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Ballistic electron transport in stubbed quantum waveguides: Experiment and theory
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We present results of experimental and theoretical investigations of electron transport through stub-shaped
waveguides or electron stub tunéEsST9 in the ballistic regime. Measurements of the conductdBces a
function of voltages, applied to different gatés(i = bottom, top, and sideof the device, show oscillations in
the region of the first quantized plateau that we attribute to reflection resonances. The oscillations are rather
regular and almost periodic when the heighof the EST cavity is small compared to its width. Whieris
increased, the oscillations become less regular and broad depresdibappear. A theoretical analysis, which
accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation
of the transmission probabilities successfully explains the experimental observations. An important finding for
real devices, defined by surface Schottky gates, is that the resonance minima result from size quantization
along the transport direction of the EST.

[. INTRODUCTION small device size. Experimentally, it is possible to probe
these resonance states through measuremen@ aif low
Submicron-size T-shaped electron waveguides, definettmperatures and has been repditedly very recently.

electrostatically in a two-dimensional electron g2OEG) However, so far experimenters have failed to observe well-
by Schottky gates, are very promising devices for potentiatiefined, regular oscillations i@ with minima corresponding
applications in microelectronics since their conducta®de  to excitations of the quasibound states as predicted theoreti-
determined, in the ballistic regime, by quantum interferencecally. Most of the devices so far used in experiments were
effects and can be changed by applying voltages to thgeometrically defined by only two gates, which do not allow
gates' Such devices, commonly known as electron stub tunan adequate independent control of the width of the QPCs
ers(EST9, also open the way for studying resonant states ofind the shape of the SC. This possibly explains the failure to
ballistic quantum dots in both the weakly coupled tunnelingobserve experimentally a well-defined, regular pattern of
and in the transmissive open regifm€he size of an EST can minima in G.
be controlled by gate voltages, cf. Fig. 1. For a theoretical In this paper we present experimental and theoretical re-
analysis, an EST can be considered as a rectangular quantwults for the four-gate EST. A preliminary account of some
dot connected to 2DEG reservoirs through two oppositelyof them has appeared recentiyVe report the experimental
placed quantum point contactQPC3g. When the electron observation of a clear and pronounced oscillatory depen-
phase-coherence length exceeds the dimensions of the ESJence of the ballisti& on the size of the SC as the latter is
transport through the device is ballistic. A number of theo-changed by voltage biasing the gates. Such oscillations occur
retical papers;* have been published on the ballistic trans-on the first conductance plateau of the QPCs. We also
port characteristics of ESTs in the open regime of the QPCsresent theoretical results f@ obtained from a numerical
These works predict an oscillatory dependenceGoas a  solution of Schrdinger's equation for a two-dimensional
function of geometrical size parameters of the device or of{2D) hard-wall electron waveguide with a shape close to the
the Fermi energ¥r. A minimum in G, or a reflection reso-  one resulting from the biasing of the Schottky gates. Because
nance, is said to occur due to resonant reflection of electroaf this choice, we believe our results are closer to reality than
waves by quasibound states of the stub cal@¢) formed those reported in previous theoretical work based on a rect-
by the gates, the quasibound state itself resulting because ahgular approximation for the SC shape. A rectangular SC
the quantization of electron momentum associated with thehape is unrealistic since, though the lithographically defined
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2DEG 2DEG

FIG. 1. Schematic drawing of an EST device. Lithographic di-
mensions:L=0.30 um, 2W=0.25 um. S1, T, S2, andB are
surface Schottky gates. The area enclosed between the dashed lines
defines the conducting channel.

