PHYSICAL REVIEW B VOLUME 61, NUMBER 17 1 MAY 2000-I

Coherence effects in double-barrier Josephson junctions
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The general solution for ballistic electronic transport through double-barrier Josephson junctions is derived.
We show the existence of a regime of phase-coherent transport in which the supercurrent is proportional to the
single-barrier transparency and the way in which this coherence is destroyed for increasing interlayer thickness.
The quasiparticle dc current at arbitrary voltage is determined.

Phase-coherent electronic transport in mesoscopic stru¢he dirty limit results of Ref. 10. Further, we show that the
tures between normalN) and superconductingS) metals  coherent supercurrent can be exactly derived from the distri-
received considerable interest both in experiments and ibution of transmission eigenvaluggD) <D 41— D)~ %2
theory? Particular interesting phenomena were discovered itknown for a two-barriemNI;NI,N contactt Based on this
structures containing tunnel barrierk).( It is well known  distribution, we calculate the quasipartice current at arbi-
that the subgap resistance of a ballisitN junction has a trary voltage, which shows signatures of multiple Andreev
quadratic dependence on the transparency of the intetfacagflections(MAR).
since Andreev reflection is a two-particle process. Disorder We consider a 3D ballisti&|;S'1,S contact, where&s' is
in the normal region enhances the Andreev current due ta thin superconducting film witf., <T.s and the mean free
opening of some fraction of tunneling channels, and the repath I,>d, d is the interlayer thickness anid , are the
sistance has a linear dependence on the transparency. Tlpiarallel atomically sharp interfaces with arbitrary transmis-
effect is known as reflectionless tunneling$iN junctions  sion coefficients. In the temperature Green’s-function
(see Refs. 3 and 4 and further references in Reflnterest-  method the supercurrent densityis expressed through the
ingly, the opening of tunnel channels may be realized in &ourier transform of the Green’s functigd(r,r’) over the
ballistic NI;{NI,S junction as well by placing a second tun- transverse coordinates

nel barrier’
At the same time, a supercurrdntin a tunnelSIS con- ire r d2k
tact depends linearly on the barrier transparency since Coo- Jg(X)= — I T
per pairs tunnel coherentfy. Here we address the problem mJ (2m)? w0
of universal features of supercurrent flow in a double-barrier J J
ballistic SI;S’1,S junction, whereS’ is a thin layer with A .
critical temperatureT.y<T.s. Coherent effects in such xxl,lTx( ax’ ax) GO X"3ky @n), @

structures are also of practical importance, since recent ex-

periments demonstrated the possibility of engineering Joyherex x’ are the coordinates across the junction bpes
sephson junctions with desired properties using existing mulge \wave-vector component in the junction plang=(2n

; ; 9
tilayered technique: _ _ +1)#T. The normal and the anomalous Green’s functions
The supercurrent in a disordered double-barBéNIS G(x,x'),F*(x,x’) obey the Gor'kov equations

iop,+H  A(x)
Z*(x) iw,—H

junction was calculated by Kupriyanov and Lukichi@wyho
considered the interlayer in the dirty limit afidy, =0. The
coherent regime was found in the limit of small interlayer G\ [a(x=x")
thicknessd, when supercurrent is of the first order in the \E 0 ' 2)
single-barrier transmission coefficieDt like in a SISjunc-
tion. However, in the limit of smaltl the assumption of the ~ . .
dirty limit is not justified since electronic scattering takes "WNere A =24 exp(x) "z‘ the szpauéallly dependent_complex
place only at the interfaces. Theoretical work on ballisticpa'r2 goten-tlal, H=(# /2m).((7 /_ax ) +Ex—V(x), EX,: EF,
SINISstructures was concentrated on studying resonant si- 7 Kj/2m is the electron kinetic energy across the junction,
percurrents in low-dimensional structurés!® Er is the Fermi energyy(x) =W, 6(x) + W,5(x—d) is the

