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Electron tunneling rate in quantum dots under a uniform electric field

David M.-T. Kuo and Yia-Chung Chang
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 6180

~Received 1 November 1999; revised manuscript received 6 December 1999!

A stabilization method is used to evaluate the tunneling rate of an electron in isolated quantum dots of
conical shape under uniform electric field. A stabilization graph is obtained by plotting the eigenvalues of a
single quantum dot embedded in a confining box made of barrier material as functions of the size of the box.
The eigenvalues of the system are calculated within the effective mass approximation via the Raleigh-Ritz
variational method. The density of states associated with the quasibound state is constructed from the stabili-
zation graph and is shown to have a Lorentzian profile. The width of the Lorentzian profile gives the tunneling
rate. We show that the tunneling rate of the quantum dot system is 2–3 times smaller than that of a quantum
well system with the same bound-to-continuum transition energy.
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I. INTRODUCTION

Recently, self-assembled InAs/GaAs quantum dots gro
by molecular beam epitaxy have attracted a great dea
scientific interest.1–8 Due to the large lattice mismatch be
tween InAs and GaAs,2 the highly strained epitaxial layer o
InAs on GaAs has a tendency to form coherent thr
dimensional islands after completion of the wetting lay
These InAs islands typically have the shape of pyramids8,9

disks,10 lenses,11,12 or cones.13,14 The mechanism of InAs
nucleation has been investigated by Tersoffet al.15 and Holy
et al.16 Many useful applications of quantum dot~QD! de-
vices have been discussed.17,18 One promising application is
the quantum dot infrared photodetector~QDIP!, in which the
bound-to-continuum transition is utilized. The main adva
tage of the QDIP versus QWIP~quantum well infrared pho-
todetector! is that light can be directly coupled to the ele
trons in the normal incidence geometry due to the effec
QD confinement in directions perpendicular to the grow
axis. For applications as infrared detectors, another impor
factor to consider is the dark current, which is related to
electron escape rate in the QD under an electric field.

The electron escape rate~inverse of the tunneling time! of
quantum well systems has been extensively studied.19,20The-
oretical methods for evaluating the electron tunneling r
include the phase-shift method,19 the complex-energy
method,20 and the stabilization method. All these metho
give essentially identical results. In the phase-shift approa
the eigenfunction of the Hamiltonian for the QW syste
under an electric field is solved analytically and the lifetim
of the quasibound state is related to the inverse of the w
of the local density of states~LDOS! as a function of energy
At low fields, this resonance profile is well approximated
a Lorentzian function. Thus, it is expected that a compl
energy solution to the time-independent Schro¨dinger equa-
tion with proper boundary condition20 will give rise to the
same lifetime as the quasibound state. Both the phase-
method and the complex-energy method require solving
wave functions of the system. On the other hand, the st
lization method requires finding only the eigenvalues of
system Hamiltonian as functions of an external param
~the scaling factor!, which allows evaluation of the LDOS
PRB 610163-1829/2000/61~16!/11051~6!/$15.00
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via integration over the external parameter and subtrac
the background contribution.

Extensive theoretical studies of the electronic and opt
properties of QDs have been performed by seve
groups.21–25 However, no theoretical studies of the electr
tunneling rate for quantum dots of realistic geometry ha
been reported to date. In light of the promising IR detec
application of QD systems, it is desirable to investigate
electron tunneling rate, so that the dark current of the Q
device can be assessed. There are three different mechan
that contribute to the dark current of QDs: thermion
phonon-assisted tunneling, and direct tunneling. Based
calculations on quantum well systems,26 we expect the direct
tunneling process to dominate at medium to high fields.
this paper, we report a theoretical study of the electron t
neling rate of an InAs/GaAs conical QD, since it determin
the direct tunneling current. Here the stabilization meth
~SM! is used rather than the phase-shift or complex-ene
method, since accurate numerical solution to the eigenst
of the QD system under an electric field as a continuo
function of energy is difficult to obtain because of the lo
symmetry of the system.

The stabilization graph~SG! was introduced by Simons
for finding the resonance energy and width of a metasta
state.27 A SG is generated by plotting the energy eigenvalu
of the system subject to the variation of a scaling fact
which is taken to be the size of a confining box with infini
potential. The eigenvalues of the system can be solved
merically via the Raleigh-Ritz variational method. Using t
SG, one can determine the energy width of the metasta
state by relating it to the energy separation between eig
values for states near the resonance based on Fermi’s go
rule ~FGR!.28,29 Such a method has been applied frequen
to various quantum systems.30,31 Using the FGR method for
the SG, Borondo and Dehesa32 calculated the energy an
widths of resonances of an isolated quantum well in an e
tric field. Although the FGR method gives a reasonable e
mate of the resonance width, the result obtained depend
the size of the confining box used.32 Thus, the method is no
very accurate, especially at high fields where the high
order contributions become important.

