PHYSICAL REVIEW B VOLUME 61, NUMBER 16 15 APRIL 2000-I

Center-of-mass properties of the exciton in quantum wells
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We present high-quality numerical calculations of the exciton center-of-mass dispersion for
GaAs/ALGa _,As quantum wells of widths in the range 2—20 nm. Tﬁ}eﬁ coupling of the heavy- and
light-hole bands is taken fully into account. An optimized center-of-mass transformation enhances numerical
convergence. We derive an easy-to-use semianalytical expression for the exciton ground-state mass from an
ansatz for the exciton wave function at a finite momentum. It is checked against the numerical results and
found to give very good results. We also show multiband calculations of the exciton ground-state dispersion
using a finite-difference scheme in real space, which can be applied to rather general heterostructures.

[. INTRODUCTION COM dispersion for direct- and indirect-gap bulk semicon-
ductors. They demonstrated that the ambiguity in the choice
of the COM transformation can be used to achieve formal
plicity or optimal numerical convergence. For bulk

Excitons dominate the optical properties of low-
dimensional semiconductor heterostructures such as quant

wells (QW’s) and quantum wires. The relative motion of the GaAs, where the heavy- to light-hole mass ratio is large, the

constituent particles and their center-of-m&S®M) motion gy citon dispersions are found to be strongly anharmonic, and
det(_ermln(_a dn_‘ferent characteristics of the optical spectra andpow avoided crossings between different branches.
exciton kinetics. o . . In semiconductor QW's, the broken translational symme-

The exciton relative motion in QW’s is well studied and try in the growth direction leads to the splitting of heavy and
understood. The confinement of the carriers along one or twaght holes at thel' point, and subsequent formation of
spatial directions into regions comparable to or smaller thameavy- and light-hole excitons. Due to the large hole-to-
the bulk exciton size enhances the effect of the electron-holelectron mass ratio, the influence of the valence-band mixing
Coulomb interaction. This results in larger binding energieson the COM motion is greater than on the relative motion.
and oscillator strengths, and in an increased stability comThe exciton dispersions are, thus, strongly nonparabolic. Di-
pared to bulk excitons. Therefore, excitons are observed everct consequences of the exciton dispersion anharmonicity in
at room temperature in these structures. The effect of th®W, like slow indirect excitonic transitions due to camel-
reduced dimensionality is, as a rule, much larger on the exback-shaped dispersidns have been experimentally
citon ground state than on the excited states. observed

Details of the excitonic optical spectra of QW'’s related to  Multiband excitongi.e., with the full coupling of heavy-
the COM motion like, e.g., inhomogeneous broadening an@nd light-hole bands taken into accouhtive been theoreti-
Stokes shift between photoluminescefiee) and absorption cally and numerically thoroughly investigated at vanishing
are frequently used for structure characterization. These fe&OM momentumQ.®=2¢ The numerical effort for such cal-
tures are influenced by exciton localization and diffusion inculations remains reasonable due to the high symmetry of
the presence of interface or alloy disorde®ptical spectra this point. In contrast, only a few publications on multiband
and their temporal evolution are determined by exciton for-calculations of exciton COM dispersions in QW exist*®
mation processésand the subsequent energy and 3pi;¥  since these are very demanding. Methods for improving the
laxation dynamics. Spatially resolved spectroscopy techaumerical accuracy and reducing the effort of such calcula-
nigues like micro PL and near-field scanning opticaltions are clearly necessary. Particularly useful would be an
microscopy allow direct observation of exciton COM quan-easy-to-use approach that gives the main features of the ex-
tization in local potential minim&.All these phenomena are citon dispersion with at least moderate accuracy.
intimately related to the exciton COM properties, whereby The main focus of the present work lies on the exciton
different energy and COM momentum regions of the excitonground-state dispersion and its properties. A secondary goal
dispersion are probed in different processes. is to study the feasibility of numerical methods for calculat-

In many heterostructure systems of interest like, e.g.ing the exciton ground-state dispersion in more complicated
GaAs/ALAs, ., In,Ga_,As/InP, and ZnCgSe _,/ZnSe,  structures like V-groove quantum wiré%. Excitons in
the exciton can be described in the effective-mass approxicaAs/Al :Ga, -As symmetric QW’s are considere(®ec.
mation (Wannier excitoh due to its small bulk binding en- II). Two different methods for the dispersion calculation are
ergy (e.g., 4 meV for GaAk In this approximation, the de- used:(i) the extension foQ+0 of the well-knowr® expan-
generacy of the valence bands at the center of the Brillouision of the exciton in the product space of electron and hole
zone for materials of cubic or zinc-blende symmetry was firstsubband stateSec. Il A), and(ii) a finite-difference scheme
taken into account by Dresselhauble also pointed out the in real spacgSec. Il Bl with a ground-state-adapted Cou-
absence of a well-defined COM transformation due to thidomb discretizatiort® Method (i) gives high-quality numeri-
degeneracy. Altarelli and Lip&ricalculated the exciton cal results but is not feasible, e.g., for quantum wires of
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complicated geometry. With methdil) the ground-state ex- along the growth direction, and we use for the valence-band-

citon dispersion in a V-groove quantum wire is tractable. ltsedge states the same convention as in Ref. 25.

convergence properties are checked here against the resultsThe Hamilton operatoH [Eqg. (1)], acts within these ap-

of (i). Results for V-groove quantum wires will be presentedproximations on a four-component envelope function in the

elsewhere. product basis of the conduction- and valence-band edge
Improving on previous results,we address in detail the states{|3m;),|% + ).}, where the hole-spin projection at-

problem of the choice of the COM transformation, and intro-(ains values ofny=+2,+1,—1 and—2:

duce an optimized, ground-state-adapted COM transforma-

tion that greatly enhances the numerical accuracy and stabil- #2

ity of our results(Sec. Ill). As a by-product, a semianalytical He=| — m(é’ftj <9§e+ r?ie) +Vel|l, (2
expression for the average exciton ground-state mass suitable ©

for exciton localization problems is derivé&ec. 1\V). This P+ 0O r M 0

expression is of great practical importance since it gives re-

liable mass values for not too wide QW’s. The only neces- 2| £t P-2 0 M

sary ingredients are the lowest subband dispersion and a Hh:_z_mo Mt 0 P—Q -~ TV,l,

good estimate for the ground-state Bohr radius. T N
Finally, we discuss the results of the exciton dispersion 0 M —LT P+

calculations in momentuniSec. V A and real spacéSec. 3

V B). The results of our semianalytical expression for thewith

average exciton ground-state mass are compared to various

other mass expressions as well as with the numerical disper- P= yl(&§h+ a§h+ afh), 0= 72(&)2(h+ aﬁh— Zaﬁh),

sions separatel{Sec. V Q.

