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Electron tunneling rate in quantum dots under a uniform electric field
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A stabilization method is used to evaluate the tunneling rate of an electron in isolated quantum dots of
conical shape under uniform electric field. A stabilization graph is obtained by plotting the eigenvalues of a
single quantum dot embedded in a confining box made of barrier material as functions of the size of the box.
The eigenvalues of the system are calculated within the effective mass approximation via the Raleigh-Ritz
variational method. The density of states associated with the quasibound state is constructed from the stabili-
zation graph and is shown to have a Lorentzian profile. The width of the Lorentzian profile gives the tunneling
rate. We show that the tunneling rate of the quantum dot system is 2—3 times smaller than that of a quantum
well system with the same bound-to-continuum transition energy.

[. INTRODUCTION via integration over the external parameter and subtracting
the background contribution.

Recently, self-assembled InAs/GaAs quantum dots grown Extensive theoretical studies of the electronic and optical
by molecular beam epitaxy have attracted a great deal gfroperties of QDs have been performed by several
scientific interest=® Due to the large lattice mismatch be- groups®*~2° However, no theoretical studies of the electron
tween InAs and GaAéthe highly strained epitaxial layer of tunneling rate for quantum dots of realistic geometry have
InAs on GaAs has a tendency to form coherent threebeen reported to date. In light of the promising IR detector
dimensional islands after completion of the wetting layer.application of QD systems, it is desirable to investigate the
These InAs islands typically have the shape of pyrarfiitls, electron tunneling rate, so that the dark current of the QD
disks?® lensesi!'? or cones®*!* The mechanism of InAs device can be assessed. There are three different mechanisms
nucleation has been investigated by Tersafél!®and Holy  that contribute to the dark current of QDs: thermionic,
et al1® Many useful applications of quantum d@®D) de-  phonon-assisted tunneling, and direct tunneling. Based on
vices have been discussEd?® One promising application is calculations on quantum well systeifaye expect the direct
the quantum dot infrared photodetect@DIP), in which the  tunneling process to dominate at medium to high fields. In
bound-to-continuum transition is utilized. The main advan-this paper, we report a theoretical study of the electron tun-
tage of the QDIP versus QWIRuantum well infrared pho- neling rate of an InAs/GaAs conical QD, since it determines
todetectoy is that light can be directly coupled to the elec- the direct tunneling current. Here the stabilization method
trons in the normal incidence geometry due to the effect ofSM) is used rather than the phase-shift or complex-energy
QD confinement in directions perpendicular to the growthmethod, since accurate numerical solution to the eigenstates
axis. For applications as infrared detectors, another importardf the QD system under an electric field as a continuous
factor to consider is the dark current, which is related to thdunction of energy is difficult to obtain because of the low
electron escape rate in the QD under an electric field. symmetry of the system.

The electron escape rat@verse of the tunneling timef The stabilization grapliSG) was introduced by Simons
quantum well systems has been extensively stuthédThe-  for finding the resonance energy and width of a metastable
oretical methods for evaluating the electron tunneling ratestate?’ A SG is generated by plotting the energy eigenvalues
include the phase-shift methdd, the complex-energy of the system subject to the variation of a scaling factor,
method?® and the stabilization method. All these methodswhich is taken to be the size of a confining box with infinite
give essentially identical results. In the phase-shift approactpotential. The eigenvalues of the system can be solved nu-
the eigenfunction of the Hamiltonian for the QW systemmerically via the Raleigh-Ritz variational method. Using the
under an electric field is solved analytically and the lifetimeSG, one can determine the energy width of the metastable
of the quasibound state is related to the inverse of the widtlstate by relating it to the energy separation between eigen-
of the local density of statg&DOS) as a function of energy. values for states near the resonance based on Fermi’s golden
At low fields, this resonance profile is well approximated byrule (FGR).?¢%° Such a method has been applied frequently
a Lorentzian function. Thus, it is expected that a complex+o various quantum systeri$3! Using the FGR method for
energy solution to the time-independent Scfinger equa- the SG, Borondo and Dehééacalculated the energy and
tion with proper boundary conditidh will give rise to the  widths of resonances of an isolated quantum well in an elec-
same lifetime as the quasibound state. Both the phase-shiftic field. Although the FGR method gives a reasonable esti-
method and the complex-energy method require solving thenate of the resonance width, the result obtained depends on
wave functions of the system. On the other hand, the stabihe size of the confining box usétiThus, the method is not
lization method requires finding only the eigenvalues of thevery accurate, especially at high fields where the higher-
system Hamiltonian as functions of an external parameteorder contributions become important.

