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Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain
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We investigate the motion of a self-localized quasiparticle in a discrete lattice taking into account the
interaction of the quasiparticle with the vibrations of the lattice. Using an original method to control the
velocity of solitonlike excitations in a discrete system, the dependence of their velocity, momentum, and
energy on the carrying wave vector is analyzed. The velocity of the solitonlike excitations is found to saturate
at wave vectors below those predicted by continuum models. This is as found in experimental observations.
Also, the properties of the Peierls-Nabarro relief, caused by the lattice discreteness, and pinning of a soliton by
this barrier, are studied. The influence of the initial condition on the Peierls-Nabarro barrier and soliton motion
is investigated. For low-width solitons, a critical value of the wave vector is needed to overcome the Peierls-
Nabarro barrier.
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I. INTRODUCTION

In the present paper we investigate the dynamics of
electron, or hole, or vibrational or exciton excitation~for
simplicity in what follows we call it ‘‘quasiparticle’’! in a
one-dimensional~1D! discrete molecular lattice, taking int
account the interaction of the quasiparticle with the longi
dinal displacements of the molecules from their equilibriu
positions. In 1973 Davydov1 pointed out that the self
localized excitations in a one-dimensional lattice poss
solitonlike features and their transport properties dif
greatly from those in bulk crystals. This idea has attracte
great deal of interest and 1D polaron-type states ca
‘‘Davydov solitons’’ have become the subject of intensi
investigations~a broad review of this work can be found
Ref. 2!.

The self-localized polaron states of a quasiparticle can
described by the model Fro¨hlich Hamiltonian in the zero-
order adiabatic approximation. It implies that the total wa
function of the system can be written as the product of q
siparticle and phonon states@Davydov ansatz D2 Ref. 2!,

uC~ t !&5uCe~ t !&uCph~ t !&, ~1!

where uCe(t)& describes the state of a quasiparticle a
uCph& describes the renormalization of phonons caused
the electron-phonon coupling. The lattice renormalizat
depends on the quasiparticle state which, in its turn, is de
mined by the lattice configuration. The adiabatic approxim
tion coincides with the semiclassical approach and leads
self-consistent system of nonlinear equations of motions
admit a solution in the form of the bound autolocalized st
of a quasiparticle and local distortion of the chain~Davydov
soliton or 1D polaron!.2–4 The continuum approximation o
these equations up to the second order in the functions
mits an exact analytical soliton solution that is characteri
by the following general features:~a! the soliton can propa
gate along a chain with constant velocity without chang
PRB 610163-1829/2000/61~2!/1129~13!/$15.00
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its form and without losing energy;~b! the moving soliton is
a stationary state of the system with a given value of the t
momentumPsolÞ0; ~c! the soliton velocity is less than th
sound velocity in a chain,V,Va , and tends to the soun
velocity with increasing momentum, i.e.,V→Va , as Psol

→` ~and vice versa!; ~d! the soliton widthl sol decreases
with increasing velocity, i.e.,l sol→0 asV→Va .

Numerical calculations7,8 confirm the main conclusions o
the continuum models. Several calculations of the grou
state of a quasiparticle have been done atPsol50 together
with a comparison of the polaron energy and of its envelo
shape with those obtained in the continuu
approximation.2,5,6 Regarding moving solitons, numerica
studies have been performed of the space-time evolutio
some initial excitations~usually localized at the end of
chain!.2,7,8 These calculations are also in a good agreem
with the analytical analysis in the continuum
approximation.2,7–11It was shown that some particular initia
conditions lead to the formation of soliton~s! moving along a
chain. In most cases the initial states are far from the stat
ary one and launching soliton~s! is usually accompanied by
the creation of additional excitations in the form of sou
waves and soliton tails. In such approaches, although
soliton velocity is determined by the given initial condition
it is difficult to vary it in a controlled manner. Here w
suggest another method to investigate the traveling solito
a discrete molecular-cyclic chain. Using an initial excitati
in the form of the ground quasiparticle state (Psol50) cal-
culated numerically, we adiabatically increase its wave v
tor and, consequently, increase the soliton velocity.

