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Center-of-mass properties of the exciton in quantum wells

A. Siarkos, E. Runge, and R. Zimmermann
Institut für Physik, Humboldt-Universita¨t zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin, Germany

~Received 13 September 1999!

We present high-quality numerical calculations of the exciton center-of-mass dispersion for

GaAs/AlxGa12xAs quantum wells of widths in the range 2–20 nm. ThekW•pW coupling of the heavy- and
light-hole bands is taken fully into account. An optimized center-of-mass transformation enhances numerical
convergence. We derive an easy-to-use semianalytical expression for the exciton ground-state mass from an
ansatz for the exciton wave function at a finite momentum. It is checked against the numerical results and
found to give very good results. We also show multiband calculations of the exciton ground-state dispersion
using a finite-difference scheme in real space, which can be applied to rather general heterostructures.
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I. INTRODUCTION

Excitons dominate the optical properties of low
dimensional semiconductor heterostructures such as qua
wells ~QW’s! and quantum wires. The relative motion of th
constituent particles and their center-of-mass~COM! motion
determine different characteristics of the optical spectra
exciton kinetics.

The exciton relative motion in QW’s is well studied an
understood. The confinement of the carriers along one or
spatial directions into regions comparable to or smaller t
the bulk exciton size enhances the effect of the electron-h
Coulomb interaction. This results in larger binding energ
and oscillator strengths, and in an increased stability co
pared to bulk excitons. Therefore, excitons are observed e
at room temperature in these structures. The effect of
reduced dimensionality is, as a rule, much larger on the
citon ground state than on the excited states.

Details of the excitonic optical spectra of QW’s related
the COM motion like, e.g., inhomogeneous broadening
Stokes shift between photoluminescence~PL! and absorption
are frequently used for structure characterization. These
tures are influenced by exciton localization and diffusion
the presence of interface or alloy disorder.1 Optical spectra
and their temporal evolution are determined by exciton f
mation processes2 and the subsequent energy and spin3 re-
laxation dynamics. Spatially resolved spectroscopy te
niques like micro PL and near-field scanning optic
microscopy allow direct observation of exciton COM qua
tization in local potential minima.4 All these phenomena ar
intimately related to the exciton COM properties, where
different energy and COM momentum regions of the exci
dispersion are probed in different processes.

In many heterostructure systems of interest like, e
GaAs/AlxAs12x, InxGa12xAs/InP, and ZnCdxSe12x/ZnSe,
the exciton can be described in the effective-mass appr
mation ~Wannier exciton! due to its small bulk binding en
ergy ~e.g., 4 meV for GaAs!. In this approximation, the de
generacy of the valence bands at the center of the Brillo
zone for materials of cubic or zinc-blende symmetry was fi
taken into account by Dresselhaus.5 He also pointed out the
absence of a well-defined COM transformation due to t
degeneracy. Altarelli and Lipari6 calculated the exciton
PRB 610163-1829/2000/61~16!/10854~14!/$15.00
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COM dispersion for direct- and indirect-gap bulk semico
ductors. They demonstrated that the ambiguity in the cho
of the COM transformation can be used to achieve form
simplicity or optimal numerical convergence. For bu
GaAs, where the heavy- to light-hole mass ratio is large,
exciton dispersions are found to be strongly anharmonic,
show avoided crossings between different branches.

In semiconductor QW’s, the broken translational symm
try in the growth direction leads to the splitting of heavy a
light holes at theG point, and subsequent formation o
heavy- and light-hole excitons. Due to the large hole-
electron mass ratio, the influence of the valence-band mix
on the COM motion is greater than on the relative motio
The exciton dispersions are, thus, strongly nonparabolic.
rect consequences of the exciton dispersion anharmonici
QW, like slow indirect excitonic transitions due to came
back-shaped dispersions7 have been experimentall
observed.8

Multiband excitons~i.e., with the full coupling of heavy-
and light-hole bands taken into account! have been theoreti
cally and numerically thoroughly investigated at vanishi
COM momentumQ.9–16 The numerical effort for such cal
culations remains reasonable due to the high symmetry
this point. In contrast, only a few publications on multiba
calculations of exciton COM dispersions in QW exist,17–19

since these are very demanding. Methods for improving
numerical accuracy and reducing the effort of such calcu
tions are clearly necessary. Particularly useful would be
easy-to-use approach that gives the main features of the
citon dispersion with at least moderate accuracy.

The main focus of the present work lies on the excit
ground-state dispersion and its properties. A secondary
is to study the feasibility of numerical methods for calcula
ing the exciton ground-state dispersion in more complica
structures like V-groove quantum wires.20 Excitons in
GaAs/Al0.3Ga0.7As symmetric QW’s are considered~Sec.
II !. Two different methods for the dispersion calculation a
used:~i! the extension forQÞ0 of the well-known13 expan-
sion of the exciton in the product space of electron and h
subband states~Sec. II A!, and~ii ! a finite-difference scheme
in real space~Sec. II B! with a ground-state-adapted Cou
lomb discretization.19 Method ~i! gives high-quality numeri-
cal results but is not feasible, e.g., for quantum wires
10 854 ©2000 The American Physical Society
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complicated geometry. With method~ii ! the ground-state ex
citon dispersion in a V-groove quantum wire is tractable.
convergence properties are checked here against the re
of ~i!. Results for V-groove quantum wires will be present
elsewhere.

Improving on previous results,19 we address in detail the
problem of the choice of the COM transformation, and int
duce an optimized, ground-state-adapted COM transfor
tion that greatly enhances the numerical accuracy and st
ity of our results~Sec. III!. As a by-product, a semianalytica
expression for the average exciton ground-state mass sui
for exciton localization problems is derived~Sec. IV!. This
expression is of great practical importance since it gives
liable mass values for not too wide QW’s. The only nec
sary ingredients are the lowest subband dispersion an
good estimate for the ground-state Bohr radius.

Finally, we discuss the results of the exciton dispers
calculations in momentum~Sec. V A! and real space~Sec.
V B!. The results of our semianalytical expression for t
average exciton ground-state mass are compared to va
other mass expressions as well as with the numerical dis
sions separately~Sec. V C!.

II. THEORETICAL MODEL

We consider the well-studied system of direct Wann
excitons in a single symmetric GaAs/Al0.3Ga0.7As type-I
quantum well grown in thê100& direction. Many aspects o
the presented results can be effortlessly extended to Wan
excitons in other, more general heterostructures.

In the envelope-function approximation, the Wannier e
citon is described by the Hamilton operator

H5He~rWe!1Hh~rWh!1VCoul~rWe2rWh!. ~1!

He,h describe the material-dependent band structure of
respective particles in the vicinity of theG point, andVCoul
stands for the attractive Coulomb interaction. We choose
coordinate system as usual with thez axis in the growth
direction^100&; rWe5(xe ,ye ,ze), andrWh5(xh ,yh ,zh) denote
the space coordinates of electron and hole, respectively.
the materials involved, the conduction band is parabolic t
good approximation; anharmonicities in the conduction ba
arise mainly through the interaction with the light and sp
off valence bands which is small due to the relatively lar
band gaps. The valence band is adequately described b
Luttinger Hamiltonian21 in the axial approximation,9,22

which takes into account explicitly the coupling of th
heavy- and light-hole bands (G8

v) but suppresses warping
The coupling to the split-off (G7

v) band can be safely ne
glected for subband states with energies up to approxima
50 meV from the band edge because of the relatively la
energy separation. We neglect the effect of the different
electric constants~no image charge effects!,12,15,23and also
all effects that lead to a small spin-splitting-like lack of i
version symmetry of the bulk material14 or the interfaces,24

as well as the exchange part of the Coulomb interactio17

The electron spin is irrelevant and will be given a fixed va
of 11/2 in the present work. The quantization axis of t
electron spin and of the hole angular momentumJ is taken
s
ults
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along the growth direction, and we use for the valence-ba
edge states the same convention as in Ref. 25.

