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Effect of a domain wall on conductance quantization in a ferromagnetic nanowire
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Department of Applied Physics, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

~Received 18 October 1999!

The effect of the domain wall~DW! on the conductance in a ballistic ferromagnetic nanowire~FMNW! is
revisited by exploiting a specific perturbation theory which is effective for a thin DW; the thinness is often the
case in currently interested conductance measurements on FMNW’s. Including the Hund coupling between
carrier spins and local spins in a DW, the conductance of a FMNW in the presence of a very thin DW is
calculated within the Landauer-Bu¨ttiker formalism. It is revealed that the conductance plateaus are modified
significantly, and the switching of the quantization unit frome2/h to about 2e2/h is produced in a FMNW by
the introduction of a thin DW. This accounts well for recent observations in a FMNW.
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Owing to technical development in nanofabrication a
spin-controlled measurement, much interest has attracte
cently to the transport phenomena in ferromagnetic nan
ires ~FMNW’s! and ferromagnetic nanocontacts~FMNC’s!.
Whether the effect of the magnetic domain walls~DW’s! on
the resistivity in a ferromagnetic wire is positive or negati
is a problem which has been argued for a long time fr
both experimental and theoretical sides,1–15 and still remains
a matter of controversy. This controversy stems from the
that the effect is affected by and entangled with various f
tors in actual quantum ferromagnetic wires; the presenc
impurities, the band structures and the size of the contac
well as the experimental geometries and conditions.
cently, relating with device technologies, intensive resea
efforts have been focused on the conductance in FMNW
and FMNC’s.16,17 In most of these FMNW’s, the length o
the contacts are shorter than the electronic mean free pa
that the transport can be regarded as ballistic and the DW
restricted in a very narrow region. Among such works
recent one of the conductance measurement on a high qu
Ni nanocontact, which is stretched into a nanowire,16 re-
ported that a distinct staircase behavior is observed just
fore the wire breaks. Further the step height of the stairc
changes from 2e2/h like to e2/h by an application of paralle
magnetic fields to the wire axis beyond the saturation dur
this elongation process. It may be understood that
switching would occur when a DW present in the case
lower fields is eliminated by the application of the saturat
field and the magnetization is ferromagnetically satura
~FMS! along the wire axis. But it is not so obvious why th
quantization unit of the conductance in the presence of a
becomes ‘‘about 2e2/h’’; 2 e2/h is the quantization unit in
the degenerate diamagnetic nanowires.

In this paper, being inspired by the these observations
make a theoretical study on the conductance of a FMN
with a thin DW in the ballistic regime. In the zero-field ca
of the measurement mentioned above, the conductance l
to follow so perfect 2e2/h step staircase at the last sta
before the wire breaks that the nanowire may be suppose
be in the ballistic regime. Therefore our study in the ballis
regime may fit suitably with the experiment, and is expec
to give an explanation to the origin of the observed chang
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the quantization unit of the conductance, if the origin ev
traces back to the presence of a DW.

The common ingredient of the ballistic electron transp
in quantum wires is Landauer-Bu¨ttiker formula,18,19 which
gives the conductanceG as

G5
e2

h (
n

(
s

ts~Ein!, ~1!

whereEin is the energy of the longitudinal motion of con
duction electrons in thenth channel, andts(Ein) is the cor-
responding transmission probability of the incident electro
with spin s(5↑,↓). In early studies,6 the resistance arising
from the electronic scattering by a DW of ordinary thickne
in a pure magnetic wire was calculated as to be exponent
small although it is positive, and the contribution was sho
later in an adiabatic approximation7 to decrease quadraticall
in the inverse DW width. In those works, however, the m
tallic wire is thick enough for the longitudinal energyEin to
be taken asEF ~Fermi energy! in most of channels, and th
thickness of the DW is large enough so that electrons tr
adiabatically the exchange field in the DW and therefore
backward scattering by the DW is negligibly small. In nano
cale wires, on the other hand, the confinement of electron
the transverse direction forces to open only a restricted n
ber of channels, in most of whichEin could become small. If
we assume a perfect confinement, for simplicity,Ein is given
by

Ein5Etot2En[EF2
\2

2m S pn

W D 2

, ~2!

whereW is the transverse dimension of the wire,m is the
mass of electrons, and the total energyEtot is equated toEF .