There is ample experimental evidence for polaronl
states in one-dimensional molecular structures.12–15 In par-
ticular, polarons and bipolarons are considered to be resp
sible for the high conductivity of conducting polymers. F
example, the acoustic solitary-polaron model16,17 describes
reasonably well the carriers mobility in polydiacetylene, bo
1129 ©2000 The American Physical Society
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1130 PRB 61BRIZHIK, EREMKO, CRUZEIRO-HANSSON, AND OLKHOVSKA
in weak and moderate electric fields. However, this mo
fails in strong electric fields as it predicts that a saturation
the carriers drift velocity should occur at the sound veloc
whereas experimentally this is observed to take place a
markably lower values (;0.7Va).13 The theoretical predic-
tion was obtained within the continuum model, which c
break down at large polaron velocities. For a better appro
mation it is necessary to study the polaron dynamics in
discrete system as done in Sec. III. In this section we sh
that taking discreteness into account results in qualitative
quantitative differences with respect to the continuum m
els that provide a possible explanation for the saturation
the drift velocity in polydiacetylene at velocities less than t
sound velocity. The results presented in this work depend
the validity of the adiabatic~or semiclassical! approximation.
There are three characteristic energies in the system
quasiparticle interacting with phonons, namely,~i! the en-
ergy bandwidth of a free quasiparticle 4J, ~ii ! the character-
istic phonon frequency\Vph , and~iii ! the coupling energy
Eb . Depending on the relation between these parameters
system can possess significantly different physical prope
~conductivity, optical spectra, etc.!. In the general case th
problem is very difficult. When one of these three parame
is small ~formally proportional to small parameter« that
tends to zero! three well-defined regimes take place. T
caseEb→0 corresponds to a weak coupling when a qua
particle behaves as a quasifree one with slightly renorm
ized energy and effective mass and with finite mean f
path. At J→0 a quasiparticle is in the small polaron sta
and atVph→0 ~the limit of atoms with infinite massesM ) it
is described in the adiabatic approximation as a large
laron. The three characteristic energies can be replace
two independent dimensionless parameters, e.g.,g5Eb /J as
the coupling constant andg5\Vph /J as the nonadiabaticity
parameter. Depending on the values of these parame
various regimes are found to be realized.18–20 The adiabatic
approximation~1! is valid when the inequality is fulfilled,

gcr,1,g,gcr,2 , ~2!

where the values ofgcr,i ,i 51,2, depend on the value of th
nonadiabaticity parameterg andgcr,1→0 asg→0.18,19Sev-
eral investigations have shown good agreement between
act numerical diagonalization and approximate results in
regime.21,22

II. DAVYDOV SOLITON IN A DISCRETE
MOLECULAR CHAIN

The Fröhlich Hamiltonian in the case of a single isolate
band of a quasiparticle and one phonon mode reads as

H5(
k

E~k!Bk
†Bk1

1

AN
(
k,q

x~k,q!Bk
†Bk2q~bq1b2q

† !

1(
q

\Vqbq
†bq . ~3!

With the Born–von Karman periodic boundary conditio
assumed, the wave numbers take the following values:
l
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k5
2p l

Na
, l 50,61, . . . ,6S N

2
21D ,

N

2
, ~4!

whereN is the number~chosen to be even! of molecules in a
chain. The Hamiltonian commutes with the operators of
number of quasiparticlesN and total momentumP,

N5(
k

Bk
†Bk , P5(

k
\kBk

†Bk1(
q

\qbq
†bq . ~5!

The creationBk
† and annihilationBk operators of a quasipar

ticle with the wave numberk are connected with the creatio
Bn

† and annihilationBn operators of a quasiparticle on a si
n by the unitary transformation,

Bn5
1

AN
(

k
Bke

ikna. ~6!

The operatorsbq
† ,bq are the Bose operators of phonons w

the wave numberq and frequencyVq that are connected
with the operators of the molecule displacementsUn and
canonically conjugated momentaPn by the unitary transfor-
mation

Un5
1

AN
(

q
S \

2MVq
D 1/2

~bq1b2q
† !eiqna,

Pn52 i
1

AN
(

q
S \MVq

2 D 1/2

~bq2b2q
† !eiqna. ~7!

We assume that the electron-phonon couplingx satisfies
the condition~2! for the applicability of the adiabatic ap
proximation~1!. The form of the interaction operator in Eq
~3! indicates that the presence of a quasiparticle cause
oscillator displacement and the renormalized phonon s
can be written as

uCph~ t !&5Su0&ph , ~8!

with the unitary operator

S5expF 1

AN
(

q
@bq~ t !bq

†2bq* ~ t !bq#G . ~9!

Below we consider one-particle states and the operatorsBk
andBn can satisfy any statistics. The important condition
that Bku0&50 whereu0& is the vector of the ground state
Therefore, the Hamiltonian~3! can represent an electron o
hole (Bk are Fermi operators!, an intramolecular excitation
(Bn are Pauli operators! as well as a high-frequency intramo
lecular excitation (Bk are Bose operators!. The single quasi-
particle state can be written in a general form,

uCe~ t !&5(
k

Ck~ t !Bk
†u0&e . ~10!

The statesu0&e in Eq. ~10! and u0&ph in Eq. ~8! describe,
respectively, the ground states of the molecules~or electron
subsystem! and of the phonons in a chain in the absence
an extra quasiparticle.