The Hamilton operatorH @Eq. ~1!#, acts within these ap-
proximations on a four-component envelope function in
product basis of the conduction- and valence-band e

states$u 3
2 mJ&vu 1

2 1 1
2 &c%, where the hole-spin projection a

tains values ofmJ51 3
2 ,1 1

2 ,2 1
2 , and2 3

2 :

He5S 2
\2

2me
~]xe

2 1]ye

2 1]ze

2 !1VcD I , ~2!

Hh52
\2

2m0 S P1Q L M 0

L † P2Q 0 M
M † 0 P2Q 2L

0 M † 2L † P1Q
D 1VvI ,

~3!

with

P5g1~]xh

2 1]yh

2 1]zh

2 !, Q5g2~]xh

2 1]yh

2 22]zh

2 !,

L52 i2A3g3~]xh
2 i ]yh

!]zh
,

M5A3
g21g3

2
~]xh

2 2]yh

2 2 i2]xhyh

2 !

and

VCoul~rWe2rWh!52
e2

e

1

urWe2rWhu
I . ~4!

I is the 434 unity matrix. The material parametersg1(zh),
g2(zh), andg3(zh) as well as the offsetsVv(zh), andVc(ze)
are piecewise constant functions ofze andzh . To ensure that
the kinetic operators remain Hermitian in the presence
interfaces, we use the symmetric substitutions

g] i→~] ig1g] i !/2, g] i j
2 →~] ig] j1] jg] i !/2, i 5x,y,z.

~5!

The in-plane COM momentumQW 52 i\(¹W ei
1¹W hi

) is a
constant of motion because the interaction term~4! depends
only on the relative distance of the two particles. Reflect
with respect to the centralxy plane,sxy , is also a symmetry
element for symmetric QW’s. Consequently, the exciton c
be characterized by the parityP561. Then the wave func-
tion factorizes into

CQW ;Pa~rWe ,rWh!5
e2 iQW •RW

2p (
mJ

CmJ

QW ;Pa~ze ,zh ,rW !u 3
2 mJ&vu 1

2
1
2 &c ,

~6!

whererW 5rWei
2rWhi

is the in-plane particle distance,RW is the

COM space coordinate canonically conjugate toQW , and a
stands for the remaining quantum numbers related to
relative motion of the exciton.

The COM space coordinateRW in Eq. ~6! is not unambigu-
ously defined because of the anharmonic dispersions of
constituent particles.5 The COM transformation must be lin
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ear in order to preserve the canonical commutation relat
of space and momentum operators, and in general it has
form

RW 5brWei
1„12b…rWhi

, kW52 i\@~12b!¹W ei
2b¹W hi

#.
~7!

In the parabolic case, the free parameterb is taken as the
scalar

bparab5
me

me1mh
~8!

in order that relative and COM motion completely decoup
For bulk excitons,b has been considered in the literature
a scalar, a tensor in real space,6 or even a spinor.26 We will
return later on to the problem of an appropriate choice for
COM coordinateRW .

Taking into account the electron-spin degeneracy, e
exciton state is at least fourfold degenerate. It can be sh
in a similar way as has been done for the hole subband s
in Ref. 25 that the operatorRpT, with the rotation byp
about thez axis, Rp , and time reversalT, transforms be-
tween the degenerate states of different parity and oppo
electron spin. If one combines this operator with the Pa
matrix sy

e , which flips only the electron spin, we have, apa
from an overall phase,

CQW ;2Pa~rWe ,rWh!5~sy
eRpT!CQW ;Pa~rWe ,rWh!

5
e2 iQW •RW

2p (
mJ

CmJ

QW ;Pa* ~ze ,zh ,2rW !

3u 3
2 2mJ&vu 1

2 1 1
2 &c . ~9!

Comparing Eqs.~6! and ~9!, we find

CmJ

QW ;2Pa~ze ,zh ,rW !5C2mJ

QW ;Pa* ~ze ,zh ,2rW !. ~10!

That is, the~degenerate! state of reversed parity is obtaine
by inverting the order of the spin components of the exci
envelope, complex conjugating, and changing the sign of
in-plane relative coordinate. Thus changing the multiba
exciton parity with fixed electron spin in symmetric QW
corresponds to flipping the hole spin in the single-band
citon case. In the axial approximation and forQ50, the
different angular momentum components decouple,22 and
changing the sign ofrW in Eq. ~10! just changes the sign o
two spin components leaving the other two unchanged;
no longer holds atQÞ0.

We have solved eigenvalue problem~1! in two ways
which will be discussed in turn:~i! in kW space, expanding Eq
~6! in the product space of the electron and hole subb
states,10 and ~ii ! in real space, using a finite-differenc
scheme. The first method gives very accurate results, an
used to reveal the main features of the exciton dispers
The second method is only suitable for the ground-state
persion, but promises to be feasible for more general st
tures. It is validated by comparing its results with the on
from the first method.
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A. Solution in k¢ space

As a first step, we calculate the single-particle subba
states and their dispersions

HeunekWe ;6 1
2 &5Ene

~ke!unekWe ;6 1
2 &, ~11!

HhunhkWh ;ph&5Enh
~kh!unhkWh ;ph&

using a transfer-matrix method as in Ref. 27. The respec
solutions in the axial approximation are of the forms

unekWe ;6 1
2&5

eikWe•rWei

2p
ei (61/2)uejne

~ze!u
1
2 6 1

2 &c , ~12!

unhkWh ;ph561&5
eikWh•rWhi

2p (
mJ

eimJuhjnh ,ph ,kh

mJ ~zh!u 3
2 mJ&v .

In Eqs. ~11! and ~12!, ne,h denote the subband indices,kWe,h
5(ke,h ,ue,h) the respective in-plane wavevectors in po
coordinates andph the hole parity undersxy .25

In a second step, the exciton wave function for a giv
COM momentumQW is expanded into

CQW ;Pa~rWe ,rWh!5 (
nenh

EdkW wnenh

QW ;a ~kW !unekWe ;1 1
2 &unhkWh ;ph& ,

~13!

with subband states of the two particles combined in suc
way that the resulting exciton state has the required paritP

and total momentumQW :

kWe5kW1bQW , kWh5kW2~12b!QW , P5ph~21!ne11.
~14!

The last relation reflects that the conduction subband en
lopes are even~odd! for odd ~even! subband index. Fixing
exciton parityP and electron spin eliminates any degenera
at QW Þ0.

With expansion~13! and the relations~14!, the exciton
Schrödinger equation takes the form

„Ene
~kWe!1Enh

~kWh!2Ea
X~QW !…wnenh

QW ;a ~kW !

1 (
ne8nh8

E dkW8Vne8nh8
nenh

QW

~kW ,kW8!wn
e8n

h8
QW ;a

~kW8!50, ~15!

whereEa
X(QW ) denotes the energy dispersion of the excit

state. The interaction

Vne8nh8
nenh

QW

~kW ,kW8!52
1

2p

e2

e

1

ukW2kW8u
Fne8nh8

nenh

QW

~kW ,kW8! ~16!

is the in-plane two-dimensional~2D! Fourier transform of
the 3D Coulomb potential modified due to the confinem
in the z direction. The latter is expressed through form fa
tors @with Eq. ~14!#
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Fne8nh8
nenh

QW

~kW ,kW8!5(
mJ

E E dzedzhe2ukW2kW8uuze2zhujne
* ~ze!

3j
nh ,kWh

mJ* ~zh!jn
e8
~ze!jn

h8 ,kW
h8

mJ ~zh!. ~17!