We can show, in the following calculation, thatts(Ei) is
notably spin dependent as well as deviates from unity s
nificantly whenEi goes to the low energy comparable wi
the exchange energyV0 between electronic spins and loc
spins in a DW. Now, in a wire of nanoscale width, the num
ber of opening channels decreases andEin in most of chan-
nels goes into the low-energy region, where the effect of
electronic scattering by the DW on the conductance beco
relevant. Then the effect is expected to give a sign
11 278 ©2000 The American Physical Society
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cant modification to the conductance plateaus. This is
scenario to explain the change in the staircase behavior o
conductance appearing in the presence of a DW.

We begin with the following effective Hamiltonian fo
electrons of one-dimensional conduction alongz axis across
a 180° DW of width 2l;

H52
\2

2m

d2

dz2
2V0tanhS z

l Dsz2V0sechS z

l Dsx , ~3!

where the DW is centered atz50 ands i are the Pauli ma-
trices. The second and the third terms are the exchange
tential and the spin-flip potential felt by electrons, resp
tively. This Hamiltonian is the same one which w
introduced first by Cabrera and Falicov considering the
fective coupling between the electronic spins with the lo
magnetization in a DW.6 This is also derived in a recen
work11 as an effective Hamiltonian for electrons interacti
with quantum spins in the DW by the Hund coupling. Th
Hamiltonian mixes the spin channels, so that, to calculate
transmission probabilitiests(Ei) for an electron to go from
z52` to z5` with energy Ei across the DW, we are
forced to solve a one-dimensional two component Shr¨d-
inger equation

HCs~z!5EiCs~z!, ~4!

where the indexs(5↑,↓) denotes the spin state of the inc
dent electron andCs(z) is two component column vecto
such asCs(z)5@c↑s(z),c↓s(z)# for each s5↑,↓. This
coupled Schro¨dinger equations are difficult to be solved an
lytically and have been never solved successfully. Recent
is reported that the equation can be solved analytically
the case of the sinusoidal form of potentials.20 However, the
assumption of such a potential form produces artifacts s
as oscillatory behaviors ints(Ei). To avoid this, we like to
solve Eq.~4! keeping with the potential forms in Eq.~3! but
perturbationally. There are two ways in perturbational a
proach which are complementary to each other: One is v
for a thick DW where the unperturbed state is that of a el
tron tracking adiabatically the local field in the DW, so th
the perturbation represents the mistracking. This is the u
way employed in literatures.8,10,13 The other, on the othe
hand, is valid for a thin DW. There, a state of comple
mistracking appears as an unperturbed state. We proce
the latter way. This specific perturbational method is ma
possible by having solved exact Green’s functi
Gs

0(z,z8;Ei) corresponding to the HamiltonianH0, which
has a steplike potentialv0(z)[2V0$u(z)2u(2z)%sz ;

H052
\2

2m

d2

dz2
1v0~z!sz . ~5!

Then we haveH5H01H1 with H1 given by

H15H 2V0tanhS z

l D2v0~z!J sz2V0sechS z

l Dsx

[v1~z!sz1v2~z!sx . ~6!

Both of v1(z) andv2(z) have finite values only in a regio
uzu&l, so thatH1 can be dealt with as a perturbation.
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The Schro¨dinger Eqs.~4! are put into the Lippmann-
Schwinger form

Cs~z!5Fs~z!1E
2`

`

dz8G0~z,z8;Ei!H1~z8!Cs~z8!,

~7!

where Fs(z) are scattering solutions of the unperturb
Schrödinger equation with the step-function potenti
@H0Fs(z)5EiFs(z)#. The unperturbed Green’s functio
G0(z,z8;Ei) is a 232 diagonal matrix whose diagonal ele
ments areG↑

0(z,z8;Ei) andG↓
0(z,z8;Ei); their explicit forms

are given in the Appendix. We solve Eq.~7! up to the second
order in H1. The perturbation expansion of Eq.~7! is
written in terms of dimensionless quantitiesz̃5z/l, H̃1,
and G̃0 defined byH1(z)5V0H̃1(z/l) and G0(z2 ,z1 ;Ei)
5(g/2iV0l)G̃0(z2 /l,z1 /l;Ei) with g5(2ml2V0 /\2)1/2;

Cs~l z̃!5Fs~l z̃!1
g

2i E2`

`

dz̃1G̃0~ z̃,z̃1 ;Ei!H̃1~ z̃1!Fs~l z̃1!

