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Band structure and optical properties of sinusoidal superlattices: ZnSe1ÀxTex

G. Yang, S. Lee, and J. K. Furdyna
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

~Received 14 May 1999!

This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential
profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe12xTex superlattices
in which the compositionx variessinusoidallyalong the growth direction. Although the band alignment in the
ZnSe12xTex sinusoidal superlattices is staggered~type II!, they exhibit unexpectedly strong photolumines-
cence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is
formulated in terms of the nearly-free-electron~NFE! approximation, in which the superlattice potential is
treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating
two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for
optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and
at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband
states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in
these superlattices because of the large width of the respective subbands. The results of the NFE approximation
are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the
superlattice is short.
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I. INTRODUCTION

Semiconductor superlattice structures have been recei
a great deal of attention for the last few decades due to t
attractive electronic and optical properties. Most stud
however, are carried out on superlattices in the form o
succession of square wells, resulting fromabrupt interfaces
betwen constituent layers. Only a few references exist in
literatures to compositionally modulated superlattices,1,2 be-
cause fabrication of such superlattices is difficult~or even
unrealistic! with normal molecular-beam-epitaxy~MBE!
growth techniques. It was recently reported3 that
ZnSe12xTex superlattices~SL’s! can be grown by molecular
beam epitaxy with a composition profile that variessinusoi-
dally along the growth direction. Such sinusoidal modulati
of the compositionx is expected to lead to interesting phys
cal properties in these structures. For example, in our op
studies of these structures we have already noted th
although the above SL’s have a type-II band alignmen
they show unexpectedly intense photoluminescience.4

Because of these special features, it is interesting to
how the band structure of these SL’s differs from that
conventional SL’s, grown as a succession of square-well
tentials. Our objective, then, is to formulate the electro
band structure of sinusoidal SL’s, with special attention p
to optical transitions which result from such a band structu
It turns out that SL’s with a sinusoidal potential profile a
especially amenable to an analytical description in terms
the nearly-free-electron~NFE! approximation. Using this
model, we will derive analytic expressions for the energi
the wave functions, and the effective masses at the minig
of such SL’s. We will then use these results to discuss
optical properties of the structures. As will be seen, a num
of optical transitions will emerge due to the wave-functi
mixing of different subbands. It will be shown, furthermor
that in systems of this type transitions which occur at
PRB 610163-1829/2000/61~16!/10978~7!/$15.00
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Brillouin-zone center can be readily distinguished from tho
occurring at the zone edges.

II. BAND STRUCTURE OF SUPERLATTICES WITH
SINUSOIDAL ENERGY PROFILES

We begin by considering a single band of a sinusoida
modulated SL. For specificity, we will expicitly discuss th
conduction band, as schematically shown in Fig. 1. The
havior of an electron in the conduction band is determin
by the standard Schro¨dinger equation

HC~z!5F2
\2

2m*

d2

dz2
1V~z!GC~z!5EC~z!, ~1!

whereH is the Hamiltonian,m* is the effective mass, andE
represents the eigenenergies of the system. In the case
sinusoidal SL, the potentialV(z) is given by

FIG. 1. Energy-band profile of a sinusoidal superlattice for
conduction and valence bands with a type-II alignment. T
valence-band offset is assumed to be larger, to qualitatively si
late the specific case of ZnSe12xTex superlattices considered in thi
paper.
10 978 ©2000 The American Physical Society
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V~z!5
1

2
V cosS 2pz

L D , ~2!

whereL is the SL period,z is the SL growth direction, andV
is the peak-to-peak value of the band offset of the band un
consideration. The potentialV(z) can be expanded as a Fo
rier series, with the Fourier coefficientsVn of the series
given by

Vn5
1

4
Vdn,1 ; ~3!

i.e., all Fourier components ofV(z) vanish exceptV1. This
feature, specific to the sinusoidal profile, results in a ma
simplification of the band structure.

