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Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain
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We investigate the motion of a self-localized quasiparticle in a discrete lattice taking into account the
interaction of the quasiparticle with the vibrations of the lattice. Using an original method to control the
velocity of solitonlike excitations in a discrete system, the dependence of their velocity, momentum, and
energy on the carrying wave vector is analyzed. The velocity of the solitonlike excitations is found to saturate
at wave vectors below those predicted by continuum models. This is as found in experimental observations.
Also, the properties of the Peierls-Nabarro relief, caused by the lattice discreteness, and pinning of a soliton by
this barrier, are studied. The influence of the initial condition on the Peierls-Nabarro barrier and soliton motion
is investigated. For low-width solitons, a critical value of the wave vector is needed to overcome the Peierls-
Nabarro barrier.

[. INTRODUCTION its form and without losing energyb) the moving soliton is
a stationary state of the system with a given value of the total

In the present paper we investigate the dynamics of amomentumPg,#0; (c) the soliton velocity is less than the
electron, or hole, or vibrational or exciton excitatiéfor ~ sound velocity in a chainy<V,, and tends to the sound
simplicity in what follows we call it “quasiparticle) in a  velocity with increasing momentum, i.e—V,, as P,
one—dimeriqna(lD)_ disc][e:]e moleqular_I'clltticg,htarlfinlg iNto. _, (and vice versg (d) the soliton widthl,, decreases
account the interaction of the quasiparticle with the longitu-yth i i ity i
dinal displacements of the molecules from their equiIibriumWItr,\]lJ:,?;?E;nga;ﬁ?;gﬁé%:;ﬂ;mots:\r;;ixzondusions of

positﬁons. In .19.73 ngyddvpointed (.)Ut that 'the self- the continuum models. Several calculations of the ground
localized excitations in a one-dimensional lattice possesg, .. of 4 quasiparticle have been don®ag=0 together

solitonlike features and their transport properties differ_ . . .
greatly from those in bulk crystals. This idea has attracted & ith a comparison of the polaron energy and of its envelope

great deal of interest and 1D polaron-type states calle&hape. w!thr?s(;[hose thalned. n _the contmyum
“Davydov solitons” have become the subject of intensive approximatiort.”” Regarding moving solitons, numerical

investigations(a broad review of this work can be found in Studies have been performed of the space-time evolution of
Ref. 2. some 2||;|gal ex0|tat|ons(u§ually Iocallze.d at the end of a
The self-localized polaron states of a quasiparticle can bghain.= " These calculations are also in a good agreement
described by the model Hntich Hamiltonian in the zero- With the analytical analysis in the continuum
order adiabatic approximation. It implies that the total waveaPproximatior:"~**It was shown that some particular initial
function of the system can be written as the product of quaconditions lead to the formation of solit@ moving along a

siparticle and phonon statg®avydov ansatz D2 Ref.)2 chain. In most cases the initial states are far from the station-
ary one and launching solit@) is usually accompanied by
V(1)) =|Ve())|Wpr(t)), (1) the creation of additional excitations in the form of sound

where | (1)) describes the state of a quasiparticle andvaves and soliton tails. In such approaches, although the
|¥ ) describes the renormalization of phonons caused b§olllton. yelouty is detgrmlned by the given initial conditions,
the electron-phonon coupling. The lattice renormalizationt is difficult to vary it in a controlled manner. Here we
depends on the quasiparticle state which, in its turn, is detesuggest another method to investigate the traveling soliton in
mined by the lattice configuration. The adiabatic approximaa discrete molecular-cyclic chain. Using an initial excitation
tion coincides with the semiclassical approach and leads to i@ the form of the ground quasiparticle states(,=0) cal-
self-consistent system of nonlinear equations of motions thatulated numerically, we adiabatically increase its wave vec-
admit a solution in the form of the bound autolocalized statgor and, consequently, increase the soliton velocity.

of a quasiparticle and local distortion of the chéavydov There is ample experimental evidence for polaronlike
soliton or 1D polaron?>“ The continuum approximation of states in one-dimensional molecular structdfes® In par-
these equations up to the second order in the functions adicular, polarons and bipolarons are considered to be respon-
mits an exact analytical soliton solution that is characterizedible for the high conductivity of conducting polymers. For
by the following general feature¢a) the soliton can propa- example, the acoustic solitary-polaron md@el describes
gate along a chain with constant velocity without changingreasonably well the carriers mobility in polydiacetylene, both
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in weak and moderate electric fields. However, this model 2l

fails in strong electric fields as it predicts that a saturation of k= Na’ I=0,%£1,... *
the carriers drift velocity should occur at the sound velocity,

whereas experimentally this is observed to take place at revhereN is the numbefchosen to be everof molecules in a
markably lower values0.7V,).*® The theoretical predic- chain. The Hamiltonian commutes with the operators of the
tion was obtained within the continuum model, which cannumber of quasiparticled” and total momenturfP,

