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Quantized conductance, circuit topology, and flux quantization
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It is shown that elementary quantum mechanical considerations determine whether the resistive features of
a closed electric circuit are governed by the well-known Landauétikéu conductance formula. In particular,
it is argued that the latter results from the interplay between the topology of the transport electric field and the
guantization of the magnetic flux trapped by the circuit.

[. INTRODUCTION investigated and the LandaueriBker conductance formula
is recovered. Finally, the obtained results including the pro-
Exploiting the possibility of down scaling the sizes of posed conduction mechanism are discussed and compared
modern semiconductor devices, their insulating layers antvith more conventional theoretical approaches in Sec. IV.
the connecting wires, one has gradually entered the range

where quantum physics dominates the descriptive base for ||, CIRCUIT TOPOLOGY, NONCONSERVATIVE
understanding experimental results. In particular, coherent  ELECTRIC FIELDS, AND DISSIPATION-LESS
transport through so-called quantum devices such as quan- TRANSPORT

tum wires, quantum dots, and quantum point contacts has _ S )

been regarded as a substantial support for the Landauer pic- We consider a closed electric circuit that comprises a
ture of transport in disordered solids> Moreover, for more ~ three-dimensional multiply connected regiéh encircling
than two decades numerous authors have investigated charg¥actly one hole, i.e., a torus-shaped region confining an
transport through large normal or superconducting metalli€nsemble of electrons. Consequently, all one-electron wave-
contacts that are separated by narrow semiconducting or ifiunctions and the electron field operatofr,t) are assumed
sulating layers the size of which is below the mean free path# vanish at the boundary surfagél:

related to typical scattering mechanisthin spite of the

agreement between the electrical characterization of mesos- y(rH)=0 VreQ. (1)
copic conductors and the Landauertfiler theory predict-

ing the conductance in those devices, conceptual doubt hass shown in Fig. 1, the circuit consists of four regions: A
persisted regarding the derivation of the famous Landauerso-called active regio), that is restricted by the cross-
Buttiker formula from first principles of quantum mechanics sectioned surfaces;, and>,,, representing any arbitrary
and statistical physics.® mesoscopic area such as a quantum point contact, a quantum

In this paper, we demonstrate that the LandauetiBr  dot or a narrow energy barrier, a “battery” regiddg rep-
formula for a multiply connected electric circuit can be de-resenting the seat of an externally applied dc electromotive
rived straightforwardly if the following two conditions are force (emf) V., two ideally conducting lead®,, andQ,,
met: (@) quantization of the magnetic flux generated by theconnecting the battery to the active region.
electric current flowing through the circuily) spatial local- The motion of the electron ensemble is driven by an elec-
ization _of the dnv_mg_electrlc field in a simply con_necte_d tric field E(F), which is invoked by the external env,
subregion of the circuit. Because the present paper is strictly
focussing on the current-voltage relationship in the absence U
of decoherence effects, we have restricted our investigation:
to an ensemble of noninteracting electrons, which are al- ﬁ— ________ - .
lowed to move freely through the circuit. Consequently, the
main question to be answered is whether the application of
an external voltage will give rise to either infinite currents
steadily extracting energy from the driving field or to finite
currents being limited by the LandauertBker conduc-
tance. In order to prevent any ambiguity in distinguishing
between those two conductance regimes, we have systemal
cally omitted both elastic and inelastic scattering mecha-
nisms in the present treatment.

The paper is organized as follows. In Sec. Il the electric
circuit is introduced as a multiply connected manifold with a 1
single hole. In Sec. Il the transient current response of the L ————————— I-————| ————————— JJ
electron gas moving freely through the circuit under the ac-
tion of an irrotational, but non-conservative electric field is FIG. 1. Torus-shaped electric circuit.
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—eV(7) electric field strength may take rather huge values. Further-
more, the potential difference,—V, is maintained by the
emf as can be seen from