Substituting the wave function in the zero-order adiaba
approximation~1! with account of Eqs.~8!–~10!, into the



de
ha
it
e
th

on

-

ve
m:

-
the
ts

PRB 61 1131SOLITON DYNAMICS AND PEIERLS-NABARRO . . .
Schrödinger equation for the Hamiltonian~3! ~Refs. 23–25!
or using the semiclassical approach,26–28 one can obtain the
following system of equations:

i\
dCk

dt
5@W1E~k!#Ck

1
1

N (
q

x~k,q!A2MVq

\
QqCk2q , ~11!

d2Qq

dt2
52Vq

2Qq1(
k

x~k,q!A2Vq

M\
Ck2q* Ck . ~12!

Here,

Qq5A \

2MVq
~bq1b2q* !, ~13!

andW is the energy of the deformation,

W5
M

2 (
q

S UdQq

dt U
2

1Vq
2uQqu2D . ~14!

The explicit dependence of functionsE(k), Vq, and
x(k,q) on the wave vector is determined by the model un
consideration. We use the Davydov model for a chain t
includes a short-range interaction of a quasiparticle w
acoustical phonons and assume that the quasiparticle en
band is formed by the nearest-neighbors interactions. In
case, we have

E~k!5E022J coska, Vq52Aw

M
usin~qa/2!u,

x~k,q!5 ixA 2\

MVq
sin~qa!. ~15!

Introducing the quasiparticle wave functioncn and the
displacementsUn of the nth molecule given by the unitary
transformation,

cn~ t !5
1

AN
(

k
Cke

ikna, Un5
1

AN
(

q
Qqeiqna, ~16!

we can get the following system of equations:

i\
]cn

]t
5~E01W!cn2J~cn211cn11!

1x~Un112Un21!cn , ~17!

M
d2Un

dt2
5x~ ucn11u22ucn21u2!1w~Un111Un2122Un!.

~18!

The total energy of the system,

E5(
n

@2Jcn* ~cn111cn21!1x~Un112Un21!ucnu2

1~E01W!ucnu2#, ~19!
r
t

h
rgy
is

and the total momentum, determined by the operator~5!,

P5(
k

\kucku21 iM (
q

q
dQq

dt
Q2q ~20!

are constants of motion.
Let us choose the solution of Eqs.~17!–~18! in the fol-

lowing form:29

cn~ t !5Fn~ t !eikna2 iEt/\, ~21!

where k is a discrete variable, determined in Eq.~4!, and
Fn(t) is assumed to be a real function ofn. Substituting Eq.
~21! into Eq. ~17! leads to the equations

LFn2J cos~ka!~Fn211Fn11!1x~Un112Un21!Fn50,
~22!

dFn

dt
52

J

\
sin~ka!~Fn112Fn21!, ~23!

whereL5E01W2E.
From Eq.~23! one gets

Fn~ t !5(
q

f q exp$ i @qan2vt sin~qa!#%, v5V/a,

~24!

where

V5Vg sin~ka!, Vg5
2Ja

\
. ~25!

The function~24! describes a traveling wave depending
the variablen2vt only in the long-wave~continuum! ap-
proximation when sin(qa)'qa. In this case for smooth soli
ton envelope functionsFn(t) andUn(t), the continuum ap-
proximation of Eqs.~22!–~23! leads to the soliton solution,

Fsol~x,t !5Ama

2

1

cosh@m~x2Vt!#
. ~26!

Here the velocityV is connected withk by Eq. ~25! and

m5
G

a~12s2!cos~ka!
, G5

x2

Jw
, s25

Vgr
2

Vac
2

sin2~ka!.

~27!

The main characteristic of the moving soliton is the wa
vectork that determines the soliton velocity and momentu

Esol~k!5E022J cos~ka!2
x4~125s2!

3Jw2~12s2!3 cos~ka!
,

~28!

Psol~k!5\k1
8ax4 tan~ka!

3\Va
2w2~12s2!3

. ~29!

The functions~21!, ~24! constitute only a first approxima
tion to a traveling quasiparticle in the discrete system. In
caseVgr@Va this approximation coincides with the resul
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of the continuum models because only small values ofk are
possible, the velocity is proportional tok and tends to the
sound velocityVa .

In the case of a narrow electron band, for small values
k the velocity also turns out to be proportional tok, as hap-
pens in the continuum approximation. At large values ofk,
the velocity is bounded from above by the group veloci
V→Vgr at k→p/a.

This solution shows that in the continuum approximati
at small values of the soliton velocityV the shape of the
traveling soliton is very close to the shape of the soliton
rest, and that its amplitude increases and the width decre
with increasing velocity. At large velocities these chang
become significant and the applicability of the continuu
approximation is violated, and therefore, the discrete desc
tion is necessary. Moreover, Eq.~24! shows that the space
time evolution of the envelope function is more complicat
than the one predicted by the continuum approximation w
its functional dependence on the variablen2vt. Hence, in
the discrete system one can expect the manifestation o
Peierls-Nabarro relief30,31 in the quasiparticle dynamics. Thi
question is discussed in Sec. IV.