FIG. 2. Scanning electron micrograph of a fabricated EST de-

device shape is rectangular, the shape of the SC changes \4ee- Lighter areas indicate the Schottky gates.

the gates are bias@doreover, except for a few papefshe

lengths of the QPCs have been considered as infinite; this 825 wm. The lithographic lengths of the QPCs are/0nl.

a very rough approximation for real devices and we avoid itThe samples were clamped to the mixing chamber of a dilu-

in our computations. Comparison of the experimentally obtion refrigerator. Considerable care was taken to ensure good

served features of the ballistid to those obtained numeri- thermal contact to the sample. The two-terminal conductance

cally enables us to determine the physical origin of thesé> of the devices was measured at 90 mK as function of a

features and helps us understand what the shape of the SCdate voltage, while the other gates were biased at fixed volt-

and how it can be modified by applied gate voltages. ages. Standard low-bias, low-frequency, lock-in techniques
The paper is organized as follows. In Sec. Il we give awere used to measur®, which was corrected for a low

brief description of the device fabrication and measuremengeries resistance due to the 2DEG reservoirs. A source-drain

techniques and then present results of conductance measufgs excitation of 10uV was typically used to drive a cur-

ments as a function of gate voltages. Section IIl outlines théent along the lengthx(direction of the QPCs.

theoretical model and the calculations, and present numerical Since the four gates are independent, it was possible to

results. Finally, an interpretation of the experimental resultsgharacterize the QPCs of the EST device independently by

based on the theoretical analysis of Sec. IlI, and conclusiongiasing the appropriate gates while grounding the rest of
follow in Sec. IV. them. A high-quality, well-defined conductance quantization

staircase was observed for both QPCs. The gates of the
QPCs were negatively biased to assure fundamental-mode
Il. EXPERIMENTAL ASPECTS transport through them. The conductar@eof the device
was then measured as a function of the size of the SC by
. . . sweeping the voltag¥ of the top gate, oW of the bottom
The ESTs used in this study were fabricated fromgate orvg of the side gates, while the other gates were
modulation-doped  AlGaAs/GaAs heterostructure  waferg,izsed at fixed negative voltages. The sweeping gate voltage
grown by molecular beam epitaxyIBE) and having a two-  \ya5 changed until the device was completely pinched off,
dimensional electron gd@DEG) at a depth of 80 nm below  4ji6wing measurements in both the single-mode open and the
the surface. The carrier concentratiogy, of the 2DEG was  yynneling regime of electron transport. Measurements were
2.4X 10" m~2 with a mobility  of 100 nf/Vs at 42 K.  made on a few EST devices. All of them gave nearly iden-

These values oh,p and u give a 2DEG Fermi energie  tical and reproducible results differing only in the pinch-off
=8 meV. The ESTs were defined by four Schottky gates,g|tages.

S1,T,S2, andB patterned by electron beam lithography on
the surface of the wafer. Figure 1 gives a schematic drawing
of an EST device, while Fig. 2 shows a scanning electron
micrograph of a fabricated EST sample. Lighter areas are the Figures 3—7 show the experimental results. Very well-
Schottky metal gates on the wafer surface. The central padefined oscillations in the ballistic conductanGeare ob-

of the EST, where the SC is located, forms a lithographicallyserved as a function of a sweeping gate voltage, which
rectangular planar quantum dot of length 0.55 and widthchanges the size of the SC, while the other gates are biased at

A. Device fabrication and measurement techniques

B. Experimental results
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FIG. 3. Conductance as a function of the top gate voltdge
with Vg;=—860 mV andVg,=—964 mV. The solid and dotted
curves correspond tdg=—765 mV andVg=—780 mV, respec-
tively. The arrows indicate locations of broad depressionS.in

FIG. 5. Conductance as a function of the bottom gate voltgge
with Vg;=—860 mV andVg,=—964 mV at fixedV;. The solid
and dotted curves correspond ¥;=-1085 mV and V.=
—635 mV, respectively. The arrows indicate locations of broad
depressions irG.
fixed voltages. These oscillations exhibit several features that
are found to be generic to the EST devices studied. All refance drops to zero. The oscillations@are found to occur
sults shown correspond to transport in the fundamental mod@ two distinct regimes of the sweeping gate voltage, one for
through the QPCs until they are pinched off. which G<e?/h and the other for whiclc>e?/h. The one
Figure 3 shows the oscillations i@ observed when the With G<e*/h is the tunneling regime whef is below the
bias voltageV/; of the top gate is swept, while the other gatesbottom of the lowest conduction subband of the QPCs,
are kept at fixed voltages. The solid curve is obtained whefivhich now form energy barriers through which electrons can
the bottom and the two side gates are biased, respectively, &thnel. The oscillations o6 in this regime are found to be
Vg=—765 mV, Vg, =—860 mV, andVs,=—964 mV. periodic, quite sharp, and well resolved. The regime for
As V7 is made more negative the size of the SC shrinks. Thigvhich G>e?/h may be called the open regime. This happens
also adds to the depletion due to the side gates and narroé1en Eg is above the bottom of the lowest subband of the

