
PHYSICAL REVIEW B 15 APRIL 2000-IIVOLUME 61, NUMBER 16
Ballistic electron transport in stubbed quantum waveguides: Experiment and theory
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We present results of experimental and theoretical investigations of electron transport through stub-shaped
waveguides or electron stub tuners~ESTs! in the ballistic regime. Measurements of the conductanceG as a
function of voltages, applied to different gatesVi ( i 5bottom, top, and side! of the device, show oscillations in
the region of the first quantized plateau that we attribute to reflection resonances. The oscillations are rather
regular and almost periodic when the heighth of the EST cavity is small compared to its width. Whenh is
increased, the oscillations become less regular and broad depressions inG appear. A theoretical analysis, which
accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation
of the transmission probabilities successfully explains the experimental observations. An important finding for
real devices, defined by surface Schottky gates, is that the resonance minima result from size quantization
along the transport direction of the EST.
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I. INTRODUCTION

Submicron-size T-shaped electron waveguides, defi
electrostatically in a two-dimensional electron gas~2DEG!
by Schottky gates, are very promising devices for poten
applications in microelectronics since their conductanceG is
determined, in the ballistic regime, by quantum interferen
effects and can be changed by applying voltages to
gates.1 Such devices, commonly known as electron stub t
ers~ESTs!, also open the way for studying resonant states
ballistic quantum dots in both the weakly coupled tunnel
and in the transmissive open regime.2 The size of an EST can
be controlled by gate voltages, cf. Fig. 1. For a theoret
analysis, an EST can be considered as a rectangular qua
dot connected to 2DEG reservoirs through two opposit
placed quantum point contacts~QPCs!. When the electron
phase-coherence length exceeds the dimensions of the
transport through the device is ballistic. A number of the
retical papers,3,4 have been published on the ballistic tran
port characteristics of ESTs in the open regime of the QP
These works predict an oscillatory dependence ofG as a
function of geometrical size parameters of the device or
the Fermi energyEF . A minimum in G, or a reflection reso-
nance, is said to occur due to resonant reflection of elec
waves by quasibound states of the stub cavity~SC! formed
by the gates, the quasibound state itself resulting becaus
the quantization of electron momentum associated with
PRB 610163-1829/2000/61~16!/10950~9!/$15.00
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small device size. Experimentally, it is possible to pro
these resonance states through measurements ofG at low
temperatures and has been reported4 only very recently.
However, so far experimenters have failed to observe w
defined, regular oscillations inG with minima corresponding
to excitations of the quasibound states as predicted theo
cally. Most of the devices so far used in experiments w
geometrically defined by only two gates, which do not allo
an adequate independent control of the width of the QP
and the shape of the SC. This possibly explains the failur
observe experimentally a well-defined, regular pattern
minima in G.

In this paper we present experimental and theoretical
sults for the four-gate EST. A preliminary account of som
of them has appeared recently.5 We report the experimenta
observation of a clear and pronounced oscillatory dep
dence of the ballisticG on the size of the SC as the latter
changed by voltage biasing the gates. Such oscillations o
on the first conductance plateau of the QPCs. We a
present theoretical results forG obtained from a numerica
solution of Schro¨dinger’s equation for a two-dimensiona
~2D! hard-wall electron waveguide with a shape close to
one resulting from the biasing of the Schottky gates. Beca
of this choice, we believe our results are closer to reality th
those reported in previous theoretical work based on a r
angular approximation for the SC shape. A rectangular
shape is unrealistic since, though the lithographically defin
10 950 ©2000 The American Physical Society
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PRB 61 10 951BALLISTIC ELECTRON TRANSPORT IN STUBBED . . .
device shape is rectangular, the shape of the SC chang
the gates are biased.6 Moreover, except for a few papers,7 the
lengths of the QPCs have been considered as infinite; th
a very rough approximation for real devices and we avoi
in our computations. Comparison of the experimentally o
served features of the ballisticG to those obtained numeri
cally enables us to determine the physical origin of th
features and helps us understand what the shape of the
and how it can be modified by applied gate voltages.

