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Long-range order and phase transition in a cooperative Jahn-Teller system
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Department of Applied Physics, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
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We have studied the long range order and phase transition in a simple cooperative Jahn-Teller system and
show that, as a result of the competition between the intrasite pseudospin tunneling and the phonon-induced
intersite pseudospin correlation, a phase transition to the pseudospin long range ordering phase may occur at
some critical temperature. An approach, based on ak-dependent displacement transformation and then treating
the transformed Hamiltonian in perturbation theory, has been proposed to deal with the nonadiabaticity and the
retardation effect of the pseudospin-phonon interaction. The approach leads to correct results in both the
adiabatic and antiadiabatic limits, as well as a smooth crossover between the limits. It has been pointed out that
when phonon frequency is small compared with the intrasite tunneling or the pseudospin-phonon coupling the
retardation effect of the pseudospin-phonon interaction is quite important.
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I. INTRODUCTION

To understand the mechanism of cooperative phenom
such as the phase transition and long range ordering, in
tems with competing interactions at a microscopic level
been a subject of great interest for many years. Among th
systems we mention ferroelectricity~antiferroelectricity!,1–5

conventional superconductors,6 and structural transforma
tions where the electron-lattice interaction~vibronic interac-
tion! plays an important role.7–9 The electron-lattice interac
tion in the case of non-Kramers degeneracy~pseudo-
degeneracy! of the electron subsystem is often called t
cooperative Jahn-Teller effect8 and physical properties of th
system depend heavily on the nonadiabaticity and the re
dation effect of vibronic interaction.

In this work we consider a simple model Hamiltonian
pseudospins interacting with lattice
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z~b2k
† 1bk!e2 ik• j, ~1!

which may be the simplest one for the vibronic interacti
and the cooperative Jahn-Teller effect. In Eq.~1! N is the
number of pseudospins.s j

x ands j
z are the Pauli matrices o

site j with bare tunneling matrix elementD. bk
† and bk are

the creation and annihilation operators of phonon mode w
frequencyvk . gk

25(a/2)v0
2/vk and a is the pseudospin

phonon coupling constant. We note that in this Hamilton
the pseudospin-phonon interaction is an on-site one and
cooperation between different sites is caused by the dis
sive phonons. The competing interactions are the intra
pseudospin tunneling and the phonon-induced intersite p
dospin correlation.

We assume a three-dimensional simple cubic lattice w
the phonon frequency10

vk~6 !5v0A12r~16gk!/2, 2p<kx ,ky ,kz<p, ~2!
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wheregk5(coskx1cosky1coskz)/3. v0 is the upper limit of
phonon frequency,v0;A1/M whereM is the reduced mass
andr measures the size of phonon dispersion.vk(1) lattice
mode may induce a ferroelectric ordering@vk(1)
5v0A12r at k5Q5(0,0,0)# but vk(2) an antiferroelec-
tric ordering@vk(2)5v0A12r at k5Q5(p,p,p)#.

This model Hamiltonian, and its modified and extend
forms, have been used for various cooperative Jahn-Te
systems, such as the proton-lattice interaction in hydrog
bonded ferroelectrics~antiferroelectrics!,1–5 the structural
transformations in ferroelastic~antiferroelastic! crystals,7–9

etc. Generally, speaking, there are two kinds of theoret
methods to treat the vibronic interactions in cooperat
Jahn-Teller systems.8 One is the displacement transformatio
method:8,9 H̃5exp(S8)Hexp(2S8), where

S85
1

AN
(

k
(

j

gk

vk
s j

z~b2k
† 2bk!e2 ik• j. ~3!

After the transformation there appears a phonon indu
long range correlation and a phonon dressed tunneling.
other is the mean field decoupling to the intersite term
Hamiltonian~1!.8 After the decouplingH'( jH j , whereH j
is a single site Hamiltonian in the mean field. Then, vario
methods for the single site problem can be used.

In a previous work10 we proposed a new approach with
k-dependent displacement transformation to the coopera
Jahn-Teller effect. In this work the same approach is to
used for studying the long range order in finite temperat
and the phase transition. Before our discussions on the m
Hamiltonian, we would like to show solutions of Eq.~1! in
the adiabatic (M→`) and antiadiabatic (M→0) limit.
WhenM→` the kinetic energy of the lattice can be omitte
and the lattice can be treated classically

~b2Q
† 1bQ!52AN

2gQ

vQ
s0 , ~b2k

† 1bk!50 for kÞQ,

~4!
1088 ©2000 The American Physical Society
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wherek5Q makesgk
2/vk maximum. Then Hamiltonian~1!

becomes

H~M→`!5
gQ

2

vQ
s0

2N1(
k

vkbk
†bk2(

j
Ds j

x

2(
j

2gQ
2

vQ
eiQ• js0s j

z . ~5!