In the NFE approximation, it is assumed thatV(z) is
small in comparison with kinetic-energy terms in Eq.~1!. We
can thus treatV(z) as a perturbation. Since in sinusoid
SL’s only V1Þ0, it is readily shown that, to first order, onl
one minigap opens: the first minigap atk56p/L,5,6 with the
minigap width given by

Eg,152uV1u5
1

2
V. ~4!

It is interesting to note that this minigap is determinedonly
by the value of the band offset. Such a characteristic b
structure is shown schematically in Fig. 2 in extended zo
form. The wave functions associated with the two ene
extrema of this minigap are cos(npz/L) and sin(npz/L), their
order~which one is upper, and which is lower! depending on
the sign ofV1.5,7

The effective masses associated with such a minigap
given by the very convenient analytic expressions derive
Appendix B of Ref. 6,

m11* 52m12* 5
m* Eg,1

4T1
, ~5!

where the1 and2 subscripts refer to the higher- and lowe
lying states, andT1 is the kinetic-energy term at the zon
edge, defined as

T15
\2p2

2m* L2
.

To second order, the minigap atk562p/L will also
open. With the Fourier coefficients given by Eq.~3!, we
obtain the minigap widths, wave functions, and effect
masses at thek562p/L minigap ~see the Appendixes o
Ref. 6!:

Eg,25
V2

8T2
, m2* 5

m* V2

32T2
. ~6!

It is noted that the magnitudes ofEg,2 and m2* are indeed
much smaller thanEg,1 andm1* . The wave functions for the
two extrema associated with this minigap are cos(2pz/L) and
sin(2pz/L), respectively. A detailed analysis shows that
third-order perturbation analysis is required for the th
minigap to open; the fourth minigap will open in fourth o
der, and so on. It is thus a characteristic of sinusoidal S
er

r

d
e
y

re
in

’s

that, as perturbation theory is carried to higher orders, e
additional ordern reveals a new minigap at the success
values ofk5np/L. But the widths of these minigaps~and
the corresponding densities of states at the extrema! decrease
extremely rapidly withn, as does their physical importanc
Wave functions for several lower-order minigaps in the co
duction band are listed in Table I.

Using first- and second-order perturbation analyses,
can obtain the energy shift of the band edge for both
conduction and valence bands. At theG point (q50),

E~e10!5E02
2V1c

2

T2c
, E~hh10!5

2V1v
2

T2v
, ~7!

E~hh30!52T2v2
V1v

2

T2v
. ~8!

Here we denote specific subband states byeNq and hhNq ,
wheree and hh stand for ‘‘electron’’ and ‘‘heavy hole,’’N is
the subband index~starting from that closest to the bottom o
the well for conduction electrons, and from the top of t
well for the holes!, and q is the SL wave vector. In our
notationq50 and 1 represent the superlattice Brillouin-zo
center and zone edge~i.e., q5p/L), while k is used to de-

FIG. 2. Band structure of superlattices with sinusoidal ene
profile. Only a single band gap appears at the zone edge in fi
order perturbation analysis. Note the shift of the band edge be
the compositional average by the amountmc* L2Vc

2/4h2 @according
to Eq. ~7!#.
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10 980 PRB 61G. YANG, S. LEE, AND J. K. FURDYNA
note points in the Brillouin zone in the bulk material. T
define a point of reference for the energy, we have taken
center of the valence band~midpoint between extrema! as
the zero point, as shown by the lower dotted line in Fig.
E0 is the energy separation from the center of the vale
band to the center of the conduction band~see Fig. 1!; and

Tnc,v5
\2p2n2

2mc,v* L2
, V1c,v5

1

4
Vc,v , ~9!

whereVc,v are the peak-to-peak offset values for the cond
tion and valence bands, respectively. Thus, according to
~7!, the lowest electron energy level ofE(e1) is slightly
below the center of the conduction band~pushed down by an
amount 2V1c

2 /T2c), and the ground-state heavy-hole ener
E(hh1) is slightly above the center of the valence ba
~pushed up by the amount 2V1v

2 /T2v). For E(hh3), the
kinetic-energy term has a minus sign because the disper
curvature for holes is downward. Several examples of tr
sition energies allowed at theG point are

hh10→e10 : E022S V1c
2

T2c
1

V1v
2

T2v
D , ~10!

hh30→e10 : E01T2v1S V1v
2

T2v
2

2V1c
2

T2c
D . ~11!