1S g

2i D
2E

2`

`

dz̃1E
2`

`

dz̃2G̃0~ z̃,z̃1 ;Ei!H̃1~ z̃1!

3G̃0~ z̃1 ,z̃2 ;Ei!H̃1~ z̃2!Fs~l z̃2!1 . . . . ~8!

Since *2`
` dz̃8G̃0( z̃,z̃8;Ei)H̃1( z̃8)'O(1) as H̃1( z̃)

'O(1) for uz̃u&1, the small parameter of the expansion isg.
The transmission and the reflection coefficientSss8 and
Rss8 are obtained from the asymptotic forms

C↑~z![S c↑↑~z!

c↓↑~z!
D ——→

z→2`
S eik2z1R↑↑e2 ik2z

R↓↑e2 ik1z D
——→
z→1`

S S↑↑eik1z

S↓↑eik2zD , ~9!

C↓~z![S c↑↓~z!

c↓↓~z!
D ——→

z→2`
S R↑↓e2 ik2z

eik1z1R↓↓e2 ik1zD
——→
z→1`

S S↑↓eik1z

S↓↓eik2zD , ~10!

where\k15A2m(Ei1V0) and\k25A2m(Ei2V0).
The transmission probabilitiests(Ei) for the incident

electron with spins(5↑,↓) to transmit to any final spin
state are calculated by relationst↑(Ei)5(k1 /k2)uS↑↑(Ei)u2
1uS↓↑(Ei)u2 and t↓(Ei)5(k2 /k1)uS↓↓(Ei)u21uS↑↓(Ei)u2.
The results are shown in Fig. 1 for appropriate values ofl.
These figures show that~i! ts(Ei) deviates from unity sig-
nificantly only for energies comparable withV0, and~ii ! the
spin-flip transmission probability rises linearly inEi /V0 at
the thresholdEi /V0521, and the gradient is about 4p2g2

for small g. This means that, the thinner the DW is, th
harder the spin-flip transmission occurs. The last point in
cates that electron spins become hard to track local spins
thin DW adiabatically.
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Now we can easily find how the conductance plateaus
a FMNW are modified by the presence of a thin DW. TheW
dependence of the conductance is derived from the form

G5
e2

h F (
n51

N↑
t↑~Ein!1 (

n51

N↓
t↓~Ein!G[G↑1G↓ . ~11!

Numbers N↑ and N↓ are defined byN↑5@W$2m(EF
2V0)/p2\2%1/2# and N↓5@W$2m(EF1V0)/p2\2%1/2#, re-
spectively, where the square bracket denotes the Gauss
bol. The curve ofG versusW in the presence of a single DW
~thick solid line! is shown in Fig. 2~a! together with those of
G↑ ~thin solid line! andG↓ ~thin dashed line!. In Fig. 2~b!,
the corresponding curves for the case of FMS are drawn
comparison. In the case of FMS, the exchange energy fe
↑-spin and↓-spin electrons differs by 2V0. Due to this dif-
ference, the threshold value ofWsn , at which thenth chan-

FIG. 1. The transmission probabilities~a! t↑ and~b! t↓ as func-
tions of Ei /V0 with V050.001 eV.

FIG. 2. The conductance as a function ofW in cases;~a! involv-
ing a single domain wall,~b! of FMS, and~c! without the spin-flip
scattering. There we takeV050.001 eV,EF510V0, and l512.0
Å.
f

la

m-
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nel opens, becomes different between the↑-spin and the
↓-spin channel;W↓n5n$p2\2/2m(EF1V0)%1/2 and W↑n

5n$p2\2/2m(EF2V0)%1/2. The opening of the channel be
gins with the first↓-spin one and is followed by the firs
↑-spin one, and so on. This leads to thee2/h conductance
staircase with clear plateaus in Fig. 2~b!. This e2/h staircase
behavior of the conductance in the case of FMS are obse
in conductance measurements on Ni nanowires.16,17Now we
discuss the result in the presence of a DW shown in Fig. 2~a!.
There, the conductance curve looks like a staircase with
height of about 2e2/h. While the step height is well quan
tized at least up to the third step, steps are gradually incli
as the steps increases although a remnant of 2e2/h like quan-
tization is still seen. Our curve in Fig. 2~a! resembles one
observed recently16 in this characteristic appearance. Ther
fore we can say that the switching of the quantization u
from e2/h to about 2e2/h can be produced by the introduc
tion of a thin DW into a FMNW.

