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Coherence effects in double-barrier Josephson junctions
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~Received 8 December 1999!

The general solution for ballistic electronic transport through double-barrier Josephson junctions is derived.
We show the existence of a regime of phase-coherent transport in which the supercurrent is proportional to the
single-barrier transparency and the way in which this coherence is destroyed for increasing interlayer thickness.
The quasiparticle dc current at arbitrary voltage is determined.
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Phase-coherent electronic transport in mesoscopic s
tures between normal~N! and superconducting~S! metals
received considerable interest both in experiments and
theory.1 Particular interesting phenomena were discovere
structures containing tunnel barriers (I ). It is well known
that the subgap resistance of a ballisticSIN junction has a
quadratic dependence on the transparency of the interfa2

since Andreev reflection is a two-particle process. Disor
in the normal region enhances the Andreev current due
opening of some fraction of tunneling channels, and the
sistance has a linear dependence on the transparency.
effect is known as reflectionless tunneling inSIN junctions
~see Refs. 3 and 4 and further references in Ref. 1!. Interest-
ingly, the opening of tunnel channels may be realized i
ballistic NI1NI2S junction as well by placing a second tun
nel barrier.5

At the same time, a supercurrentI c in a tunnelSIS con-
tact depends linearly on the barrier transparency since C
per pairs tunnel coherently.6,7 Here we address the proble
of universal features of supercurrent flow in a double-bar
ballistic SI1S8I 2S junction, whereS8 is a thin layer with
critical temperatureTcs8,Tcs . Coherent effects in such
structures are also of practical importance, since recent
periments demonstrated the possibility of engineering
sephson junctions with desired properties using existing m
tilayered techniques.8,9

The supercurrent in a disordered double-barrierSINIS
junction was calculated by Kupriyanov and Lukichev,10 who
considered the interlayer in the dirty limit andTcs850. The
coherent regime was found in the limit of small interlay
thicknessd, when supercurrent is of the first order in th
single-barrier transmission coefficientD, like in a SIS junc-
tion. However, in the limit of smalld the assumption of the
dirty limit is not justified since electronic scattering tak
place only at the interfaces. Theoretical work on ballis
SINISstructures was concentrated on studying resonant
percurrents in low-dimensional structures.11–16

In the present paper we study theoretically the unive
features of charge transport in a three-dimensional~3D!
SI1S8I 2S junction in the clean limit. We demonstrate th
existence of the coherent regime when the supercurren
averaged over the transmission resonances and is pro
tional to D, whereas it becomes incoherent, of the order
D2, with increasing thickness, as expected for two unco
lated sequential tunneling processes. We study quantitati
the crossover between these two regimes and the relatio
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the dirty limit results of Ref. 10. Further, we show that th
coherent supercurrent can be exactly derived from the di
bution of transmission eigenvaluesr(D)}D23/2(12D)21/2

known for a two-barrierNI1NI2N contact.1 Based on this
distribution, we calculate the quasiparticledc current at arbi-
trary voltage, which shows signatures of multiple Andre
reflections~MAR!.

We consider a 3D ballisticSI1S8I 2S contact, whereS8 is
a thin superconducting film withTcs8,Tcs and the mean free
path l s8@d, d is the interlayer thickness andI 1,2 are the
parallel atomically sharp interfaces with arbitrary transm
sion coefficients. In the temperature Green’s-functi
method the supercurrent densityJs is expressed through th
Fourier transform of the Green’s functionG(r ,r 8) over the
transverse coordinates

JS~x!5
i\e

m E d2ki

~2p!2
T (

vn.0

3 lim
x8→x

S ]

]x8
2

]

]xD G~x,x8;ki ,vn!, ~1!

wherex,x8 are the coordinates across the junction andki is
the wave-vector component in the junction plane,vn5(2n
11)pT. The normal and the anomalous Green’s functio
G(x,x8),F1(x,x8) obey the Gor’kov equations

S ivn1H D̃~x!

D̃* ~x! ivn2H
D •S G

F1D 5S d~x2x8!

