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Long-range order and phase transition in a cooperative Jahn-Teller system
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We have studied the long range order and phase transition in a simple cooperative Jahn-Teller system and
show that, as a result of the competition between the intrasite pseudospin tunneling and the phonon-induced
intersite pseudospin correlation, a phase transition to the pseudospin long range ordering phase may occur at
some critical temperature. An approach, based krdapendent displacement transformation and then treating
the transformed Hamiltonian in perturbation theory, has been proposed to deal with the nonadiabaticity and the
retardation effect of the pseudospin-phonon interaction. The approach leads to correct results in both the
adiabatic and antiadiabatic limits, as well as a smooth crossover between the limits. It has been pointed out that
when phonon frequency is small compared with the intrasite tunneling or the pseudospin-phonon coupling the
retardation effect of the pseudospin-phonon interaction is quite important.

I. INTRODUCTION wherey, = (cosk,+cosk,+cosk,)/3. w is the upper limit of
phonon frequencywy~ 1/M whereM is the reduced mass,
To understand the mechanism of cooperative phenomenandp measures the size of phonon dispersiog(+) lattice
such as the phase transition and long range ordering, in symode may induce a ferroelectric orderinfw,(+)
tems with competing interactions at a microscopic level has= ,\/1—p at k=Q=(0,0,0)] but w,(—) an antiferroelec-
been a subject of great interest for many years. Among thesgic ordering[ wy(—)= wo\1—p atk=Q= (7, 7)].
systems we mention ferroelectricitpntiferroelectricity,' This model Hamiltonian, and its modified and extended
conventional superconductdrsand structural transforma- forms, have been used for various cooperative Jahn-Teller
tions where the electron-lattice interactionbronic interac- systems, such as the proton-lattice interaction in hydrogen-
tion) plays an important rol&.° The electron-lattice interac- honded ferroelectricsantiferroelectrics'™® the structural
tion in the case of non-Kramers degeneragyseudo- transformations in ferroelastitantiferroelastit crystals’~°
degeneracy of the electron subsystem is often called theetc, Generally, speaking, there are two kinds of theoretical
cooperative Jahn-Teller efféand physical properties of the methods to treat the vibronic interactions in cooperative
system depend heavily on the nonadiabaticity and the retatahn-Teller systenfsOne is the displacement transformation

dation effect of vibronic interaction. 8,9 1 / /
; . . N method?® H=ex Hexp(—S'), where
In this work we consider a simple model Hamiltonian of PS) PCS)

pseudospins interacting with lattice

1 -
S,:J_N ; 2 %of(bik—bk)e*'k'l. )

k

1
H:—; AO'J-X'F; Wy blbk-f' E)
1 ) o After the transformation there appears a phonon induced

+ \/—— > > gkof(bl +bye ™, (1) long range correlation and a phonon dressed tunneling. An-
Nk other is the mean field decoupling to the intersite term in

i i 8 i ~S.H. )
which may be the simplest one for the vibronic interactionHam"ton'an(1)' After the decouplingi~2;H;, whereH,

and the cooperative Jahn-Teller effect. In E&j) N is the IS ahsw:jgle S'tﬁ Hza_mlll'[onlgn In tgle mean ft|)eld. TZen, various
number of pseudospins:* and o are the Pauli matrices on methods for.t e singe site problem can be used. .

e with b i J R | & bT andb In a previous work® we proposed a new approach with a
site J W't_ are tunng Ing _matrlx elememt. b, andb, are k-dependent displacement transformation to the cooperative
the creation and annihilation operators of phonon mode wit

) b i - Nahn-Teller effect. In this work the same approach is to be
frequency wy . gi=(a/2)wg/w, and « is the pseudospin- sed for studying the long range order in finite temperature

phonon coupling constant. We note that in this Hamiltonianang the phase transition. Before our discussions on the model
the pseudospin-phonon interaction is an on-site one and thgamiltonian, we would like to show solutions of E(.) in
cooperation between different sites is caused by the dispefne adiabatic 1 —x=) and antiadiabatic Nl—0) limit.

sive phon_ons. The_: competing interac_tions are the _intrasitgvhen,v,_}oo the kinetic energy of the lattice can be omitted
pseudospin tunneling and the phonon-induced intersite pseWy the lattice can be treated classically
dospin correlation.