On the other hand, Mandelshtamet al.33 constructed an
11 051 ©2000 The American Physical Society
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accurate numerical method which allows the extraction
the local density of states for the metastable states of
system from the SG. The LDOS obtained has a well-defi
Lorentzian profile and its width is insensitive to the size
the confining box used. In this paper, we shall apply t
method to both quantum well and quantum dot systems.
show that applying this method to quantum well syst
gives results for the resonance width in excellent agreem
with those obtained via the phase-shift method. Thus,
believe that this method is capable of obtaining accurate
sults for the electron tunneling time for quantum dot syste
as well.

II. QUANTUM WELL SYSTEM

To test the accuracy of the stabilization method used,
shall first apply the method to a one-dimensional QW s
tem. This allows a detailed comparison of results obtained
both the SM and the phase-shift method. A brief discuss
of the SM is given in the appendix. We consider a sin
Al0.3Ga0.7As/GaAs/AlGaAs quantum well system with we
width d551 Å. The effective masses for GaAs an
Al0.3Ga0.7As used in our calculation aremW* 50.067me and
mB* 50.095me (me is the bare electron mass!, respectively.
The conduction band offset used isV052247 meV. The
above set of parameters gives two bound states in the
with energiesE052174 meV andE1524 meV in the ab-
sence of field. These values are obtained by solving the t
scendental equation for the quantum well, taking into
count the difference of effective masses for GaAs a
AlGaAs. To solve the problem in the presence of an elec
field, we place the quantum well at the center of a confin
box with width L and infinite potential barrier. The uniform
electric field of strengthF introduces an additional term
2eF(z2L/2) to the Hamiltonian, wheree is the electron
charge andz is the coordinate along the growth axis. A bas
set of up to 70 sine functionsfm(x)5A2/Lsin(kmz) (km
5mp/L,m5 positive integers! is used to construct the
eigenfunctions of the system. Here the origin (z50) is de-
fined to be at the left corner of the confining box. The mat

FIG. 1. Energy eigenvalues of an Al0.3Ga0.7As/GaAs quantum
well with well width 51 Å under an electric field (F5300 kV/cm!
as functions of the scale factorL.
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elements of the Hamiltonian can be calulated analytica
The lowest two eigenvalues ofH in the absence of field
obtained by numerical diagonalization are found to ag
with the analytical results~which were obtained by solving a
transcendental equation! within 0.1 meV, indicating the con-
vergence of the basis set used.

Figure 1 shows the stabilization graph forF5300 kV/cm,
in which the lowest ten eigenvalues ofH are plotted as func-
tions of the scaling factorL. A resonance state at energy ne
2200 meV is quite apparent as the horizontal line int
twined with many slanting lines~due to continuum state
outside the well!. The minigaps at the anticrossing poin
indicate the coupling strength between the quasibound s
and the continuum states.

Using the SM, we obtain the size-averaged density
states~SDOS! as defined in the Appendix. The result
shown in Fig. 2. 440 mesh points forL ranging from 220 to
660 Å were used to perform the average. The curve is w
fitted by a Lorentzian function~solid curve! with resonance
energyEr52190.5 meV and widthG53.82 meV. The re-
sult agrees well with that obtained by the phase-shift met
~see Table I!. However, at lower fields, this procedure do
not work so well without substantially increasing the numb
of basis functions. At lower fields, the first crossover b
tween the quasibound state and continuum states occurs

TABLE I. Resonance energy (Er) and width (G) of an
Al0.3Ga0.7As/GaAs quantum well with well width 51 Å at variou
fields.

Electric field Phase shift Stabilization method
N570 N5140

F Er G Er G Er G

~kV/cm ~meV! ~meV! ~meV! ~meV! ~meV! ~meV!

150 2178 0.0354 2178 0.028 2178 0.032
200 2181 0.397 2181 0.374 2181 0.388
250 2185 1.60 2185 1.584 2185 1.592
300 2190 3.98 2191 3.888 2191 3.942
350 2195 7.59 2196 7.378 2196 7.4

FIG. 2. Background-subtracted SDOS@DrL(E)# for an
Al0.3Ga0.7As/GaAs quantum well with width 51 Å under an electr
field (F5300 kV/cm!. The curve is fitted with a Lorentzian func
tion ~solid line! with Er52190.5 meV and widthG53.82 meV.
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PRB 61 11 053ELECTRON TUNNELING RATE IN QUANTUM DOTS . . .
much larger value ofL. Thus, a much larger basis set
needed. This is undesirable, since it will make application
this method to the quantum dot system difficult. If we ke
the number of basis functions fixed at 70, the resulting re
nance energyEr will shift upward asL increases, and the
SDOS will be artificially broadened when we average o
L. This is better illustrated by rewriting the SDOS as

rL~E!5
1

DL (
i

r i~E!,

where

r i~E!5UdEi~L !

dL U
Ei (L0)5E

21

with L,L0,L1DL.