the QPCs until they are pinched off when the device conducQPCs such that transport is in the fundamental mode.G'he
oscillations in this regime are located on the first quantized

conductance plateau of the QPCs. Though quite robust, clear,
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FIG. 4. Conductance as a function of the side gate voliage V; (V)

(Vs=Vg=Vg+104 mV) at fixedVg and V;. The solid curve
was obtained a¥/+=—1400 mV andVg=—755 mV. The dotted
curve corresponds fd=—800 mV andVg=—790 mV. The ar-
row shows the position of a broad depressiorGin

FIG. 6. Conductance as a function of the top gate voltdge
with Vg;=—860 mV, Vg=-964 mV, andVg=—765 mV at
different temperatures.
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1.4 — - . . T : T y an example, the oscillatoi@ of the dotted curve in Fig. 4 is
obtained for avt=—800 mV, while for the solid curvé&/;
12} - is equal to—1400 mV. A more negative top gate voltage
4 certainly makes the SC shorter. These observations lead us to
1ok conclude that a lower average value@fand broad depres-
sions in it occur when the stub cavity is long. We call the
oscillatory G pattern with regular minima observed for the
. 08 solid curves a “regular” pattern and that for the dotted
< curves an “irregular” pattern.
N&J 06 In order to better understand the origin of the observed
o3 oscillations inG and to distinguish between the peaks in the
0.4} tunneling and the open regime, we have studied the depen-
dence of the regulaG pattern on temperature, drain-source
02k excitation voltage, and a magnetic field applied perpendicu-
lar to the plane of the 2DEG. Figure 6 shows the temperature
dependence of a regul& pattern obtained by sweeping the
oor | | top gate voltage Vi with Vg=—765 mV, Vg=

09 092 088 o084 —860 mV, andVg,=—964 mV. As the temperature is in-
creased, all peaks in both the tunneling and the open regime
V() broaden, and eventually they are washed out. At 4.2 K, the
oscillatory G pattern has disappeared and is replaced by the
conductance step and plateau. At the highest temperature of
2.5 K measured in the dilution refrigerator, the peaks in the
open regime have practically disappeared, while those in the

and nearly periodic, they are relatively broad and show 4unneling rggime show a trace existence. The influence of the
certain degree of overlapping with the resulting convolutionSource-drain voltag®qs on the regulaiG pattern has also
effect. The peak values are less than the expected quantiz€gen studied and is shown in Fig. 7. Notice that the effect of
value of 2%/h and, as will be seen later, result from back- increasingVgs is similar to that of temperature. The oscilla-
scattering at the QPC entrance and/or from boundary rougHions in G are found to practically fade out and be replaced
ness at the QPC walls. The dott&dcurve of Fig. 3 is ob- by the conductance step and plateau wiggis increased to
tained forVg=—780 mV and differs from the solid one in & rms value of 700uV.

two important respects. First, the average conductance is

substantially lower. Second, the oscillationgGrin the open Ill. THEORETICAL TREATMENT

regime become irregular due to the appearance of broad
troughs or depressions in the conductance.