0 D , ~2!

where D̃5D exp(ix) is the spatially dependent comple
pair potential, H5(\2/2m)(]2/]x2)1Ex2V(x), Ex5EF

2\2ki
2/2m is the electron kinetic energy across the junctio

EF is the Fermi energy,V(x)5W1d(x)1W2d(x2d) is the
interface potential,W1,2 being the barrier strengths.

Let us choose the positionx8 within the interlayer, then
the solution of Eq.~2! in the superconducting electrode
(uxu.d/2) is given by a linear combination of plane wav
A(x8)exp(ikxx). Substituting it into Eq.~2!, we obtain the
dispersion relation fork which yields four solutions:k
56AkF

22ki
212imE/\2, k* 56AkF

22ki
222imE/\2 with

E5Avn
21D2 and kF

252mEF /\2. As a result the homoge
neous solutions of Eq.~2! at x,2d/2 has the form
11 297 ©2000 The American Physical Society
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S G

F1D 5a6S 1

b D e2 ik(x6x8)1b6S 2b*

1 D eik* (x6x8), ~3!

where b5 iD* /(vn1E). All four terms in Eq. ~3! decay
properly atx52`. A similar solution holds forx.2d/2

S G

F1D 5c6S 1

b D eik(x6x8)1d6S 2b*

1 D e2 ik* (x6x8). ~4!

In the case ofTcs850 the solution in the interlayeruxu
,d/2 consists of the homogeneous part, in whichb50 and
all terms of Eqs.~3! and ~4! are present, and the particula
solution ~source term!: G5(m/ i\2k)eikux2x8u, F50.

The solutions in all three regions are matched by the c
ditions of continuity of theG(x,x8) and F(x,x8) at the in-
terfacesx56d/2 and by the condition for the derivative
which follows from the integration of Eq.~2! across the in-
terface barriers. This yields forx52d/2

05
1

2mS8

]G

]x S G

F1D
x5d/210

~5!

2
1

2mS

]

]x S G

F1D
x5d/220

2W1S G

F1D
x50

, ~6!

and a similar condition forx5d/2. These boundary condi
tions provide the required number of linear equations for
coefficients in the equations forG(x,x8) andF(x,x8).

We can expand the wave vector in the interlayer as

ks85
Akx

212imAvn
21uDs8u

2/\2.kx1
i

2js8x

, ~7!

where kx5AkF
22ki

25kF cosu is the transverse compone
of the wave vector, js8x5js8/cosu, js85\vF/
2 cosuAvn

21Ds8
2 is the coherence length, andDs8 is the pair

potential in theS8 layer. In theS electrodes we still keep
kS5kx with accuracy up to terms of the order ofD/EF . By
matching the solutions~3! and ~4! in all three regions at the
interfaces we derived an expression for the supercurrentJs ,
valid for arbitraryd andW1,2. Below we present the solutio
for d,js8 and symmetric low-transparent barriersW1,2
5W, (W/\vF)@1:

Js5
e

\E d2ki

~2p!2
T (

v>0

Ds
2sinw1DsDs8AE1 /E2d/js8W̃

2sin
w

2

2W̃4E1
2~coshd/js8x2cos 2kxd!1E3

2
.

~8!

Herew is the phase difference across the junction,Ds is the
pair potential in S, E15Avn

21Ds
2, E25Avn

21Ds8
2 , E3

5Avn
21Ds

2cos2w/2, andW̃5W/\vF .
Equation~8! is the main technical result of this paper a

describes the interplay between quasiparticle transmis
~Breit-Wigner! resonances and electron-hole~Andreev! reso-
nances. Changing the phase space in integration overki , one
can apply Eq.~8! to the problem of the supercurrent flow v
transmission resonances in low-dimensional contacts. In
case the results of Refs. 12–14, 11, and 15, taken in rele
-

e

on

is
nt

limits, are reproduced. Below we concentrate on the in
play between coherent and incoherent regimes in the cas
largekFd. It is instructive to discuss this crossover in term
of the width of transmission resonances in a double-bar
junction, which in the symmetrical case is given byG

5\vF^xD(x)&/2d5\vF/8dW̃2, where ^xD(x)& is the
angle-averaged transparency of a single barrier (x5cosu).