The above integrals are calculated analytically, since the s
band states obtained with the transfer-matrix method
combinations of exponential and trigonometric functions.

The integrable singularity of Coulomb potential~16! at
kW5kW8 is taken care of by adding and subtracting in Eq.~15!
the analytically integrable term

C~kW ,kW8!5
e2

e

1

2p S 1

ukW2kW8u
2

1

max~k,k8!
D . ~18!

This gives a smooth ‘‘corrected’’ potential@Eq. ~16!# of
small absolute magnitude.

To take advantage of the axial approximation, the exci
envelope and the form factors are expanded into 2D ang
momentum eigenstates exp(ilu). The angular momentuml is
chosen for every subband combination such thatl 50 corre-
sponds to the respectives-like exciton13 at Q50.

The resulting set of coupled one-dimensional integ
equations is solved numerically for various values of
COM momentumQ. Results will be presented in Sec. V.

B. Solution in real space

We demonstrated in Ref. 19 that calculations of t
multiband-exciton ground-state dispersion are also feas
with a finite-difference scheme in real space. This metho
conceptually simple: the Schro¨dinger equation correspondin
to Eqs.~1!–~4! and~6! leads to a system of four~number of
spin components! coupled partial differential equations in th
four-dimensional space (rW ,ze ,zh). The resulting eigenvalue
problem involves a large sparse complex Hermitian ma
with a substantial number~44! of nonzero off-diagonals. In
contrast to thekW -space approach, the method can, in pr
ciple, be applied effortlessly to very general heterostructu
like quantum wires and quantum dots. The main drawbac
the need for huge amounts of computer memory. Indeed
dimension of the matrix to be diagonalized scales with
fourth power of the number of grid points per spatial dime
sion. The most dense grid we used led to a matrix of dim
sion ND5433133136136151.43107 ~4 is the number
of spin components!.

We used theARPACK28 package to calculate a few eige
values and eigenvectors at the lower end of the spectr
ARPACK is an efficient implementation29 of the implicitly re-
started Arnoldi method that can be viewed as a synthesi
the Arnoldi/Lanczos process with the implicitly shiftedQR
algorithm.28 Storage of the~nonzero! matrix elements is no
required, only a matrix-vector multiplication utility is
needed. Multiple eigenvalues, as they occur in our case, o
no additional problems. However, if one needs all the me
bers of a multiplet the iteration subspace has to be cho
large enough. We find that an iteration subspace of five tim
the number of the requested eigenvalues@rather than the pro-
posed factor of 2~Ref. 28!# is usually sufficient. This matte
was of no concern for our problem, since using the symme
b-
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considerations@Eq. ~10!#, from a calculated state we can als
derive the second state of the doublet. For the largest m
ces, we used a factor of 3 as a compromise between mem
demand and CPU time usage.

The matrix resulting from the discretization is high
structured. For minimizing the memory costs and still ma
ing full use of the vector registers, we construct the matr
vector product using auxiliary, much smaller, matrices.

Since memory is critical, it is crucial for any real-spa
approach to optimize the convergence of the relevant qu
tities with the mesh size. On the one hand, we optimize
COM transformation, as will be discussed in Sec. III, there
improving the handling of the kinetic terms. On the oth
hand, we use a ground-state-adapted discretization of
Coulomb potential30 which is discussed in more detail in th
Appendix. The idea behind this approach is to extract
discretized interaction from a reference system that has
same interaction but a simple kinetic term, and who
ground state is known analytically. If the ground state of t
reference system is similar enough to the one of the
system, good convergence is expected. Calculations o
parallel-vector machine of type CRAYJ932 reached perf
mances of 140MFlops/CPU, determined by the peak per
mance of the CPU-specific basic linear algebra subrout
~BLAS! of 185 MFlops/CPU.

III. OPTIMIZED CENTER-OF-MASS TRANSFORMATION

We return to the ambiguity in the COM transformatio
@Eq. ~7!#, which is expressed in the freedom to chooseb.
The relevance ofb for accelerating numerical convergenc
in dispersion calculations was realized quite early for b
excitons in Ref. 6, where a scalarb was optimized in a trial
and error procedure. However, there has been no other a
rithm to take advantage of this freedom until recently.19 Be-
fore that, there were just two publications where numeri
multiband exciton dispersion in quantum wells were calc
lated: in Ref. 17,b51 ~in the parabolic caseme5`) was
taken in order for the form factors~17! to be independent o
Q, and in Ref. 18 no particular choice or handling ofb is
mentioned. In analytic expressions, usually the symmetric~in
the parabolic caseme5mh) valueb51/2 is taken.16

The effect of theb choice becomes clear when one eva
ates Eq.~7! for two different valuesb,b85b1db giving
RW 85RW 1(db)rW , kW85kW2(db)QW . Clearly, b artificially
moves part of the plane wave of the COM motion into t
relative part of the exciton~6! or, equivalently, it shifts the
relative part of the wavefunction inkW space. A good choice
of b, as in the parabolic case@Eq. ~8!#, keeps the relative par
of the exciton in real space as smooth as possible or, equ
lently, pins the relative part of the wave function inkW space
to the origin. This situation is illustrated in Fig. 1, where w
plot the envelope of theHH1C121s exciton in the single
subband approximation using the symmetric value ofb
51/2. This value ofb is indeed not optimal, as the larg
shift demonstrates. Diamonds mark where the position of
origin would be for other values ofb.

In Ref. 19 we introduced a quasianalytical method
determining the optimal choice of the scalarb, which we
briefly summarize here. It is motivated by the fact that in t
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parabolic case the correct COM transformation decouples
relative motion and COM motion completely. A full decou
pling is not possible for nonparabolic dispersions. We look
for a choice ofb that decouples ‘‘as much as possible.’’ T
quantify this, in Eq.~1! we inserted the generalb-dependent
COM transformation~7!, separated theQ-dependent terms
from the rest,

H5H (0)1H (1)~b!Q1H (2)~b!Q2, ~19!

and viewed these as a perturbation of theQ50 exciton. Tak-
ing into account the inversion symmetry of the Brillou
zone, the kinetic mass of the ground-state excitong is given
in second order perturbation theory by

\2

2Mg
X

5^guH (2)~b!ug&1 (
aÞg

u^auH (1)~b!ug&u2

Eg
X~0!2Ea

X~0!
. ~20!

However, the exciton mass must not depend onb. Maximiz-
ing the first order contribution in Eq.~20! and minimizing
this way the strictly positive contribution of the higher stat
to the ground-state mass leads to the analytical result

b5^guHh
(2)ug&/^guHe

(2)1Hh
(2)ug&. ~21!

He,h
(2) are simply the material-dependent coefficients of

b2Q2 terms when inserting Eq.~14! into thek-space repre-
sentation of the kinetic energies in Eqs.~2! and ~3!,
respectively.19

The explicit form of Eq.~20!, with contributions from the
higher states dropped andb from Eq. ~21!, suggests that we
define COM-related, effective massesme,h* for an electron
and a hole:

1/me,h* 5
2

\2
^guHe,h

(2)ug& satisfying Mg
X5me* 1mh* .

~22!

FIG. 1. Logarithmic contour plots of the squaredHH1C1-1s

exciton envelope inkW space for a 5-nm GaAs/Al0.3Ga0.7As QW at
Qx50.5 nm21 plotted in a coordinate system with the unoptimiz
value b51/2. From left to right, diamonds mark the origin of th
shifted coordinate systems@at (1/22b)Qx# for b50, b0 , 1/2, and
1, with b0 evaluated from Eq.~24!. The Q50 envelope is plotted
for comparison~dashed line!.
he

d

e

Numerical results show that the masses obtained from
~22! tend to be too small. Nevertheless, the obtained val
for b in Refs. 19 and 31 were quite reasonable because o
much heavier hole mass. If one actually calculates the c
tributions of the higher exciton states toMg

X in Eq. ~20!
@which are dropped in Eq.~22!#, one finds that the only im-
portant correction comes from the coupling to t
LH1C1-1s-like state. Taking this single correction term
Eq. ~20! into account gives practically the exact curvature
the exciton ground-state dispersion atQ50.