In Fig. 3, we plot r i(E) versusE for i 52, . . . ,5 for F
5150 kV/cm. We see in this figure thatr i(E) are all well
described by Lorentzian profiles, but their centerEr

( i ) has
shifted upward asi increases from 2 to 5. The shift inEr

( i ) is
larger than the width of the Lorentzian profile, which leads
a substantial error in the estimated resonance width w
one sums overi. The problem gets worse as the field
further reduced. To circumvent this problem, we define
corrected SDOS as

r̄L~E!5
1

DL (
i

r i~E2Er
( i )!, ~1!

where the Lorentzian profiles for all branches are rigid
shifted, so they are all centered at the same energy.
width of r̄L(E) will be closer to the actual resonant wid
than that of the uncorrected LDOS@rL(E)#.

In low fields there is another problem that can also ca
numerical error in the estimate ofG. The slopedL/dEi(L) is
nearly divergent atE5Er

( i ) when the resonance width is ex
tremely small, which can lead to large numerical errors
evaluatingr i(E) at E nearEr . This problem has been ove
come by Ravuri, Mandelshtam, and Taylor,34 they recon-
structed the phase shift from the SDOS by integration o

FIG. 3. Contributions to the background-subtracted SDOS
an Al0.3Ga0.7As/GaAs quantum well~with well width 51 Å! under
an electric field (F5150 kV/cm! due to various branches, wher
E052175 meV.
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E. Here we introduce a simpler method to overcome t
problem at low fields. The idea is based on the observa
that the resonance energyEr

( i ) of each curve forr i(E) can be
determined rather precisely, although the value ofr i(E) it-
self atEr

( i ) is subject to large numerical error. Therefore, w
define the energy-weighted SDOS as

hL~E!5
1

DL (
i

~E2Er
( i )!@r i~E2Er

( i )!2r0#. ~2!

Herer0 is the background contribution, which is essentia
a constant. Since@r i(E2Er

( i ))2r0# should be a Lorentzian
function, hL(E) can be well fitted by the functionCE/@E2

1(G/2)2#. The function has a minimum at2G/2 and a
maximum atG/2. The energy separation between the mi
mum and maximum ofhL(E) gives the value ofG directly,
and no fitting is necessary. We found the method introdu
here works quite well in determining the resonance wid
with the use of a fixed number~taken to be 70! of basis
functions even at low fields (F'200 kV/cm!. A comparison
of results at various fields obtained by the present met
~with either 70 or 140 basis functions! and the phase-shif
method is given in Table I. The agreement between the
methods is within 6%~2%! for fields>200 kV/cm when 70
~140! basis functions are used. Note that at the smallest fi
F5150 kV/cm, 140 basis functions are still not enough
provide accurate value fort. The error in this case is nea
10% in comparison with the phase-shift method.

III. QUANTUM DOT SYSTEM

A schematic diagram of the conical QD considered her
shown in Fig. 4. The Hamiltonian of an isolated conical Q
with wetting layer can be expressed by13,14 ~in cylindrical
coordinates!

H05
2\2

2 S ]

]z

1

m* ~z,r !

]

]zD 1
2\2

2 S 1

r

]

]r

r

m* ~z,r !

]

]r

1
1

m* ~z,r !

1

r 2

]2

]f2D 1V~z!1DV~z,r !, ~3!

where the spatially dependent effective mass is given by

m* ~z,r !215mG*
21@u~2z!1u~z2D !

1u~D2z!u~z2d!u„r 2r c~z!…#

1mI*
21@u~z!u~d2z!

