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Quantized conductance, circuit topology, and flux quantization

Wim Magnus and Wim Schoenmaker
Interuniversity Microelectronics Center, Kapeldreef 75, B-3001 Leuven, Belgium

~Received 24 November 1999!

It is shown that elementary quantum mechanical considerations determine whether the resistive features of
a closed electric circuit are governed by the well-known Landauer-Bu¨ttiker conductance formula. In particular,
it is argued that the latter results from the interplay between the topology of the transport electric field and the
quantization of the magnetic flux trapped by the circuit.
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I. INTRODUCTION

Exploiting the possibility of down scaling the sizes
modern semiconductor devices, their insulating layers
the connecting wires, one has gradually entered the ra
where quantum physics dominates the descriptive base
understanding experimental results. In particular, cohe
transport through so-called quantum devices such as q
tum wires, quantum dots, and quantum point contacts
been regarded as a substantial support for the Landauer
ture of transport in disordered solids.1–5 Moreover, for more
than two decades numerous authors have investigated ch
transport through large normal or superconducting meta
contacts that are separated by narrow semiconducting o
sulating layers the size of which is below the mean free pa
related to typical scattering mechanisms.6 In spite of the
agreement between the electrical characterization of me
copic conductors and the Landauer-Bu¨ttiker theory predict-
ing the conductance in those devices, conceptual doubt
persisted regarding the derivation of the famous Landa
Büttiker formula from first principles of quantum mechani
and statistical physics.7–9

In this paper, we demonstrate that the Landauer-Bu¨ttiker
formula for a multiply connected electric circuit can be d
rived straightforwardly if the following two conditions ar
met: ~a! quantization of the magnetic flux generated by t
electric current flowing through the circuit,~b! spatial local-
ization of the driving electric field in a simply connecte
subregion of the circuit. Because the present paper is str
focussing on the current-voltage relationship in the abse
of decoherence effects, we have restricted our investigat
to an ensemble of noninteracting electrons, which are
lowed to move freely through the circuit. Consequently,
main question to be answered is whether the application
an external voltage will give rise to either infinite curren
steadily extracting energy from the driving field or to fini
currents being limited by the Landauer-Bu¨ttiker conduc-
tance. In order to prevent any ambiguity in distinguishi
between those two conductance regimes, we have syste
cally omitted both elastic and inelastic scattering mec
nisms in the present treatment.

The paper is organized as follows. In Sec. II the elec
circuit is introduced as a multiply connected manifold with
single hole. In Sec. III the transient current response of
electron gas moving freely through the circuit under the
tion of an irrotational, but non-conservative electric field
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investigated and the Landauer-Bu¨ttiker conductance formula
is recovered. Finally, the obtained results including the p
posed conduction mechanism are discussed and comp
with more conventional theoretical approaches in Sec. IV

II. CIRCUIT TOPOLOGY, NONCONSERVATIVE
ELECTRIC FIELDS, AND DISSIPATION-LESS

TRANSPORT

We consider a closed electric circuit that comprises
three-dimensional multiply connected regionV encircling
exactly one hole, i.e., a torus-shaped region confining
ensemble of electrons. Consequently, all one-electron wa
functions and the electron field operatorc(rW,t) are assumed
to vanish at the boundary surface]V:

c~rW,t !50 ;rWPV. ~1!

As shown in Fig. 1, the circuit consists of four regions:
so-called active regionVA that is restricted by the cross
sectioned surfacesS1A andS2A , representing any arbitrary
mesoscopic area such as a quantum point contact, a qua
dot or a narrow energy barrier, a ‘‘battery’’ regionVB rep-
resenting the seat of an externally applied dc electromo
force ~emf! Ve , two ideally conducting leadsV1L andV2L
connecting the battery to the active region.