L= _iz\/§73(axh_if7yh)(92h-
Il. THEORETICAL MODEL

+
We consider the well-studied system of direct Wannier M=43 722 %

excitons in a single symmetric GaAsiAlGa, ;As type-I|
quantum well grown in thé100 direction. Many aspects of gnd
the presented results can be effortlessly extended to Wannier
excitons in other, more general heterostructures. I e 1

In the envelope-function approximation, the Wannier ex- Veoulle=rn)=—— == 1 (4)
citon is described by the Hamilton operator Ire=rl

2 2 H 2
(0f =5 =255 )

| is the 4x4 unity matrix. The material parameteys(z,),
He Har) + Ho(r) 4V F—F). 1 yz(zh), and.y3(zh) as well as .the offset¥,(z,), andV(ze)
e(Fe) FHn(Th) + Veoul(fe= ) @ are piecewise constant functionszfandz, . To ensure that
the kinetic operators remain Hermitian in the presence of

H. describe the material-dependent band structure of thf‘:nterfaces we use the symmetric substitutions

respective particles in the vicinity of tHé point, andV¢,,,
stands for the attractive Coulomb interaction. We choose th 2 -

- . T di— (0, y+ vd;)I2, 5 —(diydi+0:vd)I2, 1=X,y,Z
coordinate system as usual with tkeaxis in the growth Vo= (a7 +yd) Ve = 99+ 9 yd) y(5)

direction(100); re=(Xe,Ye,Ze), andr,=(Xp,Yn,2,) denote
the space coordinates of electron and hole, respectively. For The in-plane COM momentur@: —ih(ﬁe‘|+ﬁhl‘) is a

the (rjnaterlals_ '”V‘?'V?d’ tr:]e conduction bahnd IS pdarak_)ollcbto onstant of motion because the interaction téfindepends
good approximation; anharmonicities in the conduction bang,,y o, the relative distance of the two particles. Reflection

arise mainly through the interaction with the light and split- with respect to the centraly plane, o, , is also a symmetry

off valence bands which is small due to the relatively Iargeelement for symmetric QW's. Consequently, the exciton can

band gaps. The valence band is adequately described by tlag characterized by the pari§= = 1. Then the wave func-
Luttinger Hamiltonia" in the axial approximatiot?? . “c oo i

which takes into account explicitly the coupling of the

heavy- and light-hole bandd'§) but suppresses warping. ) e iQR
The coupling to the split-off I{3) band can be safely ne- WP, r,)=
glected for subband states with energies up to approximately

50 meV from the band edge because of the relatively large ©®)
energy separation. We neglect the effect of the different di
electric constant$no image charge effegts®>?3and also .
all effects that lead to a small spin-splitting-like lack of in- COM space coordinate canonically conjugateQo anda
version symmetry of the bulk matertalor the interfaced*  stands for the remaining quantum numbers related to the
as well as the exchange part of the Coulomb interaction. relative motion of the exciton.

The electron spin is irrelevant and will be given a fixed value The COM space coordinat in Eq. (6) is not unambigu-

of +1/2 in the present work. The quantization axis of theously defined because of the anharmonic dispersions of the
electron spin and of the hole angular momentiiis taken  constituent particle3 The COM transformation must be lin-

; ‘P%Pa(ze-zh PIEM)[33)e,
J

K/vhere,t;:r*e”—rﬁhH is the in-plane particle distancR, is the
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ear in order to preserve the canonical commutation relations A. Solution in k space
fo;r;pace and momentum operators, and in general it has the As a first step, we calculate the single-particle subband
states and their dispersions
R=Bre T (1=B)ry, k=—1AL(1=B)Ve = BVn]. @ HelNeke; + ) =&, (Ke)[Neke '+ 3), (12)
In the parabolic case, the free paramefeis taken as the Hp|nhky :Pn) = En, (Kn) [Nkkn s Pn)
scalar
using a transfer-matrix method as in Ref. 27. The respective
_ Me solutions in the axial approximation are of the forms
Bparab™ - 8
e h
) ) ) . eike~reH .
in order that .relatlve and COM motion completely decouple. NeKe ; =+ %> = 2_e|(71/2)9e§ (z)|3%3)e, (12
For bulk excitons8 has been considered in the literature as ™
a scalar, a tensor in real spacet even a spinot® We will
return later on to the problem of an appropriate choice for the eikn’ th ) .
COM coordinateR. [Nkn P = t)=— E Mg k(20 Emo), .

Taking into account the electron-spin degeneracy, each
exciton sltate is at Iﬁastbfourf%:d defger;ga;e | It cagbbedsh;)v;/ Egs. (11) and(12), n, , denote the subband indicdéah
in ?;T'zasr \;\r/]a){ z;\rs] as eeigR (_)rne (1:1 ﬂ? 0??“ ‘En S aes(keh 0en) the respective in-plane Wavevectors in polar
n Re at the opera Wi € rotation bym .55 rdinates angy, the hole parity undeo-xy

about thez axis, R,,, and time reversal, transforms be- n a second step, the exciton wave function for a given

tween the degenerate states of different parity and opposite

electron spm If one combines this operator with the Paulic©M momentumQ is expanded into

matrix a'y, which flips only the electron spin, we have, apart

from an overall phase. VIR =S [dR 683 Rlnakei + ) lnksipn).
= N . e''h
\PQ;_Pa(rEirh):(O’eR T)‘I’Q;Pa(rE!rh) (13)
-iQ-R with subband states of the two particles combined in such a
E qu Pa* (Ze,Zh,—p) way that the resulting exciton state has the required p&rity
and total momentun®:
X|3=my),|z+32)c C) ¢ Rt BG. kR . o
=k+BQ, kp=k—=(1-p)Q, P=pp(=1)"% "
Comparing Eqgs(6) and(9), we find (14)

The last relation reflects that the conduction subband enve-
lopes are everiodd) for odd (even subband index. Fixing
exciton parityP and electron spin eliminates any degeneracy
Q+0.

With expansion(13) and the relationg14), the exciton
chralinger equation takes the form

\PQ Pa(24,2y,p) = W22 (2e,20,—p). (10

That is, the(degeneratestate of reversed parity is obtained
by inverting the order of the spin components of the excitorft
envelope, complex conjugating, and changing the sign of th
in-plane relative coordinate. Thus changing the multiban
exciton parity with fixed electron spin in symmetric QW'’s

corresponds to flipping the hole spin in the single-band ex- &n (ke)+5nh(kh) EX(Q))(Pn nh( K)
citon case. In the axial approximation and f@r=ao, the A
different angular momentum components decodapland - QoL Ga, e,
T angiiar mom P plen + 2| dkVay(KKDeZR (K)=0, (15
changing the sign op in Eq. (10) just changes the sign of nin! nany e'h
two spin components leaving the other two unchanged; this ¢
no longer holds aQ#0. _ where EX(Q) denotes the energy dispersion of the exciton
We have solved eigenvalue problefh) in two ways state. The interaction
which will be discussed in turrii) in IZspace, expanding Eq.
(6) in the product space of the electron and hole subband 5 1 e 1 3
states® and (ii) in real space, using a finite-difference Vi (KK ) == =— — ——Fn'n'(K,K') (16)
scheme. The first method gives very accurate results, and is nany 2m € |k—K'| n:n:

used to reveal the main features of the exciton dispersion.