Similarly, energies of band extrema at the superlattice z
edge (q51) are

E~e11!5E01T1c2V1c , E~e21!5E01T1c1V1c ,
~12!

TABLE I. Wave functions for several lowest conduction su
band states, showing admixtures from the nearest-neighbo
states. The admixture parameters andc5Vc/(pT2

c) and dv
5Vv/(pT2

v).

State Wave function

e10 112dccosS2pz

L D
e11 cosSpz

L D1 1
2dccosS3pz

L D
e21 sinSpz

L D2 1
2dcsinS3pz

L D
e20 sinS2pz

L D2 2
9dcsinS4pz

L D
e30 cosS2pz

L D2dc1
4
9dccosS4pz

L D
e31 sinS3pz

L D1 1
2dcsinSpz

L D2 1
4dcsinS5pz

L D
e41 cosS3pz

L D2 1
2dccosSpz

L D1 1
4dccosS5pz

L D
e

;
e

-
q.

y
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on
-

e

E~hh11!52T1v1V1v , E~hh21!52T1v2V1v .
~13!

Examples of transition energies allowed at theq51 point are
then given by

hh11→e21 : E01~T1c1T1v!2~V1v2V1c!, ~14!

hh21→e11 : E01~T1c1T1v!1~V1v2V1c!. ~15!

These transitions will be discussed in more detail in Secs
and IV, later in the paper.

The criterion for the applicability of the NFE approxima
tion was given in Ref. 6. The NFE can be applied with co
fidence as long as the offset is lower than the value

V5
\2p3

m*

1

L2
. ~16!

It can be seen from this condition that the shorter the
period, the higher can be the actual value of the offsetV
satisfying the perturbation condition. We illustrate these f
tures in Fig. 3, which shows the estimates of the upper li
of V for both the conduction- and valence-band offsets
tained from Eq.~16!, for the perturbation theory to be appl
cable. In these estimates we have assumed that the ele
effective mass is 0.15m0 ~typical for ZnSe and other wide
gap II-VI semiconductors!, and that the heavy-hole mass
five times larger than the electron effective mass—a situa
characteristic of many wide-gap semiconductor compoun8

It can be seen from Fig. 3 that the condition for the applic
bility of the perturbation theory rapidly relaxes as the peri
of the SL becomes smaller.

III. PHOTOLUMINESCENCE IN ZnSe 1ÀxTeX SYSTEMS

The ZnSe12xTex superlattices studied experimentally
this paper were fabricated by means of a MBE growth te
nique, in which the periodic modulation is achieved by su
strate rotation in the presence of nonuniform flux distrib
tions of Se and Te, rather than shutter openings and closi

ng

FIG. 3. Relationship between the critical band offsetVcr and the
superlattice period obtained from the NFE model in sinusoidal
The NFE approximation holds for values ofL to the left of the
curves for each band, respectively.
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With this technique, we were able to grow massive super
tices, of multimicron thicknesses and with many hundreds
periods. Due to such massive structure, one can ignore
strain caused by the lattice mismatch between the subs
and superlattice, even though the superlattices are grow
GaAs substrates. That is, after the structure exceeds a cr
thickness~in the first few hundred nanometers!, it becomes
free standing. We thus do not include the effects of strain
the analysis of the optical results obtained on these supe
tices. For further details about the growth procedure,
reader is referred to Ref. 9.