The exact analytical solution of the initial system of d
crete Eqs.~17!–~18! is not known and numerical calculation
are thus very useful. Unlike the stationary case that has
velocity, special attention should be payed to the choice
the initial conditions in the numerical study at nonzero v
locities. The deviation of the initial condition, even if it i
chosen in the form of the continuum solution, from the ex
steady state in this latter case is large. This can resu
strong emission of phonons that will influence the quasip
ticle significantly and the system will remain far from th
steady state. One possible way to eliminate this energy
cess is to introduce friction. Another way is to try to guess
initial condition very close to the traveling steady state. T
analytical analysis above can be used for the proper choic
initial conditions in the numerical study of traveling excit
tions in discrete systems. At time momentt50 the soliton
solution of Eqs.~17!–~18! has the form

cn~0!5Fn~0;k!eikna, Un~0!5
1

N (
q

U~q,0;k!eiqna,

dU

dt U
t50

52 i
2Ja

N\
sin~ka!(

q
qU~q,0;k!eiqna. ~30!

At small k according to Eq.~30!, one hasFn(0;k1dk)
.Fn(0;k),U(q,0;k1dk).U(q,0;k). This gives rise to the
following choice of the initial conditions for the travelin
soliton in the discrete system:

cn~0;k1dk!5cn~0;k!eidkna, Un~0;k1dk!5Un~0;k!,

dUn~k1dk!

dt U
t50

52
J

\
@Un11~0;k!2Un21~0;k!#

3sin@~k1dk!a#. ~31!

We start with zero wave vectork50, and choose the func
tions cn(t50;0) andUn(t50;0) in the form obtained by
exact numerical minimization of the energy functional~19!.5
f
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Then we use the relations~31! for small values of the dimen
sionless wave numberdka. Thus, we get the traveling wav
solutions with greater velocities by substitutingcn(0;km)
and Un(0;km) by the steady-state solutions obtained pre
ously at somet5t0 for a smaller velocity:

cn~ t50,km11!5cn~ t5t0 ,km!eidkna,
~32!

km115km1dk,k050,

with the same molecule displacements and correspon
site velocities according to Eq.~31!. In this way we disturb
the shape of the pulse slightly and increase the velocity
the pulse in an iterative manner. The validity of this a
proach and its efficiency are demonstrated by the result
the numerical calculations, as it will be shown below.

In the next section we discuss the results of the numer
integration of the discrete system of Eqs.~17! and~18! with
the normalization and periodic boundary conditions

(
n

ucnu251, cn1N5cn , Un1N5Un , ~33!

using Eq.~31! as an initial condition. For this it is useful to
rewrite Eqs.~17! and ~18! in dimensionless variables:

i
]cn

]t
5Ecn2~cn211cn11!1X~un112un21!cn ,

~34!

d2un

dt2
5Y~ ucn11u22ucn21u2!1Z~un111un2122un!.

~35!

Here,

t5
Jt

\
, un5

Un

a
, E5

L

J
,

~36!

X5
ax

J
, Y5

\2x

MaJ2
, Z5

\2w

MJ2
.

III. RESULTS OF NUMERICAL CALCULATIONS

We have performed numerical calculations for a latt
with N550 sites, under periodic boundary conditions in t
manner discussed in the previous section. We have cho
numerical values of the parameters that are characterist
the protein alpha helix and other quasi-one-dimensio
polypeptides. Namely,

J51.55310222 J, w539 N/m, M55.7310225 Kg,

x562310212 N, a54.5310210 m. ~37!

In some of the calculations these parameters were change
specified in the text and in the figure captions.

The results of the calculations are reported in the figur
They show that increasing the value ofk within a given
interval, the amplitude and the velocity of the soliton pul
increases~see Fig. 1, Fig. 2, and Fig. 3!. It might be expected
that, with increasingk, the current~in the case of transfer o
charges! will increase monotonically. Instead, the numeric
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simulations show that, although this happens for small val
of k, with further increases ofk a saturation of the soliton
velocity at a constant valueV0 takes place. The saturatio
velocity V0 and the value ofk for which this saturation oc-
curs, depend on the values of the parameters of the chain~see
Fig. 4!. The maximum soliton velocity whenx85x,J8
5J,w859.25 N/m is approximately two-thirds of the soun
velocity in the chain, as seen in Fig. 4. This is less than
value predicted by the analysis based on the continu
model. Our results, based on the discrete model, can
explain the saturation of the drift velocity in the polydiacet
lene at velocities less than the sound velocity that was
ported in Ref. 17. Moreover, the increase of the soliton
locity results in the perturbation of the soliton, that is,
envelope changes, oscillating tails appear, and their am
tude and energy increase withk. At the same time, the tota
current in the system,j 5ı\(n(cn* cn212cn21* cn), first, in-
creases withk, and, for large values ofk, it reaches aplateau.
Further increase of the carrying wave vectork results in the
decrease of the current due to the more intensive emissio
phonons and radiation from the soliton~compare Fig. 3 and
Fig. 5!. This corresponds to the region of negative resista
that is observed experimentally at large fields, in some c
ducting polymers. Also, the transfer of the energy of t
initial excitation to delocalized modes that takes place
large values ofk, leads to a reduction of the total-energy flu
The conclusion is that the population of delocalized mo
absorbs the energy, but they do not contribute to the cur
in the system.