The second method is only suitable for the ground-state diss the in-plane two-dimensiondRD) Fourier transform of
persion, but promises to be feasible for more general strudhe 3D Coulomb potential modified due to the confinement
tures. It is validated by comparing its results with the onesdn the z direction. The latter is expressed through form fac-
from the first method. tors[with Eq. (14)]
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o .. . consideration$Eq. (10)], from a calculated state we can also
fngn,;(k,k’)=2 f J dzedzye Ik ”Ze_zhlfﬁe(ze) derive the second state of the doublet. For the largest matri-
NeNh m ces, we used a factor of 3 as a compromise between memory
. m demand and CPU time usage.
XE 7 (zn)énr(ZE) 1 (2Zn). (17 The matrix resulting from the discretization is highly
e ) nh structured. For minimizing the memory costs and still mak-
The above integrals are calculated analytically, since the subng full use of the vector registers, we construct the matrix-
band states obtained with the transfer-matrix method argector product using auxiliary, much smaller, matrices.
combinations of exponential and trigonometric functions. Since memory is critical, it is crucial for any real-space
The integrable singularity of Coulomb potentid6) at  approach to optimize the convergence of the relevant quan-

k=K' is taken care of by adding and subtracting in Bdy) tities with the mesh size. On the one hand, we optimize the

the analytically integrable term COM transformation, as will be discussed in Sec. Ill, thereby
improving the handling of the kinetic terms. On the other
.. e?1 1 1 hand, we use a ground-state-adapted discretization of the
C(kk')y=— PP N (18 Coulomb potentiéP which is discussed in more detail in the
€ 2m\ |k=k'|  maxkk’) Appendix. The idea behind this approach is to extract the
This gives a smooth “corrected” potentidEq. (16)] of discreti.zed intgraction from_ a refergncg system that has the
small absolute magnitude. same interaction but a simple kinetic term, and whose

To take advantage of the axial approximation, the excitorpround state is knqwn _an'alytically. If the ground state of the
envelope and the form factors are expanded into 2D anguldFfe€rence system is similar enough to the one of the real
momentum eigenstates eX}. The angular momentuinis system, good convergence is expected. Calculations on a

chosen for every subband combination such thab corre- ~ Parallel-vector machine of type CRAYJ932 reached perfor-
sponds to the respectivelike excitort® at Q=0. mances of 140MFlops/CPU, determined by the peak perfor-

The resulting set of coupled one-dimensional integrafMance of the CPU-specific basic linear algebra subroutines

equations is solved numerically for various values of the(BLAS) of 185 MFlops/CPU.

COM momentumQ. Results will be presented in Sec. V.
1. OPTIMIZED CENTER-OF-MASS TRANSFORMATION
B. Solution in real space
We demonstrated in Ref. 19 that calculations of the Ve rétum to the ambiguity in the COM transformation

multiband-exciton ground-state dispersion are also feasibleEd- (7)1, which is expressed "? the freed_om to choge
with a finite-difference scheme in real space. This method iér he. relevgnce op for_ accelerating .numerlc_al convergence
conceptually simple: the Schiimger equation corresponding " d_|sper_3|on calculations was realized quite early for_ bulk
to Eqs.(1)—(4) and (6) leads to a system of founumber of excitons in Ref. 6, where a scalgrwas optimized in a trial

spin componenjscoupled partial differential equations in the @nd error procedure. However, there has been no other algo-
. . > o rithm to take advantage of this freedom until recenlfge-
four-dimensional spacep(z.,z,). The resulting eigenvalue

. o fore that, there were just two publications where numerical
problem involves a large sparse complex Hermitian matri

: . . Amultiband exciton dispersion in quantum wells were calcu-
with a substantial numbeg#@4) of nonzero off-diagonals. In lated: in Ref. 17,8=1 (in the parabolic casen,=x) was

contrast to thek-space approach, the method can, in prin-taken in order for the form factord.7) to be independent of
ciple, be applied effortlessly to very general heterostructuresy and in Ref. 18 no particular choice or handling @fis
like quantum wires and quantum dots. The main drawback i$yentioned. In analytic expressions, usually the symmétric
the need for huge amounts of computer memory. Indeed, thgye parabolic casem,=m,,) value 3= 1/2 is takent®
dimension of the matrix to be diagonalized scales with the The effect of the3 choice becomes clear when one evalu-

fqurth power of the numt_)er of grid points per spe}tial dir_nen—ates Eq.(7) for two different valuesg, 8’ = 8+ 88 giving
sion. The most dense grid we used led to a matrix of dlmenﬂ, _ §+(5ﬂ)5, K =IZ—(5,8)(§. Clearly, g artificially

- _ — 7 -
sion Np =4X31X 31X 61X 61=1.4X10" (4 is the number moves part of the plane wave of the COM motion into the

of spin componenjs : . ; N
V\?e usedpthEARP’ACKZS package to calculate a few eigen- relative part of the excitoit6) or, equivalently, it shifts the

values and eigenvectors at the lower end of the spectrunf€lative part of the wavefunction ik space. A good choice
ARPACK is an efficient implementatidf of the implicitly re- ~ ©f B, as in the parabolic ca$eq. (8)], keeps the relative part
started Arnoldi method that can be viewed as a synthesis dif the exciton in real space as smooth as possible or, equiva-
the Arnoldi/Lanczos process with the implicitly shift€@R  lently, pins the relative part of the wave functionkrspace
algorithm?® Storage of theénonzerd matrix elements is not to the origin. This situation is illustrated in Fig. 1, where we
required, only a matrix-vector multiplication utility is plot the envelope of thélH;C;— 1s exciton in the single
needed. Multiple eigenvalues, as they occur in our case, offesubband approximation using the symmetric value gof
no additional problems. However, if one needs all the mem=1/2. This value ofg is indeed not optimal, as the large
bers of a multiplet the iteration subspace has to be choseshift demonstrates. Diamonds mark where the position of the
large enough. We find that an iteration subspace of five timeerigin would be for other values g8.

the number of the requested eigenvalrasher than the pro- In Ref. 19 we introduced a quasianalytical method for
posed factor of ZRef. 28] is usually sufficient. This matter determining the optimal choice of the scal@r which we
was of no concern for our problem, since using the symmetryriefly summarize here. It is motivated by the fact that in the
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0.3 - - Numerical results show that the masses obtained from Eg.
(22) tend to be too small. Nevertheless, the obtained values
—— Q=00nm™"! for B in Refs. 19 and 31 were quite reasonable because of the
— Q=05nm™" much heavier hole mass. If one actually calculates the con-
01 L i tributions of the higher exciton states Mg in Eq. (20)

(1Y
:II
11
{/
(4
Vs
L4
>

[which are dropped in Eq22)], one finds that the only im-
W portant correction comes from the coupling to the
- LH,C;-1s-like state. Taking this single correction term in
Eq. (20) into account gives practically the exact curvature of
=01 r T the exciton ground-state dispersionQ@t=0.