The motion of the electron ensemble is driven by an el
tric field EW (rW), which is invoked by the external emfVe

FIG. 1. Torus-shaped electric circuit.
10 883 ©2000 The American Physical Society
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Ve5 R
G
EW ~rW !•drW, ~2!

where G is an arbitrary closed curve in the interior ofV,
encircling the ‘‘hole’’ of the circuit once and only once
Under the assumptions that no magnetic field lines are p
etrating in the circuit regionV, we may conclude from the
third Maxwell equation that in the interior ofV the total
electric field must be irrotational yet nonconservative, sin
it exists in a multiply connected region. Moreover, due
Stokes’ theorem, the emf, which is nothing but the circu
tion of the electric field along the closed curveG must be
independent on any particular choice ofG. As even the leads
are assumed to have no resistance, the electric field is i
tically vanishing in both lead regions. In general, the elec
field in the circuit region may be decomposed into a cons
vative and nonconservative part:

EW ~rW !5EW C~rW !1EW NC~rW ! ~3!

with

EW C~rW !52¹W V~rW !

~4!

R
G
EW NC~rW !•drW5Ve .

Here, the conservative componentEW C is derived from an
electrostatic potentialV taking fixed valuesV1 andV2 within
the equipotential volumesV1L andV2L and exhibiting rela-
tively large drops in the active region and the battery reg
~see Fig. 2!.

However, as the entire circuit is assumed to be scatte
free, we may as well neglect the internal resistance of
battery and choose the nonconservative componentEW NC to
counteract the conservative field in the battery region

EW NC~rW !52EW C~rW !, for rWPVA

50, elsewhere. ~5!

In other words, the total transport fieldEW vanishes every-
where in the circuit except for the active region where

FIG. 2. Potential energy profile alongG.
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electric field strength may take rather huge values. Furth
more, the potential differenceV12V2 is maintained by the
emf as can be seen from

Ve5 R
G
EW ~rW !•drW5E

S1A

S2A
EW C~rW !•drW5V12V2 . ~6!

Clearly, the present transport model requires a totally diff
ent approach compared with conventional studies of cohe
transport that treat the electric circuit as an open system
charge carriers. The latter ones are injected from a reser
and, after some ballistic propagation through the mesosc
area they are seen to disappear in another reservoir. On
contrary, our model describes the electric circuit as a clos
torus-shaped region confining the charge carriers to
interior—as is essentially realized in a real circuit—and
lowing them to extract energy from an external electric fie
which is forcing the carriers back to the active region.

III. HAMILTONIAN AND CURRENT RESPONSE

Under the effective mass approximation the most gen
second-quantized Hamiltonian describing an ensemble
free electrons acted upon by an electromagnetic field rea

HE5E
V

dtc†~rW !H 1

2m
@pW 1eAW ~rW,t !#21U~rW !2eV~rW !J c~rW !,

~7!

wherem is the electron mass andU(rW) represents any inter
nal potential profile~such as a built-in potential or an energ
barrier!. The vector potentialAW consists of an irrotationa
part AW ex , related to the nonconservative, external dc fie
EW NC and an induced componentAW in corresponding to the
magnetic field which is generated by the moving electro
and the induced electromotive forces.

Under the assumption that the emf is switched on at so
initial time t50, we may write according to elementary ele
trodynamics

AW ~rW,t !5AW ex~rW,t !1AW in~rW,t ! ~8!

AW ex~rW,t !52EW NC~rW !t ~9!

BW ~rW,t !5¹W 3AW in~rW,t !. ~10!

The current response can be obtained from a self-consis
solution of Maxwell’s equations and the quantum dynami
equation yielding the time-dependent ensemble averag
the gauge invariant current density operator

JW t~rW !5
ie\

2me
$c†~rW !¹W c~rW !2@¹W c†~rW !#c~rW !%

2
e2

m
c†~rW !c~rW !AW ~rW,t !. ~11!