break down at large polaron velocities. For a better approxi-

mation it is necessary to _study the polarc_)n dyn_amics in the J\/=E BEBK, 7?:2 ﬁkBlBk+E i’quTb . (5
discrete system as done in Sec. lll. In this section we show K K q a~a

that taking discreteness into account results in qualitative anﬁih tior8! and ihilatiors ¢ f .
guantitative differences with respect to the continuum mod- € crealiors, and anniniiatior, operators ot a quasipar-

els that provide a possible explanation for the saturation o?'ﬁle with the wave numbek are connected with the creation
B, and annihilatiorB, operators of a quasiparticle on a site

the drift velocity in polydiacetylene at velocities less than the X X
sound velocity. The results presented in this work depend ol PY the unitary transformation,

the validity of the adiabatifor semiclassicalapproximation.

There are three characteristic energies in the system of a B :i 2 B, eikna (6)
quasiparticle interacting with phonons, namelly, the en- 5 N : '

ergy bandwidth of a free quasiparticld 4(ii) the character- T ,
istic phonon frequencitQ,y,, andiii) the coupling energy The operatord, ,b, are the Bose operators of phonons with
E,. Depending on the relation between these parameters, tfi@ wave number and frequency), that are connected
system can possess significantly different physical propertie¥ith the operators of the molecule displacemebis and
(conductivity, optical spectra, ejc.In the general case the Canonically conjugated momenk, by the unitary transfor-
problem is very difficult. When one of these three parameter§hation
is small (formally proportional to small parameter that

__1 151 (4)

2

N)N

1/2

tends to zerpthree well-defined regimes take place. The U ZLE ( h ) (b +b! )eiana

. i n 2MQ q —-q !
caseE,— 0 corresponds to a weak coupling when a quasi JN g q
particle behaves as a quasifree one with slightly renormal-
ized energy and effective mass and with finite mean free 1 AMQ, 12 _
path. AtJ—0 a quasiparticle is in the small polaron state, Pn= —l\/—ﬁ > ( > ) (bg—bT peama  (7)

q

and at(),,— 0 (the limit of atoms with infinite masséd) it

is described in the adiabatic approximation as a large po-
laron. The three characteristic energies can be replaced QM
two independent dimensionless parameters, g-gE,/J as
the coupling constant ang=%(),,/J as the nonadiabaticity
parameter. Depending on the values of these paramete
various regimes are found to be realiZ&a?° The adiabatic
approximation(1) is valid when the inequality is fulfilled,

We assume that the electron-phonon couplingatisfies

e condition(2) for the applicability of the adiabatic ap-
proximation(1). The form of the interaction operator in Eq.
(3) indicates that the presence of a quasiparticle causes an
'Sscillator displacement and the renormalized phonon state
can be written as

W on(1))=S10)ph, ®)
Yer1<9<Jer2: 2 with the unitary operator
where the values df., ; ,i=1,2, depend on the value of the 1
nonadiabaticity parameter andg,, ;—0 asy—0.'%1Sev- S=exg — X [Bq(t)b!—B%(1)by]|. (9)
eral investigations have shown good agreement between ex- \/N q
act.nugley-zr;cal diagonalization and approximate results in thigaow we congider one—pa_rtig:le state; and the oper@Qrs_
regime. andB,, can satisfy any statistics. The important condition is
that B,|0)=0 where|0) is the vector of the ground state.
[l. DAVYDOV SOLITON IN A DISCRETE Therefore, the HamiltoniafB) can represent an electron or

MOLECULAR CHAIN hole (B, are Fermi operatoysan intramolecular excitation
(B, are Pauli operatoyas well as a high-frequency intramo-

The Frdnlich .Ham_iltonian in the case of a single isolated |gcy1ar excitation B, are Bose operatorsThe single quasi-
band of a quasiparticle and one phonon mode reads as particle state can be written in a general form,

1 - i
H=3 EROBBr = 3 x(K BB (by+b [We0)= 22 PLOBO). (10
3 k.q
The stateg0), in Eq. (10) and |0),y, in Eq. (8) describe,
+> 7Q4bib,. (3)  Trespectively, the ground states of the molecuteselectron
q arard subsystemand of the phonons in a chain in the absence of

an extra quasiparticle.
With the Born—von Karman periodic boundary conditions  Substituting the wave function in the zero-order adiabatic
assumed, the wave numbers take the following values: approximation(1) with account of Egs(8)—(10), into the
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Schralinger equation for the Hamiltoniai8) (Refs. 23-25  and the total momentum, determined by the operéipr
or using the semiclassical appro&&h?®one can obtain the

following system of equations: . dQ
9y a P=§k‘, hk|¢k|2+|M§q: qd—tqQ,q (20)
. dvy
% dt =[WHEK) ¥y are constants of motion.