We assume a three-dimensional simple cubic lattice with

the phonon frequené 2
P quency (biQ+bQ)=—m%ao, (b",+b)=0 for k#Q,
Q
o (E£)=wgVl—p(1lxy)/2, —7T$kx,ky,k2<7r, 2 (4)
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wherek=Q makesgg/ w, maximum. Then Hamiltoniaidl) H=Ho+H;+H,s, (12)
becomes

9% > Ho=—NV, +}J oiN+ Y, wbib— >, noAc’
HM—o)=— N+2 wkb b— 2 A(T 0 0" 5vQ% = @KBiBk : 0R T
@Q

2

2
- 2 wiQe'Q 10'00'] (5)

J

It can be solved easily. 1

The antiadiabatic limiM — 0 can be treated by rewriting H|1=\/—N
the Hamiltonian(1) in a functional integral formulation and
integrating over the phonon degrees of freeddrhet M

91— 80l o] —eQlgy](b!, +b)e K]

-M

—0(wp—>), —; nOAinij, (13)
H(M—0)=>, wkblbk—E Ad] 1 92 o
‘ Hiz= =5 2 2 |, 8280~ Vo |[of~ o]
1 9k ’
——22 U(Te'k(' D, (6)
N & 97 ok X[o7—€lggle’ ("J)—Z Aa{cost(X;)— 7o}
This is an Ising model with long range interaction in a trans-
verse field. It cannot be solved exactly even in one _ Vi N
dimensiont? Throughout this paper we set=1 and 2 AIUJ{SIM(X) 0%} (14
kB:]"

2
whereJo=2(go/ wq— Vo),
Il. THEORETICAL ANALYSIS

First we let theQ-mode phonon be displaced to take into Xj=—= >, —5k —be kI (15)
account the long range phonon ordering \/—
The last term inHy and the first term inH,, describe a
R= \/——ao(th—bQ), (7) long-range lIsing-type interaction between pseudospins, in
which
H=expR)Hexp —R) 92
k
, VOZN 2 o o280 (16

294
=—2 Ao +2 wyblb— E —e'Qlaoa, _ _ _
wQq is subtracted because it represents a constant self-coupling

1 smcecrJ ] =1 and does not contribute to interaction between
+=>3 gl oi- €Qigy](b!, +bye ik pseudospins at different sité¢n addition,
JN X
2
) =ex;{ -——> 9262/w2> 17)
N i—QUoN ® 0 N 4 ko Pk
Q

represents the phonon dressing of the bare tunneling matrix
elementA . *°
We treatH, as the unperturbed Hamiltonian and béth

wherek=Q is the wave vector of long range orderih@
=(0,0,0) for ferroelectric oQ=(,, ) for antiferroelec-

. . . 2 .
tric ordering which makesg/w, maximum. andH,, the perturbation. The perturbation should be small.
Our treat_mr%]t is based on tlkedependent displacement zg is mentioned in Introduction, one of the conventional
transformatior, methods is to le$,=1 for all k in the transformation. Thus
- the first term inH,, is zero. However, the first order term of
H=exp(S)H exp(—S), 9 g, still exists inX;. We propose the functional form df,
as?
5= = S S s 07— eQigg] (bl —be ]
e 0Pk Pk : 8=/ (w+2Jg), (18
(10 and the reason for this choice will be shown later. Here we

8y is k dependent and its form will be determined later. WeShow that the main physics is already contained in the un-
note thatS+R=S' [Eq. (3)] if §y=1. The transformation perturbed partH, of H in both adiabatic and antiadiabatic
can be done to the end and the result is limits.
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When M — oo (wy—0), gﬁ/wk is a finite quantity buts, , ¢ 1 ) . )
goes to zero. Thu¥,=0,7,=1H,;=H,,=0, and Ho=U'HoU=—NVy+ EJQUONJf; wkbkbk_; Woy.
9 96 (25
5 .
Ho= wQ N+E wibybi— E Aof _2 Zw_QelQ logof. H,, is transformed as follows:

(19

This is the same asl(M—x) in Eq. (5). It is evident that
the order-disorder transition point is ag?g/wQ—

When M —0(w <), 9% w2=0 and &—1. ThusH,; LE S gu(1- 60 Jo . 4
=0, Vo=(1IN), g% o, 70=1, and NE T T w

