin
neighboring pair of nodes is drawn by chance to be pres
with probability p5pc50.5. The equations are solved usin
the conjugate gradient iterative scheme. The number of
works in the ensembles are as follows:L516:20000, L
525:4000, L540:2000, L564:800, L5100:130, L
5140:60, andL5200:20. All the networks were analyze
for different values of the magnetic vector potentialA. We
show the calculated current moments in Fig. 1. Each of
curves correspond to one network size. It is intuitively cle
that a larger network will carry more current than a small
On the other hand, that the exact scaling relation ofM1 as a
function ofL should be a power law is not so clear. We al
do not have much intuition for the value of the scaling e
ponent. The data in Fig. 1 can be rescaled with respec
their maximum value, shown in Fig. 2.

The results show an excellent example of data collap
This tells us that the scaling relation of the first current m
ment is the same for all values of the vector potential. T
scaling exponent from this scaling is found from Fig. 3. T
upper curve corresponds to the scaling of the first curr
moment. The power-law fit is very good, and the exponen
t152.01. The middle and lower curve in Fig. 3 correspo
to the scaling of the second and fourth current moment,
spectively. Our work show that the scaling of all the curre
moments are independent of the value of the magnetic fi
The scaling exponents found are summarized in Tabl
Here we also quote previous results based on the linear
equations.4

These two sets of exponents differ drastically. The line
ized equations give rise to a multifractal current distributio
Our calculations on the nonlinear equations show that th
results must be wrong. The current distribution is not mu
fractal. It is not even fractal as the exponents within reas
able error limits are equal to the integer number two.

The magnetic susceptibilityx of the networks is shown in
Fig. 4 as a function of the linear sizeL. A best power-law fit
gives the scaling exponentb/n50.9060.03 where the error
bar comes from fitting the data. In the same figure we sh
with a dashed line the previously established result from
linearized numerical work,b/n51.03.3,4

FIG. 4. The diamagnetic susceptibilityx is shown as a function
of the network sizeL.
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The previous result is in perfect agreement with the
pression attributed to de Gennes,1

b/n522t/n51.025. ~10!

Rammalet al. have given another suggestion,2

b/n522t/n1b/n51.129. ~11!

Here t51.300, n54/3, andb55/36 are exponents know
from percolation theory;9 conductivity critical exponent, cor-
relation length critical exponent, and the critical expone
governing the vanishing of the density of the infinite clust
respectively. Wang and Lubensky has later calculatedx us-
ing a cumulant expansion method.5 This renormalization-
group approach gives the valueb/n50.9160.03, which is in
perfect agreement with the present simulation. The exp
mentally quoted values are 0.99 and 1.09,6,7 which are values
comparable to all of the theoretical and numerical numbe
However, it seems not to be possible to draw conclusions
this basis.

Our results are interesting for two major reasons. O
being a demonstration of the dangers of linearizing a r
nonlinear problem. This is equivalent to an interchange
limits as discussed above. Our results indicate that this in
change is not allowed, and the penalty is wrong answers.
other being that the value for the susceptibility critical exp
nent found is in contradiction with both existing theoretic
predictions. The previous verdict was in favor of Eq.~10!,
but now the case must be reopened. It might just well be
case that this exponent describes a fundamentally diffe
property of the percolating system, other than the we
known exponentsn, t, andb. Hence, one should not expe
it to be expressible in turns of them. Generally it is know
that renormalization-group calculations can give reasona
precise estimates for critical exponents even though s
cumulant expansions are used. At the same time stan
series expansion methods of governing equations are kn
to fail in critical phenomenon situations. Therefore, the res
of Wang and Lubensky seems more plausible, and the
that numerical simulations gives the same result strongly
dicates that this is indeed the correct value for the expon

In summary, we have studied the granular supercond
ing network at the percolation threshold under the influen
of an external perpendicular magnetic field. We find the sc
ing exponent for the magnetic susceptibility to beb/n
50.90 which differs both from existing theoretical sugge
tions and previous numerical work, but agrees w
renormalization-group calculations. Further, the moments
the current distribution is found to scale with exponent tw
i.e., with the area of the network. This scaling is independ
of the value of the magnetic field. This contradicts the p
vious studies of the linearized case which gives a multifrac
current distribution. We conclude that this linearization is n
legal and is equivalent to interchange of the limitsB→0 and
L→`.
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