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Diamagnetic susceptibility and current distributions in granular superconductors at percolation
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We study a two-dimensional granular superconducting network at the percolation threshold under the influ-
ence of an external perpendicular magnetic field. By numerical simulations on the full nonlinear problem, we
determine the scaling exponent for the magnetic susceptibility. Further, we report on the scaling properties of
the current distribution. The scaling of the current is found to be independent of the value of the magnetic field.
Our results are in contradiction with previous numerical results based on linearized equations. We find a value
for the susceptibility exponent which does not agree with existing theoretical suggestions, but agrees perfectly
with renormalization-group calculations.

Superconducting networks have been subject to investiga- In this paper we study the random superconductor-
tion in various topologies and approximations over the yearsinsulator in two dimensions at the percolation threshaica
The granular superconducting network at the percolatiorgonstant perpendicular external magnetic field. In equilib-
threshold is the main concern of this text. In such a systenfium there will flow electric current in every closed super-
under the influence of an external magnetic field, the scalingonducting loop in the network. This constitutes a critical
of the magnetic susceptibility obeys a power law. There exisPhenomenon situation where the transport properties become
two theoretical predictions for the value of the scalinghighly nontrivial. Furthermore, we emphasis the importance
exponent-? Previously numerical work has been done in or-0f the nonlinearity of the transport equations. In particular,
der to decide which theoretical prediction is corrétThis ~ we find the scaling exponents belonging to the moments of
work was approximate due to linearizations of the governinghe current distribution, and, more important, the scaling ex-
equations. We demonstrate in this paper that numerical worRonent of the diamagnetic susceptibility.
on the nonlinear equations give different current distributions The model is a two-dimensional square array of nodes.
in the network. There exists further an estimate for the scalEach node is with probabilitp=0.5 connected to each of its
ing exponent of the susceptibility based on renormalizationfour nearest neighbors by bonds. All bonds are modeled as
group calculations.Our simulations provide a value for this RSJ contacts. The phase of the superconducting order param-
exponent that differs from the two theoretical suggestionséter at nodegj is denotede;. The constant perpendicular
but agrees with the renormalization-group estimate. Attempgiagnetic fieldB is represented by the vector potent#alWe
to compare with experimental result have been made, buthoose the Landau gauge for convenience. Then the current
they were not conclusive in favor of any theoretical ijx between two neighboring nodgandk is
prediction®’

Bulk superconductors as well as granular superconducting A i A b A
networks have been modeled by division into discrete nodes I A @
between which current can flow. Below a critical tempera-
ture T, the amplitude of the superconducting order parametef/"€r®
is constant over the network, whereas the phase of the order
parameter obtains, in principle, a different value at each k
node. The current flowing between two neighboring nodes is A= f Adl 2
then a function of the phase difference between the nodes. !

More generally, disordered or granular superconductors
are studied in the same way — as a regular network ofs the line integral from nodg to nodek of the vector po-
nodes. The obvious physical difference in topology betweerential. Heree;, is one or zero dependent on whether there is
the bulk superconductor and, e.g., the random superco@n RSJ contact between nodeandk or not. The transport
ductor insulator-mixture constitutes no mathematical differ-equations for the current in the network result from the
ence. Randomness and disorder are incorporated by allowirt§rchhoff current law, for nodg,
each pair of neighboring nodes to be either connected or
disconnected. The individual connection between nodes, or
the network contacts, are treated as Josephson junctions. Jo- > ejkSin( ¢;— d—Aj)=0. (3
sephson junctions appear in many shapes. In this paper we K
use the so-called resistively shunted juncti®&8J model®
Some authors use the term RSJ when referring to the morehe sum is taken over the neighbor nodes. These equations
general resistively and capacitively shunted junciBE€SJ are equivalent to the ones obtained by minimizing the Hamil-
model. However, these models are fully equivalent in thetonian of the systen*
physical situation considered here. The diamagnetic susceptibility is given iy
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FIG. 1. The first current moment as a function of the magnetic
vector potentialA,. We show the moments for different network
sizesL as shown in the legend of Fig. 2.
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‘//jk: ¢j—¢)k—A]‘k. (5)
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FIG. 3. Scaling of first, second, and fourth moments of the cur-
rent distribution. The straight lines are best power-law fits. The
scaling exponents are found in Table I.

