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Effect of a domain wall on conductance quantization in a ferromagnetic hanowire
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The effect of the domain walDW) on the conductance in a ballistic ferromagnetic nanoWHdNW) is
revisited by exploiting a specific perturbation theory which is effective for a thin DW; the thinness is often the
case in currently interested conductance measurements on FMNW's. Including the Hund coupling between
carrier spins and local spins in a DW, the conductance of a FMNW in the presence of a very thin DW is
calculated within the Landauer-Biker formalism. It is revealed that the conductance plateaus are modified
significantly, and the switching of the quantization unit frefh to about 2?/h is produced in a FMNW by
the introduction of a thin DW. This accounts well for recent observations in a FMNW.

Owing to technical development in nanofabrication andthe quantization unit of the conductance, if the origin ever
spin-controlled measurement, much interest has attracted rgaces back to the presence of a DW.
cently to the transport phenomena in ferromagnetic nanow- The common ingredient of the ballistic electron transport
ires (FMNW’s) and ferromagnetic nanoconta¢&MNC’s).  in quantum wires is Landauer-Biker formula'®'® which
Whether the effect of the magnetic domain w&8\’s) on  gives the conductandd as
the resistivity in a ferromagnetic wire is positive or negative )
is a problem which has been argued for a long time from G= e E z t (Eyn) )
both experimental and theoretical side&’ and still remains h < < o
a matter of controversy. This controversy stems from the fact ) o .
that the effect is affected by and entangled with various fac"WN€re Ej, is the energy of the longitudinal motion of con-
tors in actual quantum ferromagnetic wires; the presence dfuction electrons in theth channel, and,(E,) is the cor-

impurities, the band structures and the size of the contacts 5gspond|ng transmission probability of the incident electrons

well as the experimental geometries and conditions. ReWIth spin o(=1,1). In early studies, the resistance arising

cently, relating with device technologies, intensive researcrflrom the electron_lc sc;attermg by a DW of ordinary thlckngss
efforts have been focused on the conductance in EMNwrdn @ Pure magnetic wire was calculated asto t_)e exponentially
s 1617 ; Imall although it is positive, and the contribution was shown
and FMNC's.>""In most of these FMNW s, the length of later in an adiabatic approximatibto decrease quadratically
the contacts are shorter than the electronlp mean free path #2the inverse DW width. In those works, however, the me-
that '.[he tra}nsport can be regardgd as ballistic and the DW igyic wire is thick enough for the longitudinal energy,, to
restricted in a very narrow region. Among such v_vorks, 3he taken a€r (Fermi energyin most of channels, and the
recent one of the conductance measurement on a high qualififickness of the DW is large enough so that electrons track
Ni nanocontact, which is stretched into a nanowifree-  adiabatically the exchange field in the DW and therefore the
ported that a distinct staircase behavior is observed jUSt bQ)'ackward Scattering by the DW is neg||g|b|y small. In nanos-
fore the wire breaks. Further the step height of the staircasgale wires, on the other hand, the confinement of electrons in
changes from &%/h like to e/h by an application of parallel the transverse direction forces to open only a restricted num-
magnetic fields to the wire axis beyond the saturation duringer of channels, in most of whidgy, could become small. If
this elongation process. It may be understood that thisve assume a perfect confinement, for simpliciy, is given
switching would occur when a DW present in the case oty
lower fields is eliminated by the application of the saturation
field and the magnetization is ferromagnetically saturated h2 [ n\?
(FMS) along the wire axis. But it is not so obvious why the Ejn=Ewr En=Er— m W) '
guantization unit of the conductance in the presence of a DW
becomes “about 8/h”; 2 e?/h is the quantization unit in whereW is the transverse dimension of the wirg,is the
the degenerate diamagnetic nanowires. mass of electrons, and the total enekjy; is equated tder .