Coherent regime (broad resonances). As follows from
Eq. ~8!, the coherent regime takes place for a thin interla
when the transmission resonances are broadG@pTcs . The
supercurrent is then given by

JS5
e

\E d2ki

~2p!2
T(

v

Ds
2sinw

E1
2D2

212Ds
2sin2w/2

, ~9!

where D2 is the transparency of a double barrierNININ
contact

D2
21511~2W̃ coskxd12W̃2sinkxd!2, ~10!

and has a resonant structure. Integration over the direct
of ki ~over the resonances! yields the supercurrent

eJsRN52pT(
v

Ds
2sinw

E1E3
, ~11!

which does not depend on the properties of the int
layer and coincides with the dirty limit KL result.10

Here RN
215e2kF

2g/4p2\ is the normal-state contac

resistance per square, whereg5^xD(x)&51/4W̃2. This
expression can be generalized to the asy
metric case: eJsRN52pT(vuDSu2sinw/E1E38 , with E38
5Avn

21uDsu2(cos2w/21g2
2 sin2w/2), g25(g12g2)/(g1

1g2), g1,25^xD1,2(x)&, whereD1,2 are the individual bar-
rier transparencies. In this case,RN

215e2kF
2gc/2p2\, where

gc5g1g2 /(g11g2) which is the classical result know
from Ref.17.

Expression ~11! has been found by Kupriyanov an
Lukichev10 in the case of a double-barrier junction with
dirty metal interlayer in the limit of vanishingly small thick
ness. This fact shows that Eq.~11! is a very general result.

For T50 the maximum value ofeIsRN is achieved atw
'1.86 and exceeds theeJcRN value of (p/2)uDsu for a tun-
nel SIScontact. The reason is that in the coherent regime
dominant contribution toJs comes from the transmissio
resonances, which in the present case are broader thanD. As
a result the supercurrent is of the first order in^xD(x)&.

The supercurrent in the coherent regime has the spe
density

Im Js~«!5
Ds

2sinw

ADs
22«2A«22Ds

2cos2w/2
, ~12!

for Dscosw/2,«,Ds , while ImJS(«)50 for «
,Dscosw/2 and«.Ds , i.e., the Andreev bound states in th
energy rangeDscosw/2,«,Ds contribute to the supercur
rent.

Incoherent regime (narrow resonances)G!pTcs . With
the increase of the interlayer thickness the coherent reg
breaks down due to the dephasing of the transmission r
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nances. After performing the angle averaging in Eq.~8! the
general expression for a double-barrier junction become

eJsRN52pT(
vn

Ds
2sinw

E1
2 E

0

1 4x5dx

W̃2Aa221

1

DsDs8sin
w

2

E1E2

d

js8
E

0

1 8x2dx

Aa221
, ~13!

where a5cosh(d/js8x)1(1/2W̃4)(Ds
2cos2(w/2)1vn

2)/(Ds
2

1vn
2). The pair potential in S8 is determined self-

consistently with

2Ds8ln
T

Tcs8

52pT(
vn

S Ds8
vn

2^Fs8& D , ~14!

where^FS8& is the angle-averaged anomalous Green’s fu
tion, that is solved in the same way as the normal Gree
function G.

^Fs8&54E
0

1FDs8
E2

sinhS d

js8x
D 1

2Ds

E1
x4

cos~w/2!

W̃2 G xdx

Aa221
.

~15!

As seen from Eq.~13!, the current-phase relation has tw
components, sinw and sinw/2. The sign of the sinw/2 com-
ponent is determined by the sign of the interlayer pair pot
tial Ds8 , which is determined selfconsistently from Eq.~14!
and depends on the sign of the electron-electron interac
in anS8 material. For an attractive interaction (Tcs8.0) Ds8
does not vanish even atT.Tcs8 and has a positive sign
while for a repulsive interactionDs8 becomes negative
Therefore the measurements of a current-phase relation
SIS8IS junction can be used for measuring the sign of
electron-electron interaction in metallic films.