FIG. 2. Chain deformationun2un21 as a function of the lattice
site and time atl 51.

FIG. 1. Amplitude of the soliton envelope as a function of t
lattice siten and timet, at l 51, (k52p l /N).
s

e
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The average soliton momentum and energy for small va
ues of the velocity, and, correspondingly, for lowk, are close
to the values predicted by the continuum approximation, b
ing proportional to the first and second power of the velocit
from the continuum results are increasingly apparent ask
increases~see Fig. 4!.

The effective soliton mass can be obtained from Eq.~29!
at small velocities:

FIG. 3. Amplitude of the soliton envelope as a function of th
lattice site n for different times,t525 ~solid line!, and t5175
~dashed line!, at l 56.

FIG. 4. Dependence of the soliton velocity on the wave numb
for different sets of parameters. The solid line corresponds to the
of parameters given by Eq.~37!; the dotted line corresponds tox8
52x,J854J,w85w; and the dashed line corresponds tox8
5x,J85J, w859.25 N/m.
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ms5mS 11
8a2x4

3\2w2Vac
2 D , m5

\2

2Ja2
. ~38!

It can also be observed from the numerical calculatio

FIG. 5. Amplitude of the soliton envelope as a function of t
lattice siten for different times,t5560 ~solid line!, 580 ~dashed
line!, and 600~dotted line! at l 5210.

FIG. 6. Soliton c.m.c. as a function of time at short time sca
for l 510.
s

that the motion of the localized pulse is discrete, it has
form of discrete jumps from site to site even for rather wi
pulses~see Fig. 6!. At a large time scale the center of ma
coordinate~c.m.c.! of the pulse@see Eq.~20!# is displaced
along the chain with constant velocity, as it is shown in F
7. It is also worth mentioning the stability of soliton env
lope throughout propagation, which can be seen in Fig
~remember that the figures show soliton pulses that h
passed the chain ring many times before reaching the pre
positions!.

,

FIG. 7. Soliton c.m.c. as a function of time at large time sc
for l 510.

FIG. 8. Soliton velocity forl 510.
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IV. PEIERLS-NABARRO BARRIER

The numerical investigations reported in the previous s
tion, demonstrate the manifestation of the lattice discreten
in several ways. The main qualitative difference between
continuum and the discrete model is the periodicity of
latter with the lattice constanta. First of all, in the periodic
lattice the quasiparticle energy band has a finite width 4J and
the energy dispersion differs from the parabolic law at la
values ofk. This is taken into account by Eq.~21!, which
results in the relation~25! between the velocityV of soliton
wave packet and carrying wave vectork.

Second, the manifestation of the Peierls-Nabarro barrie
clearly apparent in the soliton motion at high time resolutio
as is shown in Fig. 6 and Fig. 8. The ‘‘instantaneous’’ solit
velocity depends on time, as would be expected for the m
tion of a quasiparticle in a periodical potential. The influen
of the Peierls-Nabarro relief on Davydov solitons has be
shown in Ref. 32 by variational numerical calculations, a
in Ref. 33 the periodic relief was studied using the co
pletely integrable discrete Ablowitz-Ladik model.34 The sys-
tem of coupled Eqs.~17! and ~18! that describes molecula
solitons~one-dimensional large polarons! does not belong to
any completely integrable class, and numerical calculati
are very useful to extend and complement continuum m
els. The proper analytical studies can be fruitful for a be
understanding of the results obtained in the previous sec
In this section we present such analysis. It takes into acco
the periodicity of the lattice, not only in the coordinate spa
but also in the space of reciprocal lattice vectors. This la
periodicity results in umklapp processes in the interacti

FIG. 9. Soliton c.m.c. as a function of time (x591 pN, l
51).
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between quasiparticles in crystals. In Eqs.~11!–~12! the
wave vectors are in the first Brillouin zone,2p/a,k
<p/a, and one can introduce the summation over wave v
tors k8 replacingk2q and taking into account the quasimo
mentum conservation law,