The size of the central ballistic cavity of the device can A realistic, theoretical description of ballistic electron
also be altered by varying the bias voltages of the side gatdgansport through a cavity, such as the stub of an EST, must
while keeping those of the top and bottom gates at fixedake into account the electrostatic potential inside the cavity
values. Figure 4 shows the variation@as function of the ~ since it determines the actual shape of the conducting chan-
side gate bias voltag¥s(Vs=Vg =Vs,+104 mV). The nel. Accordingly, we have calculated the electrostatic poten-
solid curve was generated withy=—1400 mV andVg= tial created in the plane of a 2DEG situated at a distahce
—755 mV, while the dotted curve was obtained f¢f= =80 nm below the surface, a&=0, of a two-gate EST,
—800 mV andVg=—790 mV. Results obtained by sweep- defined by two surface Schottky gates with voltaygsand
ing Vg are illustrated in Fig. 5. For these measurements th&/g, WhenSL,T, andS2 are connected together, cf. Fig. 1.
side gates were biased as followss, = —860 andVg,= The distance between the gates at entrance and exiwvis 2
—964 mV. The solid and dotted curves correspond, respec= 250 nm, the bottom gat8; is flat, while the top gat&+
tively, to Vy= — 1085 and— 635 mV. Comparing the results contains the stublike opening of widthw2and of lengthL
of Figs. 4 and 5 to those of Fig. 3, we notice that, except for=300 nm. This value ofl and the lithographic dimensions
the device pinch-off voltages and the oscillation periods, the&orrespond to the experimental device described above, al-
features of the oscillations i6 are similar. The solid curves though the present model of just two gates is somewhat ide-
show the same characteristics, as do the dotted ones, thouglized but necessary for simplifying the calculations. The
the features are different for the two sets. This is not surprispotential ¢(x,y,z) has been calculated from the Laplace
ing since in all cases we are changing the size of the centrgquation in the semispaee-0, with Dirihlet boundary con-
cavity. An interesting question, however, is what causes thditions ¢(x,y,0)=V; on theith gate region i(=T,B) and
difference in the characteristic features of tBescillations Newmann  boundary  conditions de¢(X,Y,2)/dz|,-¢
observed on the first conductance plateau for the solid ang 4men,p /e at the exposed surface regiamp is the elec-
the dotted curves. If we look more closely and compare théron concentration in the 2D gas in the absence of depletion
constant gate bias voltages used for generating the two setid € is the dielectric constant. The last boundary condition
of G curves, an empirical consistency emerges. The voltagesxpresses the so-called “frozen surface model” in which the
used for the dotted curves are such as to result in a SC that @dectric charge at the exposed surface is constant; this model
long compared to that for the corresponding solid curves. Asippears appropriate at low temperatures and is often used in

FIG. 7. Conductance as a function of the top gate voltdge
ferent source-drain voltages.

A. Cavity potential



10 954 P. DEBRAY et al. PRB 61

500 |

250

y (nm)

-250

-500

750 -500 -250 O 250 500 750
FIG. 8. Contour plot ofep(x,y,z) created in the plane of the x (nm)
2DEG, atz=d=80 nm, of a two-gate EST fdqm) Vg=V and(b)
Vg—V:=0.2 V. The interval between equipotential linegas 6.6
mV and (b) 8.4 mV. The thick solid lines show the edges of the
gates.

FIG. 9. Model of the conducting channel for a four-gate EST
(Figs. 1 and 2 The area enclosed between the tragesind y,
defines the shape and size of the conducting channel under gate
biases that was used in our calculations. The solid straight lines are
the lithographic edges of the Schottky gagls T, S2, andB.
theoretical calculation$To make our model finite in the
direction, we choose a length=L and use the boundary than that of the side gates, the height of the cavity decreases,
condition d¢(X,y,z)/dx|.—~;=0. We have also assumed While in the opposite case it should increase.
that the concentration of the ionized donors in the doping In the following we use this qualitative information to
region between the surface and the 2D gas plane is equal &ppropriately model the shape of the conducting channel in
a sum of then,p, and surface charge concentration and is nothe four-gate EST and calculate the electron transmission
changed appreciably when the voltages are applied to thé@rough the cavity.
gates.