It can be solved easily.
The antiadiabatic limitM→0 can be treated by rewriting

the Hamiltonian~1! in a functional integral formulation and
integrating over the phonon degrees of freedom.11 Let M
→0(v0→`),

H~M→0!5(
k

vkbk
†bk2(

j
Ds j

x

2
1

N (
k

(
i,j

gk
2

vk
s i

zs j
zeik•( i2j ). ~6!

This is an Ising model with long range interaction in a tran
verse field. It cannot be solved exactly even in o
dimension.12 Throughout this paper we set\51 and
kB51.

II. THEORETICAL ANALYSIS

First we let theQ-mode phonon be displaced to take in
account the long range phonon ordering

R5AN
gQ

vQ
s0~b2Q

† 2bQ!, ~7!

H5exp~R!Hexp~2R!

52(
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gk@s j

z2eiQ• js0#~b2k
† 1bk!e2 ik• j

1
gQ

2

vQ
s0

2N, ~8!

wherek5Q is the wave vector of long range ordering@Q
5(0,0,0) for ferroelectric orQ5(p,p,p) for antiferroelec-
tric ordering# which makesgk

2/vk maximum.
Our treatment is based on thek-dependent displacemen

transformation,10

H̃5exp~S!H exp~2S!, ~9!
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1

AN
(

k
(

j

gk

vk
dk@s j

z2eiQ• js0#~b2k
† 2bk!e2 ik• j.

~10!

dk is k dependent and its form will be determined later. W
note thatS1R5S8 @Eq. ~3!# if dk[1. The transformation
can be done to the end and the result is
-
e

H̃5H01HI11HI2 , ~11!

H052NV01
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† 1bk!e2 ik• j

2(
j

h0D is j
yXj , ~13!

HI252
1

N (
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(
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S gk
2

vk
dk~22dk!2V0D @s i

z2eiQ• is0#

3@s j
z2eiQ• js0#eik•( i2j )2(

j
Ds j

x$cosh~Xj !2h0%

2(
j

D is j
y$sinh~Xj !2h0Xj%, ~14!

whereJQ52(gQ
2 /vQ2V0),

Xj5
2

AN
(

k

gk

vk
dk~b2k

† 2bk!e2 ik• j. ~15!

The last term inH0 and the first term inHI2 describe a
long-range Ising-type interaction between pseudospins
which

V05
1

N (
k

gk
2

vk
dk~22dk! ~16!

is subtracted because it represents a constant self-cou
sinces j

zs j
z51 and does not contribute to interaction betwe

pseudospins at different sites.4 In addition,

h05expS 2
2

N (
k

gk
2dk

2/vk
2D ~17!

represents the phonon dressing of the bare tunneling m
elementD.4,9

We treatH0 as the unperturbed Hamiltonian and bothHI1
andHI2 the perturbation. The perturbation should be sm
As is mentioned in Introduction, one of the convention
methods is to letdk[1 for all k in the transformation. Thus
the first term inHI1 is zero. However, the first order term o
gk still exists in Xj . We propose the functional form ofdk
as10

dk5vk /~vk12JQ!, ~18!

and the reason for this choice will be shown later. Here
show that the main physics is already contained in the
perturbed partH0 of H̃ in both adiabatic and antiadiabat
limits.
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When M→`(v0→0), gk
2/vk is a finite quantity butdk

goes to zero. ThusV050,h051,HI15HI250, and

H05
gQ

2

vQ
s0

2N1(
k

vkbk
†bk2(

j
Ds j

x2(
j

2
gQ

2

vQ
eiQ• js0s j

z .

~19!

This is the same asH(M→`) in Eq. ~5!. It is evident that
the order-disorder transition point is at 2gQ

2 /vQ5D.
When M→0(v0→`), gk

2/vk
250 anddk→1. ThusHI1

50, V05(1/N)(kgk
2/vk , h051, and

H052NV01
1

2
JQs0

2N1(
k

vkbk
†bk2(

j
Ds j

x

2(
j

JQeiQ• js0s j
z , ~20!

HI252
1

N (
k

(
i,j

S gk
2

vk
2V0D @s i

z2eiQ• is0#

3@s j
z2eiQ• js0#eik•( i2j ).