s
V,= 35@(?)~d?=f LB -dF=V,—V,.  (6)
Q4 r DEPN
Clearly, the present transport model requires a totally differ-
ent approach compared with conventional studies of coherent
transport that treat the electric circuit as an open system of
charge carriers. The latter ones are injected from a reservoir
and, after some ballistic propagation through the mesoscopic
Qp area they are seen to disappear in another reservoir. On the
contrary, our model describes the electric circuit as a closed,
torus-shaped region confining the charge carriers to its
FIG. 2. Potential energy profile alodg interior—as is essentially realized in a real circuit—and al-
lowing them to extract energy from an external electric field
e which is forcing the carriers back to the active region.
V.= ﬁE(r)dr, (2
IIl. HAMILTONIAN AND CURRENT RESPONSE
whereI" is an arbitrary closed curve in the interior 6f,
encircling the “hole” of the circuit once and only once. ~ Under the effective mass approximation the most general
Under the assumptions that no magnetic field lines are perfe€cond-quantized Hamiltonian describing an ensemble of
etrating in the circuit regiof2, we may conclude from the free electrons acted upon by an electromagnetic field reads
third Maxwell equation that in the interior a2 the total 1
electric field must be irrotational yet nonconservative, sinc t > S R NT2 = - >
it exists in a multiply connected region. Moreover, due toeH fgdﬂ’/j (r)[ﬁ[ereA(r,t)] FUr)=eMr) (),
Stokes’ theorem, the emf, which is nothing but the circula- (7)
tion of the electric field along the closed curVemust be
independent on any particular choicelofAs even the leads wherem is the electron mass and(r) represents any inter-
are assumed to have no resistance, the electric field is idenal potential profilgsuch as a built-in potential or an energy
tically vanishing in both lead regions. In general, the e|ethiCbarriet) The vector potentialA consists of an irrotational
field in the circuit region may be decomposed into a Conserpart Ay, related to the nonconservative, external dc field

vative and nonconservative part ENC and an induced componei, corresponding to the
N U magnetic field which is generated by the moving electrons
E(r)=Ec(r)+Enc(r) (3 and the induced electromotive forces.

with Under the assumption that the emf is switched on at some

initial time t=0, we may write according to elementary elec-
Eo(F)=—VV(T) trodynamics

4 S oo S S

o ) A(r,t)=Ag(r,t) +Ain(r,t) (8)

jg Enc(r)-dr=V

' Aex(T 1) =~ Epc(Nt ©

Here, the conservative componeli% is derived from an . .. -
electrostatic potentidl taking fixed value®/; andV, within B(r,t)=VXAj(r,t). (10
the equipotential volume&,, and(},, and exhibiting rela-
tively large drops in the active region and the battery region
(see Fig. 2

However, as the entire circuit is assumed to be scatterin
free, we may as well neglect the internal resistance of th

battery and choose the nonconservative compoﬁ@,r@t to
counteract the conservative field in the battery region t(r)—

The current response can be obtained from a self-consistent

solution of Maxwell’'s equations and the quantum dynamical
quation yielding the time-dependent ensemble average of
e gauge invariant current density operator

(DY) = [V (D ]p(r)}

Enc(r)=—Eq(r), for reQ, @ .
— T (OPA. (1D
=0, elsewhere. (5)
R Defining the total currenit(t) in the ususal way as the elec-
In other words, the total transport field vanishes every- tron charge passing the cross section per unit time, we
where in the circuit except for the active region where themay express$(t) in the Heisenberg picture as follows:
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.. R the current would trivially diverge a¥ t/L if the series re-
|(t):j2 (J(r,t))o-dS (12 sistanceR were put equal to zero. For a quantum circuit,
A however, we propose the existence of a closed clirirethe

where(J(f,t)), is the time-dependent ensemble average offterior of Q such that(1) A and the electron field operator
the Heisenberg operatoi(F,t) and ( ...), represents the are not identically vanishing along and (2) the magnetic

Gibbs ensemble average describing the equilibrium state (ﬂ‘E§ ?r)atraepgiifbgsiﬁ quc?snetijzfgblenellar?irgfeu?r, thLﬁtimlaeggfettrzZ
the circuit for a given temperaturé=1/kgB8 and a given PP bp 9 b

