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Band structure and optical properties of sinusoidal superlattices: ZnSg_,Te,
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This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential
profile. The analysis is motivated by the recent successful fabrication of high quality Zii®g superlattices
in which the compositiox variessinusoidallyalong the growth direction. Although the band alignment in the
ZnSg ,Te, sinusoidal superlattices is staggerégpe 1l), they exhibit unexpectedly strong photolumines-
cence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is
formulated in terms of the nearly-free-electr@FE) approximation, in which the superlattice potential is
treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating
two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for
optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and
at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband
states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in
these superlattices because of the large width of the respective subbands. The results of the NFE approximation
are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the
superlattice is short.

[. INTRODUCTION Brillouin-zone center can be readily distinguished from those
occurring at the zone edges.
Semiconductor superlattice structures have been receiving

a great deal of attention for the last few decades due to their Il. BAND STRUCTURE OF SUPERLATTICES WITH

attractive eIectron.ic and optical propgrtieg Most studies, SINUSOIDAL ENERGY PROFILES
however, are carried out on superlattices in the form of a
succession of square wells, resulting fraforupt interfaces We begin by considering a single band of a sinusoidally

betwen constituent layers. Only a few references exist in thenodulated SL. For specificity, we will expicitly discuss the
literatures to compositionally modulated superlattitége-  conduction band, as schematically shown in Fig. 1. The be-
cause fabrication of such superlattices is difficidt even havior of an electron in the conduction band is determined
unrealisti with normal molecular-beam-epitaxyMBE) by the standard Schdinger equation

growth techniques. It was recently reportecthat

ZnSg _,Te, superlatticegSL’s) can be grown by molecular- 72 g2
beam epitaxy with a composition profile that var@susoi- HY(z)=| — —+V(2)|Y(2)=E¥(2), (1)
dally along the growth direction. Such sinusoidal modulation m* dz

of the compositiorx is expected to lead to interesting physi-
cal properties in these structures. For example, in our opticavhereH is the Hamiltonianm* is the effective mass, arl
studies of these structures we have already noted that-represents the eigenenergies of the system. In the case of a
although the above SL’s have a type-ll band alignment—sinusoidal SL, the potentiaf(z) is given by
they show unexpectedly intense photoluminesciénce.

Because of these special features, it is interesting to ask Ve
how the band structure of these SL’s differs from that of NG NN
conventional SL’s, grown as a succession of square-well po- CB
tentials. Our objective, then, is to formulate the electronic
band structure of sinusoidal SL'’s, with special attention paid E,
to optical transitions which result from such a band structure.
It turns out that SL’s with a sinusoidal potential profile are -
especially amenable to an analytical description in terms of /\ / ; /\ vB
the nearly-free-electroNFE) approximation. Using this g \/ \/
model, we will derive analytic expressions for the energies,
the wave functions, and the effective masses at the minigaps ¥
of such SL’s. We will then use these results to discuss the F|G. 1. Energy-band profile of a sinusoidal superlattice for the
optical properties of the structures. As will be seen, a numbegonduction and valence bands with a type-ll alignment. The
of optical transitions will emerge due to the wave-functionvalence-band offset is assumed to be larger, to qualitatively simu-
mixing of different subbands. It will be shown, furthermore, late the specific case of ZnSgTe, superlattices considered in this
that in systems of this type transitions which occur at thepaper.
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27z

V(z)= %V cos( T) : 2

wherel is the SL periodzis the SL growth direction, and

is the peak-to-peak value of the band offset of the band unde
consideration. The potenti®l(z) can be expanded as a Fou-
rier series, with the Fourier coefficient$, of the series
given by

1

Va=7

Va1 ©)
Same V:

i.e., all Fourier components &f(z) vanish excep¥,. This l

feature, specific to the sinusoidal profile, results in a majot

simplification of the band structure.