Let us chzc;ose the solution of Eqd.7)—(18) in the fol-
1 2MQ lowing form:
+5 2 x(ka) \ 5 Qa Wi, (1D ’ -
q lﬂn(t):(Dn(t)e'kna_'Et/h, (22)

d?Qq 5 2Qq wherek is a discrete variable, determined in Eg), and
a2 :_QquJrEk XKD\ 7 Yi-qYe- (12 ¢ (1) is assumed to be a real functionmfSubstituting Eq.

(21) into Eq.(17) leads to the equations

Here,
A®,—Jcogka)(P, 1+ P 1)+ x(Upr1—Up1)Py=0,
— L + B* (13) (22)
Qq_ ZMQq(Bq B—q)i
do J
andW is the energy of the deformation, d_tn == sin(ka)(®p.1—Pp_1), (23
M dQy|? ) _
W= — — =4 +QZ 2| 14 whereA—E0+W— E.
2 % ( dt alQdl (19 From Eq.(23) one gets
The explicit dependence of functiorg(k), (g, and _ _
x(k,q) on the wave vector is determined by the model under D, (1)=2> fqexgi[gan—vtsin(ga)l}, v=V/a,
consideration. We use the Davydov model for a chain that a
. : 4 L . (29
includes a short-range interaction of a quasiparticle with
acoustical phonons and assume that the quasiparticle energhere
band is formed by the nearest-neighbors interactions. In this
case, we have ) 2Ja
V=Vgsin(ka), VG:T' (25
W
E(k)=Eo—2Jcoska, (=2 \/%lsm(anZ)l, The function(24) describes a traveling wave depending on
the variablen—vt only in the long-wave(continuun) ap-
2% proximation when sirga)~ga. In this case for smooth soli-
x(k,q)=iy M_Qq sin(ga). (15  ton envelope functiond,(t) andU,(t), the continuum ap-

proximation of Eqs(22)—(23) leads to the soliton solution,

Introducing the quasiparticle wave functiah, and the
displacementdJ,, of the nth molecule given by the unitary Doy (X,)= 1 [ma 1 (26)
sol\ s

transformation, 2 costiu(x=Vt)]"
1 . 1 ‘ Here the velocityV is connected wittk by Eq. (25) and
In()=—=2 ¥k, U,=—= 2 Q. e, (16)
" \/N k " \/N a ‘ G X2 Vgr .
. . u=——-————, G=2—, s’=—-sir(ka).
we can get the following system of equations: a(1—s?)cogka) Jw gc
» (27)
. n
i —= = (BEot W)= I(¢n-1F thn+1) The main characteristic of the moving soliton is the wave
vectork that determines the soliton velocity and momentum:
+x(Uni1=Up-1) ¢y, (17)
x*(1-58%)
2y, Eso(K)=Eg—2J c:os{ka)—3J 21— )3 e’
2 = X 1= a1+ W(Up i1+ Up 1~ 2U,). wi(1-s%)"codka)
dt (28)
(18)
8ay*tanka
The total energy of the system, PSO|(k):hk+;Y—r“. (29
3hVaw3(1—s?)3
E= zn: [= 347 (Pt ¥n-1) + X(Uns1—Unoo) ] The functions(21), (24) constitute only a first approxima-

tion to a traveling quasiparticle in the discrete system. In the
+(Eg+W) |21, (19 caseV,, >V, this approximation coincides with the results



1132 BRIZHIK, EREMKO, CRUZEIRO-HANSSON, AND OLKHOVSKA PRB 61

of the continuum models because only small valuek afe  Then we use the relatiort81) for small values of the dimen-
possible, the velocity is proportional toand tends to the sionless wave numbeika. Thus, we get the traveling wave
sound velocityV, . solutions with greater velocities by substituting,(0;k,)

In the case of a narrow electron band, for small values oand U,(0;k.,) by the steady-state solutions obtained previ-
k the velocity also turns out to be proportionalkoas hap- ously at some=t, for a smaller velocity:
pens in the continuum approximation. At large valueof

the velocity is bounded from above by the group velocity: Pn(t=0Kmy1) = n(t=tg,Ky)e' 2
V=V, atk—m/a. (32
This solution shows that in the continuum approximation Km+1=km+ 0k,ko=0,

at small values of the soliton velocity the shape of the jith the same molecule displacements and corresponding
traveling soliton is very close to the shape of the soliton akijte velocities according to E¢31). In this way we disturb
rest, and that its amplitude increases and the width decreasgge shape of the pulse slightly and increase the velocity of
with increasing velocity. At large velocities these changeshe pulse in an iterative manner. The validity of this ap-
become significant and the applicability of the continuumproach and its efficiency are demonstrated by the results of
approximation is violated, and therefore, the discrete descrijhe numerical calculations, as it will be shown below.