. . . elementary flux quanturd,=h/e. Clearly, the above pro-
chemical potentiak at all timest<0: posed fluxyquangzation isOvery well kngwn to occur ﬁ1 Su-
.- - perconducting rings and plays an important role also when it
3 t)>0:Tr{J(r,t)exp[—B(HE—A,uN)]} comes to trace quantum interference phenomena such as the

' Trexd — B(Hg— uN)] Aharonov-Bohm effect! Flux guantization for a supercon-
ducting ring is a direct consequence of the requirement that
R .. paired electrons be described by single-valued wave func-
N=J dryt (1) g(r) (13 tions together with the observation that the presence of an
Q . . . .
irrotational vector potentia(Meissner effegt can be fully

N=(R) absorbed in a phase shiftp=(2e/%)$rA(r)-dr=2ed/%

0 acquired by an electron after a virtual revolution aldhé]2

For the present investigation however, it proves convenient In this paper, we have omitted all interactions that may
to focus on the equation of motion féH(t)), describing — destroy the coherence of the electron transport in the circuit
the rate at which the electron ensemble is extracting energgnd in this respect one might be tempted to considlers an
from the power supply. A lengthy and cumbersome butartificial superconducting circuit for which flux quantization
straightforward calculation based on the the Heisenbergieed not be imposed as an external constraint as it is already

equation governing the time evolution of the electron fieldenforced through the superconducting features—upon a
operatot’ simple replacement of the Cooper pair chargeb§ a single

electron charge.

1 . .. . . . On the other hand, we wish also to exploit the results of
[m[pﬂL eA(r,t) %+ U(r)—eV(r,t)) P(r,t) this work to understand the conductance mechanisms of me-
€ (14) soscopic structures that are embedded in more realistic cir-
cuits, containing nonperfectly conducting leads and areas
and its Hermitian conjugate yields the quantum-mechanicalvhich are exposed to the magnetic field caused by the cur-

representation of the classical energy rate equation: rent flow. Since the total vector potential will no longer be

irrotational B+#0) in the interior of those circuits, flux
d(He(t)o

IP(rY)
a

=

T - quantization cannot simply emerge from the phase shift ar-
dt _fn I(r.)o-E(r1) gument in the very same way as for the superconducting
circuit, and therefore it needs to be postulated explicitly.

[ , ) As a major consequence of the universality of the flux
_ﬁqHE(t)’H (U)o t>0, (19 guantization, the total magnetic flux trapped by the closed
R loopI" can only increase or decrease with steps of magnitude
where E(r,t) generally denotes the total electric field, in- ®,. Hence the electric current carried by the free electron
cluding the externally applied transport field, the self-gas of our model can change only after a minimal timge
consistent field in the active region and the induced electricequired to realize exactly one creation or absorption of an
field due to possible changes of the magnetic flux trapped bglementary flux quantum, since if such a current change took
a curve in the circuit region. As was announced in the introplace at an earlier instant, it would produce a proportional
duction, the interaction terril’ generally representing all magnetic flux change which would be smaller thhp. (A
elastic and inelastic scattering mechanisms has beesimilar argument is proposed by 't Hooft in Ref.)13
switched off in the present work in order to investigate the In other words, the transient built-up of the electric cur-
existence of another current limiting mechanism. rent, after the power is switched on, will be characterized by

At a first glimpse of Eq(15) in which we have puti’ a discrete time serig;,t,, ... t,, ...|[t,=n7g} such that
=0, it might appear that the absence of any dissipative scagll dynamical quantities remain constant between two subse-
tering mechanism would inevitably lead to both an unlimitedquent time instants and energy extraction from the power
increase of the electron energy and an unbounded accelersupply takes place at these discrete time instants only.
tion of the electron ensemble due to steady absorption of The characteristic timer, can be easily calculated by
energy supplied by the nonconservative electric field. In aomparing the energAHg , extracted from the external
classical circuit, this is the expected scenario. IndeeH,’if field during a time intervalt,— 3 7o,t,,+ 3 5] With the cor-
could be switched off in some Gedankenexperiment, for intesponding magnetic energy increas®,, of the circuit.
stance, if one considered a simpIR circuit governed by the Integrating the energy rate Eq15) from t,—37, to t,
well-known formula + 379, We may expresaHe , as follows :