H01HI2 is the same asH(M→0) in Eq. ~6!. In the mean
field approximation~the correlationHI2 dropped! H0 can be
solved with the order-disorder transition point at 2(gQ

2 /vQ
2V0)5D.

As the phonon induced interaction between pseudos
is a long range one, the mean field approximation is go
enough for a quantitative analysis of the properties of
system.8,9 In the mean field approximation the unperturb
part H0 of H̃ works well in bothM→` and M→0 limits.
We believe thatH0 should be a good unperturbed Ham
tonian in the intermediate regioǹ.M.0 andHI1 andHI2
can be treated as perturbation~we shall return to this point in
the last section!. We note that the transformation withdk
[1 @S8 in Eq. ~3!# cannot lead to the correct result in th
M→` limit.

H0 can be easily diagonalized since it is the molecu
field approximation for pseudospins plus the free phonons
this work we are mainly concerned with the case ofJQ
.h0D, because in this case there exists the long range
roelectricity ~antiferroelectricity!. We assume exp(iQ• j )5
61, that is, the ferroelectric ordering@Q5(0,0,0)# or anti-
ferroelectric ordering@Q5(p,p,p)#. Then H0 can be di-
agonalized by a unitary matrixU5) jU j , where

U j5S uj v j

v j 2uj
D , ~21!

uj52
1

A2
F11

JQs0eiQ• j

W G1/2

, ~22!

v j52
1

A2
F12

JQs0eiQ• j

W G1/2

, ~23!

W5@JQ
2 s0

21h0
2D2#1/2. ~24!

The diagonalizedH0 is
ns
d
e

r
In

r-

H085U†H0U52NV01
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†bk2(

j
Ws j

z .

~25!

HI1 is transformed as follows:

HI18 5U†HI1U
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(
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(

j
gk~12dk!FJQ

W
s j

z21GeiQ• js0~b2k
† 1bk!e2 ik• j

1
1
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(
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(

j

gkdk
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h0De2 ik• jH FJQ

W
21G~s j

1bk1s j
2b2k

† !

1FJQ

W
11G~s j

1b2k
† 1s j

2bk!J , ~26!

where the form ofdk @Eq. ~18!# has been substituted. We ca
also getHI28 5U†HI2U. The thermodynamical averaging o
s j

z over the unperturbedH08 is (b51/kBT)

^s j
z&05tanh~bW!, ~27!

where^•••&0 means the thermodynamical averaging

^•••&05Tr@exp~2bH08!•••#/Tr@exp~2bH08!#.

The condition to determines0 is

JQ

W
tanh~bW!51, ~28!

which makes the thermodynamical average of the fac
(JQ /W)s j

z21 in the first term ofHI18 be zero. The reason fo
introducing the functional form ofdk @Eq. ~18!# is that, when
T50(JQ /W51), the term s j

1bk1s j
2b2k

† in HI18 disap-
pears. In addition, (s j

1b2k
† 1s j

2bk)ug0&50(ug0& is the
ground state ofH08).

In perturbation theory, the free energyF can be calculated
as follows:13

2b~F2F0!52E
0

b

dt^HI18 ~t!&0

1E
0

b

dt1E
0

t1
dt2^@HI18 ~t1!HI18 ~t2!#&0

2E
0

b

dt^HI28 ~t!&01O~gk
3!, ~29!

whereF0 is the free energy ofH08 ,

F052NV01
1

2
JQs0

2N2
N

b
ln@2 coshbW#

1
1

b (
k

ln@12exp~2bvk!#. ~30!

HI18 (t)5exp(H08t)HI18 exp(2H08t) is in the interaction picture.
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The first order term ofHI18 is zero. The second term, which
the second order contribution ofHI18 , and the third term can
be calculated as

F5F02(
k

gk
2

vk
~12dk!2@coth2~bW!21#s0

2

2(
k

2gk
2dk

2

vk
2

h0
2D2H @coth~bW!21#2

vk12W

3@11coth~bvk/2!tanh~bW!#1
@coth~bW!11#2

vk22W

3@12coth~bvk/2!tanh~bW!#J
2N@h~T!2h0#h0

D2

W
tanh~bW!, ~31!

h~T!5expS 2
2

N (
k

gk
2dk

2coth~bvk/2!/vk
2D . ~32!