tion is necessary. Moreover, E@®4) shows that the space-  |n the next section we discuss the results of the numerical
time evolution of the envelope function is more compllcatedimegration of the discrete system of E¢7) and (18) with

than the one predicted by the continuum approximation withthe normalization and periodic boundary conditions
its functional dependence on the variable vt. Hence, in

the discrete system one can expect the manifestation of the
i 26,31 C ; ; S vnl?=1, nin=tn, Upin=U
Peierls-Nabarro relié?!in the quasiparticle dynamics. This - n *YNENT Py HneNT Ens
question is discussed in Sec. IV. ) o N o
The exact analytical solution of the initial system of dis- using Eq.(31) as an initial condition. For this it is useful to
crete Eqs(17)—(18) is not known and numerical calculations rewrite Egqs.(17) and(18) in dimensionless variables:
are thus very useful. Unlike the stationary case that has zero

(33

velocity, special attention should be payed to the choice of iﬂ:El//n—(lﬁnqﬂL Y1)+ X(Upsq— Uy 1) ¥,
the initial conditions in the numerical study at nonzero ve- aT
locities. The deviation of the initial condition, even if it is (34)

chosen in the form of the continuum solution, from the exact q

steady state in this latter case is large. This can result in Un P 2

strong emission of phonons that will influence the quasipar- g2 =Y ([ gneal*=[gn-al®) + Z(Un 2+ Un-g = 2Up).
ticle significantly and the system will remain far from the (35)
steady state. One possible way to eliminate this energy ex-

cess is to introduce friction. Another way is to try to guess arf 1€"€:

initial condition very close to the traveling steady state. The
) : . Jt U, A
analytical analysis above can be used for the proper choice of T=—, Uy=—, E=-—,
initial conditions in the numerical study of traveling excita- h a J
tions in discrete systems. At time moment0 the soliton ) , (36)
solution of Eqs(17)—(18) has the form wo & hx _ htw

L Y=—"—, Z=——0\.
J MaJ? M J?

. 1 .
Yn(0)=@(0;k)*™, Up(0)= 5 2 U(q,0:k)€™,
q Ill. RESULTS OF NUMERICAL CALCULATIONS

du 2Ja ‘ We have performed numerical calculations for a lattice
—| =-i—sinka)X, qU(q,0;k)e"".  (30)  with N=50 sites, under periodic boundary conditions in the
dt | _ N#A q ) . . .

t=0 manner discussed in the previous section. We have chosen

At small k according to Eq.(30), one hasd,(0:k+ k) numerical values of the parameters that are characteristic of
=, (0:k),U(q,0:k+ 6k)=U(q O'i(). This givens ri’se to the the protein alpha helix and other quasi-one-dimensional
following choice of the initial conditions for the traveling PClyPeptides. Namely,

soliton in the discrete system: J=1.55<10"2J, w=39 N/m, M=5.7x10"2°Kg
n(0;k+ 8K) = ip(0:K) €M, U (05k+ 8k)=U,(0;k), =62X10"12N, a=4.5x10"m, 37)
dU,(k+ 8k) J In some of the calculations these parameters were changed as
—at | = 7[Un+a(0:K) = Un_a(03k)] specified in the text and in the figure captions.
t=0 The results of the calculations are reported in the figures.
x sin{ (k+ ok)a]. (31)  They show that increasing the value kfwithin a given

interval, the amplitude and the velocity of the soliton pulse
We start with zero wave vectd=0, and choose the func- increasesgsee Fig. 1, Fig. 2, and Fig).3t might be expected
tions ¢,(t=0;0) andU,(t=0;0) in theform obtained by that, with increasing, the currentin the case of transfer of
exact numerical minimization of the energy functiofi#®).>  charge will increase monotonically. Instead, the numerical
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0.4 T T T T T T T T T
0.35F 4
0.3 | _
0.25 4
0.2 4
FIG. 1. Amplitude of the soliton envelope as a function of the
lattice siten and timet, atl=1, (k=2=l/N).
0.15 L -
simulations show that, although this happens for small value
of k, with further increases of a saturation of the soliton 0.1} .
velocity at a constant valu¥ takes place. The saturation P
velocity Vy and the value ok for which this saturation oc- o |
curs, depend on the values of the parameters of the ¢hadn i
Fig. 4. The maximum soliton velocity wheny'= y,J’
=Jw'=9.25 N/m is approximately two-thirds of the sound 0Lt 1 ' o ‘ — —