In Fig. 8 we present the resulting contour plot of the po- B. Model of the cavity and numerical method
tential ¢(x,y,d); since o(—X,Y,2) = ¢(X,Y,z), we showe
only for the right half of the stub. Although we do not take
into account the free-electron charge in the plased, in
order to avoid the heavily involved self-consistent calcula-
tions, we expect that the screening effect due to these elec- _ _ _
trons will noFt) change the shape of the equipotential line 0ol X) = = Yire(X): - Yuire(X)=WHLFexp (=x+1)/]}

We model the conducting channel of the device in Fig. 1
with a 2D waveguide having hard-wall boundaries described,
in an obvious notation, by the functions

considerably but would cause at most a flattening of the bot- +W/{1+exd (x+r)/B]1}, 1)
tom of the potential distribition. As a result, we expect the

shape of the conducting channel to follow, more or less, the Yiop(X) = Ywire(X) +a+Yea, (X),

calculated equipotential lines. This enables us to draw the

following important qualitative conclusions. Yea(X) =h exp( —x2/b2). )

(i) The shape of the cavity inside the stub region does not
follow that defined by the gate edges and is not rectangulawe describe the cavity with the Gaussian functiqq, (x)
as has been assumed in previous pertinent theoretical worksince it gives us the most relevant elementary-function ap-
(i) The width of the cavity is close to the lithographic proximation of the equipotential lines shown in Fig. 8. The
width of the stub, and since the Fermi wavelengthEat  function y,;.(Xx) describes the transition from the con-
=8 meV is about 53 nm, which is considerably less than thestricted region neak=0 to the 2D reservoirs at= *.
lithographic stub width &, the cavity accommodates not Here we sei3=W/4 to model the square-angle opening of
just one longitudinal mode, as has been frequently assumethe conducting channel of the experimental deview. 1).
but several modes. The parameteW, which describes the semiwidth of the
(iii) When the width of the narrowest part of the conduct-channels away from the constriction and must be large
ing channel, in our model at=1, is small compared to the enough, is chosen a&=w. For this value ofw, the chan-
lithographic one @ of the wire, the length of the cavity at nels away from the constriction already accommodate about
x=0 is considerably smaller than the lithographic length  ten transverse modes and can be effectively treated as 2D
(iv) The length of the cavity is even smaller when theleads. The remaining parametes chosen, by inspection, as
upper gate voltag&/; is more negative (t<<Vp) so that r=w+I1+38, wherel is the lithographic length of the
there is an overall shift of the conducting channel toward9QPCs; this gives a more or less suitable correspondence be-
the bottom gate. In going beyond the two-gate model totween the outer parts of the conducting channel and the gate
wards the four-gate device shown in Fig. 1, it is reasonableorners. The resulting shape of the conducting channel, to-
to expect that when the top gate voltage is more negativgether with the lithographic gate layout, is shown in Fig. 9.



PRB 61

BALLISTIC ELECTRON TRANSPORT IN STUBBED. ...

10 955

To determine the transmission coefficients of electron The ballistic conductanc& at zero temperature is given
waves through the device, we solved numerically the 2Dby the multichannel Landauer-Biker formula

Schralinger equation

A
—ﬁ(ﬁ‘Fa—yz)‘I’(X-Y)+[U(X-Y)—8]‘1’(X.Y)=0,
3

using the following expansion for the wave function

\p(x,y):; G Xn(%Y),  Xn(XY)

J— 2 1
= \IWSIH

where Y(X) = Yiop(X) = Yhot(X) is the x-dependentchannel
width. The basis functionsy,(x,y) already satisfy the

mn

m[y_ybot(x)] : (4)

boundary conditions for hard-wall confinement. Substituting

Eq. (4) into Eq.(3) leads to the 1D matrix equation fgr,(x)

d? (m)z , 5 d
2 | ¥oo) TR 00+ 2 | 2Ban(X) g + Can(X)

_Knm(x) ¢m(x):0; (5)
herek?=2me/#%? and
Ytop(X) J
Bnm(X)= f dan(X:y)a_Xm(Xry)v
Ybot(X) X
Ytop(x) (92
Con0= [y pxnxy), @
Ybot(X) X

2m

ymp(x
Knm(X)= 52

)
dyxn(X,Y)U(X,¥) Xm(X,Y).