In the NFE approximation, it is assumed thé(z) is
small in comparison with kinetic-energy terms in Ef). We
can thus treal/(z) as a perturbation. Since in sinusoidal
SL’s only V,#0, it is readily shown that, to first order, only
one minigap opens: the first minigapkat =+ 7/L,>% with the
minigap width given by T

1
Ega=2|Va|=5V. (4 Same L

It is interesting to note that this minigap is determirady
by the value of the band offset. Such a characteristic ban Small V;
structure is shown schematically in Fig. 2 in extended zone
form. The wave functions associated with the two energch '
extrema of this minigap are costz/L) and sinfwzL), their
order(which one is upper, and which is lowatepending on
the sign ofv,.>’ _ o
The effective masses associated with such a minigap are FIG. 2. Band structure of superlattices with sinusoidal energy

. . : : : - profile. Only a single band gap appears at the zone edge in first-
%E)/Sgn%)ilxtrée(;/feéye;:ogvenlent analytic expressions derived Irﬁc)nder perturbation analysis. Note the shift of the band edge below

the compositional average by the amomliILZV§/4h2 [according
to Eq. (7)].

m*Eg 4
4Ty that, as perturbation theory is carried to higher orders, each

where the+ and— subscripts refer to the higher- and lower- additional ordem reveals a new minigap at the successive
lying states, andr; is the kinetic-energy term at the zone Values ofk=n/L. But the widths of these minigagiand

©)

* ok
My, =—mMm_=

edge, defined as the corresponding densities of states at the extyel@erease
extremely rapidly withn, as does their physical importance.
5272 Wave functions for several lower-order minigaps in the con-
T,= 5 duction band are listed in Table I.
2m*L Using first- and second-order perturbation analyses, we

can obtain the energy shift of the band edge for both the

To second order, the minigap &t =2x/L will also .5 quction and valence bands. At tRepoint (q=0),

open. With the Fourier coefficients given by E@®), we

obtain the minigap widths, wave functions, and effective 2 2\/2
masses at th&= *27x/L minigap (see the Appendixes of E(elg)=E,— 1°, E(hhly) = 1”, (7)
: T, T,
Ref. @ Cc v
c V2 % 6 Vi,
=57, ™, (6) E(hh%)=—Tp,~ - ®

It is noted that the magnitudes &, and m3 are indeed Here we denote specific subband stateseby and hiN,,
much smaller thatk, ; andmjy . The wave functions for the wheree and hh stand for “electron” and “heavy holeN is
two extrema associated with this minigap are cag(R) and  the subband indefstarting from that closest to the bottom of
sin(2wz/L), respectively. A detailed analysis shows that athe well for conduction electrons, and from the top of the
third-order perturbation analysis is required for the thirdwell for the hole$, and q is the SL wave vector. In our
minigap to open; the fourth minigap will open in fourth or- notationg=0 and 1 represent the superlattice Brillouin-zone
der, and so on. It is thus a characteristic of sinusoidal SL'senter and zone eddee., q= /L), while k is used to de-
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TABLE I. Wave functions for several lowest conduction sub-

band states, showing admixtures from the nearest-neighboring

states. The admixture parameters aQ=V®/(7T3) and 6,
=VI(7TY).

State Wave function
2z
el 1+25C005<T)
1 LrAN 37z
el co T +36.c0 T
7z [3mz
e21 sm(r)—%écsm(T)
(2mz [4mz
ez0 sm(T)f%écsm(T)
3 27z 4 47z
€59 co T — 6.+ 36,0 T
3 (3mz\ | [(mz\ [ [57WZ
€351 sin|—— +38s8in T —325:58in e
3nz\ AN 5wz
ed, co T — 50,0 T + 30,0 T

note points in the Brillouin zone in the bulk material. To
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FIG. 3. Relationship between the critical band offggt and the
superlattice period obtained from the NFE model in sinusoidal SL.
The NFE approximation holds for values bfto the left of the
curves for each band, respectively.

E(hhll) = _Tlv+V1U y E(hh21) = —Tlv—Vlv ( )

13

Examples of transition energies allowed at ¢hel point are
then given by

hhl;—e2;: Eo+(T1ct+Ty)—(Vi,— Vi), (14

hh21—>e11: E0+(T1C+Tlv)+(Vlv—Vlc). (15)

define a point of reference for the energy, we have taken th&hese transitions will be discussed in more detail in Secs. llI

center of the valence ban@nidpoint between extremaas

the zero point, as shown by the lower dotted line in Fig. 1;

and 1V, later in the paper.
The criterion for the applicability of the NFE approxima-

E, is the energy separation from the center of the valencéion was given in Ref. 6. The NFE can be applied with con-

band to the center of the conduction basde Fig. 1; and

h2m?n?