Hansen and Rothhave calculated the multifractal expo-
nents resulting from the linearized version of E8),

; eik(Pj— k= Aj)=0. (8

It would seem that this approximation is valid for small

Here the sum is to be taken over all nearest-neighbor pairs Qfe are interested in the behavior of the system in the limit

nodes.Srepresents the area of the network. The susceptibil
ity is obtained from Eq(4) in the limit B—0. In this limit
the second term of Eq4) vanishes becausg is odd inB.

L—oo. This linearization process is in fact so that we first
take the limitB— 0 and then the limit. —oc. That isnot the
same as taking —«, thenB—0. We report the results from

Given a value for the magnetic field, the transport equathe solution of the nonlinear equatiof® and find a differ-

tions (3) can be solved for; , the phase of the order param-
eter at each nodge In turn, the current in each bond is found
from Eq.(1). The current distribution thus found is not mul-
tifractal. This is surprising as previous work on the linearized
case showed multifractalii#:>*>° The concept of multifrac-
tals can be explained as follows. Having calculated the cur
rents in the network bonds, the momeiMs of the current
distribution are found,

:Z el sin( ¢ — d— A 1. (6)

(1:k)

The sum is over all nearest-neighbor pairs of nodes. No
the question arises about how these moments scale with t
linear sizeL of the networks considered. If each moment
obeys a power law:

M=, i
e

M~L7, ()

where the exponents do not have the formr=al +b, then
the current distribution is multifractal.
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ent set of exponents valid for aB. Likewise in the linear
case, Eq(8), a similar linearization of Eq$4) and(6) shows
that the diamagnetic susceptibility is equal to the second mo-
ment of the current distribution, implying that the suscepti-
bility scales as does the second current moment.

" This easy relationship between the current distribution
and the susceptibility is a direct result of the linearization.
There is no reason why this should hold also in the nonlin-
earized case. Actually another set of coupled equations must
be solved for i /9B) which appears in Eq4), before the
susceptibility can be calculated. This set of equations is

Wfound by realizing that the left-hand side of E) is in fact

invariant with respect to the magnetic fiedd Thus the
erivative of this expression with respectBanust be zero,
for nodej havingk neighbors

Ik
Ek ejkCOS(//jkﬁzo. (9)
By the solution of Eq.(3) the cosine factor in Eq(9) is
evaluated, and the equations become linear in the unknown
partial derivatives.

TABLE I. The table gives the scaling exponents of the moments
of the current distribution. The results are given for both previous
linear results and present nonlinear results.

FIG. 2. The same data as in Fig. 1, where each curve has bedh
normalized with respect to its maximum value. We observe theg

Moment| 7 (linean 7 (nonlineay

1 2.26 2.01

2 3.03 2.00

4 4.75 2.00
6.68 2.01
8.61 2.01

good quality of the data-collapse.
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The previous result is in perfect agreement with the ex-
pression attributed to de Gennrles,