. . . . . A o} 5 10 15 20 25 30 35 40 45 50
velocity in the chain, as seen in Fig. 4. This is less than the

value predicted by the analysis based on the continuum FIG. 3. Amplitude of the soliton envelope as a function of the
model. Our results, based on the discrete model, can thuattice siten for different times, =25 (solid line), and r=175
explain the saturation of the drift velocity in the polydiacety- (dashed ling atl=6.

lene at velocities less than the sound velocity that was re-

ported in Ref. 17. Moreover, the increase of the soliton ve- Th?tﬁveralge _fOI'tOTj momentumdgnc: er]c]erglgy for srr|1all val-
locity results in the perturbation of the soliton, that is, its ues of the velocity, and, correspondingly, for levare close

envelope changes, oscillating tails appear, and their amplf—o the valut_es pred|cted_by the continuum approximation, _be—

tude and energy increase wikh At the same time, the total Ing proportlongl to the first and sef:ond power of the velocity,

current in the systenj= 143 (¢* g 1— i) }irst in- from the continuum results are increasingly apparenk as
[ n\%n ¥n— n—-1%n/» )

) : increasegsee Fig. 4.
creases witlk, and, for large values d it reaches plateau The effective soliton mass can be obtained from ©4)
Further increase of the carrying wave vedkaresults in the o
decrease of the current due to the more intensive emission 8% small velocities:
phonons and radiation from the solitcompare Fig. 3 and 2.2 : . . . ,
Fig. 5. This corresponds to the region of negative resistance
that is observed experimentally at large fields, in some con-
ducting polymers. Also, the transfer of the energy of the
initial excitation to delocalized modes that takes place at
large values ok, leads to a reduction of the total-energy flux.
The conclusion is that the population of delocalized modes
absorbs the energy, but they do not contribute to the current®-
in the system.

[y
T
1

@
T
1

0.6 | .
0.4 | -
-~
] .
? 0.2 | T
3
|
| =
3
3 o
\T/ o K 1 1 ! I 1
0 2 4 6 8 10 12

FIG. 4. Dependence of the soliton velocity on the wave number
for different sets of parameters. The solid line corresponds to the set
of parameters given by E@37); the dotted line corresponds g

FIG. 2. Chain deformation,—u,_; as a function of the lattice =2y,J'=4J,w'=w; and the dashed line corresponds 30
site and time at=1. =x,J'=J, w'=9.25 N/m.
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0 S 10 15 20 25 30 35 40 45 50

FIG. 5. Amplitude of the soliton envelope as a function of the
lattice siten for different times,7=560 (solid line), 580 (dashed
line), and 600(dotted ling at|=—10.

2

i (39
m=——.
2Ja?

8a2X4

me=m| 1+——>—|,
° 3h2wWAV2,

Average Position

N
ol

10]

1210 1220 1230 1240 1250 1260

FIG. 7. Soliton c.m.c. as a function of time at large time scale
for 1=10.

It can also be observed from the numerical calculations

34

Averoge Position

1201 1202 1203 1204 1205 1206

that the motion of the localized pulse is discrete, it has the
form of discrete jumps from site to site even for rather wide
pulses(see Fig. 6. At a large time scale the center of mass
coordinate(c.m.c) of the pulse[see Eq.(20)] is displaced
along the chain with constant velocity, as it is shown in Fig.
7. It is also worth mentioning the stability of soliton enve-
lope throughout propagation, which can be seen in Fig. 5
(remember that the figures show soliton pulses that have
passed the chain ring many times before reaching the present
positions.

0.18

0.17

Soliton Vel

10 20 30 40 SO 60

FIG. 6. Soliton c.m.c. as a function of time at short time scale,

for 1=10.

FIG. 8. Soliton velocity forl = 10.
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25.5 0.12)
= \/\\/\l\/’»\/’f\/‘/ﬁ\
25.3
25.2 1 1
0.08
5 25.1
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o . H
® 25.0 =
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g A
<249
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24.8
24.7
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';'G- 9. Soliton c.m.c. as a function of timey91 pN, | FIG. 10. Soliton velocity as a function of timey & 80 pN, |
=1). =1).

IV. PEIERLS-NABARRO BARRIER . . .
between quasiparticles in crystals. In Eq$1)—(12) the

The numerical investigations reported in the previous secwave vectors are in the first Brillouin zone; m/a<k
tion, demonstrate the manifestation of the lattice discreteness 7r/a, and one can introduce the summation over wave vec-
in several ways. The main qualitative difference between theéorsk’ replacingk—q and taking into account the quasimo-
continuum and the discrete model is the periodicity of thementum conservation law,
latter with the lattice constarat. First of all, in the periodic
lattice the quasiparticle energy band has a finite widtladd . -
the energy dispersion differs from the parabolic law at large Ok—q,k’ if |k—qg|<=—,
values ofk. This is taken into account by E@21), which a
results in the relatiori25) between the velocity of soliton ) T
wave packet and carrying wave vector A(k=q=k')={ Sk-q-gk If k=a>,