2m} L2

1
Vlc,u :_VC,U '

. ©

TnC,U

fidence as long as the offset is lower than the value

Kl 1

m* L2

(16)

whereV , are the peak-to-peak offset values for the conducit can be seen from this condition that the shorter the SL
tion and valence bands, respectively. Thus, according to Egeriod, the higher can be the actual value of the offset

(7), the lowest electron energy level &(el) is slightly

satisfying the perturbation condition. We illustrate these fea-

below the center of the conduction bafmiished down by an tures in Fig. 3, which shows the estimates of the upper limit
amount Z/fC/Tzc), and the ground-state heavy-hole energyof V for both the conduction- and valence-band offsets ob-
E(hhl) is slightly above the center of the valence bandained from Eq(16), for the perturbation theory to be appli-

(pushed up by the amountVéU/TZU). For E(hh3), the

cable. In these estimates we have assumed that the electron

kinetic-energy term has a minus sign because the dispersi@ffective mass is 0.16, (typical for ZnSe and other wide-
curvature for holes is downward. Several examples of trangap II-VI semiconductops and that the heavy-hole mass is

sition energies allowed at tHé point are

2 2
1c 1v
hhl,—el,:  E —2<—+ ) (10)
10 0 0 T2C TZU
2 2
hh3y—ely:  Eg+Top+|—o— 1°). (11)
TZU TZC

five times larger than the electron effective mass—a situation
characteristic of many wide-gap semiconductor compoginds.
It can be seen from Fig. 3 that the condition for the applica-
bility of the perturbation theory rapidly relaxes as the period
of the SL becomes smaller.

Ill. PHOTOLUMINESCENCE IN ZnSe ;_,Tex SYSTEMS

Similarly, energies of band extrema at the superlattice zone The ZnSe_,Te, superlattices studied experimentally in

edge =1) are

E(ezl) = E0+ T1C+ VlC y
(12

E(ely)=Eo+Tic— Ve,

this paper were fabricated by means of a MBE growth tech-
nique, in which the periodic modulation is achieved by sub-
strate rotation in the presence of nonuniform flux distribu-
tions of Se and Te, rather than shutter openings and closings.
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FIG. 4. PL spectra for ZnSe,Te, alloy and for ZnSe_,Te,
SL’s with sinusoidal modulation. Pane{a) and (b) are for SL’s FIG. 5. Energy shifts of band-edge transitions as functions of
with 13.5- and 26.4-A periods, respectively. the valence-band offset, calculated for SL’s with 13.5- and 26.4-A

periods, as discussed in the tézolid curves. Experimental shifts

With this technique, we were able to grow massive superlat9f the PL peak observed for.the two SL's rglatlve to the Corres.pond'
g alloy are shown as horizontal dotted lines. The intersection of

tices, of multimicron thicknesses and with many hundreds Otﬂe dotted line and the calculatésblid) curve gives an estimate of

perl_ods. Due to such massive structure, one can ignore ﬂ}ﬁe valence-band offset for the two SL(both very close to 200
strain caused by the lattice mismatch between the substrafg.,,

and superlattice, even though the superlattices are grown on
GaAs substrates. That is, after the structure exceeds a criticgllqd one on the allov Znse.Te. whose composition is the
thickness(in the first few hundred nanometgré becomes y ZngeTe P

free standing. We thus do not include the effects of strain iipame as the average composition of the SL. Itis clear that the

. . . edshift of the superlattice PL position relative to the corre-
the analysis of the optical results obtained on these superIaEponding alloy is much larger in the case of the SL with the

tices. For further details about the growth procedure, th ! . ; .
. onger period. This behavior of the PL energy is exactly as

reader is referred to Ref. 9. e d bv the band-ed hifiee Eqs.(7) and (10)]