In the present paper we study theoretically the universaintérface potentialyV, , being the barrier strengths.
features of charge transport in a three-dimensiof3i) Let us choose the ppsmo;n’ within the mtgrlayer, then
SI,S'1,S junction in the clean limit. We demonstrate the the solution of Eq.(2) in the superconducting electrodes
existence of the coherent regime when the supercurrent fdX/>d/2) is given by a linear combination of plane waves
averaged over the transmission resonances and is propdiX')expike). Substituting it into Eq.(2), we obtain the
tional to D, whereas it becomes incoherent, of the order ofdispersion relation fork which yields four solutions:k
D2, with increasing thickness, as expected for two uncorre=* VKg —ki+2imE/#?, k* == ki —k{—2imE/A* with
lated sequential tunneling processes. We study quantitativeli= \/w>+A? and kZ=2mEg/#?. As a result the homoge-
the crossover between these two regimes and the relation teeous solutions of Eq2) at x<—d/2 has the form
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G 1 -B*\ . ) limits, are reproduced. Below we concentrate on the inter-
(F*) =a+( )e'k x=xD7 (3)  play between coherent and incoherent regimes in the case of
B largekgd. It is instructive to discuss this crossover in terms
where B=iA*/(w,+E). All four terms in Eq.(3) decay of the width of transmission resonances in a double-barrier
properly atx=—c. A similar solution holds fox> —d/2 junction, which in the symmetrical case is given by
. =hvp(xD(x))/2d=tve/8dW?, where (xD(x)) is the
( G B )eik*(x+x’) (4) angle-averaged transparency of a single barrier ¢os6).
F* ' Coherent regime (broad resonanceg)s follows from
Eq. (8), the coherent regime takes place for a thin interlayer
In the case off .y =0 the solution in the interlayefx|  when the transmission resonances are bi#dadrT . The
<d/2 consists of the homogeneous part, in whigh 0 and  supercurrent is then given by
all terms of Eqs.(3) and (4) are present, and the particular
solution (source term G=(m/i%2k)ek*=x'l F=0. ] ef d?k AZsing .
The solutions in all three regions are matched by the con- ST 2 2 —1_ A2 '
ditions of continuity of theG(x,x’) and F(x,x’) at the in- h)(2m? e EID, - Alsiel2
terfacesx=*d/2 and by the condition for the derivatives where D, is the transparency of a double barriditNIN
which follows from the integration of Eq2) across the in-  contact
terface barriers. This yields for=—d/2

D, '=1+(2W cosk,d+2W?sink,d)?, (10)
1 dG[ G
= 5 X \ET 5 and has a resonant structure. Integration over the directions
Mg x=d/2+0 of k| (over the resonancegields the supercurrent
o] e
- —W (6) _ s

+ 1| =+ ; eJRy=27T , 11
2ms IX\F7 ) o F o STNT AT % EiE3 1y

and a similar condition fox=d/2. These boundary condi- \hich does not depend on the properties of the inter-
tions provide the required number of linear equations for thqayer and coincides with the dirty limit KL resuff.
coefficients in the equations f@(x,x’) andF(x,x"). Here Ry'=e?k2y/4w?4 is the normal-state contact

We can expand the wave vector in the interlayer as resistance per square, whete=(xD(x))=1/4W2 This
i expression can be generalized to the asym-
ke = \/k§+ 2imywl+|Ag |2 h2=k+——, (7) Metric_case: eJRy=27TZ, |Ag?sing/E\E;, with Ej
2égy = Joi+[Ad*(coSel2+ ¥ sirel2), v =(y1—72)/(n
B B . +v5), v1,=(XD1 X)), whereD, , are the individual bar-
where k,= vk —kj=Kkg cosé is the transverse component ;. transparencies. In this cadey *=e’k2 y./27°%, where

of the ,nave vector, £gy=£y/cost, &g =huel ¥e=7Y1Y2/(y1+ ¥2) which is the classical result known
2 costh/wp+ Ay, is the coherence length, add, is the pair  fom Ref.17.
potential in theS' layer. In theS electrodes we still keep Expression(11) has been found by Kupriyanov and
ks=ky with accuracy up to terms of the order &fEx. By  LukicheV*® in the case of a double-barrier junction with a
matching the solution3) and(4) in all three regions at the  dirty metal interlayer in the limit of vanishingly small thick-
interfaces we derived an expression for the supercudtgnt ness. This fact shows that E@.1) is a very general result.
valid for arbitraryd andW, ,. Below we present the solution For T=0 the maximum value oéIRy, is achieved at
for d<&s and symmetric low-transparent barrieW;, ~1.86 and exceeds the].Ry value of (7/2)|A| for a tun-
=W, (W/tvg)>1: nel SIScontact. The reason is that in the coherent regime the
dominant contribution talg comes from the transmission
Agsin<p+AsAs, \/ﬁdlgsﬁvzsinf resonances, which in the present case are broadenthAs

