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Quantum effects on the BKT phase transition of two-dimensional Josephson arrays
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The phase diagram of two-dimensional Josephson arrays is studied by means of the mapping to the quantum
XY model. The quantum effects on the thermodynamics of the system can be evaluated with quantitative
accuracy by a semiclassical method, thee-quantum self-consistent harmonic approximatienmd those of
dissipation can be included in the same framework by the Caldeira-Leggett model. Within this scheme, the
critical temperature of the superconductor-metal transition, which is a Berezinskii-Kosterlitz-Thouless one, can
be calculated in an extremely easy way as a function of the quantum coupling and of the dissipation mecha-
nism. Previous quantum Monte Carlo results for the same model appear to be rather inaccurate, while a
comparison with experimental data leads us to conclude that the commonly assumed dissipation model is not
suitable to describe in detail a real system.

Two-dimensional (2D) Josephson junction arrays® The phase diagram of square and triangular lattices of
(JJA’'s) have been recently described by means of the twodosephson junctions was experimentaligvestigated and
dimensional quanturXY model. These arrays are made by compared with the results of quantum Monte Ca@MC)
superconducting islands, where the charge carfi@mper simulations of the above model.
pairg interact with each other through the Coulomb interac- In this paper we present an analytical study of the phase
tion and move between nearest-neighbor islands through thdiagram of JJA’s based on the effective potential approach or
Josephson tunneling mechanism. The following action turngure-quantum  self-consistent harmonic approximation
out to describe the systef: (PQSCHA, where the effect of quantum dissipation is also

considered. In mesoscopic systems, like JJA’s, environmen-

np 3 Cj .- , tal effects can modify the physical properties of the isolated

S| ]:f du) = > — ®i(u) ¢;(u) system. In order to study the open system, an additional term
0 i q to the action(1) is thus inserted:'°
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it is a variant of the well-known quantut{Y model and 3)
therefore a Berezinskii-Kosterlitz-Thoule@KT) transition ~ where the kernel matrik(u) ={K;(u)} is a real symmetric

is expected to occur at some finite temperature: its value imatrix and, as a function af, is even and periodid{(u)
affected by quantum effects, whose importance depends oa K(—u)=K(8—u), and satisfie§5duK(u)=0. It contains
the relative weight of the two terms in the action. The firstthe whole information about the environmental coupling, and
one represents the Coulomb interaction between Coopén particular it is related to the classical damping memory
pairs with chargeg=2e and with the capacitance matrix  functions y;(t) by

Cij:CO 2) Kn,ij:|Vn|7ij(|Vn|)a (4)

St n

Z5ij—§ Sij+d .

where v,=2mn/# 8 are the Matsubara frequencieg;(s)

whereC, andC,= 7C, are the self-capacitance and mutual Means the Laplace transform gf(t), and

capacitance of the islands, addruns over the vector dis- i

placements of the nearest neighbors. The second term de- K":f duK(u)cosv,u (5)

scribes the Josephson interaction with couplinbetween 0

nearest-neighbor island§), #;— ¢; being the phase differ- . :
. . o is thenth Matsubara component of the kernel matrix.

ence between thé&h and thejth superconducting island. P

F : h | Cof h duct In Eqg. (1), the Coulomb term is like a kinetic energy
rom a quantum mechanical point of view the superconduc contribution (with C/g? as the mass matrixwhile the Jo-

ing phase operatorgy; are canonically conjugated to the sephson term plays the role of the potential energy. For large
Cooper-pair number operatons,[ ¢; ,n]]—|5IJ capacitive coupling the classical limit is approached and the
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system behaves as a classi¥af model, displaying a BKT g, of the Coulomb interaction range, and of the damping
phase'trar)sifridﬁ at the classical critical temperature. In the through&ij . In the case of a square latti¢the generalization
opposite limit, the energy cost for transferring charges beto other kind of lattices is straightforwardhe explicit ex-

tween neighboring islands is high, so the charges tend to bgression of the renormalization coefficient is
localized and phase ordering tends to be suppressed at lower

temperatures. An important role in this system is played by (1487t ™ @ 1

the Coulomb interaction range, which can be quantified by D= 2 —, (1)
means of the parametey, i.e., the ratio between the mutual 2N K 1+4nuc iz Vﬁ+wE+Kn,k
capacitance and the self-capacitance of the junctions. The ) 2
connection betweer and the charging interaction range can Where the tilde means that the square frequencﬁegwk,
be found observing that the latter is proportional to the in-2nd &k are expressed in units &, the characteristic fre-
verse of the capacitance matfifhe Josephson coupling of duency scale. They read

an island with its neighborslz, defines the overall energy

scale for the system, while the characteristic quantum energy 7, :W_m =0, % kzg 1+_8’7~ .