Defining the total currentI (t) in the ususal way as the elec
tron charge passing the cross sectionS1A per unit time, we
may expressI (t) in the Heisenberg picture as follows:
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I ~ t !5E
S1A

^JW~rW,t !&0•dSW ~12!

where^JW (rW,t)&0 is the time-dependent ensemble average
the Heisenberg operatorJW (rW,t) and ^ . . . &0 represents the
Gibbs ensemble average describing the equilibrium stat
the circuit for a given temperatureT51/kBb and a given
chemical potentialm at all timest<0:

^JW~rW,t !&05
Tr$JW~rW,t !exp@2b~HE2mN̂!#%

Tr exp@2b~HE2mN̂!#

N̂5E
V

dtc†~rW !c~rW ! ~13!

N5^N̂&0 .

For the present investigation however, it proves conven
to focus on the equation of motion for^HE(t)&0 describing
the rate at which the electron ensemble is extracting ene
from the power supply. A lengthy and cumbersome b
straightforward calculation based on the the Heisenb
equation governing the time evolution of the electron fie
operator10

i\
]c~rW,t !

]t
5H 1

2me
@pW 1eAW ~rW,t !#21U~rW !2eV~rW,t !J c~rW,t !

~14!

and its Hermitian conjugate yields the quantum-mechan
representation of the classical energy rate equation:

d^HE~ t !&0

dt
5E

V
dt^JW~rW,t !&0•EW ~rW,t !

2
i

\
^@HE~ t !,H8~ t !#&0; t.0, ~15!

where EW (rW,t) generally denotes the total electric field, i
cluding the externally applied transport field, the se
consistent field in the active region and the induced elec
field due to possible changes of the magnetic flux trapped
a curve in the circuit region. As was announced in the int
duction, the interaction termH8 generally representing a
elastic and inelastic scattering mechanisms has b
switched off in the present work in order to investigate t
existence of another current limiting mechanism.

At a first glimpse of Eq.~15! in which we have putH8
50, it might appear that the absence of any dissipative s
tering mechanism would inevitably lead to both an unlimit
increase of the electron energy and an unbounded acce
tion of the electron ensemble due to steady absorption
energy supplied by the nonconservative electric field. I
classical circuit, this is the expected scenario. Indeed, ifH8
could be switched off in some Gedankenexperiment, for
stance, if one considered a simpleLR circuit governed by the
well-known formula

I ~ t !5
Ve

R
~12e2Rt/L!, ~16!
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the current would trivially diverge asVet/L if the series re-
sistanceR were put equal to zero. For a quantum circu
however, we propose the existence of a closed curveG in the
interior of V such that~1! AW and the electron field operato
are not identically vanishing alongG and ~2! the magnetic
flux F trapped byG is quantized. In particular, the magnet
flux trapped byG is supposed to be an integer multiple of th
elementary flux quantumF05h/e. Clearly, the above pro-
posed flux quantization is very well known to occur in s
perconducting rings and plays an important role also whe
comes to trace quantum interference phenomena such a
Aharonov-Bohm effect.11 Flux quantization for a supercon
ducting ring is a direct consequence of the requirement
paired electrons be described by single-valued wave fu
tions together with the observation that the presence of
irrotational vector potential~Meissner effect! can be fully
absorbed in a phase shiftDf5(2e/\)rGAW (rW)•drW52eF/\
acquired by an electron after a virtual revolution alongG.12

In this paper, we have omitted all interactions that m
destroy the coherence of the electron transport in the cir
and in this respect one might be tempted to considerV as an
artificial superconducting circuit for which flux quantizatio
need not be imposed as an external constraint as it is alre
enforced through the superconducting features—upon
simple replacement of the Cooper pair charge 2e by a single
electron chargee.

On the other hand, we wish also to exploit the results
this work to understand the conductance mechanisms of
soscopic structures that are embedded in more realistic
cuits, containing nonperfectly conducting leads and ar
which are exposed to the magnetic field caused by the
rent flow. Since the total vector potential will no longer b
irrotational (BÞ0) in the interior of those circuits, flux
quantization cannot simply emerge from the phase shift
gument in the very same way as for the superconduc
circuit, and therefore it needs to be postulated explicitly.