The paper is organized as follows. In Sec. II we give
brief description of the device fabrication and measurem
techniques and then present results of conductance mea
ments as a function of gate voltages. Section III outlines
theoretical model and the calculations, and present nume
results. Finally, an interpretation of the experimental resu
based on the theoretical analysis of Sec. III, and conclus
follow in Sec. IV.

II. EXPERIMENTAL ASPECTS

A. Device fabrication and measurement techniques

The ESTs used in this study were fabricated fro
modulation-doped AlGaAs/GaAs heterostructure waf
grown by molecular beam epitaxy~MBE! and having a two-
dimensional electron gas~2DEG! at a depth of 80 nm below
the surface. The carrier concentrationn2D of the 2DEG was
2.431015 m22 with a mobility m of 100 m2/V s at 4.2 K.
These values ofn2D and m give a 2DEG Fermi energyEF
58 meV. The ESTs were defined by four Schottky ga
S1,T,S2, andB patterned by electron beam lithography
the surface of the wafer. Figure 1 gives a schematic draw
of an EST device, while Fig. 2 shows a scanning elect
micrograph of a fabricated EST sample. Lighter areas are
Schottky metal gates on the wafer surface. The central
of the EST, where the SC is located, forms a lithographica
rectangular planar quantum dot of length 0.55 and wi

FIG. 1. Schematic drawing of an EST device. Lithographic
mensions:L50.30 mm, 2W50.25 mm. S1, T, S2, and B are
surface Schottky gates. The area enclosed between the dashed
defines the conducting channel.
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0.25 mm. The lithographic lengths of the QPCs are 0.1mm.
The samples were clamped to the mixing chamber of a d
tion refrigerator. Considerable care was taken to ensure g
thermal contact to the sample. The two-terminal conducta
G of the devices was measured at 90 mK as function o
gate voltage, while the other gates were biased at fixed v
ages. Standard low-bias, low-frequency, lock-in techniq
were used to measureG, which was corrected for a low
series resistance due to the 2DEG reservoirs. A source-d
rms excitation of 10mV was typically used to drive a cur
rent along the length (x direction! of the QPCs.

Since the four gates are independent, it was possibl
characterize the QPCs of the EST device independently
biasing the appropriate gates while grounding the rest
them. A high-quality, well-defined conductance quantizat
staircase was observed for both QPCs. The gates of
QPCs were negatively biased to assure fundamental-m
transport through them. The conductanceG of the device
was then measured as a function of the size of the SC
sweeping the voltageVT of the top gate, orVB of the bottom
gate, orVS of the side gates, while the other gates we
biased at fixed negative voltages. The sweeping gate vol
was changed until the device was completely pinched
allowing measurements in both the single-mode open and
tunneling regime of electron transport. Measurements w
made on a few EST devices. All of them gave nearly ide
tical and reproducible results differing only in the pinch-o
voltages.

B. Experimental results

Figures 3–7 show the experimental results. Very we
defined oscillations in the ballistic conductanceG are ob-
served as a function of a sweeping gate voltage, wh
changes the size of the SC, while the other gates are bias

-

ines

FIG. 2. Scanning electron micrograph of a fabricated EST
vice. Lighter areas indicate the Schottky gates.
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10 952 PRB 61P. DEBRAY et al.
fixed voltages. These oscillations exhibit several features
are found to be generic to the EST devices studied. All
sults shown correspond to transport in the fundamental m
through the QPCs until they are pinched off.

Figure 3 shows the oscillations inG observed when the
bias voltageVT of the top gate is swept, while the other gat
are kept at fixed voltages. The solid curve is obtained w
the bottom and the two side gates are biased, respective
VB52765 mV, VS152860 mV, and VS252964 mV.
As VT is made more negative the size of the SC shrinks. T
also adds to the depletion due to the side gates and nar
the QPCs until they are pinched off when the device cond

FIG. 3. Conductance as a function of the top gate voltageVT

with VS152860 mV andVS252964 mV. The solid and dotted
curves correspond toVB52765 mV andVB52780 mV, respec-
tively. The arrows indicate locations of broad depressions inG.