Vg tn+1/27'0 N N
I(t)=ﬁ(1—e‘R”"), (16) AHg = Jtn1/270dt<J(r,t)>o-E(r,t)- (17)
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During [t,— 3 70,t,+ 3 7o], the charge density remains un- ) A M
changed before and after the jump att,, and consequently, Q.= —ef dr(T(r 1) w(r,ty))o= E Quk- (23
the current density is solenoidal, while the external electric Qa k=1

field is irrotational. Hence, according to a recent integralopyiously, the three sequences are linked through
theorem for multiply connected regioffswe may disen-

tangle the right-hand side of EQL7):
9 g @ Atnkz?—”k; n=12,...;k=12,...M. (24
that1/20g L . .. 1 nk
J'tnl/ZTO dt<‘](r't)>0'E(r’t)zi[ln—lﬂn]VeTO' Considering for simplicity a ballistic conductor for which

(18) each transmission mode provides full transmission, we have
. ) Q= — 2e where the factor 2 accounts for spin degeneracy.
whereln=leA<J(r,tn)>o-dSis the net current entering the Hence, the increasing current sequence translates to a de-

cross sectior® 1, at a timet,. On the other hand, the flux Créasing sequence of dwell times:
changeA®,, associated with the jumpl,=I,—1,_, reads Aty = Aty Aty . . . . (25

AP =LAIl,, (19 Ssincer, is non-negative, for eackthere must exist a posi-

wherelL is the inductance of the circuit. Sinced, has to tive integerny such that

equal ®,, we obtain the increased magnetic energy of the

C|rcu|t AtnkKZ TOZ Atnk+ 1k - (26)
1 1 The intuitive interpretation is clear: att, , the electrons of
AUy==LI1%2=-2_12 the kth mode are still residing sufficiently long in the active
M n n—1 . .
2 2 region to generate a final elementary flux change; as of
1 =ty +1, electrons are travelling too fast through the finite
=5 (n-1+1n)Po. (200 active region and are no longer able to collect energy from

the external field because that would require them to spend at
Combining Egs.(17), (18), and (20) and putting AU, least a timery in 5. As a consequence, the current is no
=AHg ,, we derive the following result: longer increasing anth, =1y, +1k=In +2k= . . . . Together
with the inequalitieg26) or, equivalently, with
g
TOZV_. (21) 2e 2e
€ | | | = TOB | I | (27)
We are now in a position to show that the interplay between ik Myt 1k
flux quantization and the topology of the transport electricye are left with
field explains the limitation of the electric current even in the
absence of scattering. Since the total transport field is non- 2e eV,
zero only in the active regiof),, only the chargeQ, con- o =110+ 1l = =2 (28)
. .y . . 0
sisting of electrons residing i, att=t,, will feel the ac- _ _ _ _
tion of the electric field during the intervdlt,—3 7o,t,  from which we may finally infer a quantized conductarige
+ 3 75]. For the sake of simplicity, we have considered a
ircuit i i i i i i 1 2e?
circuit in which the electric current is carried b occupied c=—3 =M (29)
transverse modes at low temperatufes: V2

M which is the well-known Landauer-Biker formula.
lh=2> I N=1,2, ... (22)
k=1 IV. DISCUSSION

For instance, in a mesoscopic one dimensional ring, these In this section, we discuss both the approach itself as it

modes would be simply the energy eigenstates of the MYy as adopted to derive E(R9) and its relation to other, more