D~k2q2k8!55
dk2q,k8 if uk2qu<

p

a
,

dk2q2g,k8 if k2q.
p

a
,

dk2q1g,k8 if k2q,2
p

a
,

where g52p/a is the vector of a reciprocal lattice. Thi
does not change the discrete Eqs.~17! and ~18! because the
relationCk6g5Ck applies, but it is essential when introdu
ing continuous functions for the analytical investigation
Eqs.~11! and ~12! that are equivalent to Eqs.~17! and ~18!.
Let

c~x,t !5
1

AL
(

k
Ck~ t !eikx, u~x,t !5

1

N (
q

Qqeiqx,

~39!

whereL5Na. One can see that these functions are perio
cal, i.e., c(x1L,t)5c(x,t) and u(x1L,t)5u(x,t). From
Eq. ~39! we derive the relation

FIG. 10. Soliton velocity as a function of time (x580 pN, l
51).
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Ck~ t !5
1

AL
E

2L/2

L/2

c~x,t !e2 ikxdx ~40!

in the continuum approximation. We assume that in thk
representation the soliton wave packet is narrow and c
tered at some valuek0 that determines the soliton velocity i
x representation, and thatk0 is small so thatk0a!1. Then
we can use the long-wave approximation in Eq.~15! to ob-
tain

E~k!.E01
\2k2

2m*
, Vq.Vauqu,

~41!

x~q!.2ixA \

2MVq
qa.

Taking into account Eqs.~39!–~41! we can rewrite Eqs.~11!
and ~12! in the following form:

i\
]c

]t
1

\2

2m*

]2c

]x2
2@L12xr#c5«F~x!, ~42!

]2r

]t2
2Va

2 ]2r

]x2
5

2xaVa
2

w

]2uc~x,t !u2

]x2
1« f ~x!, ~43!

where r(x,t) is the chain deformation, r(x,t)
5]u(x,t)/]x, and

FIG. 11. Soliton momentum as a function of time (x
580 pN, l 51). The c.m.c. of the soliton is a linear function o
time within the same time scale.
n-

F~x!5 (
n51,2

@e(21)nigx21#
1

L3/2 (
q,k

(n)

ei (q1k)xx̃~q!QqCk ,

~44!

f ~x!5
2xVac2

w

]2

]x2 F (
n51,2

@12e2(21)nigx#

3
1

N (
k,k8

(n)

e2 i (k81k)xCk* C2k81c.c.G . ~45!

Here x̃(q)52ix sin(qa) and the summations in(q,k
(n) , n

51,2, are performed in the regions of the Brillouin zo
whereq1k.p/a for n51, andq1k,2(p/a) for n52,
respectively. AssumingCk and Qq are small in these re
gions, the functions~44! and ~45! can be considered as
perturbation.

In the absence of the perturbation, Eqs.~42! and ~43!
admit the well-known solitonlike solution. The influence of
weak perturbation on the soliton can be accounted for wit
the adiabatic perturbation theory35 according to which the
solution of Eqs.~42! and ~43! reads

r~x,t !52
2xa

w~12s2!
uc~x,t !u21«r1~x,t !, ~46!

c~x,t !5cs~x,t !1«c1~x,t !. ~47!

FIG. 12. The width of the soliton as a function of time (x
590.5 pN ,l 51).
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Here cs(x,t) is the soliton solution of the nonlinear
Schrödinger equation in the absence of the perturbation

cs~x,t !5A
exp@ ik0~x2r !#

cosh@m~x2r !#
, ~48!

with time-depending parameters, namely, the amplitudeA,
the carrying wave vectork0, the soliton center of massr, and
the inverse soliton widthm, which are governed by the fol
lowing equations:

ṙ 5
\k0

m
1«f1 , k̇05«f2 , ṁ5«f3 , ~49!

Ȧ5
i

\ S 2L1
\2k2

2m
1

\2m2

2m
1«f4DA, ~50!

m25
4mx2a2

\2w~12s2!
uAu21«f5 . ~51!

The quantitiesf i are determined by the condition that th
correction c1(x,t) in Eq. ~47! of the solution of the
nonlinear-Schro¨dinger equation perturbed by the termwpert
5«(F12xr1cs) does not contain secular terms.36 This pro-
cedure leads to the following equations for functionsf i

f152
i

\E2L/2

L/2

~Fcs* 2F* cs!~x2r !dx, ~52!

f252
m

\ E2L/2

L/2

~Fcs* 1F* cs!tanh@m~x2r !#dx

2
4xm

\ E
2L/2

L/2

r1tanh@m~x2r !#ucsu2dx, ~53!
e
tiv

on
d

ie
f35
im

\ E
2L/2

L/2

~Fcs* 2F* cs!dx, ~54!

f452mE
2L/2

L/2

~Fcs* 1F* cs!~x2r !tanh@m~x2r !#dx

24xmE
2L/2

L/2

r1tanh@m~x2r !#~x2r !ucsu2dx

2 ik0E
2L/2

L/2

~Fcs* 2F* cs!~x2r !dx2
\2

3m
f5 , ~55!