H{ = UTH,,U

eQlgo(bl, +by)e 'k

wER e s

1 _
Ho=—NV+ EJQag|\|+§k‘, wkblbk—zj: Ao 1|(o by+o; by

J
249

— iQ:j z
; \]Qe 0005, (20) + W

(O'J'+ btk"_ (Tf bk)] y (26)

1 o where the form of5, [Eq. (18)] has been substituted. We can
Hi=—5 > E (w——V(,)[O'iz—e'Q"ao] also getH/,=U'H,,U. The thermodynamical averaging of
koL @k of over the unperturbedl is (8= 1/kgT)
X[O'jz—e'Q'Ja'o]e'k'(i_j).

, , (0f)o=tanh BW), (27

Ho+H,, is the same asl(M—0) in Eq. (6). In the mean
field approximation(the correlatiorH,, dropped Hy can be  where(- - - ), means the thermodynamical averaging
solved with the order-disorder transition point atg%(wQ
—Vg)=A. (- Yo=Trlexp — BHY) - - YT exp(— BHY)].

As the phonon induced interaction between pseudospins
is a long range one, the mean field approximation is good he condition to determiney, is
enough 9for a quantitative analysis of the properties of the
systent® In the mean field approximation the unperturbed J—Qtanl‘(,BW)zl, (28)

partH, of H works well in bothM —c andM—0 limits. W
We believe thatH, should be a good unperturbed Hamil- )
tonian in the intermediate region>M >0 andH,; andH,, which makes the thermodynamical average of the factor
can be treated as perturbatiowe shall return to this pointin  (Jo/W)o{—1 in the first term oH|, be zero. The reason for
the last section We note that the transformation with,  introducing the functional form of [Eq. (18)] is that, when
=1 [S' in Eq. (3)] cannot lead to the correct result in the T=0(Jq/W=1), the term U,+bk+ oy b"\ in H/, disap-
M — oo limit. pears. In addition, (tl k+0' b )]90)=0(lgo) is the

H, can be easily diagonalized since it is the molecularground state ofd().
field approximation for pseudospins plus the free phonons. In In perturbation theory, the free enerfycan be calculated
this work we are mainly concerned with the caseJgf  as follows™®
> oA, because in this case there exists the long range fer-
roelectricity (antiferroelectricity. We assume exf@-j)= B
+1, that is, the ferroelectric orderif@=(0,0,0)] or anti- —B(F—Fo)=~— fo d7(H{1(7))o
ferroelectric orderind Q= (7,7, )]. ThenH, can be di-
agonalized by a unitary matrid =II;U;, where

B T
+ fo dTlfo ld7'2<[H|,1(7'1)H|’1(7'2)]>o

Up v
Uj: Vi —u y (21) B 3
Y - [ParHianpo+ ocad), (29
1 JQO_Oein 12
uj=— E[ ——w | (220  whereF, is the free energy ofl;,
iQ-j11/2 F NV, + lJ 2N N| [2 coshBW]
1 J e’ =— =JoogN— —=In[ 2 cos
vj——ﬁ[l—% , 29 ° 02T g
-+1EI[1 A~ Bwy)] (30)
— n[1—exp — Bwy)].
W=[J202+ 7202112 (24) B % K

The diagonalized,, is H{,(7) =expH{n)H/,exp(—Hg7) is in the interaction picture.
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The first order term oH |, is zero. The second term, which is
the second order contribution &f{; , and the third term can
be calculated as

2
F=Fq— ; i—"k(l— 8)?[cott?(BW) — 1] o2

297 —1]?
—2 gkzk 2A2[[C0tr(ﬁw) 1]

Kk oM 7o (l)k+ 2W

[coth BW) +1]?