—
o

b/v=2—t/v=1.025. (10

Rammalet al. have given another suggestion,

Magnetic susceptibility

10 00 b/v=2—t/v+ B/lv=1.129. (11

Network size L
) . o . Heret=1.300, v=4/3, andB3=5/36 are exponents known
FIG. 4. The diamagnetic susceptibilifyis shown as a function - fom percolation theor§;conductivity critical exponent, cor-
of the network sizd.. relation length critical exponent, and the critical exponent
governing the vanishing of the density of the infinite cluster,
Numerically, we have analyzed ensembles of seven difrespectively. Wang and Lubensky has later calculatads-
ferent system sizes. The networks in the ensembles are at tiigy a cumulant expansion methddlhis renormalization-
percolation threshold, meaning that each bond connecting group approach gives the valbér=0.91+0.03, which is in
neighboring pair of nodes is drawn by chance to be presergerfect agreement with the present simulation. The experi-
with probability p=p.=0.5. The equations are solved using mentally quoted values are 0.99 and 1%39vhich are values
the conjugate gradient iterative scheme. The number of netomparable to all of the theoretical and numerical numbers.
works in the ensembles are as follows=16:20000, L However, it seems not to be possible to draw conclusions on
=25:4000, L=40:2000, L=64:800, L=100:130, L this basis.
=140:60, andL=200:20. All the networks were analyzed  Our results are interesting for two major reasons. One
for different values of the magnetic vector potenlalWe  being a demonstration of the dangers of linearizing a real
show the calculated current moments in Fig. 1. Each of th@onlinear problem. This is equivalent to an interchange of
curves correspond to one network size. It is intuitively clearimits as discussed above. Our results indicate that this inter-
that a larger network will carry more current than a smaller.change is not allowed, and the penalty is wrong answers. The
On the other hand, that the exact scaling relatioigfas a  other being that the value for the susceptibility critical expo-
function of L should be a power law is not so clear. We alsonent found is in contradiction with both existing theoretical
do not have much intuition for the value of the scaling ex-predictions. The previous verdict was in favor of Ed0),
ponent. The data in Fig. 1 can be rescaled with respect tbut now the case must be reopened. It might just well be the
their maximum value, shown in Fig. 2. case that this exponent describes a fundamentally different
The results show an excellent example of data collapseproperty of the percolating system, other than the well-
This tells us that the scaling relation of the first current mo-known exponents, t, and 8. Hence, one should not expect
ment is the same for all values of the vector potential. That to be expressible in turns of them. Generally it is known
scaling exponent from this scaling is found from Fig. 3. Thethat renormalization-group calculations can give reasonably
upper curve corresponds to the scaling of the first currenprecise estimates for critical exponents even though short
moment. The power-law fit is very good, and the exponent icumulant expansions are used. At the same time standard
7,=2.01. The middle and lower curve in Fig. 3 correspondseries expansion methods of governing equations are known
to the scaling of the second and fourth current moment, reto fail in critical phenomenon situations. Therefore, the result
spectively. Our work show that the scaling of all the currentof Wang and Lubensky seems more plausible, and the fact
moments are independent of the value of the magnetic fieldhat numerical simulations gives the same result strongly in-
The scaling exponents found are summarized in Table Idicates that this is indeed the correct value for the exponent.
Here we also quote previous results based on the linearized In summary, we have studied the granular superconduct-
equationg. ing network at the percolation threshold under the influence
These two sets of exponents differ drastically. The linearof an external perpendicular magnetic field. We find the scal-
ized equations give rise to a multifractal current distribution.ing exponent for the magnetic susceptibility to bév
Our calculations on the nonlinear equations show that those-0.90 which differs both from existing theoretical sugges-
results must be wrong. The current distribution is not multi-tions and previous numerical work, but agrees with
fractal. It is not even fractal as the exponents within reasonrenormalization-group calculations. Further, the moments of
able error limits are equal to the integer number two. the current distribution is found to scale with exponent two,
The magnetic susceptibility of the networks is shown in i.e., with the area of the network. This scaling is independent
Fig. 4 as a function of the linear site A best power-law fit  of the value of the magnetic field. This contradicts the pre-
gives the scaling exponebf v=0.90+0.03 where the error vious studies of the linearized case which gives a multifractal
bar comes from fitting the data. In the same figure we shoveurrent distribution. We conclude that this linearization is not
with a dashed line the previously established result from théegal and is equivalent to interchange of the linBBts>0 and
linearized numerical workhp/v=1.0334 L—o.
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