Where?‘S t_hey Would_correspond to the dis‘?re‘? resonanceés,ventional theories leading to Landaueitiiker type con-
emerging in the continuous spectrum of a circuit with Iargeductance formulas

leads connected by a quantum point contact. Apart from the
current sequencey,lo,l3¢, ... that is increasing due to
the steady energy supply, we may also define for each trans-
mission mode k a sequence of charge packets To the best of our knowledge, most—if not all—
Q1k.Q2k,Qzk, - - . that are brought into the active region by theoretical investigations of quantum transport in mesos-
the current carried by thkth mode as well as a sequence of copic structures are based on the reservoir contegtin
“dwell times” {Aty,, Aty ,Atg, ...} representing the time which a mesoscopic structure, representing the active area, is
spent by the charge packets in the active region after havingqueezed between two huge, half-open particle reservoirs.
entered the latter &at=t,. The superposition of all charge This remark does not apply to superconducting devices and
packets is nothing but the total charge residing in the activenesoscopic rings carrying persistent curréfifey which the
region betweert=t, andt=t, 4 : torus-like topology is a natural feature. Playing the role of

A. Open versus closed circuits
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leads, the reservoirs contain two distinct, thermalized eleclution of the velocity of the ball in a non-conservative field,
tron gases characterized by two different chemical potentialsf the ball is bound to continue forever its rectilinear motion
the difference of which is assumed to equal the appliedn platform 2 of the open system.

voltage® We believe that there are at least three good reasons Finally, the approach adopted in this work completely
to abandon the reservoir concept when quantum transport fvoids the necessity of introducing the concept of “contact
addressed, even if the latter seems to take place only in rgsistance.” The latter refers to the interface between the
small region of the electric circuit. First, the artificial subdi- Mesoscopic area and the huge contact reservoirs which
vision of the circuit in three distinct parts amounts to theShould be responsible for the dissipation of energy that can-
assignment of three sets of quantum states to the three rBot be relaxed to the environment when the particles are still

gions: two continuous spectra which are supposed to mimiEeSiding in the scattering free mesoscopic area. Although it is

the semi-infinite reservoirs and a discrete spectrum for th&t €ast unclear how to identify such interfaces, it is never-
theless generally proposédhat the dissipation results from

mesocopic structure. The latter is generally confining a rela= """ ) .
tively small number of electrons to reside in a nanometef mlsmatc_h between the continuous spectra c.)f the reservoirs
d the discrete spectrum of the mesoscopic area, compa-

scale area. If the three regions were perfectly separated bl fic iam d local reducti £ th ber of
infinite walls, they would constitute three distinguished _?tboltrr?\ Ic jarr|1 uehto a ocda rehuctl?]nlo t elnum_erof
quantum systems requiring also separate quantum descrigy@/aole lanes. In other words, the whole explanation o

onductance quantization would have to rely on the ques-

tions and the definition of distinct Hilbert spaces. However, T SN . ;
if a communication channel is established, no matter hov@onable division of th€open circuit into spatial subregions.

narrow it is, the three regions should be regarded as OnIéurthermore, even if the dissipation is related to inelastic
single quantum mechanical entity the dynamics of which jScattering events taklng place_ in the Feservorrs in the Cl'ose
to be described in a unique Hilbert space of states wher$CiNity of such an interface, it remains an open question

discrete transmission modes are appearing as sharp, enum pw the interaction between the charge carriers and the scat-

able resonances of a continuous spectrum as is explained ifiring agents{phonons, impurities,.alloys, e)cgnd the cor-
any decent textbook on quantum mechaRic&® From the responding coupling strengths which are typical material pa-

many-particle point of view, the study of the system O|yn(,]lm_rameters, can give rise to a resistance that can be expressed

ics is a formidable task since one has to deal with an operg®/€ly In terms of fundamental constangs#() and a set of

ended system which is losing and gaining particles in jransmission matrix elements. As a matter of fact, we have

rather uncontrollable way. Nevertheless, ever since the intrg2und the last problem a strong incentive to look for alterna-

duction of the transfer Hamiltonian formalism by Bardéén, UveS mechanisms to explain the phenomenon of quantized
numerous transport calculations have been relying on thgonductance.

possibility of treating carrier transport as a set of transitions

between ‘“reservoir states” and “mesoscopic area states.” B. Energy dissipation versus current limitation