X[ 1+ coth Bw,/2)tanh BW) ]+ 5w

X[1—coth Bw/2)tani BW)]

2

A
—N[7(T)— 10l 70 Wtan}"(ﬁW), (31)

7(T) =ex;{ - % ; gﬁaﬁcotnﬁwk/z)/wﬁ) . (32

In calculation the terms of orde:D(g‘;’) and higher are ne-
glected. Obviously, wheit=0 we haveF=F,. This is the
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(ofy=Trlexp(— BH) o]/ T exp(— BH)], (33
whereH is the original Hamiltonian, can be calculated as

7

Jooee' Q] A
(o eie oy (34

<0']Z> = W

Here(---)’ means the thermodynamical averagt’ € H
+H{+H)

(- Y =Tiexpg(—BH')-- - Trexpg(—BH')]. (35

(of)" and (e '?of)’ can be calculated by means of the
differentiation

J
(0)' == gp.F(hz.ho

h,=0h,=0

d
=———F(h;,hy

—iQuj Xy
(e o) .

h,=0h,=0

For calculatingF(h,,h,) we let
1

I _ +
Ho=—NVo+

JQ06N+ > wblib— >, (W+ h,) o}
k ]

reason for determiningyy, &, ando in Egs.(17), (18), and -2 he gk, (36)
(29). J
The order parameter The result is
2 « O Bog 4o Ok 7oA
Bl I—— > (1= 8)2————+ — >, —(1— ) ———
(o 00[ N2 o % SNt (BW) N > o WBsinh(28W)
4 s kS, [Coth BW)+1]2[ coth W) — coth Bwy/2) S coth Buw,/2)
TN 2 T o 2W o —2W T TSinh23W)
4 s kS , . [coth BW)—112[ coth W) + coth Bwy/2) S coth Buwy/2)
TNE 2 wp+2W o+ 2W " Tsin(28W)
4 s 9262 maA?  [coth( BW) +1 W o coth( BW) — 1 w i
TN 2w 2w (COt(BW) = coth Be/2)) + — ~ 5y —[coth SW) +cothl Sy f2) ]
T AVI__2pw 1|1e'Q! 3
+(7(T) = 70) 70| Snh2AW) e 37

WhenT=0,

(o) =00e'VI=[1- n5A%1I5] %', (38)
This means that, for both the free enefgwand order param-

eter (o), the second order contributiofO(gZ)] is zero
whenT=0.

The phase transition temperaturgis determined by Eq.

(28) with o3=0. The result is

T.=27,A/In (39)

T.=0 whenJo=2(g%/wo— Vo)< 7oA. From it we can get
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the critical couplinga. as a function ofA, p, andwq (or the critical tunnelingA as a function ofx, p, andwy).
Another quantity of physical interest is the thermodynamical average of tunneling m@@ix

(of)y=Trlexp( — BH){ocosh X)) +ioYsin( X))} 1/ Tr exp( — BH) ]

ZA J A
(oD = T ety + T (o costiX)) o))’
JQ"°<e Qi coshX;) — 70])’ —(ioYsinh(X)))’

2

_ 7MA 2 Ok 2 Bog
= Wtanr(,BW){ 1_N ; w_k(l_ )

sink?( BW)

iz i 6% 2A2[cotl’(,/:?WH—l]2 coth( BW) — coth Bw,/2)

N % wﬁ 7o w—2W —2W

Beoth Bw,/2)] 4 s kS, [coth BW)—112[ coth W) + coth Bwy/2) S coth Buw,/2)
T Usinh2pW) | NE 2 O wp+2W ot 2W " Tsinh(28W)

2 2 2 o2
LA g sy m60Jgos 4 9di , Jauh coth(ﬁW) +1 -
E <1 0 sz Ny o T W | 2w LCOAW) —cot By 2]

coth BW)—1 (T) 8
+aﬁw[00ﬂ’(ﬁW)+cotf(,3wk/2)] %NE (gk k) [exp Bo) — 1]

eXF{Bwk] exp2BW)  exd Bwi] —exp—2BW)

—2W wp+2W

oA A W Joos
() =m0, [(ﬁ,) cosé(,BW)Jr (f,\(,roﬂanr(ﬁw)}. (40)

Here all the second order contributions have been taken into 8w 2 w |2 12) 12
account. WheT =0, N(w)= 2(1 [1——(1—(—) ” ) (43
TPWH p o
A mEA
(ajx>=W= K. (41 for the regionwgy1—p<w<wgy. Outside the regiom(w)
=0.