Although it is the case, we should make a remark ab
the origin of the conductance quantization in the unit
about 2e2/h. It is sometimes said that the presence of a D
makes both spin channels stand on the equal footing, an
a result the spin degeneracy is recovered as it stands in
diamagnetic nanowire. Precisely speaking, it is not exa
the case. By looking at curvesG↑ andG↓ in Fig. 2~a!, we see
that they are quite different from each other. By compar
G↑ andG↓ in Fig. 2~a! with the correspondings in Fig. 2~b!,
we notice the following:~i! G↑ jumps by an amounte2/h at
the same value ofW↑n asG↑ does in the FMS case, althoug
the corners of the staircase are rounded by the scatte
effect by the DW.~ii ! The nth channel ofG↓ opens also at
the same value ofW↓n as in the FMS case. There, howeve
G↓ does not jump up as in the FMS case, since only
slowly increasing spin-flip transmission contributes first
G↓ @see Fig. 1~b!#. WhenW reaches the threshold value o
the spin-conserving transmission in the same channel,G↓
starts to increase steeply by this contribution. This thresh
coincides withW↑n of G↑ , so that the total conductanceG
looks to jump up by about 2e2/h at W↑n . Speaking in an-
other way, since the Hamiltonian~3! without the third spin-
flip term is invariant under the reflectionz→2z and thep
rotation about thex axis in the spin space, we can easily fin
that the spin-conserving transmission probability for↑ spins
and↓ spins become exactly the same. Further, both ofWsn

becomes equal ton$p2\2/2m(EF2V0)%1/2, so that the total
conductance realizes a staircase of exact 2e2/h steps. In fact,
our perturbational calculation for this case@Fig. 2~c!# shows
an exactly quantized behavior with fine plateaus. In su
case, therefore, we can say that the perfect quantizatio
the unit of 2e2/h precisely comes from the spin degenerac
From these considerations, we understand that the a
2e2/h staircase behavior in the presence of a thin DW d
not indicate precisely the recovery of the spin degenera
We can even claim that the deviation of the curve in Fig. 2~a!
from the perfect 2e2/h staircase shows clearly a distinct e
fect of the spin-flip forward scattering by a DW.

In summary, we studied theoretically the effect of a th
DW on the conductance quantization in a FMNW in t
ballistic regime. The calculations are made by exploiting
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specific perturbational technique which is valid for thin D
case. We point out that notable effects due to the DW s
tering can be observed owing to the nanoscale width of
wire. We also find that the conductance quantization in
unit of about 2e2/h is realized by the introduction of a thi
180° DW while the quantization unit ise2/h in the saturated
ferromagnetic nanowire as ordinarily expected. This expla
well the switching in the quantization unit from about 2e2/h
to e2/h observed recently in measurements on
nanowires.16 It is emphasized that, in the deviation of th
2e2/h-like conductance staircase from the perfect 2e2/h one
on
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hy
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t-
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e

s

i

in lack of the spin-flip scattering, we can find an interesti
effect of the spin-flip scattering by the DW, from which w
can deduce useful informations for the ferromagnetic ma
rial. In this sense, the conductance measurement in a FM
may provide a powerful probe for the magnetotransport
ferromagnetic materials.
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publication, and for useful discussions.
APPENDIX A:

The unperturbed Green’s functionGs
0(z2 ,z1 ;Ei) can be obtained by using some mathematics as

G↓
0~z2 ,z1 ;Ei!5

m

i\2
3

¦

1

k2
eik2z2~e2 ik2z12Reik2z1!; z2.z1.0

1

k2
~e2 ik2z22Reik2z2!eik2z1; z1.z2.0

2

k11k2
eik2z2e2 ik1z1; z2.0.z1

2

k11k2
e2 ik1z2eik2z1; z1.0.z2

1

k1
~eik1z21Re2 ik1z2!e2 ik1z1; 0.z2.z1

1

k1
e2 ik1z2~eik1z11Re2 ik1z1!; 0.z1.z2 ,

~A1!

G↑
0~z2 ,z1 ;Ei!5G↓

0~2z1 ,2z2 ;Ei!, ~A2!

whereR5(k12k2)/(k11k2).
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