FIG. 4. Conductance as a function of the side gate voltageVS

(VS5VS15VS21104 mV) at fixedVB and VT . The solid curve
was obtained atVT521400 mV andVB52755 mV. The dotted
curve corresponds toVT52800 mV andVB52790 mV. The ar-
row shows the position of a broad depression inG.
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tance drops to zero. The oscillations inG are found to occur
in two distinct regimes of the sweeping gate voltage, one
which G,e2/h and the other for whichG.e2/h. The one
with G,e2/h is the tunneling regime whenEF is below the
bottom of the lowest conduction subband of the QPC
which now form energy barriers through which electrons c
tunnel. The oscillations ofG in this regime are found to be
periodic, quite sharp, and well resolved. The regime
which G.e2/h may be called the open regime. This happe
when EF is above the bottom of the lowest subband of t
QPCs such that transport is in the fundamental mode. ThG
oscillations in this regime are located on the first quantiz
conductance plateau of the QPCs. Though quite robust, c

FIG. 5. Conductance as a function of the bottom gate voltageVB

with VS152860 mV andVS252964 mV at fixedVT . The solid
and dotted curves correspond toVT521085 mV and VT5
2635 mV, respectively. The arrows indicate locations of bro
depressions inG.

FIG. 6. Conductance as a function of the top gate voltageVT

with VS152860 mV, VS252964 mV, andVB52765 mV at
different temperatures.
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PRB 61 10 953BALLISTIC ELECTRON TRANSPORT IN STUBBED . . .
and nearly periodic, they are relatively broad and show
certain degree of overlapping with the resulting convolut
effect. The peak values are less than the expected quan
value of 2e2/h and, as will be seen later, result from bac
scattering at the QPC entrance and/or from boundary rou
ness at the QPC walls. The dottedG curve of Fig. 3 is ob-
tained forVB52780 mV and differs from the solid one i
two important respects. First, the average conductanc
substantially lower. Second, the oscillations inG in the open
regime become irregular due to the appearance of br
troughs or depressions in the conductance.

The size of the central ballistic cavity of the device c
also be altered by varying the bias voltages of the side g
while keeping those of the top and bottom gates at fix
values. Figure 4 shows the variation inG as function of the
side gate bias voltageVS(VS5VS15VS21104 mV). The
solid curve was generated withVT521400 mV andVB5
2755 mV, while the dotted curve was obtained forVT5
2800 mV andVB52790 mV. Results obtained by swee
ing VB are illustrated in Fig. 5. For these measurements
side gates were biased as follows:VS152860 andVS25
2964 mV. The solid and dotted curves correspond, resp
tively, to VT521085 and2635 mV. Comparing the result
of Figs. 4 and 5 to those of Fig. 3, we notice that, except
the device pinch-off voltages and the oscillation periods,
features of the oscillations inG are similar. The solid curves
show the same characteristics, as do the dotted ones, th
the features are different for the two sets. This is not surp
ing since in all cases we are changing the size of the cen
cavity. An interesting question, however, is what causes
difference in the characteristic features of theG oscillations
observed on the first conductance plateau for the solid
the dotted curves. If we look more closely and compare
constant gate bias voltages used for generating the two
of G curves, an empirical consistency emerges. The volta
used for the dotted curves are such as to result in a SC th
long compared to that for the corresponding solid curves.

FIG. 7. Conductance as a function of the top gate voltageVT

with VS152860 mV, VS252964 mV. VB52765 mV for dif-
ferent source-drain voltages.
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an example, the oscillatoryG of the dotted curve in Fig. 4 is
obtained for aVT52800 mV, while for the solid curveVT
is equal to21400 mV. A more negative top gate voltag
certainly makes the SC shorter. These observations lead
conclude that a lower average value ofG and broad depres
sions in it occur when the stub cavity is long. We call t
oscillatory G pattern with regular minima observed for th
solid curves a ‘‘regular’’ pattern and that for the dotte
curves an ‘‘irregular’’ pattern.