As a major consequence of the universality of the fl
quantization, the total magnetic flux trapped by the clos
loop G can only increase or decrease with steps of magnit
F0. Hence the electric current carried by the free elect
gas of our model can change only after a minimal timet0
required to realize exactly one creation or absorption of
elementary flux quantum, since if such a current change t
place at an earlier instant, it would produce a proportio
magnetic flux change which would be smaller thanF0. ~A
similar argument is proposed by ’t Hooft in Ref. 13!.

In other words, the transient built-up of the electric cu
rent, after the power is switched on, will be characterized
a discrete time series$t1 ,t2 , . . . ,tn , . . . utn5nt0% such that
all dynamical quantities remain constant between two sub
quent time instants and energy extraction from the pow
supply takes place at these discrete time instants only.

The characteristic timet0 can be easily calculated b
comparing the energyDHE,n extracted from the externa
field during a time interval@ tn2 1

2 t0 ,tn1 1
2 t0# with the cor-

responding magnetic energy increaseDUM of the circuit.
Integrating the energy rate Eq.~15! from tn2 1

2 t0 to tn
1 1

2 t0, we may expressDHE,n as follows :

DHE,n5E
tn21/2t0

tn11/2t0
dt^JW~rW,t !&0•EW ~rW,t !. ~17!



-
,
tri
ra

e

x

th

e
tri
he
o

a

e
in
nc
ge
th

o
an
ts
y

of

vin
e
tiv

h
ave
cy.

de-

-

e
f

ite
om
d at

no

s it

os-

a, is
oirs.
and

of
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During @ tn2 1
2 t0 ,tn1 1

2 t0#, the charge density remains un
changed before and after the jump att5tn and consequently
the current density is solenoidal, while the external elec
field is irrotational. Hence, according to a recent integ
theorem for multiply connected regions,14 we may disen-
tangle the right-hand side of Eq.~17!:

E
tn21/2t0

tn11/2t0
dt^JW~rW,t !&0•EW ~rW,t !5

1

2
@ I n211I n#Vet0 ,

~18!

whereI n5*S1A
^JW (rW,tn)&0•dSW is the net current entering th

cross sectionS1A at a timetn . On the other hand, the flu
changeDFn associated with the jumpDI n[I n2I n21, reads

DFn5LDI n , ~19!

whereL is the inductance of the circuit. SinceDFn has to
equal F0, we obtain the increased magnetic energy of
circuit

DUM5
1

2
LI n

22
1

2
LI n21

2

5
1

2
~ I n211I n!F0. ~20!

Combining Eqs.~17!, ~18!, and ~20! and putting DUM
5DHE,n , we derive the following result:

t05
F0

Ve
. ~21!

We are now in a position to show that the interplay betwe
flux quantization and the topology of the transport elec
field explains the limitation of the electric current even in t
absence of scattering. Since the total transport field is n
zero only in the active regionVA , only the chargeQn con-
sisting of electrons residing inVA at t5tn will feel the ac-
tion of the electric field during the interval@ tn2 1

2 t0 ,tn
1 1

2 t0#. For the sake of simplicity, we have considered
circuit in which the electric current is carried byM occupied
transverse modes at low temperatures:15

I n5 (
k51

M

I nk n51,2, . . . ~22!

For instance, in a mesoscopic one dimensional ring, th
modes would be simply the energy eigenstates of the r
whereas they would correspond to the discrete resona
emerging in the continuous spectrum of a circuit with lar
leads connected by a quantum point contact. Apart from
current sequenceI 1k ,I 2k ,I 3k , . . . that is increasing due t
the steady energy supply, we may also define for each tr
mission mode k a sequence of charge packe
Q1k ,Q2k ,Q3k , . . . that are brought into the active region b
the current carried by thekth mode as well as a sequence
‘‘dwell times’’ $Dt1k ,Dt2k ,Dt3k , . . . % representing the time
spent by the charge packets in the active region after ha
entered the latter att5tn . The superposition of all charg
packets is nothing but the total charge residing in the ac
region betweent5tn and t5tn11 :
c
l

e

n
c

n-

se
g,
es

e

s-

g

e

Qn[2eE
VA

dt^c†~rW,tn!c~rW,tn!&05 (
k51

M

Qnk . ~23!