The above procedure is not the best for determining the
optimal value of3, as the importance of the coupling to
higher states demonstrates. It was inspired by the solution of

03 L L the exciton problem in real space. Let us now look at the
-0.3 -0.1 _1 .01 0.3 form of the exciton wave function foQ+ 0 in subband ex-

ke (nm ) pansion(13). The Q dependence enters the wave function

o because ofi) the need to appropriately combine the subband

FIG. 1. Logarithmic contour plots of the squaretH,C,-1s  gtates to obtain the rigl®, and(ii) through the need for the
exciton envelope itk space for a 5-nm GaAs/MGa-As QW at  envelope to adjust for the anharmonicities in the dispersions.
QXZOS nm71 p|0tted in a coordinate SyStem with the unOptImlzed In the perturbatlon approach descnbed above’ we trled to
value =1/2. From left to right, diamonds mark the origin of the finq 3 COM transformation that keeps thatire wave func-
shifted coordinate systerfist (1/2-8)Q,] for =0, Bo, 1/2,and oy unchanged as much as possible for sn@livalues.

1, with B, ('evaluated from Eq(24). The Q=0 envelope is plotted However, once the one-particle problem is solved,Ghee-
for comparison(dashed ling pendence due to the appropriate combination of the subband
parabolic case the correct COM transformation decouples th%iztﬁg\)/ e|sfue;< <E)tl|lc():rl1t l)\jvlgﬂ%wg é -[Q ?irr?;o;e,C%I?Aeitrirrgfgsrﬁ;ﬁfg;

relative motion and COM motion completely. A full decou- hat keeps thenvelopesis much unchanged as possible: that
pling is not possible for nonparabolic dispersions. We looke s, Eq.(13) with

for a choice ofg that decouples “as much as possible.” To
quantify this, in Eq(1) we inserted the generg@-dependent

3N
S
7
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[
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-
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COM transformation(7), separated th€-dependent terms @n@e?,?h(IZ):goﬂé%h(IZ). (23
from the rest,
H=HO®+H®(B)Q+H?®(B)Q? (19) The minimization of the energy with respect ® can be

done analytically in the limitQ—0. We easily obtain the
and viewed these as a perturbation of @we 0 exciton. Tak-  optimized value
ing into account the inversion symmetry of the Brillouin
zone, the kinetic mass of the ground-state excgas given

in second order perturbation theory by g f dk| @2;%h(|2)|2(Q,V*)25nh(lz)
e'h
e (@HVB)o)? L
—=(g|H® + 2 ————— (20 fdk 0 (K)[AQ-V)2 &y (K)+E, (K
2% (gHA(B)|g) a;g £X0)-EX0) (20 E |on, (K)[2(Q- V)&, (K) + &y, (K]

(24)

However, the exciton mass must not depengBoivaximiz-

ing the first order contribution in Eq20) and minimizing g expression also accounts for the dependeng@,an

this way the strictly positive contribution of the higher statesthe direction@ of the COM momentum in the case of

to the ground-state mass leads to the analytical result warped valence bands. We took into account the inversion

—(alHDI oV (alH® + H @ q). 21 symmetry of the Brillouin zone and assumed that the Cou-

p={glHr"19)/(glHe h19) @D lomb potential Egs.(16) and(17)] can be approximated as a

HE__,’Z% are S|mply the material—dependent coefficients of thefunction of the momentum transfer On|W(|2,|Z,)2V(|Z

2 2 - . - .
B°Q* terms when inserting Eq14) into thek-space repre-  _jy.j e we neglected an@ dependence of the€€oulomb
sentation Ofg the kinetic energies in Eq&) and (3),  potential energy of the ground state. This is expected to be a
respectively. good approximation since the Coulomb energy depends

_ The explicit form of Eq{(20), with contributions from the  g5je1y on the charge distribution, which should not be af-
higher states dropped argifrom Eq.(21), suggests that We acteq significantly by the in-plane motion. Indeed, it was
define COM-related, effective masseg, for an electron  ggtimated in Ref. 11 that the error introduced by neglecting

and a hole: the k dependence of the hole envelopes in Ef) is about
5 5%. Our assumption should lead to even smaller deviations.

1m*, =—(g|H®)|g) satisfying MX=m¥+m? . Figure 1 demonstrates the quality of expressipd). It
R & g € shows the ground-state envelope at a rather large value of

(22 Q=0.5 nm'!, even though Eq(24) was obtained in the



PRB 61 CENTER-OF-MASS PROPERTIES OF THE EXCITON IN ... 10 859

A the involved subband dispersions. The numerical calculation
10 | e 1 of subband dispersions is nowadays an easy pskvided
@“"‘“ / the I2~5 parameters are knownMoreover, especially for

narrow QW's, the envelope of théH;C, component of the
ground-state exciton is to a very good approximation similar
in shape to the ground-state of the 2D exciton:

N 2
ei(p)=\/—5 e ",
ma

B

I g ] . 2a
o 2 52 eRo(K) =\ [1+(agk)?] 22 (27)
Q (nm")

E (meV)

The LH;,C; component is quite small, e.g., 5% for the
FIG. 2. Dispersion of the ground-state exciton of a 5-nm-wide20-nm QW, and can be safely neglected in this context.

QW calculated with the same basis but for various valugs.dfhe  Therefore, only a good estimate for the effective Bohr radius
exciton continuum edgé&otted ling [Eq. (28)], is given for com- ag is needed to evaluate E(R6).

parison.

limit Q—0. The slight deformatiorithese are logarithmic V. RESULTS

plots) for large values o is due to the anharmonicity of the  \ye have calculated exciton dispersions both in real and
one-particle dispersions. momentum space for GaAs/AGa, ;As (001) QW’s of

The importance of a suitable choice of the COM transfor-,5i5us widths. The coupling of heavy and light holes was

mation f(_)r the _numerical convergence is illustrated in Fig. 2fu||y incorporated. The values of the material parametars
for the dispersion of thélH,C,-1s exciton of a 5-nm QW. v,, s, andm, were taken by linear interpolation from the

This has been calculated knspace for various values ¢f GaAs and AlAs values: the offset ratio wa¥. /V
) v Cc

with the same basisHH,C,,LH,C,,1=0,21,22). The  _q 6g/032, and the band gap in meV was takerE )
further B lies from the optimal valug8, (B8,=0.23 in this =1519+ 1040+ 470¢2, x being the Al content? For the

casg, the worse the results are. We also did calculationgyjg|ectric constant, we adopted- 12 for both well and bar-
where foreach Qvalue an optimal value o8 was obtained rier materials

by numerical variation. We observed deviations fr@giless

than 1% nearQ=0 and not larger than 10% a@ _

=0.5 nm ! even for the widest well20 nm). At largeQ the A. Subband expansion

B=0 (in the parabolic casm,= =) curve gives slightly bet- The nomenclature is as follows: the exciton in the sub-
ter results thand,, since theHH; subband dispersion be- band expansion has variongn, subband components with

comes more flat after the avoided crossing with the; corresponding envelopeus%ﬁh(lZ) [Eq. (13)]. In the axial

subband, but it gives considerably worse results at s@all . . -
g y @a approximation these envelopes haveQat 0 a definite an-

gular momentund, and will be denoted by 4 2s, 2p.,
3d.., and so on. Each exciton state at fifQewill be named
according to the main subband component of the correspond-
The analytical variation that led to Eq424) gives the ing state aQ=0. That is, speaking of thelH;C;-1s exci-
ground-state energy up to terms quadraticQnThe corre- ton means that a®=0 its main subband component is the

sponding groundstate kinetic malg; again has the form ~ HH,C, one with an 5 envelope. Similar to the single-
particle hole subband states, which can change their heavy-