In order to better understand the origin of the observ
oscillations inG and to distinguish between the peaks in t
tunneling and the open regime, we have studied the dep
dence of the regularG pattern on temperature, drain-sour
excitation voltage, and a magnetic field applied perpendi
lar to the plane of the 2DEG. Figure 6 shows the tempera
dependence of a regularG pattern obtained by sweeping th
top gate voltage VT with VB52765 mV, VS15
2860 mV, andVS252964 mV. As the temperature is in
creased, all peaks in both the tunneling and the open reg
broaden, and eventually they are washed out. At 4.2 K,
oscillatoryG pattern has disappeared and is replaced by
conductance step and plateau. At the highest temperatu
2.5 K measured in the dilution refrigerator, the peaks in
open regime have practically disappeared, while those in
tunneling regime show a trace existence. The influence of
source-drain voltageVds on the regularG pattern has also
been studied and is shown in Fig. 7. Notice that the effec
increasingVds is similar to that of temperature. The oscilla
tions in G are found to practically fade out and be replac
by the conductance step and plateau whenVds is increased to
a rms value of 700mV.

III. THEORETICAL TREATMENT

A. Cavity potential

A realistic, theoretical description of ballistic electro
transport through a cavity, such as the stub of an EST, m
take into account the electrostatic potential inside the ca
since it determines the actual shape of the conducting ch
nel. Accordingly, we have calculated the electrostatic pot
tial created in the plane of a 2DEG situated at a distancd
580 nm below the surface, atz50, of a two-gate EST,
defined by two surface Schottky gates with voltagesVT and
VB , whenS1,T, andS2 are connected together, cf. Fig.
The distance between the gates at entrance and exit isw
5250 nm, the bottom gateGB is flat, while the top gateGT
contains the stublike opening of width 2w and of lengthL
5300 nm. This value ofd and the lithographic dimension
correspond to the experimental device described above
though the present model of just two gates is somewhat
alized but necessary for simplifying the calculations. T
potential w(x,y,z) has been calculated from the Lapla
equation in the semispacez.0, with Dirihlet boundary con-
ditions w(x,y,0)5Vi on the i th gate region (i 5T,B) and
Newmann boundary conditions ]w(x,y,z)/]zuz50
54pen2D /e at the exposed surface region;n2D is the elec-
tron concentration in the 2D gas in the absence of deple
ande is the dielectric constant. The last boundary conditi
expresses the so-called ‘‘frozen surface model’’ in which
electric charge at the exposed surface is constant; this m
appears appropriate at low temperatures and is often use
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10 954 PRB 61P. DEBRAY et al.
theoretical calculations.8 To make our model finite in thex
direction, we choose a lengthl 5L and use the boundar
condition ]w(x,y,z)/]xux56 l50. We have also assume
that the concentration of the ionized donors in the dop
region between the surface and the 2D gas plane is equ
a sum of then2D and surface charge concentration and is
changed appreciably when the voltages are applied to
gates.

In Fig. 8 we present the resulting contour plot of the p
tential w(x,y,d); sincew(2x,y,z)5w(x,y,z), we showw
only for the right half of the stub. Although we do not tak
into account the free-electron charge in the planez5d, in
order to avoid the heavily involved self-consistent calcu
tions, we expect that the screening effect due to these e
trons will not change the shape of the equipotential lin
considerably but would cause at most a flattening of the b
tom of the potential distribition. As a result, we expect t
shape of the conducting channel to follow, more or less,
calculated equipotential lines. This enables us to draw
following important qualitative conclusions.