In this paper, being inspired by the these observations, we We can show, in the following calculation, that(E) is
make a theoretical study on the conductance of a FMNWnotably spin dependent as well as deviates from unity sig-
with a thin DW in the ballistic regime. In the zero-field case nificantly whenE goes to the low energy comparable with
of the measurement mentioned above, the conductance lookse exchange energy, between electronic spins and local
to follow so perfect 22/h step staircase at the last stagespins in a DW. Now, in a wire of nanoscale width, the num-
before the wire breaks that the nanowire may be supposed teer of opening channels decreases Bpdin most of chan-
be in the ballistic regime. Therefore our study in the ballisticnels goes into the low-energy region, where the effect of the
regime may fit suitably with the experiment, and is expectedelectronic scattering by the DW on the conductance becomes
to give an explanation to the origin of the observed change imelevant. Then the effect is expected to give a signifi-
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cant modification to the conductance plateaus. This is our The Schrdinger Egs.(4) are put into the Lippmann-
scenario to explain the change in the staircase behavior of thechwinger form
conductance appearing in the presence of a DW.

We begin with the following effective Hamiltonian for ® O 1. , ,
electrons of one-dimensional conduction alanaxis across Vo (2)=®,(2)+ jﬁxdz G (2,2, EH(Z) V¥ (Z'),
a 180° DW of width 2; (7)

K2 d? z z where ® (z) are scattering solutions of the unperturbed
H=- EE—Votani{x) Uz—VoseCVE X) ox, (3)  Schralinger equation with the step-function potential
[Ho®,(2)=E®,(2)]. The unperturbed Green’s function
where the DW is centered at=0 ando; are the Pauli ma- G°(z.z';E)) is a 2x2 diagonal matrix whose diagonal ele-
trices. The second and the third terms are the exchange povents are59(z,z';E) andG)(z,z’;E)); their explicit forms
tential and the spin-flip potential felt by electrons, respec-are given in the Appendix. We solve E@) up to the second
tively. This Hamiltonian is the same one which wasorder in H;. The perturbation expansion of Ed7) is
introduced first by Cabrera and Falicov considering the efwritten in terms of dimensionless quantities=z/x, H;,

fective coupling between the electronic spins with the local, 4 &0 defined byH,(2) =V,H,(z/\) and GO(22121;EH)
magnetization in a DV§.This is also derived in a recent 9V NGO 20 IN 22 IN-ED) with v (2mA2V /52) V2
work!! as an effective Hamiltonian for electrons interacting_(7 Vo) G (22 /M, 21 /N Ey) with y=(2mA=Vo /A %)%
with quantum spins in the DW by the Hund coupling. This .

Hamiltonian mixes the spin channels, so that, to calculate thg, (\7)=d (\Z)+ lJ d~2150(~2,~21;E||)H1(~21)q)o(?\~21)
transmission probabilitie,(E;) for an electron to go from 2 ) =

z=— to z=o with energy E; across the DW, we are

forced to solve a one-dimensional two component 8hro +

Y
inger equation 2i

2 [0’} o0
j %, j 07,6022, E)FL(Z)

HY (2)=E/¥ ,(2), 4 X G%z1,2,;EDH1(2) D ,(\Zp) + . . ... ®

where the indexr(=1,|) denotes the spin state of the inci- . o RO T ~ o~
dent electron and¥ ,(z) is two component column vector Since [~ .dz G(z.z";EpH(z)~0(1) as H_l(z)_
such asW ,(2)=[¢:,(2),4,,(2)] for eacho=1,|. This ~0(1) for|z_| s_l,the small parameter of the_e_xpansmms
coupled Schidinger equations are difficult to be solved ana- The transmission and the reflection coefficiefif,» and
lytically and have been never solved successfully. Recently iRso are obtained from the asymptotic forms

is reported that the equation can be solved analytically for o ks

the case of the sinusoidal form of potenti#l$dowever, the [ ¥1(2) et +Rye 2
assumption of such a potential form produces artifacts such ()= ¥,1(2) :’ R“e*iklz

as oscillatory behaviors it},(E). To avoid this, we like to
solve Eq.(4) keeping with the potential forms in E3) but

ikqz
perturbationally. There are two ways in perturbational ap- (STTe_ ' ) 9)
proach which are complementary to each other: One is valid S Sue'kzZ '
for a thick DW where the unperturbed state is that of a elec-
tron tracking adiabatically the local field in the DW, so that o1 (2) R, e ikez
the perturbation represents the mistracking. This is the usual \IIl(z)E( [ ) N ( iTkLZ ik Z)
way employed in literaturés!®'® The other, on the other (D) e \€FHR 7T
hand, is valid for a thin DW. There, a state of complete
mistracking appears as an unperturbed state. We proceed in S, leiklz
the latter way. This specific perturbational method is made — (S ikzz), (10
possible by having solved exact Green's function Z— o 11€