My =mZ+mp, (25 or light-hole character away from tHe point, the envelope

with the COM-related effective masses for the electron ané)f the main 'subband componeqt or even .the main subband
hole defined as component itself can change with increasiQg To denote

the main subband component of a state at a given val(ﬁa of

x 1 S0 V2 A G2 R we will speak of the character of the state at this For
1/me,h:ﬁ E dklen, (K[A(Q-V)*Een(K). (26)  example, thedH,C,-2p, exciton has a&iH,C,-2p, char-
e acter atQ=0 and aLH,C;-1s character forQ>0.

IV. A SIMPLE ANALYTICAL FORMULA FOR THE
AVERAGE EXCITON KINETIC MASS

With these masses, the expressionggr [Eq. (24)], has the The exciton dispersions ik space are calculated as fol-
same form as in the parabolic ca@®. Equation(26) gives lows: For each QW, we first calculate the exciton spectrum
the correct results for the free particle case. at Q=0. Subsequently, a 2Dslexciton ground-state func-

We claim that this simple result will be of considerable tion [Eq. (27)] is fitted to theHH;C,; envelope. For the
practical importance. Equatiof26) is physically appealing: wider QW, also a two-dimensionald3exciton function is
it leads to a weighted average of the subband dispersionfitted to theLH;C; envelope. This fit is used, instead of the
Further, it is relatively simple to calculate: it requires only annumerical envelope, to evaluate the optimized COM trans-
approximate knowledge of tHg@= 0 exciton envelope and of formation[Eq. (24)] because it allows one to take advantage
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FIG. 3. On the right: Envelopes of the subband components of '.:lG' 4. Exciton dlspgrsmns, grOL_md_ statwick line), a_nd some
- . ) excited bound and continuum statésin line), calculated irk space
the ground-state exciton calculateckispace for a 15-nm-wide QW for a 15-nm-wide QW. The lightdark) gray shaded area marks the
at Q=0. On the left:HH;C; envelope &), fitted 2D 1s-exciton ) 9 gray

wave function(line), and square root of the total probability distri- Hr;' Jgé_ét:glg;():ig;u;?; g;?(ng?tzlrjrg. SA (gg)r a;:;azzfg)r it;e Is;/teerdage
bution| ¢(K)[2==, , ¢39, (K)? (circles. g 9 as- P

eMh (dashed ling An arrow marks the position of 44 (ag is the Bohr
radius.

of the analytically known derivatives of the fit function. The
value of B so calculated is used for tHg+0 calculations. e first hound exciton states as well as some of the con-

In Fig. 3, we display the envelopes of the components ofjn,ym states in a 15 nm wide QW. Zero of energy is the
the ground-state exciton in the subband expangian(13)]  gnset of thedH,C, continuum aQ=0. The Bohr radius
for a 15-nm-wide QW aQ=0. The coupling of the higher s the one obtained from the same fit of a 2B dxciton to
subbands is rather small: less than 3% for Iﬂhelql COM-  the envelope of thetH,C, component aQ=0, which was
ponent, and even less for the others. The parity and spiflseq to calculate the optimized,. The ground state is
selection rules for the Coulomb coupling of the subbands aﬁchl-ls. The next state i$1H,C,-2p, which turns into
the " point in symmetric QW's are obeyed, €.g., the admix-| .y ¢ 15 character at the avoided crossing. Tte;C,-1s
ture of theLH,C, state vanishes at the point since the  gyiton is the fourth excited state &=0, and shows a
Coulomb potential is spin diagonal, and e, andLH; g pstantial mixing with theHH,C,-3d, exciton. The
subband states are pure heavy- and light-hole states, respggp ,C1-2p. exciton has aQ=0 a slightly lower energy

tively. TheHH,C, envelope is very well approximated by a 4,1 theHH,C,-2p_ state(the third state a@=0) because
2D 1s-exciton function. Deviations are mainly located at theit couples to theLH;C;-1s outside of thel" point.

vicinity of the HH;-LH,; avoided crossing of the hole- k718
subband dispersionghere k,=0.13 nm). The total in- ¢ highly nonparabolic, much like the hole subband disper-
plane probability distribution follows the form of E427)  gjons This is not surprising, since the dispersion of the con-
even better than thelH,C, envelope alone; the coupling 10 qction subband is parabolic and the hole mass is much
the higher subbands allows the exciton to relax further. Thisbarger than the electron mass. Furthermore, it was claimed in
again, supports the notion that the subband mixing has littlyef 18 that exciton dispersion follows, in a good approxi-

influence on the charge distribution. mation, the hole subband dispersion. Although this is cer-

The calculations irk space presented in the following (5inly true in the present case due to the parabolic electron
take into account only the two lowest hole subbandin{  gispersion and the small electron to hole mass ratio, the ex-

=HH,C; andLH,C,). Inclusion of higher subbands does cjton dispersion is in principle @awo-particle quantity. In

not enhance the binding energy of the ground-state excitofyct the dispersion of the ground-state exciton follows even
considerably. For the angular decomposition of the envelopg,gre closely, in the studied cases within 1 meV, the

components only the, p-, d, (I1=0,£1,2) components i o . = . i
for HH,C, ands, p., d_ (1=0+1,—2) components for electron-hole-pair continuum eddgg , (Q). The latter is de

LH,C, were considered. Due to the optimized choice of thefined by

COM coordinate systerfEq. (24)], these few angular mo- R _ R

mentum components are sufficient to describe the Enenh(Q)= min {Sne(ke)+8nh(kh)}, (28

HH,C;-1s and LH,C;-1s dispersions excellently over the Ket+kn=Q

whole range of COM momentum values consideré}l,

<0.5 nni L the p components account mainly for the de- and represents the minimal kinetic energy of a free electron-

formation of the envelope, and tdecomponents take care of hole pair for a given subband combinatiogn;, and a given

the Coulomb coupling to higher states. Q. In the independent-subband approximation, this coincides
In Fig. 4, we show the dispersion calculateckispace of  with the exciton continuum edgé-igures %a) and 3b) di-