Before the numerical results are presented, we would say

z X
We note that, as is the same case astand<a> for (o7) something about the difference between the physics,of

the second order contributiofO(gg)] vanishes when =1 and that of our choice of E¢18). 5,=1 means that the
=0. phonons can follow completely the intrasite pseudospin tun-
neling but this should not be the case wheyYA or wq/a is
IIl. NUMERICAL CALCULATIONS AND DISCUSSIONS small. 0= §<1 of Eq.(18) means that the phonons follow

the tunneling motion only partly and there is a retardation
All the k dependence in the calculation is through theeffect. In this sense, the theories &f=1 overestimate the
frequency w,, so we can introduce the density of stateseffect of quantum lattice fluctuations, especially for the case
(DOS) N(w), whenwg/A or wg/a is small.
Figure 1 shows the critical ratia./A as a function of

1 wg/A when p=0.5. The solid line is our result and the

N(“’):; E(w_“’k):f_ldyN“/(”) dashed line from the theory &, =1. The left and right short
dotted lines indicate the adiabafiec,/A=0.5 for M — oo,
X8 w—wg1—p(1Ey)/2], (42 Eq. (5) or (19)] and the antiadiabati€a./A=1.5938 for

M—0, Egs.(6) or (20)] limits, respectively. Figure 2 shows
whereN,(y) =2 6(y— yi) is the DOS fory, . For simplic-  the critical ratioA./« as a function ofwy/a whenp=0.5.
ity, we assume thal (y)=2y1— ¥?la is an elliptic DOS.  The left and right short dotted lines indicate the adiabatic
Hence, we have [A./a=2 for M—o, Egs.(5) or (19)] and the antiadiabatic
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o /A

0.0 1 1 1 1

w,/A

FIG. 1. The critical ratioa,/A as a function ofwy/A whenp
=0.5. Solid line: our result; dashed line: the theory&QE1; left
short dotted line:a./A=0.5 for M—o; right short dotted line:
a./A=1.5938 forM—0.

[A./a=0.6274 forM—0, Eqgs.(6) or (20)] limits, respec-
tively. One can see from the figures that our theory of 0
< =1 leads to the correct critical values in the both limits,
as well as a smooth crossover between the lintit3.The
theory of §y=1 cannot lead to the correct critical value in

HASE TRANSITION IN A ... 1093

"0.0 1.0

0,/A

2.0

FIG. 3. (0% =e"'?I(g7) and(c*)=(o7) as functions ofug/A
when T=0. Solid line: our result; dashed line: the theory &f
=1.

=0.471 from the theory of5y=1. The latter predicts a
smaller T, for wy=0 because in this limit it predicts the
phonon dressing factafo=0. However, our theory predicts
no=1 in this limit. T./A decreases with increasing ratio
'wol/A whena/A is kept to be a constant, but the decreasing
rate for the theory of,=1 is much lower that that of our

the adiabatic limit, that is, it is necessary to consider the

retardation effect when,
wola<2.

roughly speakingy/A<2 or

Figure 3 shows the ground state average of the pseu

dospin(o?)=e~'?I(af) and(c*)=(a}) as functions of the
ratio wg/A. One can see that the theory §f=1 overesti-
mates the long range ordés?) but underestimates the tun-
neling (o).

The ground state properties of the model system have<1

already been discussed in an earlier pafétere we show

0/A=0.75
p=0.5

|_ -
the phase diagrams and other finite temperature properties.
Figure 4a) is the T./A versuswy/A phase diagram. . 7
When wg/A=0, T,/A=1.243 from our theory buf /A \\\ J
'.
25 ] T T T T 1 1t 1
\ 14 1.6 1.8 2.0
4
\
\
20K-"-"--- \ 7 1.8 T T T T
\ DISORDERED PHASE
1.4
o, /A=0.5
= 1s5f 1.2 0
= ' p=05
< 1.0
1ok Slo 08
l_ 0.6 |
----- 04
%, 2 4 6 8 10 02+ (b)
0 /0 ,
0.0 -
0.0 0.2
FIG. 2. The critical ratioA./« as a function ofw,/a whenp
=0.5. Solid line: our result; dashed line: the theory&QE1; left
short dotted line:A./a=2 for M—~; right short dotted line: FIG. 4. (&) T./A versuswg/A and(b) T./A versusa/A phase
A./a=0.6274 forM—0. diagrams. Solid line: our result; dashed line: the theory,gt1.
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0.8 y T T T 0.8 T T v T