Gg(z,z’;EH) corresponding to the HamiltoniaHy, which B .
has a steplike potentialy(z)=—Vo{6(2) — 0(—2)}o,; whereik; = y2m(E, +Vo) andik,= y2m(E|— Vo).
The transmission probabilities,(E|) for the incident
52 g2 electron with sping(=1,|) to transmit to any final spin
= — —+vy(2) 0. (5)  state are calculated by reIationTs(E”)=(k1/k2)|Sm(E”)|2
0 2mgz 7T +[S,(EDI? and t,(Ep)=(ka/ky)|S, (E)I2+]S,(E) |2
1S, (EI° and t(Ep)=(ko/ky)[S; (EDI*+]S; (B
The results are shown in Fig. 1 for appropriate valuea .of
These figures show that) t,(E|) deviates from unity sig-

. . nificantly only for energies comparable with, and(ii) the
ler —Votan)'(—> —vo(z)] aZ—VosecVE —) X

Then we haveH =Hy+H, with H, given by

spin-flip transmission probability rises linearly &y /V, at

the thresholdE /Vo=—1, and the gradient is aboutr#y?
(6) for small y. This means that, the thinner the DW is, the

harder the spin-flip transmission occurs. The last point indi-
Both of v4(z) andv,(z) have finite values only in a region cates that electron spins become hard to track local spins in a
|zZ|=N\, so thatH; can be dealt with as a perturbation. thin DW adiabatically.

=v1(2) o, v5(2)0y.
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. : BT nel opens, becomes different between thepin and the
(Ei N gtt? |-spin channel; W, ,=n{m?4%/2m(Eg+V,)}*? and W,,
v 120 g i =n{7?h212m(Ex— V,)}2 The opening of the channel be-
o ¢ gins with the first]-spin one and is followed by the first
£ o 32 1-spin one, and so on. This leads to té&h conductance
';; ‘ staircase with clear plateaus in FidbR This e?/h staircase
g behavior of the conductance in the case of FMS are observed
I s mars—"t , = in conductance measurements on Ni nanow#fé§Now we
g () ,.i;al""""'m discuss the result in the presence of a DW shown in Rig. 2
§ EEE ) There, the conductance curve looks like a staircase with step
g 78 height of about 22/h. While the step height is well quan-
o tized at least up to the third step, steps are gradually inclined
.';vvvv oooo"‘” as the steps increases although a remnane#filike quan-
.;;Z:oo""::nn.,nuuu tization is still seen. Our curve in Fig.(& resembles one
o_,niéﬁﬁsﬁﬂggggggmxg . B observed recently in this characteristic appearance. There-
0 2 fore we can say that the switching of the quantization unit
E)/Vo from e?/h to about 2%/h can be produced by the introduc-

tion of a thin DW into a FMNW.

Although it is the case, we should make a remark about
the origin of the conductance quantization in the unit of
?bout 2?/h. It is sometimes said that the presence of a DW
makes both spin channels stand on the equal footing, and as
result the spin degeneracy is recovered as it stands in the
iamagnetic nanowire. Precisely speaking, it is not exactly
N, N, the case. By looking at curvés; andG, in Fig. 2(@), we see
2 ti(Ejn) + 2 t,(Ejn) |=G+G,. (11 that they are quite different from each other. By comparing
n=1 n=1 G, andG, in Fig. 2a) with the correspondings in Fig(1,
we notice the following{i) G; jumps by an amourg?/h at
the same value o, , asG; does in the FMS case, although
ﬁﬁ]{? corners of the staircase are rounded by the scattering
e

FIG. 1. The transmission probabiliti¢s) t; and(b) t; as func-
tions of E/V,y with V4=0.001 eV.