As is shown above, the critical current is controlle
by a single suppression parameterge f f5pTc /G
52pTcsd/\vF^xD(x)&. As follows from Eq. ~13!, for T
.Tcs8 and ge f f(vn /pTcs)@1 the supercurrent becomes
the order of̂ xD(x)&2 as expected for the incoherent tunne
ing in a double-barrier contact:

eJsRN5
32pT

7ge f f
(
vn

Ds
2sinw

E1
2

. ~16!

A numerical evaluation of Eq.~13! is shown in Fig. 1. The
coherent~I! and incoherent~II ! regimes are indicated. Re
gime number III shows the crossover to the series connec
of two SIS8 tunnel junctions.

Transmission distribution, MAR.The result for the coher
ent regime Eq.~ 11! can be derived from the transmissio
eigenvalue densityr(D)5(GN /pG0)D23/2(12D)21/2 for
two-barrierNININ contacts,1 whereG05e2/2p\. While de-
riving this distribution, an assumption about a certain amo
of impurity scattering in the interlayer was made;1 it can be
shown that it also holds for the considered case of a cl
interlayer, provided thatkFd@1.

The derivation of Eq. ~11! is then performed by
the calculation of the integral *0

1 I c(D) r(D)dD,
-
’s

-

n

a
e

n

t

n

where I c(D) is a supercurrent per single ballist
channel,I c(D)5(e/2\)Ds

2D sinw tanh(EB/2T)/EB , and EB

5DA12D sin2w/2, by the residues of tanh(x) in a complex
plane z5(1/D21)1/2. It yields exactly the coherent supe
current eJsRN52pT(v>0Ds

2sinw/E1E3. This proof also
holds for the asymmetric case, when the eigenva
density is r(D)5(GN /pG0)D23/2(Dmax2D)21/2 with
Dmax54g1g2 /(g11g2)

2, 0,D,Dmax.
The considerations above allow one to calculate the c

rent under finite voltageV at the contact on the basis of th
MAR ~multiple Andreev reflections! formalism.18–21 Below
we discuss the dc current component in a symmetricSIS8IS
contact. The dc current per single channel with transmiss
D is given by20

FIG. 2. dc current component inSIS8IS contact in the coheren
regime, together with the single-channel curves for various tra
missionsD.

FIG. 1. I cRN product in the model of clean interlayer~solid
lines! and disordered interlayer~dashed lines!. The curves are plot-
ted for the Nb/Al case forTcs57.4 Tcs8 .
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p\I q~D,V!/e5eVD2E d« tanh
«

2T
~12ua0u2!

3F2 Re~a0A0!1(
n

~ uAnu22uBnu2!G ,
~17!

wherean5a(«1neV) is the Andreev reflection amplitude
a(«)5@«2sgn(«)(«22D2)1/2# for u«u.D and a(«)5@«
2 i (D22«2)1/2# for u«u,D. The coefficientsAn ,Bn are
given by the recurrency relations which were derived in R
20 and can easily be solved numerically. The result
total dc current in a symmetric SIS8IS
contact is given by the integration of the single-chan
result I q(D,V) over the eigenvalue density I q

5*0
1I q(D,V)r(D)dD where r(D)5(GN /pG0)D23/2(1

2D)21/2.
The results of numerical calculation at temperaturesT

!Tcs are presented in Fig. 2. A few single-channel curv
for various D are also shown for comparison. The exce
current I exeRN.1.05Ds is present at high biaseV@Ds ,
ys

.

f.
g

l

s
s

while the subharmonic gap structure ateV52Ds /n due to
MAR is present at lower voltages, despite averaging over
channels. This dc current determines the amount of diss
tion in the junction. Note that the curveSIS8IS in Fig. 2 is
universal, i.e., independent of microscopic parameters s
as electronic mean free path orTc of the interlayer as long as
ge f f,1. This universality breaks down with the increase
ge f f , due to the dephasing of the transmission resonan
The detailed theory applicable for arbitraryge f f is the sub-
ject of further study.

In conclusion, the general solution for the supercurren
double-barrier Josephson junctions is presented and
crossover from the coherent to the incoherent regime for
creasing interlayer thickness is studied in detail. T
parameter-free calculation of quasiparticle current is done
the coherent regime. The results have implications for tra
port in Josephson junctions and multilayers engineered w
modern techniques.
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