Here, we do not want to contribute to the on-going discus-  Quite remarkably, the establishment of a stationary state
sion as to whether the transfer Hamiltonian formalism is apjn which a finite current is flowing through an electric circuit
propriate for studying quantum transport or not, and we defii, response to a given electromotive forde is relying on
nitely do not criticize results which are corroborated by cyrent limitation, or equivalently on the phenomenon that
exper_|m_ent, but we strongly believe that the formalism isihe electrons can extract energy from the extevhasnly for
descriptive rather than explanatory. _ a limited number of cycles. As was explained in the previous
A second, even more striking observation reveals that thgection, this limitation in turn relies on the existence of a
open-circuit topology is not accounting for the non- cparacteristic timer, an electron should spend in the field
conservative nature _of the driving glectnc field. Being trans'region to induce a flux jump and to extract from the external
mlttgd _from reservoir 1 to reservoir 2 by the local _electro—ﬁe|d the corresponding energy packet. This is probably the
static field of the active region, the charged particles argnog; striking difference with other treatments which still al-
never returning to reservoir 1. Consequently, the pumpingo, for energy dissipation in the conductance process

action of the battery mimicing both the energy supply andyhereas, in our model, unlimited gain of energy is prohibited
the maintenance of the electrostatic potential difference By the selection rule for energy extraction.

not incorporated at all. On the contrary, the explicit require-
ment that the reservoirs be thermalized and have fixed
chemical potentials is supposed to maintaind¢hemicalpo-
tential difference and hence the applied voltage. To our feel- The flux quantization postulate which is clearly the price
ing, such an approach is hardly appropriate to probe energywe had to pay in this work is inspired by recent work in the
limiting mechanisms as any conservative field is already limfield of the fractional quantum Hall effect in two-
iting the energy increase itself. This point can be illustrateddimensional gases acted upon by a perpendicular magnetic
by the example of a billiard-ball moving without friction in a field where each electron is viewed as composite of a
gravitational field. If the ball is leaving a horizontal platform charged boson and a flux tube containing an odd number of
(reservoir 3 with some velocity ; to roll down from a fric-  flux quante®® Also the argument of Laughlin’s
tionless hill of finite height and width, thereafter arriving at Gedankenexperimefitinvokes quantized flux changes to re-
another horizontal platfornfreservoir 2 with velocity v,,  cover the von Kilitzing resistance in a metallic ribbon bent
the velocity increase is trivially finite as it is acquired at theinto a circular loop. While this author is considering flux
expense of a finite potential energy decrease. This observahanges associated with the external magnetic field and be-
tion however does not teach us anything about the time evadng related to a flow of electrons from one edge to the other