The above procedure is not the best for determining
optimal value ofb, as the importance of the coupling t
higher states demonstrates. It was inspired by the solutio
the exciton problem in real space. Let us now look at
form of the exciton wave function forQÞ0 in subband ex-
pansion~13!. The Q dependence enters the wave functi
because of~i! the need to appropriately combine the subba
states to obtain the rightQ, and~ii ! through the need for the
envelope to adjust for the anharmonicities in the dispersio
In the perturbation approach described above, we tried
find a COM transformation that keeps theentire wave func-
tion unchanged as much as possible for smallQ values.
However, once the one-particle problem is solved, theQ de-
pendence due to the appropriate combination of the subb
states~i! is explicitly known. Therefore, a better ansatz f
the wave function would be to find a COM transformatio
that keeps theenvelopesas much unchanged as possible: th
is, Eq. ~13! with

wnenh

QW ;g ~kW !5wnenh

0;g ~kW !. ~23!

The minimization of the energy with respect tob can be
done analytically in the limitQ→0. We easily obtain the
optimized value

b05

(
nenh

E dkW uwnenh

0;g ~kW !u2~Q̂•¹W !2Enh
~kW !

(
nenh

E dkW uwnenh

0;g ~kW !u2~Q̂•¹W !2@Ene
~kW !1Enh

~kW !#

.

~24!

This expression also accounts for the dependence ofb0 on
the direction Q̂ of the COM momentum in the case o
warped valence bands. We took into account the invers
symmetry of the Brillouin zone and assumed that the C
lomb potential@Eqs.~16! and~17!# can be approximated as
function of the momentum transfer only,V(kW ,kW8).V(kW

2kW8); i.e., we neglected anyQ dependence of the~Coulomb!
potential energy of the ground state. This is expected to b
good approximation since the Coulomb energy depe
solely on the charge distribution, which should not be
fected significantly by the in-plane motion. Indeed, it w
estimated in Ref. 11 that the error introduced by neglect
the kW dependence of the hole envelopes in Eq.~17! is about
5%. Our assumption should lead to even smaller deviatio

Figure 1 demonstrates the quality of expression~24!. It
shows the ground-state envelope at a rather large valu
Q50.5 nm21, even though Eq.~24! was obtained in the
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limit Q→0. The slight deformation~these are logarithmic
plots! for large values ofQ is due to the anharmonicity of th
one-particle dispersions.

The importance of a suitable choice of the COM transf
mation for the numerical convergence is illustrated in Fig
for the dispersion of theHH1C1-1s exciton of a 5-nm QW.
This has been calculated ink space for various values ofb
with the same basis (HH1C1 ,LH1C1 ,l 50,61,62). The
further b lies from the optimal valueb0 (b050.23 in this
case!, the worse the results are. We also did calculatio
where foreach Qvalue an optimal value ofb was obtained
by numerical variation. We observed deviations fromb0 less
than 1% nearQ50 and not larger than 10% atQ
50.5 nm21 even for the widest well~20 nm!. At largeQ the
b50 ~in the parabolic casemh5`) curve gives slightly bet-
ter results thanb0, since theHH1 subband dispersion be
comes more flat after the avoided crossing with theLH1
subband, but it gives considerably worse results at smalQ.

IV. A SIMPLE ANALYTICAL FORMULA FOR THE
AVERAGE EXCITON KINETIC MASS

The analytical variation that led to Eq.~24! gives the
ground-state energy up to terms quadratic inQ. The corre-
sponding groundstate kinetic massMg

X again has the form

Mg
X5me

X1mh
X , ~25!

with the COM-related effective masses for the electron a
hole defined as

1/me,h
X 5

1

\2 (
nenh

E dkW uwnenh

0;g ~kW !u2~Q̂•¹W !2Ee,h~kW !. ~26!

With these masses, the expression forb0, @Eq. ~24!#, has the
same form as in the parabolic case~8!. Equation~26! gives
the correct results for the free particle case.

We claim that this simple result will be of considerab
practical importance. Equation~26! is physically appealing:
it leads to a weighted average of the subband dispersi
Further, it is relatively simple to calculate: it requires only
approximate knowledge of theQ50 exciton envelope and o

FIG. 2. Dispersion of the ground-state exciton of a 5-nm-w
QW calculated with the same basis but for various values ofb. The
exciton continuum edge~dotted line! @Eq. ~28!#, is given for com-
parison.
-
2

s

d

s.

the involved subband dispersions. The numerical calcula
of subband dispersions is nowadays an easy task~provided
the kW•pW parameters are known!. Moreover, especially for
narrow QW’s, the envelope of theHH1C1 component of the
ground-state exciton is to a very good approximation sim
in shape to the ground-state of the 2D exciton:

w1s
2D~rW !5A 2

paB
2

e2aBr,

w1s
2D~kW !5A2aB

2

p
@11~aBk!2#23/2. ~27!

The LH1C1 component is quite small, e.g., 5% for th
20-nm QW, and can be safely neglected in this conte
Therefore, only a good estimate for the effective Bohr rad
aB is needed to evaluate Eq.~26!.

V. RESULTS

We have calculated exciton dispersions both in real a
momentum space for GaAs/Al0.3Ga0.7As ^001& QW’s of
various widths. The coupling of heavy and light holes w
fully incorporated. The values of the material parametersg1 ,
g2 , g3, andme were taken by linear interpolation from th
GaAs and AlAs values; the offset ratio wasVv /Vc
50.68/0.32, and the band gap in meV was taken asEg(x)
5151911040x1470x2, x being the Al content.32 For the
dielectric constant, we adoptede512 for both well and bar-
rier materials.

A. Subband expansion

The nomenclature is as follows: the exciton in the su
band expansion has variousnhne subband components wit

corresponding envelopeswnenh

QW ;a (kW ) @Eq. ~13!#. In the axial

approximation these envelopes have atQ50 a definite an-
gular momentuml, and will be denoted by 1s, 2s, 2p6 ,
3d6 , and so on. Each exciton state at finiteQ will be named
according to the main subband component of the correspo
ing state atQ50. That is, speaking of theHH1C1-1s exci-
ton means that atQ50 its main subband component is th
HH1C1 one with an 1s envelope. Similar to the single
particle hole subband states, which can change their he
or light-hole character away from theG point, the envelope
of the main subband component or even the main subb
component itself can change with increasingQ. To denote
the main subband component of a state at a given value oQW ,
we will speak of the character of the state at thisQW . For
example, theHH1C1-2p1 exciton has aHH1C1-2p1 char-
acter atQ50 and aLH1C1-1s character forQ@0.

The exciton dispersions ink space are calculated as fo
lows: For each QW, we first calculate the exciton spectr
at Q50. Subsequently, a 2D 1s-exciton ground-state func
tion @Eq. ~27!# is fitted to theHH1C1 envelope. For the
wider QW, also a two-dimensional 3d-exciton function is
fitted to theLH1C1 envelope. This fit is used, instead of th
numerical envelope, to evaluate the optimized COM tra
formation@Eq. ~24!# because it allows one to take advanta
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10 860 PRB 61A. SIARKOS, E. RUNGE, AND R. ZIMMERMANN
of the analytically known derivatives of the fit function. Th
value ofb0 so calculated is used for theQÞ0 calculations.