Obviously, the three sequences are linked through

Dtnk5
Qnk

I nk
; n51,2, . . . ; k51,2, . . . ,M . ~24!

Considering for simplicity a ballistic conductor for whic
each transmission mode provides full transmission, we h
Qnk522e where the factor 2 accounts for spin degenera
Hence, the increasing current sequence translates to a
creasing sequence of dwell times:

Dt1k>Dt2k>Dt3k> . . . . ~25!

Sincet0 is non-negative, for eachk there must exist a posi
tive integernk such that

Dtnkk>t0>Dtnk11k . ~26!

The intuitive interpretation is clear: att5tnk
, the electrons of

the kth mode are still residing sufficiently long in the activ
region to generate a final elementary flux change; as ot
5tnk11, electrons are travelling too fast through the fin
active region and are no longer able to collect energy fr
the external field because that would require them to spen
least a timet0 in VA . As a consequence, the current is
longer increasing andI nkk5I nk11k5I nk12k5 . . . . Together
with the inequalities~26! or, equivalently, with

2e

uI nkku
>t0>

2e

uI nk11ku
~27!

we are left with

uI nkku5uI nk11ku5
2e

t0
52e

eVe

h
~28!

from which we may finally infer a quantized conductanceG

G[
1

Ve
(

k
uI nkku5

2e2

h
M , ~29!

which is the well-known Landauer-Bu¨ttiker formula.

IV. DISCUSSION

In this section, we discuss both the approach itself a
was adopted to derive Eq.~29! and its relation to other, more
conventional theories leading to Landauer-Bu¨ttiker type con-
ductance formulas.

A. Open versus closed circuits

To the best of our knowledge, most—if not all—
theoretical investigations of quantum transport in mes
copic structures are based on the reservoir concept16–19 in
which a mesoscopic structure, representing the active are
squeezed between two huge, half-open particle reserv
This remark does not apply to superconducting devices
mesoscopic rings carrying persistent currents,20 for which the
torus-like topology is a natural feature. Playing the role
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leads, the reservoirs contain two distinct, thermalized e
tron gases characterized by two different chemical potent
the difference of which is assumed to equal the app
voltage.8 We believe that there are at least three good reas
to abandon the reservoir concept when quantum transpo
addressed, even if the latter seems to take place only
small region of the electric circuit. First, the artificial subd
vision of the circuit in three distinct parts amounts to t
assignment of three sets of quantum states to the thre
gions: two continuous spectra which are supposed to mi
the semi-infinite reservoirs and a discrete spectrum for
mesocopic structure. The latter is generally confining a re
tively small number of electrons to reside in a nanome
scale area. If the three regions were perfectly separate
infinite walls, they would constitute three distinguish
quantum systems requiring also separate quantum des
tions and the definition of distinct Hilbert spaces. Howev
if a communication channel is established, no matter h
narrow it is, the three regions should be regarded as
single quantum mechanical entity the dynamics of which
to be described in a unique Hilbert space of states wh
discrete transmission modes are appearing as sharp, enu
able resonances of a continuous spectrum as is explaine
any decent textbook on quantum mechanics.21–23 From the
many-particle point of view, the study of the system dyna
ics is a formidable task since one has to deal with an op
ended system which is losing and gaining particles in
rather uncontrollable way. Nevertheless, ever since the in
duction of the transfer Hamiltonian formalism by Bardeen24

numerous transport calculations have been relying on
possibility of treating carrier transport as a set of transitio
between ‘‘reservoir states’’ and ‘‘mesoscopic area state
Here, we do not want to contribute to the on-going disc
sion as to whether the transfer Hamiltonian formalism is
propriate for studying quantum transport or not, and we d
nitely do not criticize results which are corroborated
experiment, but we strongly believe that the formalism
descriptive rather than explanatory.