~i! The shape of the cavity inside the stub region does
follow that defined by the gate edges and is not rectang
as has been assumed in previous pertinent theoretical w

~ii ! The width of the cavity is close to the lithograph
width of the stub, and since the Fermi wavelength atEF
.8 meV is about 53 nm, which is considerably less than
lithographic stub width 2w, the cavity accommodates no
just one longitudinal mode, as has been frequently assum
but several modes.

~iii ! When the width of the narrowest part of the condu
ing channel, in our model atx5 l , is small compared to the
lithographic one 2w of the wire, the length of the cavity a
x50 is considerably smaller than the lithographic lengthL.

~iv! The length of the cavity is even smaller when t
upper gate voltageVT is more negative (VT,VB) so that
there is an overall shift of the conducting channel towa
the bottom gate. In going beyond the two-gate model
wards the four-gate device shown in Fig. 1, it is reasona
to expect that when the top gate voltage is more nega

FIG. 8. Contour plot off(x,y,z) created in the plane of the
2DEG, atz5d580 nm, of a two-gate EST for~a! VB5VT and~b!
VB2VT50.2 V. The interval between equipotential lines is~a! 6.6
mV and ~b! 8.4 mV. The thick solid lines show the edges of t
gates.
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than that of the side gates, the height of the cavity decrea
while in the opposite case it should increase.

In the following we use this qualitative information t
appropriately model the shape of the conducting channe
the four-gate EST and calculate the electron transmiss
through the cavity.

B. Model of the cavity and numerical method

We model the conducting channel of the device in Fig
with a 2D waveguide having hard-wall boundaries describ
in an obvious notation, by the functions

ybot~x!52ywire~x!, ywire~x!5W/$11exp@~2x1r !/b#%

1W/$11exp@~x1r !/b#%, ~1!

ytop~x!5ywire~x!1a1ycav~x!,

ycav~x!5h exp~2x2/b2!. ~2!

We describe the cavity with the Gaussian functionycav(x)
since it gives us the most relevant elementary-function
proximation of the equipotential lines shown in Fig. 8. T
function ywire(x) describes the transition from the con
stricted region nearx50 to the 2D reservoirs atx56`.
Here we setb5W/4 to model the square-angle opening
the conducting channel of the experimental device~Fig. 1!.
The parameterW, which describes the semiwidth of th
channels away from the constriction and must be la
enough, is chosen asW5w. For this value ofW, the chan-
nels away from the constriction already accommodate ab
ten transverse modes and can be effectively treated as
leads. The remaining parameterr is chosen, by inspection, a
r 5w1 l 13b, where l is the lithographic length of the
QPCs; this gives a more or less suitable correspondence
tween the outer parts of the conducting channel and the
corners. The resulting shape of the conducting channel,
gether with the lithographic gate layout, is shown in Fig.

FIG. 9. Model of the conducting channel for a four-gate ES
~Figs. 1 and 2!. The area enclosed between the tracesyt and yb

defines the shape and size of the conducting channel under
biases that was used in our calculations. The solid straight lines
the lithographic edges of the Schottky gatesS1, T, S2, andB.
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To determine the transmission coefficients of elect
waves through the device, we solved numerically the
Schrödinger equation

2
\2

2m S ]2

]x2
1

]2

]y2D C~x,y!1@U~x,y!2«#C~x,y!50,

~3!

using the following expansion for the wave function9

C~x,y!5(
n

cn~x!xn~x,y!, xn~x,y!

5A 2

Y~x!
sinF pn

Y~x!
@y2ybot~x!#G , ~4!

where Y(x)5ytop(x)2ybot(x) is the x-dependentchannel
width. The basis functionsxn(x,y) already satisfy the
boundary conditions for hard-wall confinement. Substitut
Eq. ~4! into Eq.~3! leads to the 1D matrix equation forcn(x)

F d2

dx2
2S pn

Y~x! D
2

1k2Gcn~x!1(
m

F2Bnm~x!
d

dx
1Cnm~x!

2Knm~x!Gcm~x!50; ~5!

herek252m«/\2 and

Bnm~x!5E
ybot(x)

ytop(x)

dyxn~x,y!
]

]x
xm~x,y!,

Cnm~x!5E
ybot(x)

ytop(x)

dyxn~x,y!
]2

]x2
xm~x,y!, ~6!