We examined the optical properties of sinusoidal S
using the band structure formulated in Sec. II. We first c
sider transitions associated with the band edge~i.e., theG
point!, because these are expected to dominate the op
spectrum. To illustrate the analysis, we will use ZnSe12xTex
sinusoidal SL’s with two different periods, but with the sam
modulation amplitude ofx, as determined by x-ray studies (x
varies from 0.35 to 0.65!.9

In this specific ZnSe12xTex system, the largest band-ga
difference between the two layers~i.e., the band-gap differ-
ence between ZnSe0.65Te0.35 and ZnSe0.35Te0.65) is about 130
meV.10 Since the band alignment is known to be of type II
this system~as shown in Fig. 1!, the valence-band offset i
expected to be larger than the 130-meV band-gap differe
Thus the band offsets are themselves not small. Howeve
the case of very short period SL’s the NFE approximat
can be applied even for moderately large band offsets
seen in Fig. 3. In the SL’s under consideration, the peri
are 13.5 and 26.4 Å, as determined by x-ray measureme9

As shown in Fig. 3, these short periods extend the validity
the NFE approximation to the values ofVv'400 meV and
Vc'1000 meV. Both the valence- and conduction-band o
sets in these systems are not expected to exceed the a
limits, and the NFE approximation can thus be applied
these systems.11

The photoluminescence~PL! spectra for the two
ZnSe12xTex sinusoidal SL’s are shown in Fig. 4. The resu
obtained on the two superlattices~periodsL513.5 and 26.4
Å! have been separated into two panels for clarity. In e
panel, there are two spectra, one taken on a sinusoidal

FIG. 4. PL spectra for ZnSe12xTex alloy and for ZnSe12xTex

SL’s with sinusoidal modulation. Panels~a! and ~b! are for SL’s
with 13.5- and 26.4-Å periods, respectively.
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and one on the alloy ZnSe12xTex whose composition is the
same as the average composition of the SL. It is clear tha
redshift of the superlattice PL position relative to the cor
sponding alloy is much larger in the case of the SL with t
longer period. This behavior of the PL energy is exactly
anticipated by the band-edge shift@see Eqs.~7! and ~10!#
obtained in the NFE model presented above.

For a quantitative analysis of this result, we can rewr
the transition energies at theG point by re-expressingV1 and
T2 in Eq. ~10! explicitly in terms ofV,L, andm* :

hh10→e10 : E02
L2

16\2p2
~Vc

2mc* 1Vv
2mv* !. ~17!

The energy shift is now a function of the carrier effecti
masses, the band offsets in both bands, and the SL pe
We note immediately that, as a good approximation, we
ignore the contribution from the conduction band in Eq.~17!,
since the electron mass is five times smaller, and the b
offset is at least two times smaller, than the correspond
quantities in the heavy-hole band. Thus the redshift fromE0
is almost entirely dominated by the valence-band parame

Figure 5 shows the plots~solid curves! of the energy
shifts as a function of the valence band offset for sinusoi
SL’s with 13.5-and 26.4 Å periods obtained using the va
of 0.7m0 for the heavy-hole mass. These energy shifts
tween the average alloy (V50) and the SL can then be use
to find the valence-band offset in each sinusoidal SL. W
draw the energy shifts observed experimentally for the 13
and 26.4-Å SLs~4 and 17 meV, respectively; see Fig. 4! as
horizontal dotted lines in Fig. 5. The crossing points of the
lines with the corresponding calculated curves then giv
very close estimate of the valence-band offset. The val
obtained in this way areV5202 meV for the SL with the
13.5-Å period, andV5205 meV for the 26.4-Å SL. Recall