ḟ55
im2

\ E
2L/2

L/2

~Fcs* 2F* cs!dx. ~56!

Here we will analyze the dynamic equation for the solit
center of mass,r (t), since it represents one of the mo
important results of the analytical model. According to Eq
~52! and ~53!, this equation takes the form

mr̈~ t !1E
0

t

r̈ ~ t2t!K~t!dt52
p

a
UP sinS 2pr

a D , ~57!

where

K~t!52
4x2am

wVa
2

d

dt

mVat cosh~mVat!2sinh~mVat!

sinh3~mVat!
,

~58!
UP5
4p2J

maN2 (
q,k

(1)
~g2q2k!a sin~qa!

sinhS pq

2m D coshFp~k2k0!

2m GcoshFp~k2k01q2g!

2m G . ~59!
he
f its

os-
g

ord-
e-
om
The kernelK(t) ~58! is determined by the reaction of th
lattice on the soliton acceleration and leads to the effec
soliton massms , ~38! in the dynamic equation~57! at slow
acceleration. The right-hand side term in Eq.~57! indicates
that the soliton moves in the periodical~with lattice period!
Peierls-Nabarro potential

U~r !5UP sin2S pr

a D . ~60!

The soliton motion in a periodical potential has been c
sidered in Ref.37. A soliton can overcome the barrier an
move along the chain only if its initial kinetic energyEkin

5msV0
2/2 exceeds the height of the Peierls-Nabarro barr

Eq. ~60!, which is possible when the value ofk0 exceeds the
critical valuekcr ,
e

-

r,

kcr5A2m2UP

\2ms

. ~61!

At small values of the initial wave number, i.e., fork0

,kcr , pinning of a soliton by the lattice takes place and t
soliton oscillates between the neighboring barriers even i
width exceeds the lattice spacing, as can be seen by the
cillation of soliton c.m.c. shown in Fig. 9. With increasin
k0, the soliton kinetic energy increases and atk0.kcr the
soliton can move along the chain.

It should also be noticed that in the general case, acc
ing to Eq.~59!, the height of the Peierls-Nabarro barrier d
pends on the width of the soliton and its wave vector. Fr
Eq. ~59! at ma,1 we find the following estimation ofUP :
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UP5
4~p214!J

ma
expS 2

p2

2maD F11oS m3

p3D G . ~62!

Hence, for a broad soliton the critical valuekcr ~61! is very
small and such a soliton moves with a nonzero velocity e
at small values ofk0. Moreover, at values of the wave num
ber k0 that exceed the critical value, the soliton is still se
sitive to the presence of the barrier. The dependence o
velocity, momentum and energy onk0 differ from those pre-
dicted by the continuum models~see, Fig. 10 and Fig. 11!.
Indeed, instead of a monotonic relation, those variables
oscillating functions of time. From Eq.~57! one can obtain
the instantaneous soliton velocity:

V~ t ![ ṙ ~ t !5V0dn~u,k!5V̄F11 (
n51

`
4qn cos~nvt !

11q2n G ,

~63!

FIG. 13. Soliton velocity as a function of time (x590.5 pN,
l 51).
n

-
its

re

wheredn(u,k) is the Jacobi elliptic function,u5pV0t/a,
and k25UP /Ekin , is the modulus of the elliptic integral
According to Eq.~63! the soliton moves with an averag
soliton velocity,V̄5pV0/2K(k), and has oscillating compo
nents with a main harmonicv5p2V0/2aK(k) and its over-
tones. HereV0 is the initial soliton velocity due to the initia
wave vectork0 as given by the relation~25!, K(k) is the
complete elliptic integral of the first kind, andq5exp
(2pK8/K), whereK85K(k8), k82512k2.

From Eqs.~49! and~54! we get the equation for the soli
ton width

ṁ52M sinhS pmV

2\m D sinS 2pr

a D , ~64!

where

FIG. 14. Soliton momentum as a function of time (x
590.5 pN, l 51).
M5
2p3x2

\L2wm
(
k,q

(1) sin~qa!sinhS p~2k1q2g!

2m D
sinhS pq

2m D cosh2S pk

2m D cosh2S p~k1q2g!

2m D . ~65!
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From Eq.~64! we conclude that the oscillations of the solito
width take place during the soliton propagation through
discrete potential relief. It is difficult to see these oscillatio
in Fig. 1 since the soliton is spread over few lattice sit
while the oscillations of the soliton amplitude are distinc
seen. And indeed, an amplitude of a soliton and its width
connected by the normalization condition for the wave fu
tion and Eq.~51!, which give

uAu25
m

2
@11O~«2!#, m5m01«

f5

m0
. ~66!

Here m0 coincides with the soliton width as given by th
continuum approximations@see Eq.~27!#. The time depen-
dence of a soliton amplitude follows from Eqs.~56! and~64!,
which determine the oscillations of the soliton amplitude
nonzero velocity.

