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Quantum effects on the BKT phase transition of two-dimensional Josephson arrays

Alessandro Cuccoli, Andrea Fubini, and Valerio Tognetti
Dipartimento di Fisica dell’Universita` di Firenze and Istituto Nazionale di Fisica della Materia (INFM),

Largo E. Fermi 2, I-50125 Firenze, Italy

Ruggero Vaia
Istituto di Elettronica Quantistica del Consiglio Nazionale delle Ricerche and Istituto Nazionale di Fisica della Materia (INFM)

via Panciatichi 56/30, I-50127 Firenze, Italy
~Received 29 November 1999; revised manuscript received 25 January 2000!

The phase diagram of two-dimensional Josephson arrays is studied by means of the mapping to the quantum
XY model. The quantum effects on the thermodynamics of the system can be evaluated with quantitative
accuracy by a semiclassical method, thepure-quantum self-consistent harmonic approximation, and those of
dissipation can be included in the same framework by the Caldeira-Leggett model. Within this scheme, the
critical temperature of the superconductor-metal transition, which is a Berezinskii-Kosterlitz-Thouless one, can
be calculated in an extremely easy way as a function of the quantum coupling and of the dissipation mecha-
nism. Previous quantum Monte Carlo results for the same model appear to be rather inaccurate, while a
comparison with experimental data leads us to conclude that the commonly assumed dissipation model is not
suitable to describe in detail a real system.
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Two-dimensional ~2D! Josephson junction arrays1–3

~JJA’s! have been recently described by means of the t
dimensional quantumXY model. These arrays are made
superconducting islands, where the charge carriers~Cooper
pairs! interact with each other through the Coulomb intera
tion and move between nearest-neighbor islands through
Josephson tunneling mechanism. The following action tu
out to describe the system:4,5

S[ f] 5E
0

\b

duH \2

2 (
ij

Cij

q2
ḟ i(u)ḟ j(u)

1J(̂
ij &

$12cos@~f i~u!2f j~u!#%J ; ~1!

it is a variant of the well-known quantumXY model and
therefore a Berezinskii-Kosterlitz-Thouless~BKT! transition
is expected to occur at some finite temperature: its valu
affected by quantum effects, whose importance depend
the relative weight of the two terms in the action. The fi
one represents the Coulomb interaction between Coo
pairs with chargeq52e and with the capacitance matrix

Cij5C0Fd ij1hS zd ij2(
d

d i,j1dD G , ~2!

whereC0 andC1[hC0 are the self-capacitance and mutu
capacitance of the islands, andd runs over the vector dis
placements of thez nearest neighbors. The second term d
scribes the Josephson interaction with couplingJ between
nearest-neighbor islands^ ij &,f i2f j being the phase differ
ence between theith and the jth superconducting island
From a quantum mechanical point of view the supercond
ing phase operatorsf̂ i are canonically conjugated to th
Cooper-pair number operatorsn̂i ,@f̂ i ,n̂j#5 id ij .
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The phase diagram of square and triangular lattices
Josephson junctions was experimentally7 investigated and
compared with the results of quantum Monte Carlo~QMC!
simulations3 of the above model.

In this paper we present an analytical study of the ph
diagram of JJA’s based on the effective potential approac
pure-quantum self-consistent harmonic approximatio8

~PQSCHA!, where the effect of quantum dissipation is al
considered. In mesoscopic systems, like JJA’s, environm
tal effects can modify the physical properties of the isola
system. In order to study the open system, an additional t
to the action~1! is thus inserted:9,10

SD@f#5
\

2E0

\b

duE
0

\b

du8(
ij

K ij~u2u8!f i~u!f j~u8!,

~3!

where the kernel matrixK(u)5$K ij(u)% is a real symmetric
matrix and, as a function ofu, is even and periodic,K(u)
5K(2u)5K(b2u), and satisfies*0

bduK(u)50. It contains
the whole information about the environmental coupling, a
in particular it is related to the classical damping memo
functionsg ij(t) by