Ybot(X)

Since we assumd(x,y) =0 far away from the constriction,
all parameters defined by Eg®) depend onx only in the
constriction region. We choose,, ., and Xn,i, far enough
from the constriction and discretize E&) on anN+ 1-point
grid according tox=X;=Xmint15,5= (Xmax— Xmin)/N. The
resulting finite-difference equation fa¥,,(x;) is solved sub-
ject to the boundary conditions Apn(1)dn(Xq)
T Anm(0) ¥m(Xo) = Ay and Anm(N=1)¢rm(Xn-1)

+ A nm(N) ¥ m(Xn) =0, appropriate to a wave, in state in-
cident from the left side. Sincg,(x,y) are the exact nor-
malized eigenfunctions of the problemxat + o, the bound-
ary matrices A, are diagonal A n(1)=A,n(N—1)
= Snm:Anm(0) = Anm(N) = — ShneXp(=ipys),  while A7
= Spol EXPpPnS) —exp(=ip,S)]. In these matrix expressions
we introduced the longitudinal quantum number

Pn= VK> —[mn/Y(>)]?, ()

which can be either real or imaginary (Ip,>0); in the

2¢? ,Par
= 2 [Tawl* 5 ®
The transmission amplitudd,,, in Eqg. (8) is equal to

¥, (Xy) for the problem with the incident wave in state
and e=E;. The sum runs over all propagating statés
which p, are real. The generalization of Eq8) to finite
temperatures is straightforward, see, e.g., yin Ref. 10.
The actual numbeM of transverse subbands involved in the
numerical calculations is determined by the condition that
further increase ofM does not produce any perceptible
change of the calculated wave functions and transmission
coefficients. For the calculations described below it is suffi-
cient to takeM between 10 and 15; this results in a reason-
ably short calculation time.

C. Numerical results

In order to decrease the number of the unknown param-
eters, we restricted ourselves to the flat-band approximation,
U(x,y)=0, in all calculations. As a result, we have only the
three geometrical parameteagh, andb, which are assumed
to be controlled by the gates. The first of theancharacter-
izes the width of the constriction in its narrowest parts, al-
though it is somewhat smaller than the constriction width, cf.
Egs. (1) and(2). Assuming that the depletion of the 2DEG
by the gates follows a linear law, which is confirmed by our
experimental studies of the conductance quantization in a
single constriction, we can directly associate a change of the
value ofa with a change of the gate voltages. As foandb,
they describe mostly the shape of the cavity formed in the
stub region and are related, respectively, to its height and
width. It is convenient to measure all these parameters in
units of the cutoff lengthag=%7/\2mEg, which is the
width of the hard-wall quantum wire, when it stops conduct-
ing, and is equal to 26.5 nm f&-=8 meV, a value oE¢
used in all calculations, and GaAs effective mass
=0.067n,.

Varying the bottom gate voltagés, in our model, means
simply changing the parametawhile keepingh andb con-
stant. This describes the case when the lowssttom)
boundary of the conducting channel is shifted linearly by
Vg, while the upper boundary remains insensitive to this
voltage because of screening by the electron gas inside the
channel. These assumptions are supported by previous cal-
culations of the potential distribution in homogeneous, along
the x axis, split-gate structurésThe calculated dependence
of the conductance oa/a,, in the range of the first and
second plateau, for two values bfand b=w is shown in
Fig. 10. The following qualitative features are evident: for
small h the transmission pattern shows narrow, almost
equally spaced minima of resonance reflections of similar
shape. We call this the “regular” pattern. The number of the
minima on the first platea(b—7) is consistent with the ex-
perimentally observed numbéFig. 5, solid curvgé As h

latter case the waves are evanescent in the leads. Far awisgreases (1 less negativg the oscillations become irregu-
from the constrictiorp,, is the longitudinal momentum in the lar and show broad troughs, on which are superimposed the
leads. closely spaced resonances, and the average conductance is