e[ dk TS 2 aresult the supercurrent is of the first order*D(x)).
Js_ﬁ (2m)? 3=0 2WAE2(coshd/ &g — cos K,d)+E2 The supercurrent in the coherent regime has the spectral
(8) density
Here ¢ is the phase difference across the junctiag,s the AZsing

(12

pair potential in'S Ey=wi+AZ E,=\wi+AZ, Es ImJg(e)=
= Jw2+ AZcoSe/2, andW=W/fivg .

Equation(8) is the main technical result of this paper andfor Ascos¢p/l2<e<Ag, while ImJg(e)=0 for e
describes the interplay between quasiparticle transmissiofr A,cose/2 ande>Ag, i.e., the Andreev bound states in the
(Breit-Wignep resonances and electron-héfndreey reso-  energy rangel .cos¢/2<e <A, contribute to the supercur-
nances. Changing the phase space in integrationigyveme  rent.
can apply Eq(8) to the problem of the supercurrent flow via  Incoherent regime (narrow resonances wT.s. With
transmission resonances in low-dimensional contacts. In thithe increase of the interlayer thickness the coherent regime
case the results of Refs. 12—14, 11, and 15, taken in relevabteaks down due to the dephasing of the transmission reso-

\/Ag—sz\/sz—A§CO§cp/2,
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nances. After performing the angle averaging in Bj.the 1 g
general expression for a double-barrier junction becomes ]
AZsing (1 4x5dx
eJRy=27T>, — J —
SsTN o Ei OWZ a2_1 0.1 _E_
. P 17} ]
N AsAer|n§ d 1 8X2dX (13) IE
— , g
EiEx £, J)oa?-1 = 0015
where  a=cosh@/é&yx)+(1/2W*) (A2co(¢l2) + w?) /(A2 © :
+w§). The pair potential inS' is determined self- ; .
consistently with 0.001 factor 16/7 )
T Ay ] ;
—AgIn—=27T> (—s—<FS,>), (14) Y e —r
cs’ op | @n 0.01 0.1 1 10 100
where(Fg/) is the angle-averaged anomalous Green'’s func- \

tion, that is solved in the same way as the normal Green's
FIG. 1. I.Ry product in the model of clean interlayésolid

function G.
lines) and disordered interlayédashed lines The curves are plot-
Fo) 4]1 Ay "< d 2A¢ , coge/2)| xdx ted for the Nb/Al case foll;;=7.4 T,y .
)= —sinh — | + — .
s E E 2 Jaz— . . -
o =2 &s'X ! W a-1 where 1(D) is a supercurrent per single ballistic

(19 channel,l (D) =(e/2%)A2D singtanhEy/2T)/Eg, and Eg
As seen from Eq(13), the current-phase relation has two =A+1—D sirfe/2, by the residues of tank)(in a complex
components, sitr and sing/2. The sign of the sig/2 com-  Planez=(1/D—1)" It yields exactly the coherent super-
ponent is determined by the sign of the interlayer pair potencurrent eJRy=27TE - oAZsing/E;E;. This proof also
tial Ay, which is determined selfconsistently from EG4)  holds for the asymmetric case, when the eigenvalue
and depends on the sign of the electron-electron interactiofiensity is p(D)=(Gn/7Go)D 4 Dpa—D) 2 with

in anS’ material. For an attractive interactioy >0) Ay Dmax=47172/(y1+72)% 0<D <D
does not vanish even at>T., and has a positive sign, The considerations above allow one to calculate the cur-

while for a repulsive interactiom\y, becomes negative. rent under finite voltag® at the contact on the basis of the