In Fig. 3, we display the envelopes of the components
the ground-state exciton in the subband expansion@Eq. ~13!#
for a 15-nm-wide QW atQ50. The coupling of the highe
subbands is rather small: less than 3% for theLH1C1 com-
ponent, and even less for the others. The parity and
selection rules for the Coulomb coupling of the subband
the G point in symmetric QW’s are obeyed, e.g., the adm
ture of theLH1C1 state vanishes at theG point since the
Coulomb potential is spin diagonal, and theHH1 and LH1
subband states are pure heavy- and light-hole states, re
tively. TheHH1C1 envelope is very well approximated by
2D 1s-exciton function. Deviations are mainly located at t
vicinity of the HH1-LH1 avoided crossing of the hole
subband dispersions~here kac.0.13 nm21). The total in-
plane probability distribution follows the form of Eq.~27!
even better than theHH1C1 envelope alone; the coupling t
the higher subbands allows the exciton to relax further. T
again, supports the notion that the subband mixing has l
influence on the charge distribution.

The calculations ink space presented in the followin
take into account only the two lowest hole subbands (nhne
5HH1C1 and LH1C1). Inclusion of higher subbands doe
not enhance the binding energy of the ground-state exc
considerably. For the angular decomposition of the envel
components only thes, p6 , d1 ( l 50,61,2) components
for HH1C1 and s, p6 , d2 ( l 50,61,22) components for
LH1C1 were considered. Due to the optimized choice of
COM coordinate system@Eq. ~24!#, these few angular mo
mentum components are sufficient to describe
HH1C1-1s and LH1C1-1s dispersions excellently over th
whole range of COM momentum values considered,Q
<0.5 nm21: the p components account mainly for the d
formation of the envelope, and thed components take care o
the Coulomb coupling to higher states.

In Fig. 4, we show the dispersion calculated ink space of

FIG. 3. On the right: Envelopes of the subband component
the ground-state exciton calculated ink space for a 15-nm-wide QW
at Q50. On the left:HH1C1 envelope (3), fitted 2D 1s-exciton
wave function~line!, and square root of the total probability distr
bution uf(k)u25(nenh

wnenh

0;g (k)2 ~circles!.
f

in
at
-

ec-

s,
le

n
e

e

e

the first bound exciton states as well as some of the c
tinuum states in a 15 nm wide QW. Zero of energy is t
onset of theHH1C1 continuum atQ50. The Bohr radiusaB
is the one obtained from the same fit of a 2D 1s exciton to
the envelope of theHH1C1 component atQ50, which was
used to calculate the optimizedb0. The ground state is
HH1C1-1s. The next state isHH1C1-2p1 which turns into
LH1C1-1s character at the avoided crossing. TheLH1C1-1s
exciton is the fourth excited state atQ50, and shows a
substantial mixing with theHH1C1-3d1 exciton. The
HH1C1-2p1 exciton has atQ50 a slightly lower energy
than theHH1C1-2p2 state~the third state atQ50) because
it couples to theLH1C1-1s outside of theG point.

As reported in earlier work,17,18exciton COM dispersions
are highly nonparabolic, much like the hole subband disp
sions. This is not surprising, since the dispersion of the c
duction subband is parabolic and the hole mass is m
larger than the electron mass. Furthermore, it was claime
Ref. 18 that exciton dispersion follows, in a good appro
mation, the hole subband dispersion. Although this is c
tainly true in the present case due to the parabolic elec
dispersion and the small electron to hole mass ratio, the
citon dispersion is in principle atwo-particle quantity. In
fact, the dispersion of the ground-state exciton follows ev
more closely, in the studied cases within 1 meV, t
electron-hole-pair continuum edgeEnenh

(QW ). The latter is de-
fined by

Enenh
~QW !5 min

kWe1kWh5QW
$Ene

~kWe!1Enh
~kWh!%, ~28!

and represents the minimal kinetic energy of a free electr
hole pair for a given subband combinationnenh and a given
QW . In the independent-subband approximation, this coinci
with the exciton continuum edge. Figures 5~a! and 5~b! di-

of
FIG. 4. Exciton dispersions, ground state~thick line!, and some

excited bound and continuum states~thin line!, calculated ink space
for a 15-nm-wide QW. The light~dark! gray shaded area marks th
HH1C1 (LH1C1) exciton continuum. A parabola for the averag
ground-state exciton massMg

X after Eqs.~25! and ~26! is plotted
~dashed line!. An arrow marks the position of 1/aB (aB is the Bohr
radius!.
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rectly compare for narrow and wide QW’s the excito
ground-state dispersion and the appropriately shifted exc
continuum edge. Also shown is the respective hole disp
sion. The latter always lies above the shifted exciton c
tinuum edge, since Eq.~28! implies Enenh

(QW )<Ene
(0)

1Enh
(QW ).

The exciton ground-state dispersion is found to lie s
tematically below the shifted exciton continuum edge, i
the ground-state exciton binding energy becomes la
away fromQ50. This can be understood based on the f
that for QÞ0 the ground-state exciton@Eqs.~13! and ~14!#,
is built from hole subband states around (12b0)Q. Due to
the flatter subband dispersion around this point, the h
mass becomes larger and the wave function can better a
to the potential. TheLH1C1-1s exciton in the 20-nm-wide
QW @Fig. 5~b!#, is well separated from the spectrum of th
HH1C1 exciton. We observe that at smallQ the LH1C1-1s
dispersion lies above the respective shifted exciton c
tinuum edge. Indeed, theLH1 subband shows a negativ
mass at theG point which becomes positive near the avoid
crossing. Hence the respective exciton has to pay with e
kinetic energy in order to achieve a small COM momentu
and its binding energy is decreased. For largerQ values it
gains again some binding energy.

The enhancement of the ground-state binding energy
QÞ0 is particularly large when the exciton is built from ho
subband states around the avoided crossings (12b0)Q
5ka.c. . This is demonstrated in Fig. 6 for QW of variou
widths. Peaks are seen at the respective location of
HH1-LH1 avoided crossing, marked by arrows. The e
hancement of the ground-state binding energy withQ is less
than 15% and is generally larger for wider QW.

In Fig. 7, we plot the exciton dispersion of a 5-nm QW
The exciton dispersions, like the hole subband dispersi
are less anharmonic in the much narrower QW than for
QW of Fig. 4 because of the larger energy separation of

FIG. 5. ~a! and~b! Comparison of the dispersion ofHH1C1-1s
and LH1C1-1s ~20-nm QW only! excitons~thick! with appropri-
ately shifted respective exciton continuum edge~dashed! and un-
derlying hole-subband dispersion~dot-dashed line! for two
GaAs/Al0.3Ga0.7As QW’s. ~c! Comparison of our results~black!
with those of Ref. 18~gray! for the 5-nm QW~shifted to match at
Q50). The exactHH1 subband dispersion for the parameters
Ref. 18 is plotted~diamonds!.
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hole subbands. The avoided crossing takes place at ra
largek (ka.c.50.31 nm21). The shading indicates the pe
centage of the contribution of theLH1C1 subband states to
the norm of the numerical eigenvectors. The very light sh
ing of the bound exciton states confirms the small admixt
of the LH1C1 states in the ground state. The shading
darker in the vicinity of the avoided crossing. Small-sca
intensity variations are numerical artifacts due to the fin
k-space mesh. In the exciton continuum only the shadin
shown. TheLH1C1-1s resonance is clearly seen, starting
approximately 18 meV. The resonance is sharper at the
ginning and becomes more diffuse at the avoided crossin
lies slightly above the respective exciton continuum edge

f

FIG. 6. Enhancement of the exciton binding energyEb(Q) with
increasing center-of-mass momentumQ for GaAs/Al0.3Ga0.7As
QW’s of various widths. The arrows mark the position of the r
spectiveHH1-LH1 avoided crossing, from right to left for growing
QW width.