(the scaling factor which allows evaluation of the LDOS On the other hand, Mandelshtaet al>® constructed an
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FIG. 2. Background-subtracted SDORAp,(E)] for an
Al, Ga, /As/GaAs quantum well with width 51 A under an electric
field (F=300 kV/cm). The curve is fitted with a Lorentzian func-
tion (solid line) with E,= —190.5 meV and widtH"=3.82 meV.

FIG. 1. Energy eigenvalues of an AlGa, ;As/GaAs quantum
well with well width 51 A under an electric fieldq=300 kV/cm)
as functions of the scale factar

accurate numerical method which allows the extraction oflements of the Hamiltonian can be calulated analytically.
the local density of states for the metastable states of th¢ne |owest two eigenvalues df in the absence of field
system from the SG. The LDOS obtained has a well-define@ptained by numerical diagonalization are found to agree
Lorentzian profile and its width is insensitive to the size ofith the analytical resultévhich were obtained by solving a
the confining box used. In this paper, we shall apply thisyranscendental equatipwithin 0.1 meV, indicating the con-
method to both quantum well and quantum dot systems. W@ergence of the basis set used.
show that applying this method to quantum well system Figyre 1 shows the stabilization graph for= 300 kV/cm,
gives results for the resonance width in excellent agreemeny \which the lowest ten eigenvalues idfare plotted as func-
with those obtained via the phase-shift method. Thus, wgions of the scaling factdr. A resonance state at energy near
believe that this method is capable of obtaining accurate re- 209 mevV is quite apparent as the horizontal line inter-
sults for the electron tunneling time for quantum dot systemsyined with many slanting linegdue to continuum states
as well. outside the wejl The minigaps at the anticrossing points
indicate the coupling strength between the quasibound state
and the continuum states.

Using the SM, we obtain the size-averaged density of

To test the accuracy of the stabilization method used, wétates(SDOS as defined in the Appendix. The result is
shall first apply the method to a one-dimensional QW sysshown in Fig. 2. 440 mesh points farranging from 220 to
tem. This allows a detailed comparison of results obtained b60 A were used to perform the average. The curve is well
both the SM and the phase-shift method. A brief discussioffitted by a Lorentzian functioitsolid curve with resonance
of the SM is given in the appendix. We consider a singleenergyE,=—190.5 meV and widtH'=3.82 meV. The re-
Al Gay -As/GaAs/AlGaAs quantum well system with well sult agrees well with that obtained by the phase-shift method
width d=51 A. The effective masses for GaAs and (see Table)l However, at lower fields, this procedure does
Al {Ga -As used in our calculation anej,=0.067n, and  not wo_rk SO wgll without substqntially incrgasing the number
m% =0.095m, (M, is the bare electron masgespectively. of basis functions. At lower fields, the first crossover be-
The conduction band offset used ¥ =—247 meV. The tween the quasibound state and continuum states occurs at a

above set of parameters gives two bound states in the well
with energiesE=—174 meV ande,=—4 meV in the ab- Al {Ga, As/GaAs quantum well with well width 51 A at various
sence of field. These values are obtained by solving the trar}i-el ds

scendental equation for the quantum well, taking into ac- i
count the difference of effective masses for GaAs and:iqcyic field

II. QUANTUM WELL SYSTEM

TABLE |. Resonance energyE() and width (") of an

) Phase shift Stabilization method
AlGaAs. To solve the problem in the presence of an electric N=70 N= 140
field, we place the quantum well at the center of a confinin £ r E r E r

. . . .. . . . r r r

box with width L and infinite potential barrier. The uniform (kviem (meV) (meV) (meV) (meV) (meV) (meV)
electric field of strength- introduces an additional term
—eF(z—L/2) to the Hamiltonian, where is the electron 150 —178 0.0354 —178 0.028 —178 0.032
charge ana is the coordinate along the growth axis. A basis200 —181 0.397 —-181 0.374 —181 0.388
set of up to 70 sine functiong(x)=+2/Lsinky2 (kg 250 —-185 1.60 —185 1584 —185 1.592
=ma/L,m= positive integers is used to construct the 300 —190 3.98 —191 3.888 —191 3.942
eigenfunctions of the system. Here the origit=Q) is de- 350 —-195 759 —196 7.378 —196 7.4