FIG. 5. Energy shifts of band-edge transitions as functions
the valence-band offset, calculated for SL’s with 13.5- and 26.4
periods, as discussed in the text~solid curves!. Experimental shifts
of the PL peak observed for the two SL’s relative to the correspo
ing alloy are shown as horizontal dotted lines. The intersection
the dotted line and the calculated~solid! curve gives an estimate o
the valence-band offset for the two SL’s~both very close to 200
meV!.
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ing that the two SL’s have identical compositional modu
tion amplitudes, it is very gratifying that the value of th
valence-band offsets obtained from the two specimens,
and 205, are very close to one another~as indeed they should
be!. This value for the valence-band offset automatica
gives the conduction-band offset to be about 70 meV, si
the maximum band-gap difference for this modulati
(0.35,x,0.65) is 130 meV. The band offsets for bo
bands turn out to be very small compared to the critical v
ues plotted in Fig. 3, as had been assumeda priori in our
analysis of the PL data.

IV. SELECTION RULES FOR OPTICAL TRANSITIONS

The above successful description of the fundamental
data encourages us to consider other optical transition
sinusoidal ZnSe12xTex SL’s. We will restrict ourselves to
transitions between the conduction band and theheavy-hole
valence band, because these transitions dominate the i
band optical spectra. For traditional large-offset stagge
~type-II! superlattices, the parity selection rules cannot
applied, because the electrons and holes are separat
space. It has been shown, however, that for type-II supe
tices which satisfy the small band-offset condition, rigoro
selection rules can be found, similar to those in typ
structures.6,12 In fact, there is no qualitative distinction be
tween type-I and -II configurations as long as Eq.~16! is
satisfied.

To obtain the selection rules for optical transitions, w
need to evaluate the wave function overlaps^c i uc f&, where
c i andc f are the wave functions associated with the init
and the final states, respectively. When the offset is v
small, the sin(npz/L) and cos(npz/L) functions obtained from
first-order perturbation analysis provide a good descript
of the wave functions of the states at thenth gap. However,
it has been shown that—as the offset increases@although still
satisfying the ‘‘smallness’’ criterion given by Eq.~16! and
Fig. 3#—it will progressively bring about admixtures from
other nearby subband states into the wave function un
consideration.5,6 The band structure and second-order wa
functions atq50 and 1 for sinusoidal SL’s are shown in Fi
6. Only admixtures from the nearest-neighboring subba
to the first-order wave functions are included. The admixt
parameterdc(dv) is defined asVc/pT2

c (Vv/pT2
v), where the

superscriptc(v) stands for conduction band~valence band!,
V is the band offset, andT2 is the kinetic energy. It should b
noted that in Fig. 6 we only show the wave functions f
minigaps up ton52. The minigap atk56np/L for n>3
remain closed even to second-order perturbation. As a re
the densities of states associated with these higher mini
are extremely small, and optical transitions occurring at th
points are expected to be correspondingly very weak. We
then ignore these minigaps when discussing optical tra
tions of sinusoidal SLs.

The optical transition intensity is determined by the wav
function overlap of the initial and the final state, togeth
with the joint density of states associated with the transiti
Table II lists the wave-function overlap within one SL perio
for a series of transitions, calculated using the NFE mo
for a sinusoidal SL with a period of 30 Å. The table al
gives the calculated reduced massesmz corresponding to
-
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these transitions, which can be used as a measure of the
density of states according to Eq.~37! in Ref. 6. The inten-
sities of the transitions (I i→ j ) were estimated from the prod
uct of the square of the wave-function overlap and the squ
root of mz . These estimated intensities~normalized to the
hh10→e10 transition! are also shown in Table II, except fo
those cases wheremz,0. A negativemz is associated with a
so-calledM1 saddle point, and intensities of transitions i
volving such a saddle point are expected to be vanishin
weak.13,14

We begin by considering transitions at the SL Brilloui
zone center. From Table II, one can see that the h0
→e10 transition is the strongest, primarily due to the highe
joint density of states. The effective mass is much smalle

FIG. 6. Band-structure and corresponding wave functions, u
second-order perturbation analysis. Strongest transitions~as pre-
dicted in Table II! are shown by arrows.