FIG. 7. Exciton dispersion for a 5-nm GaAs/Al0.3Ga0.7As QW.
The HH1C1 ~thick line! and LH1C1 ~dashed line! exciton con-
tinuum edges are also shown. The background shading indic
how strong the mixture of theLH1C1 exciton states to the numeri
cally calculated eigenstates~black corresponds to 100%! is. For
comparison, aLH1C1 ~dot-dashed line! exciton continuum edge
shifted to the energy of theLH1C1-1s state atQ50 has also been
drawn.



la-
he
e
d

,
n
a
io
fo

as
so
th

th
w

a
i
r

ab
ul
n
a
o

.

r

d

the
e

ence
an

his

or
the

hat
did

.
a

is-

ty

the
e
e
w
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B. Real-space calculations

For effectively two-dimensional structures with trans
tional symmetry, like the considered symmetric QW’s in t
axial approximation, and, maybe, for some highly idealiz
quantum wire structures, the real-space method presente
Sec. II B cannot compete with the one ink space. However
for realistic one-dimensional structures, like V-groove a
T-shaped quantum wires, this may be the only feasible
proach for calculating the exciton ground-state dispers
This is due to the high number of confining dimensions
the exciton~four in quantum wires; two for each particle!: an
expansion in a problem-adapted basis like the product b
of the one-particle eigenstates, for which one expects rea
able convergence, leads to four-dimensional integrals for
Coulomb interaction. An expansion in a basis where
Coulomb potential is simple will probably show a very slo
convergence with basis size.

The calculations reported here are mainly to be viewed
tests of the applicability of our real-space approach and
generalization to finite-element discretization. They are p
marily compared with results obtained with the more est
lishedk-space methods. We will therefore discuss the res
of the real-space calculations focusing on the converge
properties of the method. Further, wave-function features
better visualized in real space, in particular electron-hole c
relation in the growth direction.

For the real-space calculations at finiteQ, we used the
optimizedb0 obtained in the respectivek-space calculations
We could have equally well used some other procedure
find the effective Bohr radiusaB , e.g., a variational one, o

FIG. 8. Middle panel: Exciton dispersion for a 5-nm-wide QW
k-space results for the ground-state and some excited bound
continuum states~lines! and the exciton continuum~shaded area!
are presented, as well as some real-space results~diamonds!. Side
panels with logarithmic contour plots of the exciton probability d
tribution for each spin component~from top to bottom,mJ51

3
2 ,

1
1
2 ,2 1

2 , and2
3
2 ) are shown for characteristic exciton states~thick

lines! at Q50 ~left panel! and Qx50.5 nm21 ~right panel!. The
displayed area is in each direction 10 nm wide forzezh plots, and
about 10aB wide for rxry plots, respectively.
d
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we could also have fitted a 2D 1s-exciton function to the
in-plane probability distribution of the previously calculate
exciton ground state atQ50.

The Coulomb potential was discretized as described in
Appendix. The 3D 1s exciton in the four-dimensional spac
(rW ,ze ,zh) with me

re f50.0665m0 and mh
re f50.24m0, was

used as the reference ground state. The value of the refer
hole mass was taken from Fig. 11, discussed below, as
average value for the range of QW widths considered. T
gives a reasonable reference Bohr radius ofaB

re f512.2 nm;
this is nearly the correct value for the in-plane motion,
somewhat larger. In the confinement direction the size of
reference wave function is larger than the actual one~the
exciton is quenched in this direction! too. As discussed in the
Appendix, a reference Bohr radius as large as or somew
larger than the actual one gives good convergence. We

nd

FIG. 9. Ground-state exciton probability density in thezezh

plane for the main spin component (mJ51
3
2 ) at Q50 for a 5-nm-

wide QW, ~a! integrated over the in-plane relative coordinaterW

~same as the lower left corner of Fig. 8! and ~b! at rW 50. The
background lines mark the position of the QW interfaces.

FIG. 10. Logarithmic contour plots of the exciton probabili
distribution in thezezh plane for each spin component~in each
panel from top to bottommJ51

3
2 ,1 1

2 ,2 1
2 , and 2

3
2 ) for the

HH1C1-1s andLH1C1-1s excitons at some characteristicQ values
for a 20-nm QW. The displayed region in each direction is twice
QW width. The triangles~diamonds! show results of the real-spac
calculations for a dense~less dense! mesh. Lines and shading of th
background panel are thek-space results of Fig. 4. We do not sho
the HH2C1 continuum that lies partly in the displayed region.
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test calculations withaB
re f doubled andaB

re f halved, and
found a qualitatively similar behavior as in Fig. 12 in th

Appendix. The integration region was 120 nm wide in therW

directions and 30 nm~60 nm! wide in thez directions for the
5 nm~20 nm! QW, with a gridpoint distance of aboutaB/6 in
the in-plane directions.

The panel in the middle of Fig. 8 shows dispersions of
lowest exciton states~diamonds! from the real-space calcu
lation for a 5-nm-wide QW. The exciton dispersions calc
lated in momentum space are plotted as full curves for co
parison. The ground-state binding energy is not yet fu
converged: all real-space results were shifted approxima
1 meV to lower energies to match the ground state ener
at Q50 for both methods. Numerical tests show that t
gridpoint density in the growth direction ('0.6 points/nm! is
more critical than in the in-plane direction ('0.6 points/nm!.
The exciton continuum edge also lies 0.5 meV too high, a
the stronger confinement due to the Coulomb interaction
us expect a larger deviation for the exciton. Nevertheless,
ground-state relative dispersion,E g

X(Q)2E g
X(0), is con-

verged and reproduces thek-space results very well. We not
that in the case of parabolic one-particle dispersions, thi
an exact property of any numerical exciton dispersion. T
dispersions of the excited states are not reproduced that
This is mainly due to their larger spatial extension a
smaller energy separation from each other compared to
ground state.

The panels on the left and right in Fig. 8 show logarithm
contour plots of the exciton probability distribution for som
characteristic states. The probability distribution is either
tegrated overze and zh , and displayed in ther plane, or
integrated overr and displayed in thezezh plane for each
spin component separately. The numerically obtained w
functions are a linear combination of the two degenerate

FIG. 11. Exciton average kinetic mass in various approxim
tions and Bohr radiusaB vs well width L for a GaAs/Al0.3Ga0.7As
QW. The figure is discussed in Sec. V C.
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lutions with opposite parity@Eq. ~10!#. They are disentangled
according to parityP, and onlyP521 states are displayed

The left panel displaying the ground-state exciton atQ
50 illustrates itsHH1C1-1s character: the main spin com
ponent ismJ513/2 and has no nodes. The bulk of the e
citon is confined in the QW, but there is substantial pene
tion into the barrier, which is stronger for the lighter electr
~note the logarithmic plot!. At Q50.5 nm21 ~right panels!,
the ground-state exciton has stillHH1C121s character, as
seen in thek-space calculations,~Fig. 3!. This does not con-
tradict the strong mixture of heavy- and light-hole bulk sta
seen in the lower right panel of Fig. 8. Indeed, the exciton
built from hole subband states near (12b0)Q. This point
lies past theHH1-LH1 avoided crossing. Hence theHH1
subband states near this point are a strong mixture of he
and light-hole bulk band-edge states. The stronger pene
tion into the barrier of the light-hole component is aga
related to its smaller mass.