10 956 P. DEBRAY et al. PRB 61

4 T T T T T 3-0 T T T T T T
25 b
(2)
3| | |
@ _ 20} W 1
—~ 2 B = 15} L
< S
a 8
~ o 1.0F 1
O]
i | B
oS (1) T
M I
ok - 00 —J 1
1 1 1 1 1 1
) ) I I I 04 06 08 1.0 1.2 1.4 1.6

a/a, (V)
) ) FIG. 11. Conductance as a function afa, for b=w andh
FIG. 10. Conductance as a function afa, for two different  _p 4,5 (1) hy=1.28y, v=1; (2) hy=0.6a,0=2. This corre-

heights of the stub cavity when its width is equal to the Iithographicsponds to the experimental condition when is varied withVg
width (b=w): (1) h=2ao; (2) (shifted for clarity h=3a,. This  anqv constant.

corresponds to the experimental condition whéis varied with

V1 andVg constant.

We do not discuss separately the case when the side-gate
voltageVs is varied, withh anda changing simultaneously,
considerably smaller than that of the shorter cavity. Thessince we expect the effect to be the same as when
results are consistent with experimental observat{fig. 5, changes. The experimental results of Figs. 3 and 4 show no
dotted curve Results for a narrower cavity show a similar qualitative difference between the two cases and confirm this

but less regular pattern. assessment.
The situation is more complex when the top gate voltage
V+ is varied. MakingV; less negative obviously leads to an IV. DISCUSSION AND CONCLUSIONS

increase ofh, and, as mentioned earlier, it also widens the

constriction. To describe this situatiam and h should be - . S
: : . : . . shows that the qualitative behavior of the ballistic conduc-
varied. Very likely the cavity widthb also changes in this : . ) )
tance, as a function of different gate voltages, is the same in

S|tuat|pn, but we e>.<pect.th|s change to be small and mak‘? the|ther case. This indicates that our choice of parameters and
following assumptions in order to generate the numerica

Its b . h d while varies li v ash he assumptions about their variation with gate voltages, sup-
results:b remains unchanged whils varies finearly a ported in part by the solution of the electrostatic problem,

=ho+va asVy is changed. Since the distance of the t0pgpresent fairly the experimental situation. Below we discuss
gate from the highest part of the cavity is smaller, but notis in more detail.

much smaller, than its distance from the narrowest part of the \ynen we makeVs and V; more negative thavg, the
constriction, we expeat to be positive but not much larger conducting channel is shifted towards the bottom gate and
than unity. the cavity heighth decreases. In this situation we obtain
The dependence & on a/ay, for fixedb=w and differ-  rather regular oscillations of the conductance as a function of
enthy andv, is shown in Fig. 11 for the region of the first bottom, top, or side gate voltages. The minima correspond to
plateau. The curves markét)) and(2) are obtained, respec- resonant reflections of the electron waves from quasibound
tively, with the hy=1.2a45,v=1, for (1), and hg=0.6a9,v states in the cavity* Variation of one of the gate voltages
=2 for (2). The parameters are chosen in such a way that aweeps the levels of the quasibound states through the Fermi
the beginning of the plateaa(ay=0.6) the cavity heightis level Ex and results in a resonance minimum each tipe
equal to 1.8a, for both curves. Curvél), with smallerv, coincides with one of them. The regularity in shape and
shows an oscillatorys with regular minima, similar to those spacing of these minima, for cavities with small heights, fol-
of curve (2) in Fig. 10 for constanh. But there is also a lows from the fact that these minima originate from the same
difference: the average conductance shows a small depreset of quasibound states. For confirmation, we calculated
sion near the end of the plateau. Asncreasegcurve (2)], again curvedl) in Figs. 10 and 11 with just twtransverse
the depression becomes more pronounced and broad, spreadvity modes in the expansidd); in the region of the first
ing over the second half of the plateau. Similar results, buplateau the first mode is transmitted through the constric-
with a less regular oscillatory pattern, are obtained for cavitions, while the second one is quasibound in the cavity.
ties with largerh, e.g., withh=2.6a, at the beginning of the Comparing these results with the curvds of Figs. 10 and
plateau. Also similar qualitative features have been obtained1, we find that all regular resonances occurring on the first
for narrower cavitiesi§=0.75 w). plateau appear also in this simplified calculation and their