TABLE II. Reduced masses, wave-function overlaps, and tr
sition intensities for various transitions calculated for a ZnSe12xTex

sinusoidal SL with a periodL of 30 Å.

Transition mz ^c i uc j& I i→ j

hh10→e10 10.29 0.90 1.0

hh20→e20 20.5831024 0.96 mz,0

hh30→e30 10.5831024 0.88 0.016

hh30→e10 10.0243 0.59 0.125

hh10→e30 10.5831024 0.59 0.06

hh11→e21 10.79731022 0.98 0.19

hh21→e11 20.8531022 0.93 mz,0

aThe intensity is normalized to 1.0 for the hh10→e10 transition.
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then52 minigap, which is closed in first order@see Eq.~6!#.
Thus the hh20→e20 and hh30→e30 transitions should be
very weak ~in spite of the fact that they are bothDN50
transitions!, due to the much smaller joint density of stat
associated with the extremely small minigap forn52 at the
zone center~see Fig. 6!. For this reason we expect all tran
sitions involving statese20 ande30 to be negligible.

As can be seen from Table II, the NFE model predicts
hh30→e10 transition to be the second strongest transition
q50. This is aDNÞ0 transition, which becomes allowe
due to wave-function mixing. This transition serves ve
nicely to illustrate the role of joint density of states in dete
mining transition intensity: the ‘‘forbidden’’ hh30
→e10(DN52) transition is much stronger than the ‘‘a
lowed’’ hh30→e30(DN50) transition, because the densi
of states associated with thee10 subband is much highe
than that fore30. Another expectedDNÞ 0 transition atq
50 is the hh10→e30. But the intensity of this transition is
much weaker than that of hh30→e10, again because of th
small density of states of thee30 state.

Next we discuss the transitions at the SL Brillouin-zo
edge (q51). In a type-II SL the layers which act as wells fo
conduction electrons constitute barriers for the holes. A
result, the ordering of sin(pz/L) and cos(pz/L) states at the
n51 minigap is opposite for the conduction and valen
bands.6 We thus expect the hh11→e21 and hh21→e11 tran-
sitions to be allowed. Indeed, as we note in Table II,
hh11→e21 transition has the highest wave function overl
of all ~including hh10→e10). The intensity of this transition
is predicted to be about one-fifth of the main transiti
hh10→e10. The intensity of the hh21→e11 transition, on
the other hand, is expected be much weaker than tha
hh11→e21, because hh21→e11 is a saddle-pointexcitonic
transition~negativemz , see Table II!, as discussed in Ref. 6

V. SUMMARY AND CONCLUSIONS

We have examined the band structure and optical se
tion rules in superlattices with asinusoidalpotential profile.
This work was motivated by the recent success in fabrica
ZnSe12xTex superlattices using a MBE growth mode th
exploits the rotation of the substrate in the presence of
inhomogeneous distribution of elemental fluxes instead
shutter openings and closings.9 The band structure of suc
sinusoidal superlattices was formulated in terms of
nearly-free-electron approximation, in which the superlatt
potential was treated as a perturbation. The analysis re
in a dispersion characterized by a single minigap separa
two wide, nearly free-electron-like subbands in both the c
duction and valence bands. Based on these results, we
s.
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derived selection rules for interband transitions betwe
valence- and conduction-band states at the superla
Brillouin-zone center and at the zone edge. A number
transitions, forbidden by theDn50 rule, are predicted due to
wave function mixing of different subband states. It is esp
cially interesting that the analysis allows us to convenien
distinguish between zone-center and zone-edge transition
these structures, particularly in the case of short-period
perlattices where theq50 and 1 transitions have a signifi
cant energy separation due to the correspondingly large
band widths that characterize such structures.