We examined the optical properties of sinusoidal SL'saEt'C.'paée. hy Nle:E an del ge sh ez SS' an
using the band structure formulated in Sec. Il. We first con? tained in the NFE mo Ie pres],cer;]t_e a olve. .
sider transitions associated with the band edige, thel’ For a_q_uant|tat|v_e analysis o this result, We can rewrite
point), because these are expected to dominate the optic%‘]e.tranSItlon energies "?“ thiepoint by re-expref§|nyl and
spectrum. To illustrate the analysis, we will use ZpnSge, 2 In Eq. (10) explicitly in terms ofV,L, andm”:
sinusoidal SL’s with two different periods, but with the same
modulation amplitude of, as determined by x-ray studies (
varies from 0.35 to 0.65

In this specific ZnSg_,Te, system, the largest band-gap
difference between the two layefise., the band-gap differ- The energy shift is now a function of the carrier effective
ence between ZngegsTe, 35sand ZnSgssTey g9 is about 130  masses, the band offsets in both bands, and the SL period.
meV 1 Since the band alignment is known to be of type Il in We note immediately that, as a good approximation, we can
this system(as shown in Fig. J the valence-band offset is ignore the contribution from the conduction band in E),
expected to be larger than the 130-meV band-gap differencsince the electron mass is five times smaller, and the band
Thus the band offsets are themselves not small. However, ioffset is at least two times smaller, than the corresponding
the case of very short period SL’'s the NFE approximationquantities in the heavy-hole band. Thus the redshift fEggn
can be applied even for moderately large band offsets, as almost entirely dominated by the valence-band parameters.
seen in Fig. 3. In the SL’s under consideration, the periods Figure 5 shows the plot¢solid curves of the energy
are 13.5and 26.4 A, as determined by x-ray measurementsshifts as a function of the valence band offset for sinusoidal
As shown in Fig. 3, these short periods extend the validity ofSL’s with 13.5-and 26.4 A periods obtained using the value
the NFE approximation to the values ¥f~400 meV and of 0.7mq for the heavy-hole mass. These energy shifts be-
V¢~1000 meV. Both the valence- and conduction-band off-tween the average alloy/(=0) and the SL can then be used
sets in these systems are not expected to exceed the abdeefind the valence-band offset in each sinusoidal SL. We
limits, and the NFE approximation can thus be applied todraw the energy shifts observed experimentally for the 13.5-
these systems. and 26.4-A SLg4 and 17 meV, respectively; see Fig.as

The photoluminescence(PL) spectra for the two horizontal dotted lines in Fig. 5. The crossing points of these
ZnSq _, Te, sinusoidal SL's are shown in Fig. 4. The resultslines with the corresponding calculated curves then give a
obtained on the two superlatticgseriodsL=13.5 and 26.4 very close estimate of the valence-band offset. The values
A) have been separated into two panels for clarity. In eaclobtained in this way ar&=202 meV for the SL with the
panel, there are two spectra, one taken on a sinusoidal StL3.5-A period, and/=205 meV for the 26.4-A SL. Recall-

2
. _ 2k 2 %
hhl,—ely: Eo —1 2772(chchvaU). (17)
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ing that the two SL’s have identical compositional modula-
tion amplitudes, it is very gratifying that the value of the
valence-band offsets obtained from the two specimens, 20:
and 205, are very close to one anottes indeed they should
be). This value for the valence-band offset automatically
gives the conduction-band offset to be about 70 meV, since
the maximum band-gap difference for this modulation

(0.35<x<0.65) is 130 meV. The band offsets for both sin (%) - 5o ()
bands turn out to be very small compared to the critical val- o + L6.cos (32)
ues plotted in Fig. 3, as had been assuraggtriori in our 1+ 20.cos (T)' 2 L
analysis of the PL data. 4
1 + 24,cos (%) L - lgvcos (iﬁ)
IV. SELECTION RULES FOR OPTICAL TRANSITIONS 2 L
1 3mz

The above successful description of the fundamental PL
data encourages us to consider other optical transitions ir

. . . . . (2 2. . (4
sinusoidal ZnSg ,Te, SL's. We will restrict ourselves to sin ('%f)-gévsm (?)
transitions between the conduction band andhbavy-hole (27rz) 4 4nz
.. R i cos { — ) — 8, + =d,cos (—)
valence band, because these transitions dominate the inte ‘L 9 L hh3

band optical spectra. For traditional large-offset staggerec
(type-ll) superlattices, the parity selection rules cannot be
applied, because the electrons and holes are separated
space. It has been shown, however, that for type-Il superlat:
tices which satisfy the small band-offset condition, rigorous
selection rules can be found, similar to those in type-l rG, 6. Band-structure and corresponding wave functions, up to
structures:*? In fact, there is no qualitative distinction be- second-order perturbation analysis. Strongest transitiagspre-
tween type-I and -II configurations as long as E46) is  dicted in Table I} are shown by arrows.
satisfied.