As reported in earlier wor exciton COM dispersions
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FIG. 5. (a) and(b) Comparison of the dispersion &fH,C;-1s
and LH,C;-1s (20-nm QW only excitons(thick) with appropri-
ately shifted respective exciton continuum eddeshed and un-
derlying hole-subband dispersioridot-dashed linge for two
GaAs/Al Ga As QW's. (c) Comparison of our resultéblack)
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FIG. 6. Enhancement of the exciton binding enegyQ) with
increasing center-of-mass momentufh for GaAs/Al Ga -As
QW’s of various widths. The arrows mark the position of the re-
spectiveHH -LH, avoided crossing, from right to left for growing
QW width.

with those of Ref. 18gray) for the 5-nm QW(shifted to match at
Q=0). The exactHH; subband dispersion for the parameters of

Ref. 18 is plotteddiamonds. hole subbands. The avoided crossing takes place at rather

largek (k. =0.31 nm'). The shading indicates the per-
rectly compare for narrow and wide QW's the exciton centage of the contribytion _of tHeH ;C; subband s'Fates to
ground-state dispersion and the appropriately shifted excitof'® norm of the numerical eigenvectors. The very light shad-
continuum edge. Also shown is the respective hole disperid of the bound exciton states confirms the small admixture
sion. The latter always lies above the shifted exciton conof the LH;C; states in the ground state. The shading is
tinuum edge, since Eq(28) implies & (@)<5 (0) darker in the vicinity of the avoided crossing. Small-scale
ge, q p nenp{ &) =¢€n, ; . o . . -

- intensity variations are numerical artifacts due to the finite
+5“h(Q)' . _ o . k-space mesh. In the exciton continuum only the shading is
The exciton ground-state dispersion is found to lie sysshown. TheLH,C;-1s resonance is clearly seen, starting at
tematically below the .sh|fteq exciton continuum edge, i.e.approximately 18 meV. The resonance is sharper at the be-
the ground-state exciton binding energy becomes largeginning and becomes more diffuse at the avoided crossing. It

away fromQ=0. This can be understood based on the facjjes slightly above the respective exciton continuum edge.
that for Q# 0 the ground-state excitdiEgs. (13) and (14)],

is built from hole subband states around-(8,)Q. Due to

the flatter subband dispersion around this point, the hole
mass becomes larger and the wave function can better adjust
to the potential. The.H,C;-1s exciton in the 20-nm-wide
QW [Fig. 5b)], is well separated from the spectrum of the
HH,C, exciton. We observe that at sm&lthe LH,C;-1s
dispersion lies above the respective shifted exciton con-
tinuum edge. Indeed, theH,; subband shows a negative
mass at thd" point which becomes positive near the avoided
crossing. Hence the respective exciton has to pay with extra
kinetic energy in order to achieve a small COM momentum,
and its binding energy is decreased. For larQevalues it
gains again some binding energy.

The enhancement of the ground-state binding energy for
Q#0 is particularly large when the exciton is built from hole
subband states around the avoided crossings 4JQ
=K, . This is demonstrated in Fig. 6 for QW of various

widths. Peaks are seen at the respective location of the FIG. 7. Exciton dispersion for a 5-nm GaAsjAGa As QW.
HH;-LH, avoided crossing, marked by arrows. The en-the yp,c, (thick line) and LH,C, (dashed ling exciton con-
hancement of the ground-state binding energy W@tts less  inuum edges are also shown. The background shading indicates
than 15% and is generally larger for wider QW. how strong the mixture of theH,C, exciton states to the numeri-

In Fig. 7, we plot the exciton dispersion of a 5-nm QW. cally calculated eigenstatgblack corresponds to 100%s. For
The exciton dispersions, like the hole subband dispersiongomparison, aLH,C; (dot-dashed lineexciton continuum edge
are less anharmonic in the much narrower QW than for thehifted to the energy of theH,C;-1s state atQ=0 has also been
QW of Fig. 4 because of the larger energy separation of therawn.
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(a) (b)

|

FIG. 9. Ground-state exciton probability density in thg,
plane for the main spin componemh{= + %) atQ=0 for a 5-nm-
wide QW, (a) integrated over the in-plane relative coordianite

= (same as the lower left corner of Fig) &nd (b) at p=0. The
PN background lines mark the position of the QW interfaces.
® | o p

@ we could also have fitted a 2Dsdexciton function to the
@ | - in-plane probability distribution of the previously calculated
exciton ground state @=0.
FIG. 8. Middle panel: Exciton dispersion for a 5-nm-wide QW.  The Coulomb potential was discretized as described in the
k-space results for the ground-state and some excited bound amgppendix. The 3D % exciton in the four-dimensional space

continuum stateglines) and the exciton continuurntshaded area (E,Ze,zh) with mref:0_0665no and mLEf=0.24no, Was

. . e
are presented’ as We.” as some real-space re(w_ t510n03, .S.'de . used as the reference ground state. The value of the reference
panels with logarithmic contour plots of the exciton probability dis-

oo . 3 hole mass was taken from Fig. 11, discussed below, as an
tribution for each spin componeififrom top to bottom,m;= + 3, . - )
11 3 - ) . average value for the range of QW widths considered. This
+35,— 3, and—3) are shown for characteristic exciton statsck . bl f Bohr radi @f— 122 .
lines) at Q=0 (left pane) and Q,=0.5 nni'* (right panel. The gIves a reasonable reterence bonr radiusipr=Ls.2 nm,

displayed area is in each direction 10 nm wide #gz,, plots, and this is nearly the correct val_ue for the_ in-plane m(_)tion, or
about 1@ wide for pyp, plots, respectively. somewhat larger. In the confinement direction the size of the

reference wave function is larger than the actual ¢he
exciton is quenched in this directiptoo. As discussed in the
Appendix, a reference Bohr radius as large as or somewhat
For effectively two-dimensional structures with transla-larger than the actual one gives good convergence. We did
tional symmetry, like the considered symmetric QW’s in the
axial approximation, and, maybe, for some highly idealized[ |
guantum wire structures, the real-space method presented
Sec. Il B cannot compete with the onekrspace. However, 0.0 0.1
for realistic one-dimensional structures, like V-groove and
T-shaped quantum wires, this may be the only feasible ap
proach for calculating the exciton ground-state dispersion
This is due to the high number of confining dimensions for
the exciton(four in quantum wires; two for each parti¢ien

expansion in a problem-adapted basis like the product basi — - - ///
<
//

B. Real-space calculations

&8

= |4
o

E (meV)

of the one-particle eigenstates, for which one expects reasor| — |
able convergence, leads to four-dimensional integrals for the
Coulomb interaction. An expansion in a basis where the|| _ |
Coulomb potential is simple will probably show a very slow | = T
convergence with basis size. '
The calculations reported here are mainly to be viewed ag °
tests of the applicability of our real-space approach and itg s - s 1 40
generalization to finite-element discretization. They are pri- &)
marily compared with results obtained with the more estab-——
lishedk-space methods. We will therefore discuss the results 5 10 Logarithmic contour plots of the exciton probability

of the real-space calculations focusing on the convergencgsribution in thez,z, plane for each spin componefih each

properties of the method. Further, wave-function features @rBanel from top to bottorm,=+32,+%,—% and —32) for the

bette_r V|_sual|zed in real space, in particular electron-hole COTHH,C,-1s andLH,C,-1s excitons at some characteris@ovalues
relation in the growth direction. for a 20-nm QW. The displayed region in each direction is twice the