Kn,ij5unnuĝ ij~ unnu!, ~4!

where nn52pn/\b are the Matsubara frequencies,ĝ ij(s)
means the Laplace transform ofg ij(t), and

Kn5E
0

\b

duK~u!cosnnu ~5!

is thenth Matsubara component of the kernel matrix.
In Eq. ~1!, the Coulomb term is like a kinetic energ

contribution ~with C/q2 as the mass matrix!, while the Jo-
sephson term plays the role of the potential energy. For la
capacitive coupling the classical limit is approached and
11 289 ©2000 The American Physical Society
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system behaves as a classicalXY model, displaying a BKT
phase transition11 at the classical critical temperature. In th
opposite limit, the energy cost for transferring charges
tween neighboring islands is high, so the charges tend to
localized and phase ordering tends to be suppressed at l
temperatures. An important role in this system is played
the Coulomb interaction range, which can be quantified
means of the parameterh, i.e., the ratio between the mutu
capacitance and the self-capacitance of the junctions.
connection betweenh and the charging interaction range c
be found observing that the latter is proportional to the
verse of the capacitance matrix.5 The Josephson coupling o
an island with its neighbors,Jz, defines the overall energ
scale for the system, while the characteristic quantum ene
scale\V can be identified considering the bare dispers
relation

\2Vk
25

q2J

C0

zmk

11zhmk
, ~6!

where mk512(1/z)(dcos(k•d), and choosingV as the
maximum frequency:

V2[max$Vk
2%5

q2J

\2C0

3H 8

118h
h lattice,

9

119h
n lattice.

~7!

One can define a meaningful quantum coupling parame
which rules the importance of ‘‘quanticity’’ in the system, a
the ratio between the two energy scales:

g5
\V

zJ
. ~8!

The thermodynamic properties of the system are stud
here by means of the PQSCHA, which was recently
tended to treat quantum open systems.12 By means of this
approximation scheme the thermodynamics of the quan
system~1! with dissipation~3! can be reduced to an effectiv
classical problem, where the pure-quantum part of the fl
tuations is taken into account at the self-consistent harm
level through a temperature-dependent renormalization c
ficient, while nonlinear thermal fluctuations and quantu
harmonic excitations are fully accounted for. Following t
prescription of Ref. 12 the PQSCHA effective potential f
our system reads

Veff5Jeff(̂
ij &

@12cos~f i2f j!#, ~9!

where we do not consider some additive uniform term
since they influence neither thermal averages nor the cri
behavior. The parameterJeff includes the pure-quantum co
rections; it reads

Jeff~ t,g,h,ĝ ij !5Je2D(t,g,h,ĝ ij)/2, ~10!

where the renormalization coefficientD(t,g,h,ĝ ij) repre-
sents the pure-quantum fluctuations of the relative phase
tween islands,f i2f i1d , and is a function of thereduced
temperature t5(bJ)21, of the quantum coupling paramete
-
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g, of the Coulomb interaction rangeh, and of the damping
throughĝ ij . In the case of a square lattice~the generalization
to other kind of lattices is straightforward! the explicit ex-
pression of the renormalization coefficient is

D5
~118h!t

2N (
k

mk

114hmk
(
n51

`
1

ñn
21ṽk

21k̃n,k

, ~11!

where the tilde means that the square frequenciesnn
2 , vk

2 ,
and kn,k are expressed in units ofV, the characteristic fre-
quency scale. They read

ñn5
pnt

2g
, ṽk5Ṽke

2D/4, k̃n,k5
g

2

118h

114hmk
K̃n,k ,

~12!

whereKn,k is the Fourier transform of Eq.~4!. The renormal-
ization coefficientD(t) is very sensitive to the range of th
charging interaction. Indeed, for a fixed value of the quant
coupling the pure-quantum fluctuations of the phase rep
sented byD(t) are strongly enhanced whenh increases, and
they saturate whenh@1/pz. This behavior can be explaine
by writing the dispersion relation of the linear excitations

\2vk
25

q2Jeff

C0

zmk

11zhmk
——→

h→`

\2vE
25

q2Jeff

C1
; ~13!

as h increases, a larger and larger region of the dispers
relation tends to the constant frequencyvE, and the relative
portion of the Brillouin zone wherevk differ significantly
from vE shrinks as (pzh)21. On the other hand, the low
frequency part of the spectrum does not contribute sign
cantly to the pure-quantum coefficientD(t) due to the ab-
sence of then50 Matsubara term in the summation of E
~11!.