An interesting feature is the larger confinement of t
mJ51 3

2 component atQ50.5 nm21 compared toQ50.
This is a consequence of the enhanced exciton binding
ergy. Altogether, the plots demonstrate that the total cha
distribution in not altered much with increasing COM m
mentum; the somewhat stronger confinement of the he
hole is at least partly canceled by the larger penetration
the barrier of the light hole. Although not clearly resolve
here, the in-plane plots atQ50.5 nm21 show the slight de-
formation of the originally radially symmetric wave functio
that was seen in Fig. 1. Again these deformations partly c
cel each other in the sum over the spin components, and
in-plane charge distribution remains mainly symmetric. T
is more clearly seen for the first excited state atQ
50.5 nm21, which hasHH1C1-2py character~upper right
panel in Fig. 8!. It is the HH1C1-2p1 exciton, which is,

-

FIG. 12. The lowest eigenvalues calculated in real space of
ideal 3D exciton~left! and 2D exciton~right! of the Bohr radius
aB0, plotted vs grid density. Discretization of the Coulomb potent
as described in the Appendix with the reference Bohr radiusaB

re f :
aB0 ~thick line!, 2aB0 ~dashed line!, aB0/2 ~long dashed line!. For
the 2D case, results are also shown for the ground state, with
potential integrated analytically in every mesh cell@Eq. ~A3!# ~thin
line!, and for the ground state with the ‘‘naive discretization’’~dot-
dashed line!. The former curve is hard to distinguish from the on
for aB

re f52aB0.
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again, slightly lower in energy than theHH1C122p2 exci-
ton at Q50. At largeQ the character of theHH1C1 enve-
lope changes from 2p6 to 2py,x .

One does not expect a strong electron-hole correlatio
the growth direction for the 5-nm QW, which is considerab
narrower than the exciton Bohr radius. Here the confin
potentials are, on average, much stronger than the Coul
potential, and the wave function cannot relax in this dire
tion. Indeed, in Fig. 9~a! the probability density integrate
overr does not show much correlation: the contour lines
not elongated along the diagonal,ze5zh . However, some
correlation exists, as the plot of the cut atr50 in Fig. 9~b!
demonstrates. This weak correlation is not included in
k-space calculations, where only one conduction band
used. Its envelope does not depend onk and consequently the
ze coordinate can be separated@Eq. ~13!#.

In Fig. 10, results are displayed for a 20-nm-wide QW
Two set of points are shown for two different mesh siz
The energies of the ground-state exciton are almost c
verged for the denser mesh; the deviation from the result
the k-space calculations is only 0.2 meV atQ50.

The small, but noticeable,mJ511/2 component of the
ground-state excitonHH1C1-1s exciton in the lower left
panel corresponds to the substantial admixing of
LH1C1-d2 exciton already seen for the 15-nm QW in Fig.
The admixing is larger for wider QW’s due to the small
energy separation of the respective subbands. AtQ
50.5 nm21, it has mainly a bulk light-hole character (mJ

521/2). This, again, does not contradict theHH1C1-1s
character, since theHH1 subband has approximately 60
light-hole character beyond the avoided crossing with
LH1 subband. The first excited state atQ50.5 nm21 ~the
LH1C1-1s exciton! has LH1C1-1s character, even thoug
an additional node is seen in thezezh probability distribution
of the main spin component (mJ511/2). The envelopes o
the single-particle subband states at large enough in-p
momentum show more nodes than at theG point, due to the
coupling of in-plane and growth directions in the Lutting
Hamiltonian. This is one of the reasons why the expans
equations~13! and~14! give very good results with just two
subbands, while an expansions in the subband states atG
point18 needs more subbands for the same accuracy.

The probability distribution plots illustrate the almo
vanishing penetration into the barriers for the wide QW’s,
contrast to the narrower QW’s of Fig. 8. All panels show
clear orientation of the contour lines toward the diagon
ze5zh . This demonstrates the considerable electron-h
correlation in the growth direction for QW’s wider than on
Bohr radius. Still, the stronger correlation has little impact
the energies. Recall that in perturbation theory the first-or
correction to the wave function gives only a second-or
correction to the energy. This justifies the usual factoring
of the dependence on the growth direction for the mu
lighter electron.

This, however, is not the case for the much heavier h
It is a well known fact that the Coulomb coupling of the ho
subbands is considerable. Indeed, for the 20-nm-wide Q
neglecting the Coulomb coupling of theHH1C1 andLH1C1
excitons leads to an error in the ground-state binding ene
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larger than 10%. That is, the correlation of in-plane and c
finement directions for the hole is substantial.

For the 20-nm QW, a single calculation atQ
50.5 nm21 was done withb51 in order to check the rel-
evance of this parameter for the numerical accuracy in
real-space calculations. Indeed, the respective ground-
energy lies very far~43 meV! above the correct value.

C. Average exciton ground-state mass

In the process of determining the optimal choice of t
COM coordinate system, in Sec. III we derived an expr
sion for the kinetic mass of the ground-state exciton@Eqs.
~25! and ~26!#. Two assumptions were essential: first, t
Coulomb potential, i.e., the form factors, are a function
the in-plane momentum transfer; second, ansatz~23! is valid.
The numerical results of the previous sections support th
assumptions.

Together with the exciton dispersions in Fig. 4, for t
ground-state exciton we displayed a parabola with the e
ton massMg

X of Sec. III. This mass is obviously not the on
determined by the curvature of the exciton ground-state
persions atQ50. It is, rather, an average of the curvature
the ground-state dispersion in a region of size 1/aB . Indeed,
this is implied by Eqs.~25! and ~26!, and the observation
made in Sec. V A that the ground-state dispersion follo
closely the respective exciton continuum edge.

This exciton COM momentum region is the one importa
for exciton localization due to well width fluctuations, inte
face roughness or alloy fluctuations in QW’s.1 Indeed, the
exciton averages over smaller scale fluctuations due to
finite size and feels an effective disorder potential that
spatially correlated over the Bohr radiusaB .

The dependence of various expressions for the grou
state exciton mass on the QW widthL is displayed in Fig.
11. The conduction-band mass was taken mater
independentme

b,w50.0665, the shownL dependence come
solely from the valence band. Displayed are the masses
tained by:~i! describing the hole in the diagonal Luttinge
approximation 1/mh5Pw(g1

w1g2
w)1Pb(g1

b1g2
b), where

Pw,b denote the probability that the hole is in the well a
barrier material respectively~long dashed line!; ~ii ! taking as
the hole mass the subband curvature at theG point that is
known analytically33 ~dashed line!, ~iii ! using our semiana-
lytical expression@Eqs.~25! and~26!# for the mass with a 2D
1s-exciton function fitted to the envelope of theHH1C1
component~diamonds!; and ~iv! taking the average of the
curvature of the numerical exciton dispersion weighted w
the same function as~iii ! ~circles, the line is a guide to the
eye!.

The top curve displays the values for the Bohr radius t
we have used for the calculation of~iii ! and ~iv!. Arrows at
either sides of the lower part of Fig. 11 mark the mass in
diagonal approximation in the well and barrier bulk mate
als.

Figure 11 demonstrates the failure of the diagonal L
tinger approximation~i! to describe even theHH1 subband
curvatures at theG point due to the degeneracy of heavy- a
light-hole bands in the unstrained bulk. However, even
correct single-particle subband curvatures at theG point ~ii !
fail to describe accurately the curvature of the ground-s
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exciton dispersion atQ50. This is mainly due to the finite
extension of the exciton ink space that implies an averagin
of the subband dispersions over a region of approxima
1/aB near theG point, and partly to the Coulomb coupling t
higher subbands. Both effects tend to make the ground-s
exciton heavier. The mass derived from the curvature of
ground-state exciton atQ50 ~not shown! lies between
curves~ii ! and ~iii !.

The numerically obtained ‘‘best’’ mass values~iv! show a
quantitatively and qualitatively different behavior fro
curves~i! and ~ii !. For very narrow QW’s the subbands b
come flatter at theG point because of the larger penetrati
into the barriers where the exciton again becomes heavie
in models ~i! and ~ii !. But for large L the region of the
HH1-LH1 avoided crossing comes to a distance of appro
mately 1/aB to theG point, and the exciton, averaging ov
the flatter subband dispersion, becomes heavier.