To obtain the selection rules for optical transitions, wethese transitions, which can be used as a measure of the joint
need to evaluate the wave function overldps|y;), where  gensity of states according to E@®7) in Ref. 6. The inten-
¢ andy; are the wave functions associated with the initialsjties of the transitions|(_.;) were estimated from the prod-
and the final states, respectively. When the offset is veryct of the square of the wave-function overlap and the square
small, the sinrz/L) and cosfmz/L) functions obtained from  yoot of 4,. These estimated intensitiésormalized to the
first-order perturbation analysis provide a good descriptiothn1,— e1, transition are also shown in Table II, except for
of the wave functions of the states at thih gap. However,  those cases whepe,<0. A negativey, is associated with a
it has been shown that—as the offset increqaltbough still  g5_calledM, saddle point, and intensities of transitions in-

satisfying the “smallness” criterion given by E¢16) and  yolving such a saddle point are expected to be vanishingly
Fig. 3]—it will progressively bring about admixtures from \yeak1314

other nearby subband states into the wave function under \ye pegin by considering transitions at the SL Brillouin-
consideratior:® The band structure and second-order wave,gne center. From Table Il, one can see that the,hhl
functions aiy=0 and 1 for sinusoidal SL's are shown in Fig. _, 1 transition is the strongest, primarily due to the highest
6. Only admixtures from the nearest-neighboring subbandgint density of states. The effective mass is much smaller at
to the first-order wave functions are included. The admixture

parametg&?c( d,) is defined ayC/WT_g (V°/7T3), where the TABLE II. Reduced masses, wave-function overlaps, and tran-
superscrip(v) stands for conduction banfgtalence band  sition intensities for various transitions calculated for a ZnS&e,

Vis the band offset, andl, is the kinetic energy. It should be sinusoidal SL with a periodl of 30 A.

noted that in Fig. 6 we only show the wave functions for
minigaps up ton=2. The minigap ak=*n=x/L for n=3  Transition s (il ) lisj
remain closed even to second-order perturbation. As a result
the densities of states associated with these higher minigayS@'Lﬁ910 +0.29 0.90 1.0

q=0 q=1

are extremely small, and optical transitions occurring at thesgy . e, —058<10°4 0.96 11,<0
points are expected to be correspondingly very weak. We can
then ignore these minigaps when discussing optical transhh3—e3 +0.58<10°* 0.88 0.016

tions of sinusoidal SLs.

The optical transition intensity is determined by the wave-
function overlap of the initial and the final state, togetherhh1,—e3, +0.58x10°* 0.59 0.06
with the joint density of states associated with the transition; -
Table Il lists the wave-function overlap within one SL period hhl, —e2; +0.797x10 0.98 0.19
for a series of transitions, calculated using the NFE modejnp o1, —0.85x10°2 0.93 11,<0
for a sinusoidal SL with a period of 30 A. The table also
gives the calculated reduced masges corresponding to 2The intensity is normalized to 1.0 for the hjxkel, transition.

hh3,—el, +0.0243 0.59 0.125
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then=2 minigap, which is closed in first ordgsee Eq(6)]. derived selection rules for interband transitions between
Thus the hhg—e2, and hh3—e3, transitions should be valence- and conduction-band states at the superlattice
very weak(in spite of the fact that they are bothN=0 Brillouin-zone center and at the zone edge. A number of
transitiong, due to the much smaller joint density of statestransitions, forbidden by th&n=0 rule, are predicted due to
associated with the extremely small minigap for 2 at the ~ Wave function mixing of different subband states. It is espe-
zone centefsee Fig. 6. For this reason we expect all tran- cially interesting that the analysis allows us to conveniently
sitions involving stateg2, ande3, to be negligible. distinguish between zone-center and zone-edge transitions in
As can be seen from Table Il, the NFE model predicts théhese structures, particularly in the case of short-pe.rloq'su-
hh3,— el transition to be the second strongest transition aperlatnces where thq:O and 1 transitions ha_ve a signifi-
g=0. This is aAN#0 transition, which becomes allowed cant energy separation dug o the correspondingly large sub-
due to wave-function mixing. This transition serves veryband wr|]dths that dchharacte?zg SfUCh sltru_ctures. d in thi
nicely to illustrate the role of joint density of states in deter- We have used the ana ytic formulation presented in this
mining _transition intensity: the “forbidden” hhg paper to analyze the PL signal observeq expenm(_entally on
—elo(AN=2) transition is much stronger than the “al- the ZnSe_,Te, already referred to. In this connection two