1u~D2z!u~z2d!u„r c~z!2r …#, ~4!

r

FIG. 4. Schematic diagram for a conical InAs/GaAs quant
dot with height 35 Å, base radius 52.5 Å, and wetting layer 5 Å
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V~z!5H 2V0 for 0<z<d

0 otherwise,
~5!

and

DV~z,r !52V0u~z2d!u~D2z!u~r c2r !, ~6!

with

r c~z!5~D2z!tan~u0!.

mG* 50.067me andmI* 50.024me are the effective masses o
GaAs and InAs, respectively,u(x) is a step function,V0 is
the conduction-band offset, andD5d1h, whered andh are
the thickness of the wetting layer and the height of the co
cal QD, respectively. tan(u0)5R0 /h, whereR0 is the radius
of the conical QD base. Note that the spin-orbit interact
has been ignored in the Hamiltonian of Eq.~3!. Similarly to
the quantum well system, we introduce a set of square i
grable basis functions, which are eigenfunctions of a cy
drical box of radiusR (R@R0) and lengthL (L@d) with
infinite potential barrier:

fn,m~r ,z!5bnJ0~knr !sin@km~z1L/2!#, ~7!

where

bn5
A2

ApL

1

RJ1~knR!

is the normalization factor.km5mp/L, andknR is the nth
zero of the Bessel functionJ0(x). Only cylindrically sym-
metric basis functions are considered here, because we
interested only in the states that can be coupled to the
sibound state when the electric field is applied in thez direc-
tion ~which still preserves the cylindrical symmetry!. The
same set of basis functions has been used by Marzin
Bastard13 to calculate the quantum confined states in a co
cal QD. The expression of the matrix elements of the Ham
tonian of Eq.~3! can be readily obtained. Seventy sine fun
tions multiplied by ten Bessel functions are used
diagonalize the Hamiltonian. The convergence is checked
increasing the basis functions and with the current se
bases the ground state energy is accurate to within 1 me

Figure 5 shows the energy levels of the confined state
a function of the base radius (R0) of the conical dot. The
other material parameters used here are the wetting l

FIG. 5. Energies of the bound states of a conical quantum do
functions of the base radius.
i-

n

e-
-

are
a-

nd
i-
l-
-

y
f
.
as

er

thicknessd55 Å, the height of the coneh535 Å, the
conduction-band offsetV050.5 eV ~this includes the effect
of hydrostatic strain due to the lattice mismatch betwe
InAs and GaAs!, the radius of the confining cylinderR
5400 Å, and the length of the confining boxL5400 Å.
Three bound states are found for the rangeR0520–90 Å .
For detector application, we are seeking an intersubb
transition at an energy around 0.1 eV, which occurs atR0

552.5 Å , where the three bound states are at energ
21.024, 20.020, and20.007 eV.

In the presence of the electric field, a potential te
2eFz is added to the HamiltonianH0, which leads to a
Stark shift and finite lifetime for the confined states. T
evaluate the energy and width of resonant states of the q
tum dot, we shall use the corrected SDOS method discus
above.

Figure 6 shows the stabilization graph for a conical Q
under fieldF5200 kV/cm. All material parameters used a
the same as in Fig. 5 withR0552.5 Å and the length of the
confining boxL varying from 240 to 440 Å. The current se
of parameters gives a bound-to-continuum transition ene
around 102 meV, which is designed for application for
mm infrared radiation detection. Using Eq.~2!, we obtain the
energy-weighted SDOS,hL(E) as shown in Fig. 7. The reso
nance width obtained by taking the energy separation
tween minimum and maximum ofhL(E) is 2.28 meV. We
have calculated the Stark shift and resonance width of
conical QD at various fields. The results are listed in Ta
II. For comparison, we also include the results for
Al0.3Ga0.7As/GaAs quantum well with well widthd524 Å.
This well width is chosen so that the bound-to-continuu
transition energies are also around 102 meV.

Figure 8 shows the comparison of the electron tunnel
rate (1/t5G/\) as a function of field~F! for a conical
InAs/GaAs QD and an Al0.3Ga0.7As/GaAs QW. We see in
the figure that the electron tunneling rate of the QD is co
sistently lower than that in the QW, although their bound-
continuum transition energies are almost the same. Since
tunneling rate determines the dark current due to the di
tunneling process, our study indicates that a QDIP has s
advantage over a QWIP because of its lower dark curren

as

FIG. 6. Energy eigenvalues of a conical InAs/GaAs quant
dot under an electric field (F5200 kV/cm! as functions of the scale
factor L.
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IV. SUMMARY

In this article we studied the energy and width of t
quasibound states of isolated quantum well and quantum
systems under an electric field via a stabilization meth
From the stabilization graph~eigenvalues plotted as func
tions of a scaling factorL), we constructed the size-averag
density of states, which is well fitted by Lorentzian functio
with width corresponding to the tunneling rate. Our stu
shows that the electron escape rate~which determines the
dark current! of quantum dots with conical shape is smal
than that of quantum wells with the same bound-
continuum transition energy by a factor 2–3. This sugge
that the dark current for quantum-dot-based infrared de
tors will be significantly lower than that for the quantum
well based infra-red detectors when the direct tunnel
mechanism is dominant. Although we studied only quant
dots of conical shape, the same conclusion is expected t
applicable to quantum dots of other shapes~pyramidal, len-
slike, or disklike!.