fined to be at the left corner of the confining box. The matrix
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E. Here we introduce a simpler method to overcome this
4L problem at low fields. The idea is based on the observation
that the resonance enerﬁﬁ) of each curve fop;(E) can be
determined rather precisely, although the valugdE) it-
0 ' L self atE{" is subject to large numerical error. Therefore, we
-36 -34 -32 -3 -28 -6 define the energy-weighted SDOS as
E—E; (meV)
FIG. 3. Contributions to the background-subtracted SDOS for 1 0 () 0
an Al Ga, As/GaAs quantum weliwith well width 51 A) under n(B)=3T Z (E-EDNpi(E-E)=p"]. (2
an electric field F=150 kV/cm due to various branches, where
Eo=—175 meV. Here p° is the background contribution, which is essentially

a constant. Sincgp;(E—E")—p°] should be a Lorentzian

much larger value oL. Thus, a much larger basis set is unction, », (E) can be well fitted by the functio E/[ E2

needed. This is undesirable, since it will make application 0+(F/2)2]. The function has a minimum atT/2 and a

this method to the quantum dot system difficult. If we keep : . .
the number of basis functions fixed at 70, the resulting reson oamum atl’/2. The energy separation between the mini

nance energye, will shift upward asL increases, and the mum and maximum ofy, (E) gives the value of” directly,

SDOS will be artificially broadened when we average overand no fitting is necessary. We found the method introduced

- . " here works quite well in determining the resonance width
L. This is better illustrated by rewriting the SDOS as with the use of a fixed numbeitaken to be 7D of basis

1 functions even at low fieldsH=~200 kV/cm. A comparison

pL(BE)= AL Z pi(E), of results at various fields obtained by the present method
: (with either 70 or 140 basis functionsnd the phase-shift

where method is given in Table I. The agreement between the two

methods is within 6%42%) for fields =200 kV/cm when 70

(140 basis functions are used. Note that at the smallest field

F=150 kV/cm, 140 basis functions are still not enough to

provide accurate value for. The error in this case is near

In Fig. 3, we plotp;(E) versusE for i=2,...,5 forF 10% in comparison with the phase-shift method.

=150 kV/cm. We see in this figure that(E) are all well

described by Lorentzian profiles, but their cenkl has lll. QUANTUM DOT SYSTEM

shifted upward asincreases from 2 to 5. The shift B is o . . .

larger than the width of the Lorentzian profile, which leads to A sSchematic diagram of the conical QD considered here is

a substantial error in the estimated resonance width whe®hown in Fig. 4. The Hamiltonian of an isolated conical QD

one sums ovei. The problem gets worse as the field is With wetting layer can be expressed'dy" (in cylindrical

further reduced. To circumvent this problem, we define gcoordinates

corrected SDOS as

dE(L)| ™!

with L<Lo<L-+AL.
Ei(LO):E

L H_—hza 1 a+—h21a r 4
pUE)= 37 2 pi(E—ED), (1) © 2 \ozmrzr z) 2 (o mrzr) o
I
2
Where the Lorentzian profiles for all branches are rigidly + 1 i‘?_ +V(2)+AV(zZ,1), 3)
shifted, so they are all centered at the same energy. The m*(z,r) r?2 9¢?
width of p, (E) will be closer to the actual resonant width
than that of the uncorrected LDJ$, (E)]. where the spatially dependent effective mass is given by
In low fields there is another problem that can also cause
numerical error in the estimate bf The slopedL/dE;(L) is m*(z,r) " *=m& Y 0(—2)+6(z—D)
nearly divergent aE=E{") when the resonance width is ex-
tremely small, which can lead to large numerical errors in +0(D—2)6(z=d)0(r—r(2))]
evaluatingp;(E) at E nearE, . This problem has been over- +mf Y 0(2) 6(d—2)

come by Ravuri, Mandelshtam, and Tay#rthey recon-
structed the phase shift from the SDOS by integration over +6(D—2)0(z—d)O(r(z)—r)], (4)



11 054 DAVID M.-T. KUO AND YIA-CHUNG CHANG PRB 61

0 200

—-30
100
—60

—-90

E, (meV)

—120

E (meV)

—150

—-200

—180 1 1 1 1 1
21 32.5 44 55.5 67 78.5 20

R, (&)

_300 1 1 1 |

. . 240 280 320 360 400 440
FIG. 5. Energies of the bound states of a conical quantum dot as L (A)

functions of the base radius.