This behavior ofD(t) also differs from what was found in
Ref. 13 ~whereD is denoted as22 lng0): this results from
the different choice of the quantum coupling parameter. O
choice, Eq.~8!, takes into account the contributions of th
whole capacitance interaction in order to determine a me
ingful quantum energy scale~7!. In particular, while the
quantum coupling parameter chosen in Ref. 13 contains
self-capacitance term only, ourg varies continuously withh
and, in the limits of small and largeh, it smoothly connects
the two quantum coupling parameters of Ref. 3. We not
that in Ref. 13 the effective Josephson coupling is erro
ously set to Jeff /J5(11D/2)e2D/2;12D 2/8, while the
correct low-coupling approximation8 of Veff gives Eq.~10!,
i.e., Jeff /J;12D/2. Therefore in Ref. 13 the quantum e
fects turn out to be significantly underestimated. The sa
mistake is made in Ref. 14.

Starting from Eqs.~9!–~11!, the quantum thermodynami
average of any observableÔ(n̂,f̂), e.g., a correlation func-
tion or the helicity modulus, can be expressed in terms of
Weyl symbolO(n,f) by a classical-like formula given by12

^Ô~ n̂,f̂!&5 K ^̂ O~n,f1j!&&L
eff

, ~14!

where
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K • L
eff

5ZC
21E df~• !e2bVeff(f) ~15!

(ZC5*dfe2bVeff(f)) and ^̂ O(n,f1j)&& denotes the aver
age over the two independent Gaussian distributions ofn and
j: the former accounts for the total fluctuations of the nu
ber variables, while the latter smears the functionO(n,f) on
the scale of the pure-quantum fluctuationsj of the phases.

Within the PQSCHA approach, the BKT critical temper
ture tBKT of the system can be easily evaluated by the f
lowing self-consistent relation:15

tBKT~g,h,ĝ ij !5tBKT
(cl) e2D(tBKT ,g,h,ĝ ij)/2, ~16!

where tBKT
(cl) is the BKT critical temperature of the classic

XY model, tBKT
(cl) 50.895 ~Ref. 16! for the square lattice and

tBKT
(cl) 51.36 ~Ref. 17! for the triangular one.

Turning to our results, let us consider first the behavior
the undamped system (k̃n,k50). Our phase diagram (tBKT vs
the square couplingg2) for the square lattice is compare
with quantum Monte Carlo simulations3 in Fig. 1. We ob-
serve that our approach starts, by construction, from the
rect classical valuetBKT

(cl) and remains valid as long asD!1:
this means that the reduction of the transition tempera
due to quantum effects can be considered reliable if less
about 30% oftBKT

(cl) . On the other hand, the limiting value o
the QMC data for vanishing quantum coupling is 0.943

displaying a significant disagreement with the by-no
established value of 0.895 quoted above for the classicalXY
model.

In Fig. 2 the transition temperature versusg is compared
with the experimental data both for square and triangu
lattices. It must be noticed that thea priori knowledge of the
model parameters (J,C0, andh) describing the experimenta
setup is rather poor:7 therefore there is an uncertainty both o
the vertical (t5T/J) and on the horizontal@g as given by
Eqs.~8! and~7!# scales. Indeed, the values ofJ used in Ref.
7 give extrapolated classical transition temperatures wh
are larger than the known theoretical ones, for both
square (0.95 against 0.895) and the triangular (1.7 aga
1.36) lattices. In order to avoid such systematic error, e

FIG. 1. Phase diagram for the quantumXY model, Eq.~1!, on a
square lattice in theg2-t plane at fixed value ofh5100. The line is
our result for the undamped system, i.e.,G05G150. The circles are
the QMC results of Ref. 3.
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set of data in Fig. 2 is normalized to the corresponding cl
sical extrapolated value, as already done in Ref. 7. The o
all agreement appears to be rather good even though
experiments present a more rapid decrease of the trans
temperature for increasing values ofg: this could suggest
that the pureXY model is insufficient to explain this behav
ior.