Knm~x!5
2m

\2 Eybot(x)

ytop(x)

dyxn~x,y!U~x,y!xm~x,y!.

Since we assumeU(x,y)50 far away from the constriction
all parameters defined by Eqs.~6! depend onx only in the
constriction region. We choosexmax and xmin far enough
from the constriction and discretize Eq.~5! on anN11-point
grid according tox5xi5xmin1 is,s5(xmax2xmin)/N. The
resulting finite-difference equation forcm(xi) is solved sub-
ject to the boundary conditions Anm(1)cm(x1)
1Anm(0)cm(x0)5An

a and Anm(N21)cm(xN21)
1Anm(N)cm(xN)50, appropriate to a wave, in statea, in-
cident from the left side. Sincexn(x,y) are the exact nor-
malized eigenfunctions of the problem atx56`, the bound-
ary matrices Anm are diagonal Anm(1)5Anm(N21)
5dnm ,Anm(0)5Anm(N)52dnmexp(2ipns), while An

a

5dna@exp(ipns)2exp(2ipns)#. In these matrix expression
we introduced the longitudinal quantum number

pn5Ak22@pn/Y~`!#2, ~7!

which can be either real or imaginary (Impn.0); in the
latter case the waves are evanescent in the leads. Far
from the constrictionpn is the longitudinal momentum in th
leads.
n

g

ay

The ballistic conductanceG at zero temperature is give
by the multichannel Landauer-Bu¨ttiker formula

G5
2e2

h (
aa8

uTaa8u
2

pa8
pa

. ~8!

The transmission amplitudeTaa8 in Eq. ~8! is equal to
ca8(xN) for the problem with the incident wave in statea
and «5EF . The sum runs over all propagating states~for
which pa are real!. The generalization of Eq.~8! to finite
temperatures is straightforward, see, e.g., Eq.~7! in Ref. 10.
The actual numberM of transverse subbands involved in th
numerical calculations is determined by the condition t
further increase ofM does not produce any perceptib
change of the calculated wave functions and transmiss
coefficients. For the calculations described below it is su
cient to takeM between 10 and 15; this results in a reaso
ably short calculation time.

C. Numerical results

In order to decrease the number of the unknown para
eters, we restricted ourselves to the flat-band approximat
U(x,y)50, in all calculations. As a result, we have only th
three geometrical parametersa,h, andb, which are assumed
to be controlled by the gates. The first of them,a, character-
izes the width of the constriction in its narrowest parts,
though it is somewhat smaller than the constriction width,
Eqs. ~1! and ~2!. Assuming that the depletion of the 2DE
by the gates follows a linear law, which is confirmed by o
experimental studies of the conductance quantization i
single constriction, we can directly associate a change of
value ofa with a change of the gate voltages. As forh andb,
they describe mostly the shape of the cavity formed in
stub region and are related, respectively, to its height
width. It is convenient to measure all these parameters
units of the cutoff lengtha05\p/A2mEF, which is the
width of the hard-wall quantum wire, when it stops condu
ing, and is equal to 26.5 nm forEF58 meV, a value ofEF
used in all calculations, and GaAs effective massm
50.067me .

Varying the bottom gate voltageVB , in our model, means
simply changing the parametera while keepingh andb con-
stant. This describes the case when the lower~bottom!
boundary of the conducting channel is shifted linearly
VB , while the upper boundary remains insensitive to t
voltage because of screening by the electron gas inside
channel. These assumptions are supported by previous
culations of the potential distribution in homogeneous, alo
the x axis, split-gate structures.8 The calculated dependenc
of the conductance ona/a0, in the range of the first and
second plateau, for two values ofh and b5w is shown in
Fig. 10. The following qualitative features are evident: f
small h the transmission pattern shows narrow, alm
equally spaced minima of resonance reflections of sim
shape. We call this the ‘‘regular’’ pattern. The number of t
minima on the first plateau~5–7! is consistent with the ex-
perimentally observed number~Fig. 5, solid curve!. As h
increases (VT less negative!, the oscillations become irregu
lar and show broad troughs, on which are superimposed
closely spaced resonances, and the average conductan
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considerably smaller than that of the shorter cavity. Th
results are consistent with experimental observations~Fig. 5,
dotted curve!. Results for a narrower cavity show a simil
but less regular pattern.