FIG. 6. Energy eigenvalues of a conical InAs/GaAs quantum
-V, for 0=z=d dot under an electric fieldq= 200 kV/cm as functions of the scale

V@)=, otherwise. (5 factorL.
and thicknessd=5 A, the height of the conér=35 A, the
AV(z,r)=—Vo8(z—d)8(D—2)6(r.—T), (6)  conduction-band offse¢,=0.5 eV (this includes the effect
_ of hydrostatic strain due to the lattice mismatch between
with InAs and GaAjp the radius of the confining cylindeR

.(2)= (D—2)tan 6,) =400 A, and the length of the confining bdx=400 A.

¢ o Three bound states are found for the ramye=20-90 A .
mg=0.067m, andmj =0.024n, are the effective masses of For detector application, we are seeking an intersubband
GaAs and InAs, respectively(x) is a step functiony, is  transition at an energy around 0.1 eV, which occurfkgat

the conduction-band offset, ami=d+h, whered andhare  =52.5 A |, where the three bound states are at energies
the thickness of the wetting layer and the height of the coni— 1.024, —0.020, and—0.007 eV.
cal QD, respectively. tat) =Ry /h, whereR is the radius In the presence of the electric field, a potential term

of the conical QD base. Note that the spin-orbit interaction—eEz is added to the Hamiltoniai,, which leads to a
has been ignored in the Hamiltonian of &8). Similarly to  stark shift and finite lifetime for the confined states. To
the quantum well system, we introduce a set of square intesya|uate the energy and width of resonant states of the quan-

grable basis functions, which are eigenfunctions of a cylinyym dot, we shall use the corrected SDOS method discussed
drical box of radiusR (R>Rp) and lengthL (L>d) with  gphgve.

infinite potential barrier: Figure 6 shows the stabilization graph for a conical QD
B . under fieldF =200 kV/cm. All material parameters used are
$nm(12) = Brdo(Kar)Sinkn(2+L/2)], @ the same as in Fig. 5 witR,=52.5 A and the length of the
where confining boxL varying from 240 to 440 A. The current set
of parameters gives a bound-to-continuum transition energy
J2 1 around 102 meV, which is designed for application for 10
'Bn:ﬁ RJ,(k,R) pm infrared radiation detection. Using E®), we obtain the

energy-weighted SDOS;, (E) as shown in Fig. 7. The reso-

is the normalization factok,,=m/L, andk,R is thenth  nance width obtained by taking the energy separation be-
zero of the Bessel functiody(x). Only cylindrically sym-  tween minimum and maximum af, (E) is 2.28 meV. We
metric basis functions are considered here, because we anave calculated the Stark shift and resonance width of the
interested only in the states that can be coupled to the quaonical QD at various fields. The results are listed in Table
sibound state when the electric field is applied inzlérec-  [I. For comparison, we also include the results for an
tion (which still preserves the cylindrical symmelryThe  Al, {Ga, -As/GaAs quantum well with well widtlil=24 A.
same set of basis functions has been used by Marzin anthis well width is chosen so that the bound-to-continuum
Bastard® to calculate the quantum confined states in a conitransition energies are also around 102 meV.
cal QD. The expression of the matrix elements of the Hamil- Figure 8 shows the comparison of the electron tunneling
tonian of Eq.(3) can be readily obtained. Seventy sine func-rate (1#/=I'/4) as a function of field(F) for a conical
tions multiplied by ten Bessel functions are used tolnAs/GaAs QD and an AlGa -As/GaAs QW. We see in
diagonalize the Hamiltonian. The convergence is checked bghe figure that the electron tunneling rate of the QD is con-
increasing the basis functions and with the current set osistently lower than that in the QW, although their bound-to-
bases the ground state energy is accurate to within 1 meVcontinuum transition energies are almost the same. Since the

Figure 5 shows the energy levels of the confined states asinneling rate determines the dark current due to the direct
a function of the base radiuR§) of the conical dot. The tunneling process, our study indicates that a QDIP has some
other material parameters used here are the wetting lay@dvantage over a QWIP because of its lower dark current.
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conical InAs/GaAs quantum dot under an electric fiekl=200
kV/cm).