Let us now introduce the dissipation. Usually, the dam
ing is described in terms of shunt resistors connecting
islands to ground and/or shunt resistors in parallel to
junctions.18 Furthermore, the environmental coupling
taken to be of Ohmic type; i.e.,

ĝ ij~s!5g ij5
1

2p
RQGij ~17!

does not depend ons. RQ52p\/q2 is the quantum resis
tance andGij is the conductance matrix, which reads

Gij5
1

R0
d ij1

1

R1
S zd ij2(

d
d i,j1dD , ~18!

whereR0 andR1 are resistive shunts to the ground and b
tween islands, respectively.

However, a strictly Ohmic damping leads to unphysic
results such as the logarithmic ultraviolet divergence of
fluctuations of momenta,10,12i.e., the number of Cooper pair
in each island. The simplest way to consider the inertia in
response of the dissipation bath is to use the Drude mod10

which consists of a real-time memory damping with exp
nential decay of the form

g~ t !5u~ t !
g

t
e2t/t, ~19!

whereu(t) is the step function andt21 is the Drude ultra-
violet cutoff frequency; the Ohmic behavior is recovered
the limit t!t. With this regularization Eq.~17! becomes

ĝ ij~s!5
RQ

2p F d ij

R0

1

11st0
1

1

R1
S zd ij2(

d
d i,j1dD 1

11st1
G .
~20!

FIG. 2. Phase diagram for the quantumXY model, Eq.~1!, on
triangular~left! and square~right! lattice in theg-t plane at fixed
value of h5100. Solid line,G05G150; dashed line,G053 and
G150; dot-dashed line,G050 andG153. The solid squares and
triangles are the experimental data of Ref. 7.
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The presence of two distinct characteristic times is consis
with the choice of two independent damping mechanism,
on-site and the nearest-neighbor one, related toR0 and toR1,
respectively. The two characteristic timest l ( l 50,1) have to
be compared with the characteristic times of the equiva
circuit, obtained generalizing the resistively and capacitiv
shunted junction model19 to a 2D array, i.e.,R0C0 andR1C1.
If t l is smaller thanRlCl , the response of the baths can
considered Ohmic; in the opposite case the behavior of
system is no longer resistive and the inertia in the respo
of the dissipation bath must be considered. In our calcu
tion, we have therefore assumedt l5RlCl as a representativ
value of the unknown characteristic times of the baths.

In Fig. 2 we have also plotted the modification of th
phase diagram due to damping for realistic values of di
pation: we use as dissipation parameters the dimension
quantitiesG l5RQ /Rl . The comparison with the experimen
tal data shows that this kind of dissipation is not very r
evant for low values ofg. Increasingg, but remaining in the
range where our approach is valid, the dissipation appea
A
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nt
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i-
ss
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to

affect the phase diagram in the opposite way with respec
the tendency of the actual experiments. Although our res
improve the quantitative accuracy, these agree with
qualitative behavior already found in previous works.18

The problem of a theoretical explanation of the phase d
gram of JJA’s is thus open, and it might be worthy to inve
tigate whether the common schematization of a Calde
Leggett coupling through the phase variables, Eq.~3!, is
fully justified from a fundamental point of view for describ
ing a resistive shunt. Moreover, it is also known that dis
pation does not have a quenching effect on the fluctuati
of all dynamical variables, as the simple case of the dam
harmonic oscillator shows,10 and it might be possible to rea
sonably modify the mechanism of the environmental inter
tion in order to reproduce the observed phase diagram.
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