The situation is more complex when the top gate volta
VT is varied. MakingVT less negative obviously leads to a
increase ofh, and, as mentioned earlier, it also widens t
constriction. To describe this situationa and h should be
varied. Very likely the cavity widthb also changes in this
situation, but we expect this change to be small and make
following assumptions in order to generate the numer
results:b remains unchanged whileh varies linearly ash
5h01va as VT is changed. Since the distance of the t
gate from the highest part of the cavity is smaller, but n
much smaller, than its distance from the narrowest part of
constriction, we expectv to be positive but not much large
than unity.

The dependence ofG on a/a0, for fixed b5w and differ-
ent h0 andv, is shown in Fig. 11 for the region of the firs
plateau. The curves marked~1! and~2! are obtained, respec
tively, with the h051.2a0 ,v51, for ~1!, and h050.6a0 ,v
52 for ~2!. The parameters are chosen in such a way tha
the beginning of the plateau (a/a0.0.6) the cavity height is
equal to 1.8a0 for both curves. Curve~1!, with smallerv,
shows an oscillatoryG with regular minima, similar to those
of curve ~2! in Fig. 10 for constanth. But there is also a
difference: the average conductance shows a small dep
sion near the end of the plateau. Asv increases@curve ~2!#,
the depression becomes more pronounced and broad, sp
ing over the second half of the plateau. Similar results,
with a less regular oscillatory pattern, are obtained for ca
ties with largerh, e.g., withh.2.6a0 at the beginning of the
plateau. Also similar qualitative features have been obtai
for narrower cavities (b50.75 w).

FIG. 10. Conductance as a function ofa/a0 for two different
heights of the stub cavity when its width is equal to the lithograp
width (b5w): ~1! h52a0; ~2! ~shifted for clarity! h53a0. This
corresponds to the experimental condition whenVB is varied with
VT andVS constant.
e
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We do not discuss separately the case when the side-
voltageVS is varied, withh anda changing simultaneously
since we expect the effect to be the same as whenVT
changes. The experimental results of Figs. 3 and 4 show
qualitative difference between the two cases and confirm
assessment.

IV. DISCUSSION AND CONCLUSIONS

Comparison of the experimental and theoretical res
shows that the qualitative behavior of the ballistic condu
tance, as a function of different gate voltages, is the sam
either case. This indicates that our choice of parameters
the assumptions about their variation with gate voltages, s
ported in part by the solution of the electrostatic proble
represent fairly the experimental situation. Below we disc
this in more detail.

When we makeVS and VT more negative thanVB , the
conducting channel is shifted towards the bottom gate
the cavity heighth decreases. In this situation we obta
rather regular oscillations of the conductance as a functio
bottom, top, or side gate voltages. The minima correspon
resonant reflections of the electron waves from quasibo
states in the cavity.11 Variation of one of the gate voltage
sweeps the levels of the quasibound states through the F
level EF and results in a resonance minimum each timeEF
coincides with one of them. The regularity in shape a
spacing of these minima, for cavities with small heights, f
lows from the fact that these minima originate from the sa
set of quasibound states. For confirmation, we calcula
again curves~1! in Figs. 10 and 11 with just twotransverse
cavity modes in the expansion~4!; in the region of the first
plateau the first mode is transmitted through the const
tions, while the second one is quasibound in the cav
Comparing these results with the curves~1! of Figs. 10 and
11, we find that all regular resonances occurring on the fi
plateau appear also in this simplified calculation and th