A second, even more striking observation reveals that
open-circuit topology is not accounting for the no
conservative nature of the driving electric field. Being tran
mitted from reservoir 1 to reservoir 2 by the local electr
static field of the active region, the charged particles
never returning to reservoir 1. Consequently, the pump
action of the battery mimicing both the energy supply a
the maintenance of the electrostatic potential difference
not incorporated at all. On the contrary, the explicit requi
ment that the reservoirs be thermalized and have fi
chemical potentials is supposed to maintain thechemicalpo-
tential difference and hence the applied voltage. To our fe
ing, such an approach is hardly appropriate to probe ene
limiting mechanisms as any conservative field is already l
iting the energy increase itself. This point can be illustra
by the example of a billiard-ball moving without friction in
gravitational field. If the ball is leaving a horizontal platfor
~reservoir 1! with some velocityv1 to roll down from a fric-
tionless hill of finite height and width, thereafter arriving
another horizontal platform~reservoir 2! with velocity v2,
the velocity increase is trivially finite as it is acquired at t
expense of a finite potential energy decrease. This obse
tion however does not teach us anything about the time e
c-
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lution of the velocity of the ball in a non-conservative fiel
if the ball is bound to continue forever its rectilinear motio
on platform 2 of the open system.

Finally, the approach adopted in this work complete
avoids the necessity of introducing the concept of ‘‘cont
resistance.’’ The latter refers to the interface between
mesoscopic area and the huge contact reservoirs w
should be responsible for the dissipation of energy that c
not be relaxed to the environment when the particles are
residing in the scattering free mesoscopic area. Although
at least unclear how to identify such interfaces, it is nev
theless generally proposed16 that the dissipation results from
a mismatch between the continuous spectra of the reserv
and the discrete spectrum of the mesoscopic area, com
rable to traffic jam due to a local reduction of the number
available lanes. In other words, the whole explanation
conductance quantization would have to rely on the qu
tionable division of the~open! circuit into spatial subregions
Furthermore, even if the dissipation is related to inelas
scattering events taking place in the reservoirs in the cl
vicinity of such an interface, it remains an open quest
how the interaction between the charge carriers and the s
tering agents~phonons, impurities, alloys, etc.! and the cor-
responding coupling strengths which are typical material
rameters, can give rise to a resistance that can be expre
solely in terms of fundamental constants (e,\) and a set of
transmission matrix elements. As a matter of fact, we h
found the last problem a strong incentive to look for altern
tives mechanisms to explain the phenomenon of quant
conductance.

B. Energy dissipation versus current limitation

Quite remarkably, the establishment of a stationary s
in which a finite current is flowing through an electric circu
in response to a given electromotive forceVe is relying on
current limitation, or equivalently on the phenomenon th
the electrons can extract energy from the externalVe only for
a limited number of cycles. As was explained in the previo
section, this limitation in turn relies on the existence of
characteristic timet0 an electron should spend in the fie
region to induce a flux jump and to extract from the exter
field the corresponding energy packet. This is probably
most striking difference with other treatments which still a
low for energy dissipation in the conductance proce
whereas, in our model, unlimited gain of energy is prohibit
by the selection rule for energy extraction.

C. Flux quantization

The flux quantization postulate which is clearly the pri
we had to pay in this work is inspired by recent work in t
field of the fractional quantum Hall effect in two
dimensional gases acted upon by a perpendicular magn
field where each electron is viewed as composite o
charged boson and a flux tube containing an odd numbe
flux quanta.25 Also the argument of Laughlin’s
Gedankenexperiment26 invokes quantized flux changes to r
cover the von Klitzing resistance in a metallic ribbon be
into a circular loop. While this author is considering flu
changes associated with the external magnetic field and
ing related to a flow of electrons from one edge to the ot
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10 888 PRB 61WIM MAGNUS AND WIM SCHOENMAKER
~in the direction of the Hall voltage!, this work is addressing
the magnetic field produced by the current flowing throu
the loop. Also in Laughlin’s work the flux increment, appea
ing in the adiabatic derivative of the total energy of the s
tem with respect to the magnetic flux trapped by the ribb
is taken to be quantized although the vector potentia
not irrotational as the magnetic field is piercing the ribb
everywhere.