Comparison of the experimental and theoretical results
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shapes are very similar. We, therefore, conclude that th&on. A simple explanation is as follows. Sweepivg or Vg
regular resonance reflection pattern results from quasibounidwards less negative values along the conductance plateau
states associated with the secdrahsversemode and each substantially increasels and leads to a departure from the
of them characterized by a proper wave number that exshort-cavity, “regular” pattern to the “irregular” one of a
presseslongitudinal quantization along thex direction. long cavity. Therefore, the averag&ldecreases at the end
Higher transverse quantization states bring additional resasf the first plateau and then increases, when the second trans-
nant features and make the dependence of the conductaneerse mode is allowed in the constriction, reaching the next
on the gate voltages less regular. The experimental results pfateau. If the initial value oh is already large, we need a
Figs. 3—5(solid curve$ show well-defined regularly spaced lesser increase ih in order to move to the long-cavity re-
minima inG and fully corroborate this analysis. Note that the gime; then the decrease of the aver&eppears earlier and
number of the minima obtained from the theory is about thegives rise to a broader trough. The experimentally observed
same as that observed experimentally; this means that theehavior of G, cf. dashed curves in Figs. 3—-5, shows pro-
cavity width is really close to the lithographic widthw2of  nounced troughs and a decrease in its average value in agree-
the stub, as we assumed in our model. The experimentahent with the above interpretation. We emphasize that the
dependences of the conductance on the top, side, and bottappearance of these troughs Gis a very common and
gate voltages are similar and show almost the same numbegproducible feature of the stubbed quantum devices studied
of oscillations. This is in agreement with our assumption thain this work.
we are dealing with a wide cavity of small height. For the Possible EST applications require a regular, periodic de-
sameh the minima are narrower for wider cavities since in pendence of the conductance on the gate voltages. The initial
such a case the upper boundary of the cavity is smoother aridea? followed in subsequent theoretical works, was to use a
the electron motion through the cavity is more adiabatic. Innarrow cavity, containingone quantized state, or mode, in
terms of our model this means that the derivativethe (x) transport direction, and control the conductance
dy.a,(X)/dx is smaller. Experimentally, a broadening of the through it by changing the height of the cavity by a top-gate
cavity without changing its height can be achieved by applyvoltage. However, from our results it is clear that real EST
ing less negative voltages to the side gates. devices do not satisfy these conditions because the electro-
When we makeV/g and/orV+ less negative compared to static potential created by the gates is rounded near the cor-
the values of the “regular” case discussed above, the chamers, cf. Fig. 8. Moreover, for a real device, as this work
nel widens and the cavity heightincreases. In this “irregu- shows, if the cavity is long enough, the dependence of the
lar” case the situation is modified as follow@) More qua-  conductance on the gate voltages is rather irregular. We have
sibound states occur and influence the resonant reflectioshown that it is possible to obtain a short-length cavity by a
(i) the coupling between transmitted and quasibound statgzoper choice of the gate voltages that is wide in the trans-
increases due to the increase of the nonadiabaticity. Botport direction. The conductance through such a cavity shows
these factors should lead to a decrease of the average cam-regular pattern of resonant reflection minima associated
ductanceG. This decrease of is clearly seen in the theo- with the quasibound states in it that result fréongitudinal
retical results, cf. Figs. 10 and 11. Besides, the theory showguantization.
that the behavior o6 as a function of different gate voltages
has a qualitative difference: the variation @g produces
broad minima and depression of the aver&ever the en-
tire plateaus while the variation &f; or Vg gives narrower
minima and the averag®é has pronounced troughs near the  One of us(P. D) gratefully acknowledges support by the
ends of the plateaus. Our theoretical calculations show thatational Research Council, Washington, D.C. The work of
the troughs are more pronounced when the hdigbtlarger P. V. was supported by the Canadian NSERC Grant No.
and when it increases faster with the opening of the constricoGP0121756.
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