The quality of our semianalytical result for the avera
exciton mass~iii ! has to be judged according to its deviatio
from the numerical average~iv!. The nonmonotonous behav
ior is clearly seen for mass~iii !, obtained using only theHH1
subband dispersion and the fitted Bohr radius. The mass
ues~iii ! are somewhat smaller (,10%) than those of curve
~iv!. This is due to the enhancement of the binding ene
for QÞ0 that yields larger average masses~iv! than one
would expect based on the one-particle subband dispers
and theQ50 ground-state exciton. Our semianalytical av
age ground-state exciton mass~iii ! reaches a minimum ap
proximately at the QW width where the maximum bindin
energy is reached.

The small differences between curves~iii ! and ~iv! dem-
onstrate the quality of our expression@Eqs.~25! and~26!# for
the average exciton ground-state mass. For this reason
and easy-to-use mass expression, only a good estimat
the in-plane Bohr radius and the dispersion of the involv
single-particle subbands is needed.

In the paper by Triques and Brum,18 average exciton ef-
fective masses were calculated that are relevant to the
mation process of excitons in two different scenarios. Th
masses are defined by parabolic fits within a relevant ene
range of~a! 5 meV, approximately half the exciton bindin
energy, in the case when the particles first relax and t
form an exciton of kinetic energy lower than the bindin
energy; and~b! 36 meV in the case when the exciton
formed very quickly and relaxes initially via optical-phono
emission, reaching energies below 36 meV, the energy of
GaAs LO phonon. These energy ranges translate toQ values
in general much larger than 1/aB . Therefore, these averag
masses should be larger than those of the present w
However, the values published in Ref. 18 for the 5-m
mass (0.2m0<Mg

X<0.3m0 for L<10 nm) are smaller than
ours for narrow QW’s. Our average masses of scenario~a!
do not fall below 0.3m0, and show a smooth minimum for
QW of width somewhere between 2 and 5 nm. This diff
ence can be traced back mainly to the inefficiency for narr
QW’s of their method involving an expansion in the subba
states at theG point, as already remarked by the autho
themselves. Indeed, for narrow QW’s the few states at thG
point cannot provide the needed flexibility to simulate sta
far away from theG point. This is substantiated by the lowe
left panel in Fig. 8, showing a ground-state exciton atQ
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50.5 nm21 for the 5-nm QW. Thezezh plots show a sub-
stantialmJ51 1

2 spin component. In an expansion of thezh
dependence in the hole subband states at theG point this
component would need anLH2 subband to be described e
ficiently. However, for the 5-nm QW onlyHH1 , LH1, and
HH2 subbands exist below the top of the barrier.

In Fig. 5~c!, we compare the results of Ref. 18 with ou
for a 5-nm QW. For this narrow QW, their exciton andHH1
subband dispersions are much steeper than ours. The dis
ancy is not due to the different parameters, as a compar
with the subband dispersion calculated exactly with
transfer-matrix method for the parameters of Ref. 18 dem
strates~diamonds!.

We already remarked, that different parts of the nonpa
bolic ground-state exciton dispersion are relevant for diff
ent physical processes, and we gave exciton localizatio1,4

and cooling of a nonthermal exciton population18 as ex-
amples. We would like to discuss two more possible exp
mental consequences of anharmonicities, using Fig. 4 a
illustration. First, an exciton population losing energy
acoustic phonon emission at low temperatures could exp
ence a bottleneck effect, i.e., an increased population of
k-space region near 0.15 nm21. Scattering closer to theG
point will be suppressed by the decreased density of fi
states. A second, more directly observable consequenc
the temperature dependence of the exciton lifetime. Eva
tion of the latter along the lines of Ref. 34 with the groun
state dispersion of Fig. 4 yields a superlinear increase of
exciton lifetime with temperature: The slope increases in
range from 5 to 20 K by a factor 2.2~not shown!.

VI. CONCLUDING REMARKS

In summary, we performedkW•pW multiband exciton disper-
sion calculations of high accuracy even for a very lar
COM momentum and narrow QW’s using the well-know
expansion in subband states. For the high quality of the
merical results, an optimized COM transformation was
sential. The optimized COM transformation is related to
average exciton kinetic mass for which a simple semianal
cal expression is derived. This eliminates, for many pract
purposes, the need to actually calculate the ground-state
persion. The ground-state exciton dispersion is found to
low the respective exciton continuum edge closely.

In addition, we demonstrated that multiband ground-st
exciton dispersion calculations are feasible in real space
ing a finite-difference scheme. Besides the essential o
mized COM transformation, a convenient ground-sta
adapted discretization of the Coulomb potential enhan
numerical accuracy. This method promises to give results
systems where the first one is not practicable. Its genera
tion for finite-element schemes is straightforward.
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APPENDIX: DISCRETIZATION OF THE COULOMB
POTENTIAL

In order to attain a simple discretization for the interacti
of some Hamilton operator, Glutsch, Chemla, a
Bechstedt30 proposed to discretize on the same mesh ano
operator whose ground state is analytically known with
same interaction, but with a simple kinetic term~massmre f).
We will call this the reference system. For illustration, co
sider a simple one-dimensional system with a kno
ground-state wave functiong(x) of energyEg

re f . The Schro¨-
dinger equation of the reference system discretized o
meshxi5 iDx reads

2
\2

2mre fDx
2 @g~xi 11!22g~xi !1g~xi 21!#1V~xi !g~xi !

5Eg
re fg~xi !, ~A1!

and yields the ground-state-adapted discretization

V~xi !5Eg
re f1

\2

2mre fDx
2

3
g~xi 11!22g~xi !1g~xi 21!

g~xi !
,

g~xi !Þ0. ~A2!

This procedure is very simple, easy to implement, and ch
to calculate, and for the reference system always gives
correct ground-state energy, regardless of how inapprop
the mesh is. In addition, no special handling for potenti
with integrable singularities is needed.

Using this discretization for a reference state simi
enough to the one sought, one can expect good converg
with mesh size. In order to check how the dependence of
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potential discretization on the reference state influences
results, we performed calculations of ideal 2D and 3D ex
tons using discretizations of the Coulomb potential based
reference excitonic ground states with various Bohr ra
Figure 12 shows the lowest numerical eigenvalues as a fu
tion of gridpoint density. One can see that the correct e
mation of the ‘‘unknown’’ ground state is not so critical:
reference Bohr radiusaB within a factor of 2 from the actua
one, aB0, still gives good results for the ground state f
reasonable mesh densities. Apparently, especially for the
case, it is better to chooseaB larger rather than smaller in
order to obtain good results for the excited states.

For the 2D case, we also show the results obtained w
the potential integrated analytically on each Cartesian m
element, using

EE dx dy

r
5y ln~x1Ax21y2!1x ln~y1Ax21y2!.

~A3!

This also gives a very good convergence with the mesh s
In Fig. 12, the result for the 2D ground state is included, t
is obtained if the potential is integrated analytically only
the origin, and everywhere else its value at each gridpo
~the ‘‘naive’’ discretization! is used. Since both discretiza
tions are the same at the origin, the difference does not o
nate from the divergence at this point. The superiority of
discretizations~A2! and ~A3! is obvious. We therefore ex
pect Eq.~A2! to yield good results even with not very den
meshes.

For the 3D case a similar expression to Eq.~A3! for the
Coulomb potential integrated analytically on a rectangu
box can be derived. However, we could not use this resu
attain an alternative discretization for the real-space QW
culations, because the natural mesh (rx ,ry ,ze ,zh) is not
Cartesian in the relative coordinateze2zh .
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