V. CONCLUSIONS

In the previous sections we have reported the result
numerical and analytical studies of a traveling soliton in
discrete lattice with periodic boundary conditions at arbitra
values of the carrying wave vector. For this we implemen
the method of the adiabatic increase of the wave vector
scribed in Sec. II, as well as the analytical scheme of
counting for the discreteness within the corresponding c
tinuum models. These studies reveal that in a discrete la
a soliton moves in a periodical Peierls-Nabarro potential b
rier. The overcoming of this barrier has a threshold chara
not only with respect to the soliton kinetic energy at giv

FIG. 15. Soliton c.m.c. as a function of time (x590.5 pN,
l 51).
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values of the soliton parameters, but also with respect to
binding energy as determined by the electron-phonon c
pling x at a given value of the wave number, as is demo
strated in Fig. 9, Fig. 12, and Eq.~61!. Similarly, the ampli-
tude of the soliton oscillations within the barrier below th
threshold, according to Eqs.~60! and ~62!, is a function of
the value of the carrying wave vector and of the strength
the electron-phonon coupling. This is illustrated in the n
merical results displayed in Figs. 13–16.

Due to the lattice discreteness, the soliton velocity co
tains oscillating terms Eq.~63!. Such a soliton center of mas
moves with a nonzero instantaneous accelerationr̈ , which
results in the emission of sound wavesr1(x,t) and, respec-
tively, in soliton deceleration. The motion of the soliton a
the sound waves lead to displacements of the molecules f
their equilibrium positions and, hence, to the breaking of
initially rigorous periodicity of the lattice. This explains wh
in the numerical experiments the effect of the potential re
is particularly striking at the very beginning of the solito
motion and becomes less periodic at later times~see Fig. 8!
when the periodic potential itself is perturbed by the solit
motion and by the sound waves. This latter effect is a high
order effect in the perturbation scheme suggested in Sec
but it is automatically accounted for in the numerical sim
lations of the self-consistent system of Eqs.~17! and ~18!.
Therefore, the properties of solitons in a discrete system
the properties of the Peierls-Nabarro barrier are in mut
connection: on the one hand, the soliton dynamics is in
enced by the barrier, and on the other hand, the soliton it
determines this barrier, Eq.~59!.

FIG. 16. Soliton c.m.c as a function of time (x5124 pN,
l 51).
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For a broad soliton withk0.kcr that moves along the
chain with moderate velocity, the Peierls-Nabarro relief
sufficiently shallow. The sound emission and soliton ‘‘son
deceleration’’ are negligibly small but their roles increa
with increasing soliton velocity.

The soliton amplitude in the continuum approximati
~20! and ~21! increases uniformly with the velocityV be-
cause uAsolu2}(12s2)21, s25V2/Va

2 , and its width de-
creases,l sol}(12s2). Since\k05mV, the amplitude of a
soliton in the continuum approximation also increases w
k0. However, in the numerical simulation this increase of
soliton amplitude and velocity is observed only within som
interval of k. At large values ofk the velocity reaches a
saturation, the value of which depends not only on the so
velocity in the chain, but also on the values of the parame
of electron subsystem.

A further difference with respect to the continuum resu
is that small oscillations of the soliton width and related
them oscillations of the soliton amplitude take place dur
soliton propagation along the discrete system, as can be
served in the numerical experiments~see Fig. 1! and as pre-
dicted by Eqs.~64! and ~66! of the analytical model pre
sented in Sec. IV. It is worth mentioning here that t

FIG. 17. Amplitude of the soliton envelope as a function of t
lattice siten for different times,t5280 ~solid line!, 290 ~dashed
line!, and 300~dotted line! at l 5214.
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oscillations of the soliton amplitude were present in the ea
numerical calculations on soliton dynamics, e.g., Ref.
Also worth mentioning is the asymmetric change of t
‘‘leading’’ and ‘‘back’’ fronts of the soliton envelope due to
the motion~see Fig. 5!. The oscillations of the soliton am
plitude increase with increasingk, which results in the
change of the soliton shape. We did not find a shrinking
the soliton into a ‘‘small polaron’’ state localized within on
lattice site, due to the soliton motion. At certain paramet
of the chain, the increase ofk can indeed result in the deca
of a soliton, but this is an instantaneous transformation fr
a smooth one-hump soliton, localized within few lattice sit
into a many-hump and more extended excitation, as sho
in Fig. 17. At other values of the parameters, which cor
spond to the relationVgr.Va , the soliton is stable even fo
very large values ofk ~see Fig. 18!.
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FIG. 18. Amplitude of the soliton envelope as a function of t
lattice siten for different times,t5200 ~solid line!, 210 ~dashed
line!, 220~dotted line! at l 5225, w59.25 N/m. The values of the
other parameters are the same as in Eq.~37!.
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