c

FIG. 11. Conductance as a function ofa/a0 for b5w and h
5h01va. ~1! h051.2a0 , v51; ~2! h050.6a0 ,v52. This corre-
sponds to the experimental condition whenVT is varied withVB

andVS constant.
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shapes are very similar. We, therefore, conclude that
regular resonance reflection pattern results from quasibo
states associated with the secondtransversemode and each
of them characterized by a proper wave number that
presses longitudinal quantization along thex direction.
Higher transverse quantization states bring additional re
nant features and make the dependence of the conduc
on the gate voltages less regular. The experimental resul
Figs. 3–5~solid curves! show well-defined regularly space
minima inG and fully corroborate this analysis. Note that t
number of the minima obtained from the theory is about
same as that observed experimentally; this means tha
cavity width is really close to the lithographic width 2w of
the stub, as we assumed in our model. The experime
dependences of the conductance on the top, side, and bo
gate voltages are similar and show almost the same num
of oscillations. This is in agreement with our assumption t
we are dealing with a wide cavity of small height. For t
sameh the minima are narrower for wider cavities since
such a case the upper boundary of the cavity is smoother
the electron motion through the cavity is more adiabatic.
terms of our model this means that the derivat
dycav(x)/dx is smaller. Experimentally, a broadening of th
cavity without changing its height can be achieved by app
ing less negative voltages to the side gates.

When we makeVS and/orVT less negative compared t
the values of the ‘‘regular’’ case discussed above, the ch
nel widens and the cavity heighth increases. In this ‘‘irregu-
lar’’ case the situation is modified as follows.~i! More qua-
sibound states occur and influence the resonant reflec
~ii ! the coupling between transmitted and quasibound st
increases due to the increase of the nonadiabaticity. B
these factors should lead to a decrease of the average
ductanceG. This decrease ofG is clearly seen in the theo
retical results, cf. Figs. 10 and 11. Besides, the theory sh
that the behavior ofG as a function of different gate voltage
has a qualitative difference: the variation ofVB produces
broad minima and depression of the averageG over the en-
tire plateaus while the variation ofVT or VS gives narrower
minima and the averageG has pronounced troughs near t
ends of the plateaus. Our theoretical calculations show
the troughs are more pronounced when the heighth is larger
and when it increases faster with the opening of the cons
t
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tion. A simple explanation is as follows. SweepingVT or VS
towards less negative values along the conductance pla
substantially increasesh and leads to a departure from th
short-cavity, ‘‘regular’’ pattern to the ‘‘irregular’’ one of a
long cavity. Therefore, the averagedG decreases at the en
of the first plateau and then increases, when the second tr
verse mode is allowed in the constriction, reaching the n
plateau. If the initial value ofh is already large, we need
lesser increase inh in order to move to the long-cavity re
gime; then the decrease of the averageG appears earlier and
gives rise to a broader trough. The experimentally obser
behavior ofG, cf. dashed curves in Figs. 3–5, shows pr
nounced troughs and a decrease in its average value in a
ment with the above interpretation. We emphasize that
appearance of these troughs inG is a very common and
reproducible feature of the stubbed quantum devices stu
in this work.

Possible EST applications require a regular, periodic
pendence of the conductance on the gate voltages. The in
idea,1 followed in subsequent theoretical works, was to us
narrow cavity, containingone quantized state, or mode, i
the ~x! transport direction, and control the conductan
through it by changing the height of the cavity by a top-ga
voltage. However, from our results it is clear that real E
devices do not satisfy these conditions because the ele
static potential created by the gates is rounded near the
ners, cf. Fig. 8. Moreover, for a real device, as this wo
shows, if the cavity is long enough, the dependence of
conductance on the gate voltages is rather irregular. We h
shown that it is possible to obtain a short-length cavity b
proper choice of the gate voltages that is wide in the tra
port direction. The conductance through such a cavity sho
a regular pattern of resonant reflection minima associa
with the quasibound states in it that result fromlongitudinal
quantization.
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