We have used the analytic formulation presented in t
paper to analyze the PL signal observed experimentally
the ZnSe12xTex already referred to. In this connection tw
features are worthy of note. First, the position of the
showed the predicted dependence on the period of the
Second, the intense signal observed in this system~initially
rather surprising, because the band alignment of ZnSe12xTex
superlattices is expected to be staggered, or type II! could
also be explained by the model, which indicates that
short-period SLs the spatial separation of electrons and h
ceases to play a major role, and fundamental ground-s
transitions become direct. Our model also allowed us to
tain the value of the band offset from the PL data by anal
ing data from superlattices with the same compositio
modulation but different periods.

We must note finally that in the specific case
ZnSe12xTex superlattices discussed in the experimental p
of this paper, a sinusoidally modulated composition does
of itself guarantee perfect sinusoidal profile of the ba
edges, because of the very strong bowing of the energy
in this material.10 The rather good self-consistency of th
band-offset results suggest, however, that the departure is
serious, and that the model provides a reasonable approx
tion as long as the periodic modulation is relatively smoo
We are currently exploring the effects of other than sin
soidal band-edge profiles on the superlattice band struct
and we are simultaneously exploring the fabrication of
perlattices with different smooth profiles, that can be o
tained by programming the speed of rotationduring each
cycleof the rotating mounting block. Once this is under co
trol, by this shutterless technique we will be able to produ
superlattices with smoothly varying periods of arbitra
shape.

ACKNOWLEDGMENTS

We would like to express our thanks to Dr. M. Dobrowo
ska for valuable discussions, and to U. Bindley for her as
tance in specimen fabrication. The research was suppo
by DOE Grant No. 97ER45644.
e

ol.

,

1T. Mattila, L. Bellaiche, L.-W. Wang, and A. Zunger, Appl. Phy
Lett. 72, 2144~1998!.

2Y. Zhang and A. Mascarenhas, Phys. Rev. B57, 12 245~1998!.
3S.P. Ahrenkiel, S.H. Xin, P.M. Reimer, J.J. Berry, H. Luo,

Short, M. Bode, M. Al-Jassim, J.R. Buschert, and J.K. Furdy
Phys. Rev. Lett.75, 1586~1995!.

4S. Lee, C. S. Kim, and J. K. Furdyna~unpublished!.
,

5L. A. Lewandowski, Ph.D. dissertation, University of Notr
Dame, 1995.

6G. Yang, L.A. Lewandowski, and J.K. Furdyna, Acta Phys. P
A 93, 567 ~1998!.

7J. Fang and D. Lu,Solid State Physics~Science and Technology
Shanghai, 1980!, p. 209.

8Metals. Electonic Transport Phenomena, edited by O. Madelung,



hy

st

.

R.
v. B

10 984 PRB 61G. YANG, S. LEE, AND J. K. FURDYNA
Landolt-Börnstein, New Series, Group III, Vol. 15~Springer,
Berlin 1982!.

9P. M. Reimer, J. R. Buschert, S. Lee, and J. K. Furdyna, P
Rev. B61, 8388~2000!.

10M.J.S.P. Brasil, R.E. Nahory, F.S. Turco-Sandroff, H.L. Gilchri
and R.J. Martin, Appl. Phys. Lett.58, 2509~1991!.

11N. Dai, Ph.D. dissertation, University of Notre Dame, 1993.
s.

,

12N. Dai, L.R. Ram-Mohan, H. Luo, G.L. Yang, F.C. Zhang, M
Dobrowolska, and J.K. Furdyna, Phys. Rev. B50, 18 153
~1994!.

13H. Chu and Y.-C. Chang, Phys. Rev. B36, 2946~1987!.
14B. Deveaud, A. Chomette, F. Clerot, A. Regreny, J.C. Mann,

Romestain, G. Bastard, H. Chu, and Y.-C. Chang, Phys. Re
40, 5802~1989!.