For the real-space calculations at fin@ we used the  Qw width. The trianglegdiamonds show results of the real-space
optimized 3, obtained in the respectidespace calculations. calculations for a densigess densemesh. Lines and shading of the
We could have equally well used some other procedure t@ackground panel are ttkespace results of Fig. 4. We do not show
find the effective Bohr radiuag, e.g., a variational one, or the HH,C; continuum that lies partly in the displayed region.
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_______________ (l)______‘ FIG. 12. The lowest eigenvalues calculated in real space of the
ideal 3D exciton(left) and 2D exciton(right) of the Bohr radius
P agg, plotted vs grid density. Discretization of the Coulomb potential

5 10 15 as described in the Appendix with the reference Bohr radfis:
L(nm) ago (thick line), 2agy (dashed ling agy/2 (long dashed ling For
the 2D case, results are also shown for the ground state, with the

FIG. 11. Exciton average kinetic mass in various approxima- 1 . . .
. ; . potential integrated analytically in every mesh ¢&lty. (A3)] (thin
tions and Bohr radiugg vs well widthL for a GaAs/Ab G A line), and for the ground state with the “naive discretizatiofubt-

QW. The figure is discussed in Sec. V C. dashed ling The former curve is hard to distinguish from the one

ref__
for ag’'=2ag.

test calculations withal*" doubled andaX’ halved, and

found a qualitatively similar behavior as in Fig. 12 in the |utions with opposite parityEq. (10)]. They are disentangled
Appendix. The integration region was 120 nm wide in the according to parity®, and onlyP= —1 states are displayed.
directions and 30 nnt60 nm wide in thez directions for the The left panel displaying the ground-state excitonQat
5 nm (20 nm QW, with a gridpoint distance of aboag/6 in =0 illustrates itsHH,C;-1s character: the main spin com-
the in-plane directions. ponent ism;= +3/2 and has no nodes. The bulk of the ex-
The panel in the middle of Fig. 8 shows dispersions of thefiton is confined in the QW, but there is substantial penetra-
lowest exciton stateédiamonds from the real-space calcu- ton into the barrier, which is stronger fo['tlhe_l|ghter electron
lation for a 5-nm-wide QW. The exciton dispersions calcu-(Note the logarithmic plot At Q=0.5 nm * (right panels,
lated in momentum space are plotted as full curves for comthe ground-state exciton has stliH,C, —1s character, as

parison. The ground-state binding energy is not yet fully>>*>" _ .
converged: all real-space results were shifted approximatel radlcp the strong mixture of heavy— and light-hole hulk states
een in the lower right panel of Fig. 8. Indeed, the exciton is

1 meV to lower energies to match the ground state energies . . .
at Q=0 for both methods. Numerical tests show that the”g!t;;ZTtEgLeHSUEEangvzfggs cnr‘ca)zgi—ég())l-lQénzglstH%?—Iim

grldpom_t_densny n the growth d|re_ct|orat(0.6 pom_ts/nn) IS" subband states near this point are a strong mixture of heavy-
more critical than in the in-plane directior=Q.6 points/nm and light-hole bulk band-edge states. The stronger penetra-

The exciton continuum edge also lies 0.5 meV too high, anion into the barrier of the light-hole component is again
the stronger confinement due to the Coulomb interaction letgs|ated to its smaller mass.

us expect a larger deviation for the exciton. Nevertheless, the an interesting feature is the larger confinement of the
ground-state relative dispersio;;(Q)—£5(0), is con-  m;=+2% component aQ=0.5 nm'* compared t0Q=0.
verged and reproduces tkespace results very well. We note This is a consequence of the enhanced exciton binding en-
that in the case of parabolic one-particle dispersions, this iergy. Altogether, the plots demonstrate that the total charge
an exact property of any numerical exciton dispersion. Thalistribution in not altered much with increasing COM mo-
dispersions of the excited states are not reproduced that wethentum; the somewhat stronger confinement of the heavy
This is mainly due to their larger spatial extension andhole is at least partly canceled by the larger penetration into
smaller energy separation from each other compared to tHése barrier of the light hole. Although not clearly resolved
ground state. here, the in-plane plots =0.5 nmi ! show the slight de-
The panels on the left and right in Fig. 8 show logarithmicformation of the originally radially symmetric wave function
contour plots of the exciton probability distribution for some that was seen in Fig. 1. Again these deformations partly can-
characteristic states. The probability distribution is either in-cel each other in the sum over the spin components, and the
tegrated overz, and z,, and displayed in the plane, or in-plane charge distribution remains mainly symmetric. This
integrated ovep and displayed in the.z, plane for each is more clearly seen for the first excited state @t
spin component separately. The numerically obtained wave=0.5 nmi , which hasHH,C,-2p, character(upper right
functions are a linear combination of the two degenerate sgpanel in Fig. 8. It is the HH,C;-2p, exciton, which is,

seen in thek-space calculationgFig. 3). This does not con-



10 864 A. SIARKOS, E. RUNGE, AND R. ZIMMERMANN PRB 61

again, slightly lower in energy than théH,C,—2p_ exci- larger than 10%. That is, the correlation of in-plane and con-
ton atQ=0. At large Q the character of thelH,C, enve- finement directions for the hole is substantial.
lope changes from 2. to 2p, . For the 20-nm QW, a single calculation af

One does not expect a strong electron-hole correlation irF0.5 nm " was done with3=1 in order to check the rel-
the growth direction for the 5-nm QW, which is considerably €vance of this parameter for the numerical accuracy in the
narrower than the exciton Bohr radius. Here the confining€al-space calculations. Indeed, the respective ground-state
potentials are, on average, much stronger than the Coulonfi'€rgy lies very fat43 me\) above the correct value.
potential, and the wave function cannot relax in this direc-
tion. Indeed, in Fig. @) the probability density integrated C. Average exciton ground-state mass
over p does not show much correlation: the contour lines are
not elongated along the diagonal,=z,. However, some
correlation exists, as the plot of the cut@t 0 in Fig. 9b)

In the process of determining the optimal choice of the
COM coordinate system, in Sec. Il we derived an expres-
sion for the kinetic mass of the ground-state exciffgs.

Eemonstratles.l T.h's We?]k correllat|on IS nodt mglud(;d '3 Our25) and (26)]. Two assumptions were essential: first, the
-space calculations, where only one conduction band Wag,jomp potential, i.e., the form factors, are a function of

used. Its envelope does not dependk@md consequently the the in-plane momentum transfer; second, an&28yis valid.

Z, coordinate can be separatgeh]. (13)]. _ The numerical results of the previous sections support these
In Fig. 10, results are displayed for a 20-nm-wide QW. assumptions.