Second, the manifestation of the Peierls-Nabarro barrier is
clearly apparent in the soliton motion at high time resolution,
as is shown in Fig. 6 and Fig. 8. The “instantaneous” soliton
velocity depends on time, as would be expected for the mo-
tion of a quasiparticle in a periodical potential. The influencewhere g=2/a is the vector of a reciprocal lattice. This
of the Peierls-Nabarro relief on Davydov solitons has beeroes not change the discrete E(k?) and (18) because the
shown in Ref. 32 by variational numerical calculations, andrelationV.. .=V applies, but it is essential when introduc-
in Ref. 33 the periodic relief was studied using the com-ing continuous functions for the analytical investigation of
pletely integrable discrete Ablowitz-Ladik mod¥éIThe sys- Egs.(11) and(12) that are equivalent to EqL7) and(18).
tem of coupled Eqs(17) and (18) that describes molecular Let
solitons(one-dimensional large polarondoes not belong to
any completely integrable class, and numerical calculations

. o
5k—q+g,k’ if k—q<——,
\ a

. 1 ) 1 )
are very useful to extend and complement continuum mod- (X)) = —= 2 v (H)eks, u(xt)=— 2 Q.6
els. The proper analytical studies can be fruitful for a better JL “ NG ~

understanding of the results obtained in the previous section. (39

In this section we present such analysis. It takes into account

the periodicity of the lattice, not only in the coordinate spacewhereL=Na. One can see that these functions are periodi-
but also in the space of reciprocal lattice vectors. This lattecal, i.e., ¢(x+L,t)=¢(x,t) andu(x+L,t)=u(x,t). From
periodicity results in umklapp processes in the interactiong=q. (39) we derive the relation
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0.014]

0.013

Tolal Momentum

6 12 18 24 30 36

FIG. 11. Soliton momentum as a function of timey (
=80 pN,I=1). The c.m.c. of the soliton is a linear function of

time within the same time scale.

L/2

- —ikx
V(1) \/E 7L/2<//(x,t)e dx (40

in the continuum approximation. We assume that in khe
representation the soliton wave packet is narrow and cen-
tered at some valule, that determines the soliton velocity in

X representation, and thég is small so thakja<<1l. Then

we can use the long-wave approximation in Etp) to ob-
tain

h2k?
E(k)2E0+ ﬁ, quval(:”,

R
x(q)=2iy ZMQqqa-

Taking into account Eq$39)—(41) we can rewrite Eqg11)
and(12) in the following form:

(41)

oy h? PPy B
m + py— ﬁ—[A'FZX,D]l/I—SF(X), (42

o P 2@V Aol

_— +ef(x), 43
a2 ox2 w ax? . @43

where p(x,t) is the chain deformation, p(x,t)

=Ju(x,t)/ox, and
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FIG. 12. The width of the soliton as a function of timg (

=90.5 pN | =1).

(n)
F(x)zn;lz[e“””@*—l]r > e (q)QqWy,

32 &
(44)
¢ B ZXVac2 9? Z 1 —(~1)"igx
(X)*iw P n:l,2[ —e ]
1 (n) o
XS > e ik rxpry | tccl. (45
KK’

Here y(q)=_2ixsin(@a) and the summations iZ{"}, n
=1,2, are performed in the regions of the Brillouin zone
whereq+k>m/a for n=1, andq+k<—(w/a) for n=2,
respectively. AssumingV, and Q, are small in these re-
gions, the functiong44) and (45 can be considered as a
perturbation.

In the absence of the perturbation, E¢42) and (43
admit the well-known solitonlike solution. The influence of a
weak perturbation on the soliton can be accounted for within
the adiabatic perturbation thedPyaccording to which the
solution of Eqs(42) and(43) reads

(0= ——2X2 0P e, (40
pX,l)= W(l*Sz) l/f ’ ep1txt),
zjl(X,t):(//S(X,t)-l-sd/l(X,t). (47)
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Here #4(x,t) is the soliton solution of the nonlinear-
Schralinger equation in the absence of the perturbation

exgiko(x—r)]
cosliu(x—=r)]"
with time-depending parameters, namely, the amplitbde
the carrying wave vectd{,, the soliton center of massand

the inverse soliton widthx, which are governed by the fol-
lowing equations:

(X, ) =A (48

. hiko . .

r=- tedr, ko=eds, p=eds, (49

U L A 50

“n| A o tom tedaA (B0
4my?a?