A T N o4f i
N x
o S U
\% v o[ e
. 02| .. s
0.00.0 . 0.1 . 0.2 0.3 . 0.4 0.00.0 ' 0:1 . 0:2 . 073 . 0.4
T/m, T/o,
FIG. 5. (o) versus temperatureT(w,) relations. Solid line: FIG. 6. (0}) versus temperaturd(wo) relations. Solid line: the
result of second order perturbation; dashed line: result of the zerotkesult of second order perturbation; dashed line: result of the zeroth
order; dotted line: the theory with,=1. order; dotted line: the theory with,=1.

theory. Furthermore, the critical ratiawf/A). where the . . S
long range order disappearE,&0) is 1.243 for our theory tion and then treating the transformed Hamiltonian in pertur-

but 1.618 for the theory o, =1. bat?o_n theory, has been_ proposed to deal with the_z nonadia-
TheT./A versusa/A phase diagram in Fig.(8) is easily _bat|C|ty .and the retardation effect of the pseudosp!n-phonon
to understandT,=0 when a/A<0.414 (for the theory of interaction. The r_;lpproach leads to correct results in bbth
5,=1) or a/A<0.607 (for our theory. Then T./A in- —o0 and M.HQ limits, as well as a smooth crossover be-
creases with increasing/A when wgy/A is kept to be a fween the limits. It has been pointed out that wheg/A
constant. The increasing rate for the former is much lower<2 Of wo/a<2 the retardation effect of the pseudospin-
that the latter. phonon interaction is quite important. The calculated renor-
The order parameteio’) versus temperatureT(w) re- malized tunneling matrix element, which is reduced by the
lations are shown in Fig. 5. The solid line is the result of Pseudospin-phonon interaction, is not so small as the theory
second order perturbation and the dashed one that of tHf d,=1 predicts, that is, the reduction is alleviated by in-
zeroth order{o?) = 0oexf{iQ-j]. One can see that the effect troducing ak-dependent, .
of the second order perturbation is to reduce the long range Our treatment mainly depends on the perturbation theory.
order. For comparison, the result of thg=1 theory is also  The purpose of the unitary transformation is to find a better
shown by the dotted line. In the disordered phake way to divide the original Hamiltonian into unperturbed part
>T¢ (of)=0. and perturbation. We believe that our treatment has caught
(o) versus temperatureT(w) relations are shown in the main physics of the problem becausethe perturbation
Fig. 6. The solid line is the result of second order perturbaH,;+H,, [Egs.(13) and(14)]is small in the meaning that its
tion and the dashed one that of the zeroth order)  second order contributions to the free enefgythe order
= 75A tanh(3W)/W which is a constantor) = ngA/JQ for ~ parametefoy), and the renormalization factor for tunneling
T<T.. For comparison, the dotted line is the result of the(a]?‘) vanish whenT =0 via properly choosing the form @
theory with §,=1. As(o{)=1 for =0, we can uséo])  (18), 7, (17), andoy (28). (i) In the mean field approxima-
as the renormalization factor for bare tunneling matrix eletion the unperturbed paH, of the transformed Hamiltonian
mentA. Our result shows that, although the reduction of thefj \orks well and the perturbatiod,; +H,, goes to zero in
tunneling matrix element.by pseudospin-phonon interactiofhoth M and M —0 limits. (i) The mean field decou-
gets larger when>0, it is not so small as the theory of pjing to the transformed Hamiltonian is justified since the
=1 predicts and the reduction is alleviated by introducingphonon-induced pseudospin correlation is a long range one.

a k-dependents, .** In the disordered phas&>T; (o) In this work we deal with a simplified model for the real
>0, butT=T, is a discontinuous point foad(c;)/dT. copperative Jahn-Teller systems, so we do not compare our
results with the experimental measurements. We will extend
IV. CONCLUSION our approach to the real syste7rﬁ§n forthcoming publica-

tions.
We have studied the long range order and phase transition

in a simple cooperative Jahn-Teller system and show that, as
a result of the competition between the intrasite pseudospin
tunneling and the phonon-induced intersite pseudospin cor-
relation, a phase transition to the pseudospin long range or- This work was supported by the Natural Science Founda-
dering phase may occur at some critical temperature. A newon of China and the Science and Technology Committee of
approach, based onkadependent displacement transforma- Shanghai government.
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