Now we can easily find how the conductance plateaus o
a FMNW are modified by the presence of a thin DW. e
dependence of the conductance is derived from the formul%

eZ

G= h
Numbers N, and N, are defined byN,=[W{2m(Eg
— Vo)l m?h3Y2] and N =[W{2m(Eg+ Vo)/ 7?4 22], re-
spectively, where the square bracket denotes the Gauss sy "
bol. The curve ofG versusW in the presence of a single DW fect by the DW (i) Thg nth channel ofG, opens also at
(thick solid ling is shown in Fig. 2a) together with those of the same value d,, as in the FMS case. There, however,
G, (thin solid lin@ andG, (thin dashed lin In Fig. 2b), ~ G does not jump up as in the FMS case, since only the
the corresponding curves for the case of FMS are drawn foplowly increasing spin-flip transmission contributes first to
comparison. In the case of FMS, the exchange energy felt b, [see Fig. 1b)]. WhenW reaches the threshold value of
7-spin and|-spin electrons differs by \2,. Due to this dif- the spin-conserving transmission in the same chartel,
ference, the threshold value W,,,, at which thenth chan-  starts to increase steeply by this contribution. This threshold
coincides withW,,, of G;, so that the total conductan¢z
looks to jump up by abouté&/h at W;,. Speaking in an-
other way, since the Hamiltoniai®) without the third spin-
flip term is invariant under the reflectian— —z and then
rotation about the axis in the spin space, we can easily find
that the spin-conserving transmission probability fospins
and | spins become exactly the same. Further, botkVgf
becomes equal to{ w24 2/2m(Ex—V,)}*?, so that the total
conductance realizes a staircase of exa? 12 steps. In fact,
our perturbational calculation for this caldéig. 2(c)] shows
an exactly quantized behavior with fine plateaus. In such
case, therefore, we can say that the perfect quantization in
the unit of 22/h precisely comes from the spin degeneracy.
From these considerations, we understand that the about
2e?/h staircase behavior in the presence of a thin DW does
not indicate precisely the recovery of the spin degeneracy.
We can even claim that the deviation of the curve in Fig@) 2
from the perfect 22/h staircase shows clearly a distinct ef-

FIG. 2. The conductance as a functiorMdfin cases{a) involv-  fect of the spin-flip forward scattering by a DW.
ing a single domain wall(b) of FMS, and(c) without the spin-flip In summary, we studied theoretically the effect of a thin
scattering. There we také,=0.001 eV,Er=10V,, andA=12.0 DWW on the conductance quantization in a FMNW in the
A. ballistic regime. The calculations are made by exploiting a

conductance [ €2/h ]

W (&)
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specific perturbational technique which is valid for thin DW in lack of the spin-flip scattering, we can find an interesting
case. We point out that notable effects due to the DW scateffect of the spin-flip scattering by the DW, from which we
tering can be observed owing to the nanoscale width of thean deduce useful informations for the ferromagnetic mate-
wire. We also find that the conductance quantization in theial. In this sense, the conductance measurement in a FMNW
unit of about 2°/h is realized by the introduction of a thin may provide a powerful probe for the magnetotransport in
180° DW while the quantization unit is*h in the saturated ~ferromagnetic materials.

ferromagnetic nanowire as ordinarily expected. This explains

well the switching in the quantization unit from abow??h The authors thank Masanori Yamanaka and Atsuo Satou
to e’h observed recently in measurements on Nifor helpful comments. We are grateful to Teruo Ono for
nanowires'® It is emphasized that, in the deviation of the informing us their observations in an early stage prior to the
2e?/h-like conductance staircase from the perfeet/a one  publication, and for useful discussions.

APPENDIX A:

The unperturbed Green’s functicmg(zz,zl;E”) can be obtained by using some mathematics as

1 _ .
k_elkzzz(eflkzzl_ Rékzzl); 22>Z]_>O
2
1 o
k_(e—lkzzz_ Rékzzz)e'kzzl; Zl>22>0
2
" eikzzze*iklzl; z,>0>2z
m 1 2
—efiklzZeikzzl; Zl>0>22
ki+Kks
1 - :
k_(elk122+ Re—|k122)e_|klzl; 0>22>Zl
1
1 . '
Lo wmgnere i 0mno,
1
Gi(2,,21;E))=G{(~21,~ 2,;E)), "

whereR= (k;—k,)/(k;+k5).
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