Moreover, recent successful attempts27 to discover strik-
ing connections between the quantum Hall effect and su
conductivity have suggested that magnetic fields imping
on ~2D! electron systems may be characterized by a num
of flux quanta and therefore seem to corroborate the
quantization picture.

On the other hand, we do realize that the assumption
flux quantization along a characteristic circuit trajectory m
lead to far-reaching consequences on both the theoretica
experimental level. On the theoretical side, we may jus
the basic assumption on topological grounds as follo
Since we are explicitly addressing closed circuits rather t
open systems, the charge carriers are experiencing strict
tial confinement in the transverse directions, i.e. perpend
lar to the transport direction. Suppose concretely that
may introduce local coordinates, sayx1 , x2, and x3, such
that x3 is a cyclic coordinate defining the transport directi
and all electron wave functions are either even or odd inx1
and x2. Then the nodes of the transverse wave functio
xk(x1 ,x2)—the full wave functions being factorized into a
expression of the formxk(x1 ,x2) f k(x3)—are symmetrically
located with respect to the closed curveG:(x150,x250).
Hence, the electric current density carried by each transv
eigenstate~below the Fermi level! is symmetric w.r.t.G and,
accordingly, the generated magnetic field tends to zero
the curveG. The latter therefore defines a region whereAW is
irrotational whereas neitherAW nor the field operators ar
identically vanishing, so that the phase argument leading
quantized flux threaded byG can be repeated.

From the experimental point of view, thorough investig
tions should be conducted to trace directly or indirectly
presence of flux quantization in closed circuits subjected
localized driving electric fields. Obviously, macroscopic c
cuits in which mesoscopic active areas are embedded ca
be experimentally accessed as a whole without the distur
presence of scattering events in the conducting leads. On
other hand, mesoscopic metallic rings interrupted by one
two tunnel barriers—such as the Aharanov-Bohm interf
ometers discussed in Refs. 28 and 29— may provide an
propriate experimental setup for studying changes of the
tal magnetic flux. In such devices one may generate alon
closed trajectory a constantVe by a linearly growing mag-
netic field piercing the ring.

D. Localization of the electric field

Besides flux quantization, the topology of the elect
field plays also a crucial role when it comes to realizi
current limitation. In particular, it is required that the drivin
electric field governing the electron motion in the circuit
localized in a finite, simply connected region of the circu
This observation has been made already a few years ag
Fenton8 who pointed out that for an arbitrary open circu
h
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the Landauer-Bu¨ttiker conductance regime can be realiz
only for strictly localized transport fields, whereas a unifor
field would inevitably yield the Drude-Lorenz conductivity
which, in the absence of scattering, would lead to zero re
tance. The same conclusions can be drawn from our mo
The connection between the Landauer-Bu¨ttiker conductance
regime and the requirement of having localized fields is
ready demonstrated in the previous section, where the fin
ness of the active regionV guarantees that the dwell time
become lower thant0 after a finite number of cycles
Clearly, this situation cannot occur if the electric field
uniform along the circuit or at least nonvanishing in t
whole circuit region, since then the dwell times would i
crease without limit and the quantized flux changes would
unable to prevent the electrons from unlimited energy extr
tion.