== |A|?+ e ¢s. 51

B ey Ao b (51)

The quantitiesp; are determined by the condition that the
correction 41(x,t) in Eq. (47) of the solution of the
nonlinear-Schrdinger equation perturbed by the tekpe
=g(F+2xp1tbs) does not contain secular teritfsThis pro-

PEIERLS-NABARRO . .. 1137
i (L2 .
ba=4 | (Fut—F*ugdx, (54

L/2

¢4=—Mf (Fys +F* o) (x—r)tani u(x—r)]dx
—L/2

L/2
—4xu£u291tanf[u(x—r)](X—f)Iwslzdx

. L2 %2
—|kof7u2(Fz/;§—F*z/fs)(x—r)dx—%d)g,, (55

bs=

Li2
(Fyg —F* gg)dx.
Li2

7 (56)

Here we will analyze the dynamic equation for the soliton
center of massr(t), since it represents one of the most

important results of the analytical model. According to Egs.
(52 and(53), this equation takes the form

cedure leads to the following equations for functiafs ) t - 20
) mr(t)+f r(t—nK(r)dr=— —Upsin(—), (57

i (L2 0 a a

$1=— %f (Fyz-F*yg(x-ndx, (52
—L/2
where
M L/2
do== 2| Py P poant wx- ) Jx
K(7) 4x?ap d uVu7coshH uwV,r) —sinh wV,r)
Adyu (L2 7)== 2 dr - )
~ 5O, (69 wv, d7 Sinf (V) 8
|
Uoe 4723 Y (g—qg—k)asin(qa) 59)
P uaN2 Gk (7 7(k—ko) m(k—kotq—g)|
sinfl =—| cos cos
2u 2u 2u
|
The kernelK(7) (58) is determined by the reaction of the 2m2U
. . . . =]
lattice on the soliton acceleration and leads to the effective K= S (61)
soliton massang, (38) in the dynamic equatiof67) at slow hiemg

acceleration. The right-hand side term in E§7) indicates
that the soliton moves in the periodicalith lattice period
Peierls-Nabarro potential
o
U(r)=UPS|n2(€). (60)
The soliton motion in a periodical potential has been con

sidered in Ref’. A soliton can overcome the barrier and
move along the chain only if its initial kinetic enerds;,

=myV3/2 exceeds the height of the Peierls-Nabarro barrier,

Eq. (60), which is possible when the value kf exceeds the
critical valuek,,,

At small values of the initial wave number, i.e., fdg
<k, pinning of a soliton by the lattice takes place and the
soliton oscillates between the neighboring barriers even if its
width exceeds the lattice spacing, as can be seen by the os-
cillation of soliton c.m.c. shown in Fig. 9. With increasing
ko, the soliton kinetic energy increases andkgt-k., the

soliton can move along the chain.

It should also be noticed that in the general case, accord-
ing to Eq.(59), the height of the Peierls-Nabarro barrier de-
pends on the width of the soliton and its wave vector. From
Eq. (59 at ua<1 we find the following estimation df/p:
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A(m2+4)] 72 wheredn(u, ) is the Jacobi elliptic functionu= 7Vt/a,
UPZGXF{ — ) (62) and k>=Up/E,;,, is the modulus of the elliptic integral.
ma According to Eq.(63) the soliton moves with an average

2ua
Hence, for a broad soliton the critical valig, (61) is very  soliton velocity,V=7V/2K(«), and has oscillating compo-
small and such a soliton moves with a nonzero velocity evefents with a main harmonie = 72V/2aK(«) and its over-
at small values OkO' Moreover, at values of the wave num- tones. Hel’e/O is the initial soliton VelOCity due to the initial
ber k, that exceed the critical value, the soliton is still sen-wave vectork, as given by the relatiori25), K(«) is the
sitive to the presence of the barrier. The dependence of itgomplete elliptic integral of the first kind, and=exp
velocity, momentum and energy g differ from those pre-  (—7K'/K), whereK'=K(«'), «'?=1—«?.
dicted by the continuum modelsee, Fig. 10 and Fig. 11 From Eqgs.(49) and(54) we get the equation for the soli-
Indeed, instead of a monotonic relation, those variables ar®n width
oscillating functions of time. From Ed57) one can obtain
the instantaneous soliton velocity:

1+o0

) Msi I_<7TmV) 2mr 64
= = — M sinh ——|sin —]|,
: 4q" cognwt) a 2hp a
V(H=r(t)=Vedn(u,x)=V| 1+ >, —————|,
n=1 1+q2n
(63 where
J
. - [m(2k+qg—0Q)
2732 (1) sin(ga)sin T
(65