IV. SUMMARY escape rate in quantum dots will be a subject of our future

In this article we studied the energy and width of thestudies.
guasibound states of isolated quantum well and quantum dot
systems under an electric field via a stabilization method. ACKNOWLEDGMENTS
From the stabilization grapkeigenvalues plotted as func-
tions of a scaling factok), we constructed the size-average
density of states, which is well fitted by Lorentzian functions
with width corresponding to the tunneling rate. Our study
shows that the electron escape réawich determines the
dark current of quantum dots with conical shape is smaller APPENDIX: THE STABILIZATION METHOD
than that of quantum wells with the same bound-to-
continuum transition energy by a factor 2—3. This suggest;n
that th_e dark _curr.ent for quantum-dot-based infrared detec‘t—h
tors will be §|gn|f|cantly lower than that for t_he q“a”t“”." localized density of states confined in the regidb) (of in-
well based infra-red detectors when the direct tunnelmgterest_
mechanism is dominant. Although we studied only quantum '
dots of conical shape, the same conclusion is expected to be
applicable to quantum dots of other shagegramidal, len- po(E)=2>, j [ (r)|2d% S(E—E;)). (A1)
slike, or disklike. b Jreq

Throughout this paper, we have considered only the low
concentration limit, in which no two electrons will occupy
the quantum dot at the same time. Thus, the correlated effe
due to the electron-electron interaction can be ignored. Thi
electron-electron interaction can lead to a Coulomb blockad

This work was supported by a subcontract from the Uni-
versity of Southern California under the MURI program,
AFOSR, Contract No. F49620-98-1-0474.

In this appendix, we briefly discuss the stabilization
ethod used by Mandelshtaet al3* One way to calculate
e lifetime of a metastable state of a system is to find the

For a metastable state with sufficiently long lifetinpg,(E)

is well described by a Lorentzian shape centered at a reso-
fnce energyH,) with width I'. For a system with infinite
§ize, an infinite number of basis functions is required to ob-
) ; ) fain the exact result. Numerically, one can truncate the sys-
which will affect the transport properties of quantum tem at a finite size and use a finite number of basis functions.

5-38 ; ;
dlotsi 'n_lfne c?fsetth?tceacih qgag;turlrg gOt cortlrt1a|ns| atfevbr, equivalently, one places the system in a confining box of
electrons. The etiect of Loulomb blockade on the elec rorfength L in each direction. The number of basis functions

required to yield the desired numerical accuracy should in-
crease with the size. Plotting the energy eigenvalues versus
the sizelL typically produces a stable horizontal lifeorre-
sponding to the metastable stat@tertwined with many
closely spaced curveorresponding to continuum states

TABLE Il. Resonance energyE,) and width (") of an
InAs/GaAs conical quantum dot and anyAGa, ;As/GaAs quan-
tum well with well width 24 A at various fields.

Electric field Quantum dot Quantum well . o

Such a graph is called the stabilization graph, and allows
F (kviem) E (mey) I'meVy) E (meV) T (mey) immediate identification of the resonance energy and a rough
125 —120.2 0.278 —118.3 0.799 estimate of the resonance width by evaluating the energy
150 —125.1 0.660 —122.4 1.920 spacing between the resonance level and nearby continuum
200 —135.3 2.28 —-131.1 5.376 states. However, to obtain an accurate evaluation of the reso-
250 —147.2 5.16 —140.0 10.10 nance width, one needs a numerically smooth resonance pro-

file for po(E), which requires knowingpo(E) on a fine
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energy grid with spacing much smaller than the resonanceshere §(L<Lo<L+AL)=1 if L<Ly<L-+AL and zero
width I". Sincel’ can be very small for a metastable systemotherwise. Unlike the LDOS defined in EGA1), this quan-
with a long lifetime, the sizd. required to produce a fine tity is a numerically smooth function o, since one can
energy spacing is often very large, which leads to too large ahoose a fine mesh inwhen performing the integral ovér
value ofN to allow practical calculation. in Eq. (A2). p.(E) has a maximum at the resonance energy

Mandelshtam, Ravuri, and Tayfdrhave developed a E, where|dE;(L)/dL| is a minimum. Subtracting the back-
simple method for extracting the LDOS from the stabiliza-ground contributiondue to continuum statg$o the SDOS,
tion graph. They define a size-averaged density of statesne obtains a potential-well-induced change in the SDOS,
(SDOS9 as

ApL(E)=pu(E)=pL(E),

L+AL
pL(E)EEJ’L dLZ SE-Ei(L)) where p?(E) is the background contribution, which can be
obtained by removing the potential well in the Hamiltonian.

2 dE (L) ' It can be shown thah p, (E) is rather insensitive to the size
AL E (Lt L, 3 as long ad is a few times larger than the length 6,
no althoughp, (E) keeps increasing with. So one can obtain a
X O(L<Lo<L+AL), (A2) stableAp, (E) for a moderate size df.
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