scale#iQ) can be identified considering the bare dispersion " 29’ M 2 1A M

relation (12
PRI zu whereK,,  is the Fourier transform of E@4). The renormal-

12Q02= (6) ization coefficientD(t) is very sensitive to the range of the

Co LHzmpm charging interaction. Indeed, for a fixed value of the quantum
where u,=1—(1/2)24c0sk-d), and choosing() as the coupling the pure-quantum fluctuations of the phase repre-
maximum frequency: sented byD(t) are strongly enhanced whenincreases, and

they saturate whewn> 1/7z. This behavior can be explained
8 O lattice by writing the dispersion relation of the linear excitations,
2 o A ) 1787 | 2 g
Q Emax{ﬂk}=ﬁzc X 9 (7 ﬁzwzzq Jeft  Zpx 52 2_ 97 et (13
0 A lattice. K™ Co 1+zmuy Ec,
1+ 9 n n—®

One can define a meaningful quantum coupling parametefs » increases, a larger and larger region of the dispersion
which rules the importance of “quanticity” in the system, as relation tends to the constant frequenay, and the relative

the ratio between the two energy scales: portion of the Brillouin zone wherev, differ significantly
from wg shrinks as ¢rz») 1. On the other hand, the low-
7 Q) frequency part of the spectrum does not contribute signifi-
g=—. (8 . ici -
zJ cantly to the pure-quantum coefficieft(t) due to the ab

sence of thex=0 Matsubara term in the summation of Eq.
The thermodynamic properties of the system are studieg1).

here by means of the PQSCHA, which was recently ex- This behavior ofD(t) also differs from what was found in
tended to treat quantum open systéﬁw&y. means of this Ref. 13(whereD is denoted as-2 Ing): this results from
approximation scheme the thermodynamics of the quanturthe different choice of the quantum coupling parameter. Our
system(1) with dissipation(3) can be reduced to an effective choice, Eq.(8), takes into account the contributions of the
classical problem, where the pure-quantum part of the flucwhole capacitance interaction in order to determine a mean-
tuations is taken into account at the self-consistent harmoniggful quantum energy scalé€7). In particular, while the
level through a temperature-dependent renormalization coefiuantum coupling parameter chosen in Ref. 13 contains the
ficient, while nonlinear thermal fluctuations and quantumself-capacitance term only, ogrvaries continuously withy
harmonic excitations are fU”y accounted for. Following theand, in the limits of small and |arg$' it Smooth]y connects
prescription of Ref. 12 the PQSCHA effective potential for the two quantum coupling parameters of Ref. 3. We notice

our system reads that in Ref. 13 the effective Josephson coupling is errone-
ously set toJgs/J=(1+D/2)e P?>~1—-D?/8, while the
Vo= 1—cod ¢ — )], (99  correct low-coupling approximati8rof V4 gives Eq.(10),
e eﬁ% : (b= )] i.e., Jef/J~1—"DJI2. Therefore in Ref. 13 the quantum ef-

where we do not consider some additive uniform termsfects turn out to be significantly underestimated. The same

since they influence neither thermal averages nor the critica‘m'ssti;?":s ?ggeéns?g;éi') the quantum thermodvnamic
behavior. The parametdgs includes the pure-quantum cor- 9 q ! q y

rections: it reads average of any observabf@(n, ¢), e.g., a correlation func-
tion or the helicity modulus, can be expressed in terms of its
Jen(t,0, ,7,&ij):JefD(t,g,n,}ij)lz, (10) Weyl symbolO(n, ¢) by a classical-like formula given by

where the renormalization coefficiem(t,g,n,&ij) repre- T

sents the pure-quantum fluctuations of the relative phase be- (O(n, @)= (O(n, =+ &)) o (14)
tween islandsg;— ¢;.4, and is a function of theeduced

temperature ¢ (3J) 1, of the quantum coupling parameter where
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FIG. 2. Phase diagram for the quantufiy model, Eq.(1), on

FIG. 1. Phase diagram for the quantd¥ model, Eq.(1), ona  triangular(left) and squardright) lattice in theg-t plane at fixed
square lattice in thg?-t plane at fixed value ofy=100. The lineis  value of 7=100. Solid line,I'y=I';=0; dashed line',;=3 and
our result for the undamped system, ilg;=I";=0. The circlesare T ;=0; dot-dashed linel',=0 andT';=3. The solid squares and
the QMC results of Ref. 3. triangles are the experimental data of Ref. 7.