Throughout this paper, we have considered only the lo
concentration limit, in which no two electrons will occup
the quantum dot at the same time. Thus, the correlated e
due to the electron-electron interaction can be ignored. T
electron-electron interaction can lead to a Coulomb block
which will affect the transport properties of quantu
dots35–38 in the case that each quantum dot contains a
electrons. The effect of Coulomb blockade on the elect

TABLE II. Resonance energy (Er) and width (G) of an
InAs/GaAs conical quantum dot and an Al0.3Ga0.7As/GaAs quan-
tum well with well width 24 Å at various fields.

Electric field Quantum dot Quantum well
F ~kV/cm! Er ~meV! G ~meV! Er ~meV! G ~meV!

125 2120.2 0.278 2118.3 0.799
150 2125.1 0.660 2122.4 1.920
200 2135.3 2.28 2131.1 5.376
250 2147.2 5.16 2140.0 10.10

FIG. 7. Energy-weighted SDOShL(E) @defined in Eq.~2!# for a
conical InAs/GaAs quantum dot under an electric field (F5200
kV/cm!.
ot
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escape rate in quantum dots will be a subject of our fut
studies.
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APPENDIX: THE STABILIZATION METHOD

In this appendix, we briefly discuss the stabilizatio
method used by Mandelshtamet al.33 One way to calculate
the lifetime of a metastable state of a system is to find
localized density of states confined in the region (V) of in-
terest:

rV~E!5(
i
E

rPV
uc i~r !u2d3r d~E2Ei !. ~A1!

For a metastable state with sufficiently long lifetime,rV(E)
is well described by a Lorentzian shape centered at a r
nance energy (Er) with width G. For a system with infinite
size, an infinite number of basis functions is required to o
tain the exact result. Numerically, one can truncate the s
tem at a finite size and use a finite number of basis functio
Or, equivalently, one places the system in a confining box
length L in each direction. The number of basis functio
required to yield the desired numerical accuracy should
crease with the sizeL. Plotting the energy eigenvalues vers
the sizeL typically produces a stable horizontal line~corre-
sponding to the metastable state! intertwined with many
closely spaced curves~corresponding to continuum states!.
Such a graph is called the stabilization graph, and allo
immediate identification of the resonance energy and a ro
estimate of the resonance width by evaluating the ene
spacing between the resonance level and nearby contin
states. However, to obtain an accurate evaluation of the r
nance width, one needs a numerically smooth resonance
file for rV(E), which requires knowingrV(E) on a fine

FIG. 8. Electron tunneling rate 1/t versus electric fieldF for an
InAs/GaAs conical quantum dot ~solid line! and an
Al0.3Ga0.7As/GaAs quantum well with well width 24 Å~dashed
line!. Both systems have a bound-to-continuum transition ene
around 102 meV.
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energy grid with spacing much smaller than the resona
width G. SinceG can be very small for a metastable syste
with a long lifetime, the sizeL required to produce a fine
energy spacing is often very large, which leads to too larg
value ofN to allow practical calculation.

Mandelshtam, Ravuri, and Taylor33 have developed a
simple method for extracting the LDOS from the stabiliz
tion graph. They define a size-averaged density of st
~SDOS! as

rL~E![
1

DLEL

L1DL

dL(
i

d„E2Ei~L !…

5
1

DL (
i

UdEi~L !

dL U
Ei (L0)5E

21

3u~L,L0,L1DL !, ~A2!
G

ys

rd

ev

Jr

m
ey
.

ff

M

v

e

a

-
es

where u(L,L0,L1DL)51 if L,L0,L1DL and zero
otherwise. Unlike the LDOS defined in Eq.~A1!, this quan-
tity is a numerically smooth function ofE, since one can
choose a fine mesh inL when performing the integral overL
in Eq. ~A2!. rL(E) has a maximum at the resonance ene
Er whereudEi(L)/dLu is a minimum. Subtracting the back
ground contribution~due to continuum states! to the SDOS,
one obtains a potential-well-induced change in the SDOS

DrL~E!5rL~E!2rL
0~E!,

whererL
0(E) is the background contribution, which can b

obtained by removing the potential well in the Hamiltonia
It can be shown thatDrL(E) is rather insensitive to the siz
L,33 as long asL is a few times larger than the length ofV,
althoughrL(E) keeps increasing withL. So one can obtain a
stableDrL(E) for a moderate size ofL.
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