" . .. features are worthy of note. First, the position of the PL
lowed” hh3;—e3,(AN=0) transition, because the density ; .
of states associated with the, subband is much higher showed the predicted dependence on the period of the SL.

" Second, the intense signal observed in this sydieitally
than that fore3,. Another expectedN# O transition atq - .
=0 is the hh}—e3,. But the intensity of this transition is rather surprising, because the band alignment of £nes,

. superlattices is expected to be staggered, or typeduld
much weaker than that of hs-elo, again because of the also be explained by the model, which indicates that for
small density of states of the3, state.

Next we discuss the transitions at the SL Brillouin_Zoneshort-period SLs the spatial separation of electrons and holes

q —1) Inat ISL the | hich act lls f ceases to play a major role, and fundamental ground-state

edge q_. ) Inatype- (e layers which act as Wells 1or 45 hsitions become direct. Our model also allowed us to ob-
conduction electrons constitute barriers for the holes. As

result, the ordering of sinfzL) and cosz/L) states at the ain the value of the band offset from the PL data by analyz-

. . : g ing data from superlattices with the same compositional
n=1 minigap is opposite for the conduction and valence

modulation but different periods.
bands? We thus expect the hi1- €2, and hhz—el, tran- We must note finally that in the specific case of
sitions to be allowed. Indeed, as we note in Table II, theZ

hh 5 ition has the hiah ¢ . | nSe _,Te, superlattices discussed in the experimental part
11—>_e 1 ransition has the highest wave function overlap ¢ ;g paper, a sinusoidally modulated composition does not
of all (including hh;—el,). The intensity of this transition

of itself guarantee perfect sinusoidal profile of the band
is predicted to be about one-fifth of the main transition g P P

X ) . edges, because of the very strong bowing of the energy gap
hhl,—elo. The intensity of the hhg—el, transition, on iy this materiaf® The rather good self-consistency of the

the other hand, is expected be much weaker than that §fanq_offset results suggest, however, that the departure is not
hhl,—e2,, because hh2-el, is asaddle-pointexcitonic  gerigys, and that the model provides a reasonable approxima-
transition(negativeu,, see Table )i, as discussed in Ref. 6. o a5 |ong as the periodic modulation is relatively smooth.
We are currently exploring the effects of other than sinu-
V. SUMMARY AND CONCLUSIONS soidal band-edge profiles on the superlattice band structure;
@nd we are simultaneously exploring the fabrication of su-
perlattices with different smooth profiles, that can be ob-
(%ained by programming the speed of rotatidaring each
ycleof the rotating mounting block. Once this is under con-
ol, by this shutterless technique we will be able to produce
isuperlattices with smoothly varying periods of arbitrary
shape.

We have examined the band structure and optical sele
tion rules in superlattices with sinusoidalpotential profile.
This work was motivated by the recent success in fabricatin
ZnSq ,Te, superlattices using a MBE growth mode that
exploits the rotation of the substrate in the presence of a
inhomogeneous distribution of elemental fluxes instead o
shutter openings and closingg-he band structure of such
sinusoidal superlattices was formulated in terms of the
nearly-free-electron approximation, in which the superlattice
potential was treated as a perturbation. The analysis results We would like to express our thanks to Dr. M. Dobrowol-
in a dispersion characterized by a single minigap separatingka for valuable discussions, and to U. Bindley for her assis-
two wide, nearly free-electron-like subbands in both the contance in specimen fabrication. The research was supported
duction and valence bands. Based on these results, we halkg DOE Grant No. 97ER45644.
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