< > :Z—lf dep( - e~ FVer(® (15) set of data in Fig. 2 is normalized to the c_orresponding clas-

off c sical extrapolated value, as already done in Ref. 7. The over-
B V() all agreement appears to be rather good even though the

(Zc=Jdge Prer?) and (O(n, ¢+ £))) denotes the aver- gyneriments present a more rapid decrease of the transition

age over the two independent Gaussian distributiomsanfd temperature for increasing values gf this could suggest

& the former accounts for the total fluctuations of the num-i5t the pureXY model is insufficient to explain this behav-

ber variables, while the latter smears the functigm, ) on .

the scale of the pure-quantum fluctuatichef the phases. Let us now introduce the dissipation. Usually, the damp-
Within the PQSCHA approach, the BKT critical tempera-jng is described in terms of shunt resistors connecting the

ture tgr Of the system can be easily evaluated by the folsjands to ground and/or shunt resistors in parallel to the

lowing self-consistent relatiot: junctions'® Furthermore, the environmental coupling is

taken to be of Ohmic type; i.e.,

tekr(9, 7, vy) =tire” Pkt 0.7 "), (16)
wheret&) is the BKT critical temperature of the classical Yi(s)= 'Yij:iRQGij 17)
XY model, t&).=0.895 (Ref. 16 for the square lattice and 2
t&er=1.36 (Ref. 17 for the triangular one. does not depend oa Ry=2mfi/q? is the quantum resis-

Turning to our results, let us consider first the behavior oftance and3;; is the conductance matrix, which reads
the undamped systerﬁ,(,k= 0). Our phase diagranigdxt vs 1 1
the square coupling?) for the square lattice is compared Gi=— i+ —
with quantum Monte Carlo simulatiohsn Fig. 1. We ob- "Ry Ry
serve that_ our apprgglch starts, b_y cons_tructlon, from th.e CO(/'vhereRO andR; are resistive shunts to the ground and be-
rect classical valuggr and remains valid as long d3<1: tween islands, respectively
this means that the reduction of the transition temperatur X '

e . . . .
. ) . However, a strictly Ohmic damping leads to unphysical
due to quantum effects can be considered reliable if less thai%sults such as the logarithmic ultraviolet divergence of the

about 30% ott{§; . On the other hand, the limiting value of g/ v —o et D020 Cooper pairs
the QMC data for vanishing quantum coupling is 0.943, i each island. The simplest way to consider the inertia in the
displaying a significant disagreement with the by-now-regponse of the dissipation bath is to use the Drude mSdel,
established value of 0.895 quoted above for the clasXi¥al |\ hich consists of a real-time memory damping with expo-
model. . , nential decay of the form

In Fig. 2 the transition temperature versyigss compared
with the experimental data both for square and triangular %
lattices. It must be noticed that tlaepriori knowledge of the y()=6(t) ;e_t”, (19
model parameters)(C,, and ) describing the experimental
setup is rather podrtherefore there is an uncertainty both on Where 6(t) is the step function and™* is the Drude ultra-
the vertical €=T/J) and on the horizontdlg as given by Violet cutoff frequency; the Ohmic behavior is recovered in
Egs.(8) and(7)] scales. Indeed, the values bfised in Ref. the limit 7<t. With this regularization Eq(17) becomes
7 give extrapolated classical transition temperatures which
are larger than the known theoretical ones, for both the &,,(5):& ﬂ 1 +i 25,__2 S5 1
square (0.95 against 0.895) and the triangular (1.7 against " 27|Ryg 1+s79 Ry |70 4G T 14sr)
1.36) lattices. In order to avoid such systematic error, each (20

Zﬁij_Zd 5i,j+d)’ (18)
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The presence of two distinct characteristic times is consisterdffect the phase diagram in the opposite way with respect to
with the choice of two independent damping mechanism, théhe tendency of the actual experiments. Although our results
on-site and the nearest-neighbor one, relaté®ytand toR;,  improve the quantitative accuracy, these agree with the
respectively. The two characteristic timgg(| =0,1) have to  qualitative behavior already found in previous wotks.
be compared with the characteristic times of the equivalent The problem of a theoretical explanation of the phase dia-
CirCUit, obtained generalizing the reSiStively and CapaCitiVElygram of JJA’s is thus open, and it m|ght be Worthy to inves-
shunted junction mod&lto a 2D array, i.e.RoCo andR;Cy.  tigate whether the common schematization of a Caldeira-
If 7 _is smaller tharR|C,, the response of the baths_ can beLeggett coupling through the phase variables, B, is
considered Ohmic; in the opposite case the behavior of thgyy justified from a fundamental point of view for describ-
system is no longer resistive and the inertia in the responsgq’ 5 resistive shunt. Moreover, it is also known that dissi-
o_f the dissipation bath must be considered. In our ca!culapation does not have a quenching effect on the fluctuations
tion, we have therefore assumeg-R,C, as a representative f g| dynamical variables, as the simple case of the damped
value o_f the unknown characteristic times of_ t_he _baths. harmonic oscillator show¥,and it might be possible to rea-

In Fig. 2 we have also plotted the modification of the sonaply modify the mechanism of the environmental interac-

phase diagram due to damping for realistic values of disSition in order to reproduce the observed phase diagram.
pation: we use as dissipation parameters the dimensionless

quantitiesI';=Rq /R, . The comparison with the experimen- ~ We thank J. E. Mooij and H. S. J. van der Zant for fruitful
tal data shows that this kind of dissipation is not very rel-correspondence, as well as G. Falci for useful discussions.
evant for low values of. Increasingg, but remaining in the This work was partly supported by the project COFIN98 of
range where our approach is valid, the dissipation appears {dURST.
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