C. Flux quantization
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(in the direction of the Hall voltagethis work is addressing the Landauer-Bitiker conductance regime can be realized
the magnetic field produced by the current flowing throughonly for strictly localized transport fields, whereas a uniform
the loop. Also in Laughlin’s work the flux increment, appear- field would inevitably yield the Drude-Lorenz conductivity,
ing in the adiabatic derivative of the total energy of the sys-which, in the absence of scattering, would lead to zero resis-
tem with respect to the magnetic flux trapped by the ribbontance. The same conclusions can be drawn from our model.
is taken to be quantized although the vector potential iSThe connection between the Landauerier conductance
not irrotational as the magnetic field is piercing the ribbonregime and the requirement of having localized fields is al-
everywhere. ready demonstrated in the previous section, where the finite-
Moreover, recent successful attenfpt® discover strik- ness of the active regiofd guarantees that the dwell times
ing connections between the quantum Hall effect and supebecome lower thanr, after a finite number of cycles.
conductivity have suggested that magnetic fields impingindClearly, this situation cannot occur if the electric field is
on (2D) electron systems may be characterized by a numbainiform along the circuit or at least nonvanishing in the
of flux quanta and therefore seem to corroborate the fluxvhole circuit region, since then the dwell times would in-
guantization picture. crease without limit and the quantized flux changes would be
On the other hand, we do realize that the assumption ofinable to prevent the electrons from unlimited energy extrac-
flux quantization along a characteristic circuit trajectory maytion.
lead to far-reaching consequences on both the theoretical and
experimental level. On the theoretical side, we may justify
the basic assumption on topological grounds as follows.
Since we are explicitly addressing closed circuits rather than The postulation of flux quantization proposed in this
open systems, the charge carriers are experiencing strict spaork, should be properly embedded in a suitable quantum
tial confinement in the transverse directions, i.e. perpendicufield theory, the dynamical solution of which should encom-
lar to the transport direction. Suppose concretely that wgpass the Laundauer-Biker conductance regime in a natural
may introduce local coordinates, say, X,, andxs, such way. Nevertheless, the quantization of the corresponding
thatxs is a cyclic coordinate defining the transport directionfields will follow another path than that of familiar quantum
and all electron wave functions are either even or odd,in electrodynamics, the main reason being that, apart from the
and x,. Then the nodes of the transverse wave functiondocal field operators associated with the electrons, we have
xk(X1,%,)—the full wave functions being factorized into an now also to quantize global canonical variables associated
expression of the forny,(x;,x,) f(x3)—are symmetrically ~With the electromagnetic field, whereas other components of
located with respect to the closed curie(x;=0x,=0). the latter may or may not remain classical. In the light of this
Hence, the electric current density carried by each transversiork, the magnetic flux is an obvious example of such a
eigenstatébelow the Fermi levelis symmetric w.r.tI’ and,  global quantity to be quantized. We believe that an appropri-
accordingly, the generated magnetic field tends to zero o@te choice of global canonical variables will eventually lead

the curvel’. The latter therefore defines a region whéres [0 a useful quantum circuit theory unifying all WeII-k_r10yvn
. . L i features of classical circuits as well as the characteristics of
irrotational whereas neitheA nor the field operators are

) ; L . uantum devices, which are to be included in real circuits.
identically vanishing, so that the phase argument leading to inally, it should be noticed that the above mentioned quan-
guantized flux threaded bly can be repeated. X

. . . . . tization procedure explicitly affects the Maxwell equations
From the experimental point of view, thorough investiga-

. . - expressed in integral form. In particular, Faraday’s induction
tions should be conducted to trace directly or indirectly thelaW relates the total emf in a circuiéxternal and inducedo

presence Of flux quan'gizqtion in clo§ed circuits subjeg:teq Qhe change of a quantized flux, the discrete time evolution of
localized driving electric fields. Obviously, macroscopic Cir- v 1 is given by

cuits in which mesoscopic active areas are embedded cannot
be experimentally accessed as a whole without the disturbing

presence of scattering events in the conducting leads. On the

other hand, mesoscopic metallic rings interrupted by one or d)(t)zd)ozo anb(t—n7o), (30)
two tunnel barriers—such as the Aharanov-Bohm interfer-

ometers discussed in Refs. 28 and 29— may provide an ARNhere the coefficienta,, can take only the values ;1 and

ropriate experimental setup for studying changes of the to: . . .
Fal r?1agneticpﬂux In such d(gvices ong mgay gengerate along ave to be_ determm.ed by a fuII_ume—dgpendent squtlor) of
' e dynamical equations. As an illustration, we may obtain a

cloged_ trajectory a Constams by a linearly growing mag- quantum mechanical version of Lenz’ law by taking the time
netic field piercing the ring. derivative of Eq.(30)

E. Suggestions for future work: Quantum circuit theory

o

D. Localization of the electric field di(t)

Besides flux quantization, the topology of the electric LT:(I)OZ ané(t—nmp). (32)
field plays also a crucial role when it comes to realizing n=0
current limitation. In particular, it is required that the driving
electy|c f|gld governing the electron motlon in the cwcglt be ACKNOWLEDGMENTS
localized in a finite, simply connected region of the circuit.
This observation has been made already a few years ago by We are very much indebted to V. Fomin and W. Caspers
Fentorf who pointed out that for an arbitrary open circuit, for their critical remarks and constructive comments.
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