In calculation the terms of orderO(gk
3) and higher are ne

glected. Obviously, whenT50 we haveF5F0. This is the
reason for determiningh0 , dk ands0 in Eqs.~17!, ~18!, and
~28!.

The order parameter
^s j
z&5Tr@exp~2bH !s j

z#/Tr@exp~2bH !#, ~33!

whereH is the original Hamiltonian, can be calculated as

^s j
z&5

JQs0eiQ• j

W
^s j

z&81
h0D

W
eiQ• j^e2 iQ• js j

x&8. ~34!

Here ^•••&8 means the thermodynamical average (H85H08
1HI18 1HI28 )

^•••&85Tr@exp~2bH8!•••#/Tr@exp~2bH8!#. ~35!

^s j
z&8 and ^e2 iQ• js j

x&8 can be calculated by means of th
differentiation

^s j
z&852

]

]hz
F~hz ,hx!U

hz50,hx50

,

^e2 iQ• js j
x&852

]

]hx
F~hz ,hx!U

hz50,hx50

.

For calculatingF(hz ,hx) we let

H0852NV01
1

2
JQs0

2N1(
k

vkbk
†bk2(

j
~W1hz!s j

z

2(
j

hxe
2 iQ• js j

x . ~36!

The result is
^s j
z&5s0H 12

2

N (
k

gk
2

vk
~12dk!2

bs0
2

sinh2~bW!
1

4

N (
k

gk
2

vk
~12dk!2

h0
2D2

W3sinh~2bW!

1
4

N (
k

gk
2dk

2

vk
2

h0
2D2

@coth~bW!11#2

vk22W Fcoth~bW!2coth~bvk/2!

vk22W
2

b coth~bvk/2!

sinh~2bW! G
2

4

N (
k

gk
2dk

2

vk
2

h0
2D2

@coth~bW!21#2

vk12W Fcoth~bW!1coth~bvk/2!

vk12W
2

b coth~bvk/2!

sinh~2bW! G
2

4

N (
k

gk
2dk

2

vk
2

h0
2D2

W2
JQFcoth~bW!11

vk22W
„coth~bW!2coth~bvk/2!…1

coth~bW!21

vk12W
@coth~bW!1coth~bvk/2!#G

1~h~T!2h0!h0S D

WD 2F 2bW

sinh~2bW!
21G J eiQ• j. ~37!
WhenT50,

^s j
z&5s0eiQ• j5@12h0

2D2/JQ
2 #1/2eiQ• j. ~38!

This means that, for both the free energyF and order param-
eter ^s j

z&, the second order contribution@O(gk
2)# is zero

whenT50.
The phase transition temperatureTc is determined by Eq.
~28! with s050. The result is

Tc52h0D/ lnFJQ1h0D

JQ2h0DG . ~39!

Tc50 whenJQ52(gQ
2 /vQ2V0)<h0D. From it we can get
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the critical couplingac as a function ofD, r, andv0 ~or the critical tunnelingD as a function ofa, r, andv0).
Another quantity of physical interest is the thermodynamical average of tunneling matrix^s j

x&

^s j
x&5Tr@exp~2bH̃ !$s j

xcosh~Xj !1 is j
ysinh~Xj !%#/Tr@exp~2bH̃ !#

5
h0

2D

W
^s j

z&82
h0JQs0

W
^e2 iQ• js j

x&81
h0D

W
^s j

z@cosh~Xj !2h0#&8

2
JQs0

W
^e2 iQ• js j

x@cosh~Xj !2h0#&82^ is j
ysinh~Xj !&8

5
h0

2D

W
tanh~bW!H 12

2

N (
k

gk
2

vk
~12dk!2

bs0
2

sinh2~bW!

1
4

N (
k

gk
2dk

2

vk
2

h0
2D2

@coth~bW!11#2

vk22W Fcoth~bW!2coth~bvk/2!

vk22W

2
b coth~bvk/2!

sinh~2bW! G2
4

N (
k

gk
2dk

2

vk
2

h0
2D2

@coth~bW!21#2

vk12W Fcoth~bW!1coth~bvk/2!

vk12W
2

b coth~bvk/2!

sinh~2bW! G J
2

4

N (
k

gk
2

vk
~12dk!2

h0
2DJQs0

2

W3sinh~2bW!
2

4

N (
k

gk
2dk

2

vk
2

h0
2D

JQ
2 s0

2

W2 Fcoth~bW!11

vk22W
@coth~bW!2coth~bvk/2!#

1
coth~bW!21

vk12W
@coth~bW!1coth~bvk/2!#G1

h0Dh~T!

sinh~2bW!