Therefore the measurements of a current-phase relation inMAR (multiple Andreev reflectionsformalism!®~! Below

SISIS junction can be used for measuring the sign of thewe discuss the dc current component in a synme&ts 1S

electron-electron interaction in metallic films. contact. The dc current per single channel with transmission
As is shown above, the critical current is controlled D is given by°

by a single suppression parametetyosi=7wT /T

=27T d/fhve(xD(x)). As follows from Eq.(13), for T b T T T T 1
>T.o and yeii(wn/7T.g)>1 the supercurrent becomes of ] ]
the order of(xD(x))? as expected for the incoherent tunnel- 5] ’//’ h
ing in a double-barrier contact: 1 ,’,,/’ Pt
324T < AZsin o 41 T
eJRy== > — ‘. (16) A P
Yett i E] o 1 o-r” T 2T
A numerical evaluation of Eq13) is shown in Fig. 1. The e ] 7 R
coherent(l) and incoherentll) regimes are indicated. Re- 2 ,-7,77099 ,709 L7 7 ’,;',’/
gime number 1l shows the crossover to the series connection 2] ,/ v 07.-Taa / L ]
SIS 1 / Z-7lsiIsus| S L2 ]
of two SIS tunnel junctions. 1 7 s 2, ” ]
Transmission distribution, MARhe result for the coher- W // PP h
ent regime Eq( 11) can be derived from the transmission I/ 7 19;‘1—" ,.E ]
eigenvalue density(D)=(Gy/7G)D ¥41—D) 2 for L A R 710.01
two-barrierNININ contacts, whereG,=e?/27%. While de- N A B S

riving this distribution, an assumption about a certain amount

of impurity scattering in the interlayer was mabli;can be eV/A
shown that it also holds for the considered case of a clean s
interlayer, provided thakzd>1. FIG. 2. dc current component BIS IS contact in the coherent

The derivation of Eg.(11) is then performed by regime, together with the single-channel curves for various trans-
the calculation of the integral féIC(D) p(D)dD, missionsD.
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€ while the subharmonic gap structure el¢=2A¢/n due to
Wﬁlq(D,V)/EZEVD—f de tanh,— (1— |ag|?) MAR is present at lower voltages, despite averaging over the
channels. This dc current determines the amount of dissipa-
) 5 tion in the junction. Note that the cun®IS'IS in Fig. 2 is
2 Re(avo)JFZ ([Anl*=1Bn?) |, universal, i.e., independent of microscopic parameters such
as electronic mean free path By of the interlayer as long as
(17 y.4<1. This universality breaks down with the increase of
wherea,=a(e +neV) is the Andreev reflection amplitude: Yeft, due to the dephasing of the transmission resonances.
a(e)=[e—sgne)(s2—A2)¥2] for |¢|>A and a(e)=[e The detailed theory applicable for arbitragy¢; is the sub-
—i(A2—£2) V2] for |¢|<A. The coefficientsA,,B, are J&ct of further study. _ _
given by the recurrency relations which were derived in Ref. N conclusion, the general solution for the supercurrent in
20 and can easily be solved numerically. The resultinglouble-barrier Josephson junctions is presented and the
total de current in a symmetric SISIS crossover _from the cohgrent to t_he mcoherem regime for in-
contact is given by the integration of the single-channelcr€asing interlayer thickness is studied in detail. The
result 14(D,V) over the eigenvalue densityl, parameter-free c_alculatlon of qua5|part|.cle gurr_ent is done in
= [414(D,V)p(D)dD where p(D)=(Gy/7Go)D 331 the c_oherent regime. The results hav_e |mpI|cat|0_ns for trans-
_ D)91/2. port in Joseph_son junctions and multilayers engineered with
The results of numerical calculation at temperatufes modern techniques.

<T,s are presented in Fig. 2. A few single-channel curves The authors thank M. Yu. Kupriyanov, K. K. Likharev,
for various D are also shown for comparison. The excessYu. V. Nazarov, I. P. Nevirkovets, and H. Rogalla for many

X

current | .,eRy=1.0%\ is present at high biagV>Aq, useful and stimulating discussions.
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