E. Suggestions for future work: Quantum circuit theory

The postulation of flux quantization proposed in th
work, should be properly embedded in a suitable quant
field theory, the dynamical solution of which should enco
pass the Laundauer-Bu¨ttiker conductance regime in a natur
way. Nevertheless, the quantization of the correspond
fields will follow another path than that of familiar quantu
electrodynamics, the main reason being that, apart from
local field operators associated with the electrons, we h
now also to quantize global canonical variables associa
with the electromagnetic field, whereas other component
the latter may or may not remain classical. In the light of th
work, the magnetic flux is an obvious example of such
global quantity to be quantized. We believe that an appro
ate choice of global canonical variables will eventually le
to a useful quantum circuit theory unifying all well-know
features of classical circuits as well as the characteristic
quantum devices, which are to be included in real circu
Finally, it should be noticed that the above mentioned qu
tization procedure explicitly affects the Maxwell equatio
expressed in integral form. In particular, Faraday’s induct
law relates the total emf in a circuit~external and induced! to
the change of a quantized flux, the discrete time evolution
which is given by

F~ t !5F0(
n50

`

anu~ t2nt0!, ~30!

where the coefficientsan can take only the values 0,61 and
have to be determined by a full time-dependent solution
the dynamical equations. As an illustration, we may obtai
quantum mechanical version of Lenz’ law by taking the tim
derivative of Eq.~30!

L
dI~ t !

dt
5F0(

n50

`

and~ t2nt0!. ~31!
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4M. Büttiker, Phys. Rev. B64, 3764~1986!.
5E.N. Economou and C.M. Soukoulis, Phys. Rev. Lett.46, 618

~1981!.
6Y. Imry and R. Landauer, Rev. Mod. Phys.71, S306~1999!.
7E.W. Fenton, Phys. Rev. B46, 3754~1992!.
8E.W. Fenton, Superlattices Microstruct.16, 87 ~1994!.
9H.A. Baranger and A.D. Stone, Phys. Rev. B40, 8169~1989!.

10W. Magnus, W. Schoenmaker, and B. Sore´e ~to be published!.
11Y. Aharonov and D. Bohm, Phys. Rev. B115, 485 ~1959!.
12J.J. Sakurai,Advanced Quantum Mechanics~Addison Wesley

Publishing Company Inc., Massachusetts, 1976!, pp. 15-18.
13G. ’t Hooft, Nucl. Phys. B153, 141 ~1979!.
14W. Magnus and W. Schoenmaker, J. Math. Phys.39, 6715

~1998!.
15A. Kawabata, J. Phys. Soc. Jpn.58, 372 ~1989!.
16S. Datta, Electronic Transport in Mesoscopic Systems~Cam-

bridge University Press, UK, 1995!, chap. 2 and all reference
therein.

17D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper,
Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritch
and G.A.C. Jones, J. Phys. C21, L209 ~1988!.

18B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Willia
son, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxo
Phys. Rev. Lett.60, 848 ~1988!.

19A.D. Stone and A. Szafer, IBM J. Res. Dev.32, 384 ~1988!.
20L. Wendler and V.M. Fomin, Phys. Rev. B51, 17 814~1995!.
21E. Merzbacher,Quantum Mechanics~John Wiley & Sons, Inc.,

New York, 1970!, chaps. 6, 7, 11, and 14.
22G. Baym, Lectures on Quantum Mechanics, ~W. A. Benjamin,

Inc., Reading, Massachusetts, 1973!, chaps. 4 and 8.
23L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Pergamon

Press Ltd., London, 1958!, chaps 1, 3, 7, and 15.
24J. Bardeen, Phys. Rev. Lett.6, 57 ~1961!.
25S.C. Zhang, Int. J. Mod. Phys. B6, 25 ~1992!.
26R.B. Laughlin, Phys. Rev. B23, 5632~1981!.
27S. Kivelson, D.-H. Lee, and S.-C. Zhang, Sci. Am.274, 64

~1996!.
28T. Figielski, and T. Wosinski, J. Appl. Phys.85, 1984~1999!.
29A. van Oudenaarden, M.H. Devoret, Y.V. Nazarov, and J

Mooij, Nature~London! 391, 768 ~1998!.