8

N(
k

S gkdk

vk
D 2

@exp~bvk!21#21

3H exp@bvk#2exp~2bW!

vk22W
2

exp@bvk#2exp~22bW!

vk12W J
1„h~T!2h0…

h0D

W H S h0D

W D 2 bW

cosh2~bW!
1

JQs0
2

W
1tanh~bW!J . ~40!
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Here all the second order contributions have been taken
account. WhenT50,

^s j
x&5

h0
2D

W
5

h0
2D

JQ
. ~41!

We note that, as is the same case as forF and^s j
z&, for ^s j

x&
the second order contribution@O(gk

2)# vanishes whenT
50.

III. NUMERICAL CALCULATIONS AND DISCUSSIONS

All the k dependence in the calculation is through t
frequencyvk , so we can introduce the density of stat
~DOS! N(v),

N~v!5(
k

d~v2vk!5E
21

1

dgNg~g!

3d@v2v0A12r~16g!/2#, ~42!

whereNg(g)5(kd(g2gk) is the DOS forgk . For simplic-
ity, we assume thatNg(g)52A12g2/p is an elliptic DOS.
Hence, we have
to
N~v!5

8v

prv0
2 H 12F12

2

r S 12S v

v0
D 2D G2J 1/2

~43!

for the regionv0A12r,v,v0. Outside the regionN(v)
50.

Before the numerical results are presented, we would
something about the difference between the physics ofdk
[1 and that of our choice of Eq.~18!. dk[1 means that the
phonons can follow completely the intrasite pseudospin t
neling but this should not be the case whenv0 /D or v0 /a is
small. 0<dk<1 of Eq. ~18! means that the phonons follow
the tunneling motion only partly and there is a retardat
effect. In this sense, the theories ofdk[1 overestimate the
effect of quantum lattice fluctuations, especially for the ca
whenv0 /D or v0 /a is small.

Figure 1 shows the critical ratioac /D as a function of
v0 /D when r50.5. The solid line is our result and th
dashed line from the theory ofdk[1. The left and right short
dotted lines indicate the adiabatic@ac /D50.5 for M→`,
Eq. ~5! or ~19!# and the antiadiabatic@ac /D51.5938 for
M→0, Eqs.~6! or ~20!# limits, respectively. Figure 2 show
the critical ratioDc /a as a function ofv0 /a whenr50.5.
The left and right short dotted lines indicate the adiaba
@Dc /a52 for M→`, Eqs.~5! or ~19!# and the antiadiabatic
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@Dc /a50.6274 forM→0, Eqs.~6! or ~20!# limits, respec-
tively. One can see from the figures that~i! our theory of 0
<dk<1 leads to the correct critical values in the both limi
as well as a smooth crossover between the limits.~ii ! The
theory of dk[1 cannot lead to the correct critical value
the adiabatic limit, that is, it is necessary to consider
retardation effect when, roughly speaking,v0 /D,2 or
v0 /a,2.

Figure 3 shows the ground state average of the ps
dospin^sz&5e2 iQ• j^s j

z& and^sx&5^s j
x& as functions of the

ratio v0 /D. One can see that the theory ofdk[1 overesti-
mates the long range order^sz& but underestimates the tun
neling ^sx&.

The ground state properties of the model system h
already been discussed in an earlier paper.10 Here we show
the phase diagrams and other finite temperature propert

Figure 4~a! is the Tc /D versus v0 /D phase diagram
When v0 /D50, Tc /D51.243 from our theory butTc /D

FIG. 1. The critical ratioac /D as a function ofv0 /D whenr
50.5. Solid line: our result; dashed line: the theory ofdk[1; left
short dotted line:ac /D50.5 for M→`; right short dotted line:
ac /D51.5938 forM→0.

FIG. 2. The critical ratioDc /a as a function ofv0 /a whenr
50.5. Solid line: our result; dashed line: the theory ofdk[1; left
short dotted line:Dc /a52 for M→`; right short dotted line:
Dc /a50.6274 forM→0.
,

e

u-

e

s.

50.471 from the theory ofdk[1. The latter predicts a
smaller Tc for v050 because in this limit it predicts th
phonon dressing factorh050. However, our theory predict
h051 in this limit. Tc /D decreases with increasing rat
v0 /D whena/D is kept to be a constant, but the decreas
rate for the theory ofdk[1 is much lower that that of ou

FIG. 3. ^sz&5e2 iQ• j^s j
z& and^sx&5^s j

x& as functions ofv0 /D
when T50. Solid line: our result; dashed line: the theory ofdk

[1.