M= .
Al?wu ka . [ 70 K m(k+9q—g)
sin =— | costt| =—|cosif| ————
2u 2u 2u
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From Eq.(64) we conclude that the oscillations of the soliton values of the soliton parameters, but also with respect to its
width take place during the soliton propagation through thepinding energy as determined by the electron-phonon cou-
discrete potential relief. It is difficult to see these oscillationspling y at a given value of the wave number, as is demon-
in Fig. 1 since the soliton is spread over few lattice sitesgtrated in Fig. 9, Fig. 12, and E¢1). Similarly, the ampli-
while the oscillations of the soliton amplitude are distinctly tude of the soliton oscillations within the barrier below the
seen. And indeed, an amplitude of a soliton and its width ar¢nhreshold, according to Eq$60) and (62), is a function of
connected by the normalization condition for the wave functhe value of the carrying wave vector and of the strength of

tion and Eq.(51), which give the electron-phonon coupling. This is illustrated in the nu-
merical results displayed in Figs. 13-16.
|A|2=ﬁ[1+ 0(£?)], M:MOJFSE' (66) .Due tq th_e lattice discreteness, the ;oliton velocity con-
2 tains oscillating terms Eq63). Such a soliton center of mass

Here 1o coincides with the soliton width as given by the Mmoves with a nonzero instantaneous acceleratiowhich
continuum approximationfsee Eq.(27)]. The time depen- results in the emission of sound wavegx,t) and, respec-

dence of a soliton amp”tude follows from quﬁ) and(64), tiVer, in soliton deceleration. The motion of the soliton and
which determine the oscillations of the soliton amplitude atthe sound waves lead to displacements of the molecules from

nonzero velocity. their equilibrium positions and, hence, to the breaking of the
initially rigorous periodicity of the lattice. This explains why
in the numerical experiments the effect of the potential relief
is particularly striking at the very beginning of the soliton
In the previous sections we have reported the results afotion and becomes less periodic at later tinteee Fig. 3
numerical and analytical studies of a traveling soliton in awhen the periodic potential itself is perturbed by the soliton
discrete lattice with periodic boundary conditions at arbitrarymotion and by the sound waves. This latter effect is a higher-
values of the carrying wave vector. For this we implementedrder effect in the perturbation scheme suggested in Sec. IV,
the method of the adiabatic increase of the wave vector debut it is automatically accounted for in the numerical simu-
scribed in Sec. Il, as well as the analytical scheme of aclations of the self-consistent system of E¢$7) and (18).
counting for the discreteness within the corresponding conTherefore, the properties of solitons in a discrete system and
tinuum models. These studies reveal that in a discrete lattickhe properties of the Peierls-Nabarro barrier are in mutual
a soliton moves in a periodical Peierls-Nabarro potential bareonnection: on the one hand, the soliton dynamics is influ-
rier. The overcoming of this barrier has a threshold characteenced by the barrier, and on the other hand, the soliton itself
not only with respect to the soliton kinetic energy at givendetermines this barrier, E¢59).

V. CONCLUSIONS
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FIG. 17. Amplitude of the soliton envelope as a function of the k|G, 18. Amplitude of the soliton envelope as a function of the
lattice siten for different times, =280 (solid line), 290 (dashed |attice siten for different times, =200 (solid line), 210 (dashed
line), and 300(dotted ling at|=—14. line), 220 (dotted ling atl = —25, w=9.25 N/m. The values of the
other parameters are the same as in (B@).
For a broad soliton withky>k., that moves along the
chain with moderate velocity, the Peierls-Nabarro relief isoscillations of the soliton amplitude were present in the early
sufficiently shallow. The sound emission and soliton “sonicnumerical calculations on soliton dynamics, e.g., Ref. 7.
deceleration” are negligibly small but their roles increaseAlso worth mentioning is the asymmetric change of the
with increasing soliton velocity. “leading” and “back” fronts of the soliton envelope due to
The soliton amplitude in the continuum approximationthe motion(see Fig. 5. The oscillations of the soliton am-
(20) and (21) increases uniformly with the velocity be-  plitude increase with increasing, which results in the
cause |Agol?c(1—s?) "1, s?=V?/V2, and its width de- change of the soliton shape. We did not find a shrinking of
creases| s, (1—5s?). Sincefiko=mV, the amplitude of a the soliton into a “small polaron” state localized within one
soliton in the continuum approximation also increases witHattice site, due to the soliton motion. At certain parameters
ko. However, in the numerical simulation this increase of theof the chain, the increase &fcan indeed result in the decay
soliton amplitude and velocity is observed only within someof a soliton, but this is an instantaneous transformation from
interval of k. At large values ofk the velocity reaches a @& smooth one-hump soliton, localized within few lattice sites,
saturation, the value of which depends not only on the sounito @ many-hump and more extended excitation, as shown
velocity in the chain, but also on the values of the parametert# Fig. 17. At other values of the parameters, which corre-
of electron subsystem. spond to the relatioVy,>V,, the soliton is stable even for
A further difference with respect to the continuum resultsvery large values ok (see Fig. 18
is that small oscillations of the soliton width and related to

the_m oscnlatlons_ of the soliton _amplitude take place during ACKNOWLEDGMENTS
soliton propagation along the discrete system, as can be ob-
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