FIG. 4. ~a! Tc /D versusv0 /D and~b! Tc /D versusa/D phase
diagrams. Solid line: our result; dashed line: the theory ofdk[1.
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theory. Furthermore, the critical ratio (v0 /D)c where the
long range order disappears (Tc50) is 1.243 for our theory
but 1.618 for the theory ofdk[1.

TheTc /D versusa/D phase diagram in Fig. 4~b! is easily
to understand.Tc50 when a/D<0.414 ~for the theory of
dk[1) or a/D<0.607 ~for our theory!. Then Tc /D in-
creases with increasinga/D when v0 /D is kept to be a
constant. The increasing rate for the former is much low
that the latter.

The order parameter̂s j
z& versus temperature (T/v0) re-

lations are shown in Fig. 5. The solid line is the result
second order perturbation and the dashed one that of
zeroth order:̂ s j

z&5s0exp@iQ• j #. One can see that the effe
of the second order perturbation is to reduce the long ra
order. For comparison, the result of thedk[1 theory is also
shown by the dotted line. In the disordered phaseT
.Tc ^s j

z&50.
^s j

x& versus temperature (T/v0) relations are shown in
Fig. 6. The solid line is the result of second order pertur
tion and the dashed one that of the zeroth order:^s j

x&
5h0

2D tanh(bW)/W which is a constant̂s j
x&5h0

2D/JQ for
T,Tc . For comparison, the dotted line is the result of t
theory withdk[1. As ^s j

x&51 for a50, we can usês j
x&

as the renormalization factor for bare tunneling matrix e
mentD. Our result shows that, although the reduction of
tunneling matrix element by pseudospin-phonon interac
gets larger whena.0, it is not so small as the theory o
dk[1 predicts and the reduction is alleviated by introduc
a k-dependentdk .10 In the disordered phaseT.Tc ^s j

x&
.0, butT5Tc is a discontinuous point ford^s j

x&/dT.

IV. CONCLUSION

We have studied the long range order and phase trans
in a simple cooperative Jahn-Teller system and show tha
a result of the competition between the intrasite pseudo
tunneling and the phonon-induced intersite pseudospin
relation, a phase transition to the pseudospin long range
dering phase may occur at some critical temperature. A n
approach, based on ak-dependent displacement transform

FIG. 5. ^s j
z& versus temperature (T/v0) relations. Solid line:

result of second order perturbation; dashed line: result of the ze
order; dotted line: the theory withdk[1.
r
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tion and then treating the transformed Hamiltonian in pert
bation theory, has been proposed to deal with the nona
baticity and the retardation effect of the pseudospin-pho
interaction. The approach leads to correct results in bothM
→` and M→0 limits, as well as a smooth crossover b
tween the limits. It has been pointed out that whenv0 /D
,2 or v0 /a,2 the retardation effect of the pseudospi
phonon interaction is quite important. The calculated ren
malized tunneling matrix element, which is reduced by t
pseudospin-phonon interaction, is not so small as the the
of dk[1 predicts, that is, the reduction is alleviated by i
troducing ak-dependentdk .

Our treatment mainly depends on the perturbation theo
The purpose of the unitary transformation is to find a be
way to divide the original Hamiltonian into unperturbed pa
and perturbation. We believe that our treatment has cau
the main physics of the problem because~i! the perturbation
HI11HI2 @Eqs.~13! and~14!# is small in the meaning that its
second order contributions to the free energyF, the order
parameter̂ s j

z&, and the renormalization factor for tunnelin
^s j

x& vanish whenT50 via properly choosing the form ofdk

~18!, h0 ~17!, ands0 ~28!. ~ii ! In the mean field approxima
tion the unperturbed partH0 of the transformed Hamiltonian
H̃ works well and the perturbationHI11HI2 goes to zero in
both M→` and M→0 limits. ~iii ! The mean field decou
pling to the transformed Hamiltonian is justified since t
phonon-induced pseudospin correlation is a long range o

In this work we deal with a simplified model for the re
copperative Jahn-Teller systems, so we do not compare
results with the experimental measurements. We will exte
our approach to the real systems7,8 in forthcoming publica-
tions.
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FIG. 6. ^s j

x& versus temperature (T/v0) relations. Solid line: the
result of second order perturbation; dashed line: result of the ze
order; dotted line: the theory withdk[1.
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