Two set of points are shown for two different mesh sizes. Together with the exciton dispersions in Fig. 4, for the

The energies of the ground-state exciton are almost corground-state exciton we displayed a parabola with the exci-
verged for the denser mesh; the deviation from the results abn massvX of Sec. IIl. This mass is obviously not the one
the k-space calculations is only 0.2 meV@t=0. determined by the curvature of the exciton ground-state dis-
The small, but noticeablem;= + 1/2 component of the persions aQ=0. It is, rather, an average of the curvature of
ground-state excitotHH,C;-1s exciton in the lower left the ground-state dispersion in a region of sizezl/Indeed,
panel corresponds to the substantial admixing of thehis is implied by Eqs(25) and (26), and the observation
LH,C;-d_ exciton already seen for the 15-nm QW in Fig. 3. made in Sec. V A that the ground-state dispersion follows
The admixing is larger for wider QW’s due to the smaller closely the respective exciton continuum edge.
energy separation of the respective subbands. G\t This exciton COM momentum region is the one important
=0.5 nn'%, it has mainly a bulk light-hole charactemq  for exciton localization due to WQII Width fluctuations, inter-
— —1/2). This, again, does not contradict théH,C,-1s  face roughness or alloy fluctuations in QV\]/’$F1deed, the
character, since thélH, subband has approximately 60% exciton averages over smaller_ scal_e fluctuatlons_due to its
light-hole character beyond the avoided crossing with thémltg size and feels an effective d|s_0rder potential that is
LH, subband. The first excited state @=0.5 nm ! (the spatially correlated over th? Bohr radlag_.
LH,C;-1s exciton hasLH;C;-1s character, even though The dgpendence of various expressions for th_e g_round-
an additional node is seen in thgz,, probability distribution state exciton mass on the QW widthis displayed in Fig.

: . 11. The conduction-band mass was taken material-
of the main spin componentr(;= + 1/2). The envelopes of independentm?"'=0.0665, the showi. dependence comes
the single-particle subband states at large enough in-pla © '

h des th heoint. d h nseolely from the valence band. Displayed are the masses ob-
momentum show more nodes than at theoint, due to the  ;ha4 py: (i) describing the hole in the diagonal Luttinger
coupling of in-plane and growth directions in the Luttinger

LT o °lapproximation  Th, =P, (y"+ v%) + P, (Y’ +72), where
Hamiltonian. This is one of the reasons why the expansio PP n=Pu(71 F72) + Po(71+72)

) ) e rbwlb denote the probability that the hole is in the well and
equations(13) and(14) give very good results with just WO 3 rrer material respectivelyong dashed lin (i) taking as

S”pb%nds’ while an expansions in the subband states Bt thejhe hole mass the subband curvature atEhpoint that is
point'® needs more subbands for the same accuracy. known analytically® (dashed ling (iii) using our semiana-
The probability distribution plots illustrate the almost |ytical expressioiEgs.(25) and(26)] for the mass with a 2D
vanishing penetration into the barriers for the wide QW's, in1s-exciton function fitted to the envelope of the¢H,C,
contrast to the narrower QW's of Flg 8. All panels show acomponent(diamond$; and (iv) taking the average of the
clear orientation of the contour lines toward the diagonalcurvature of the numerical exciton dispersion weighted with
z,=z,. This demonstrates the considerable electron-hol¢he same function aii) (circles, the line is a guide to the
correlation in the growth direction for QW'’s wider than one eye.
Bohr radius. Still, the stronger correlation has little impact on  The top curve displays the values for the Bohr radius that
the energies. Recall that in perturbation theory the first-ordewe have used for the calculation 6ii ) and (iv). Arrows at
correction to the wave function gives only a second-ordeeither sides of the lower part of Fig. 11 mark the mass in the
correction to the energy. This justifies the usual factoring outliagonal approximation in the well and barrier bulk materi-
of the dependence on the growth direction for the muctels.
lighter electron. Figure 11 demonstrates the failure of the diagonal Lut-
This, however, is not the case for the much heavier holetinger approximatior(i) to describe even thelH, subband
It is a well known fact that the Coulomb coupling of the hole curvatures at th& point due to the degeneracy of heavy- and
subbands is considerable. Indeed, for the 20-nm-wide QWijght-hole bands in the unstrained bulk. However, even the
neglecting the Coulomb coupling of thh¢H,C,; andLH;C;  correct single-particle subband curvatures atlthgoint (ii)
excitons leads to an error in the ground-state binding energfail to describe accurately the curvature of the ground-state
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exciton dispersion a@=0. This is mainly due to the finite =0.5 nm ! for the 5-nm QW. Thez.z, plots show a sub-
extension of the exciton ik space that implies an averaging stantialm,=+ 3 spin component. In an expansion of the
of the subband dispersions over a region of approximatelglependence in the hole subband states atl'theoint this
1/ag near thel” point, and partly to the Coulomb coupling to component would need drH, subband to be described ef-
higher subbands. Both effects tend to make the ground-stafeeiently. However, for the 5-nm QW onlAH,, LH,, and
exciton heavier. The mass derived from the curvature of thélH, subbands exist below the top of the barrier.
ground-state exciton aQ=0 (not shown lies between In Fig. 5(c), we compare the results of Ref. 18 with ours
curves(ii) and (iii ). for a 5-nm QW. For this narrow QW, their exciton aHd ;

The numerically obtained “best” mass valu@g) show a  subband dispersions are much steeper than ours. The discrep-
guantitatively and qualitatively different behavior from ancy is not due to the different parameters, as a comparison
curves(i) and (ii). For very narrow QW's the subbands be- with the subband dispersion calculated exactly with the
come flatter at thd" point because of the larger penetration transfer-matrix method for the parameters of Ref. 18 demon-
into the barriers where the exciton again becomes heavier, &rates(diamonds.
in models (i) and (ii). But for large L the region of the We already remarked, that different parts of the nonpara-
HH;-LH, avoided crossing comes to a distance of approxibolic ground-state exciton dispersion are relevant for differ-
mately 145 to thel point, and the exciton, averaging over ent physical processes, and we gave exciton localiZation
the flatter subband dispersion, becomes heavier. and cooling of a nonthermal exciton populafibras ex-

The quality of our semianalytical result for the averageamples. We would like to discuss two more possible experi-
exciton massiii ) has to be judged according to its deviation mental consequences of anharmonicities, using Fig. 4 as an
from the numerical averagé ). The nonmonotonous behav- illustration. First, an exciton population losing energy by
ior is clearly seen for madi), obtained using only thelH;  acoustic phonon emission at low temperatures could experi-
subband dispersion and the fitted Bohr radius. The mass vagénce a bottleneck effect, i.e., an increased population of the
ues(iii) are somewhat smaller{10%) than those of curve k-space region near 0.15 nrh Scattering closer to thE
(iv). This is due to the enhancement of the binding energyoint will be suppressed by the decreased density of final
for Q#0 that yields larger average mass@s than one states. A second, more directly observable consequence is
would expect based on the one-particle subband dispersioide temperature dependence of the exciton lifetime. Evalua-
and theQ=0 ground-state exciton. Our semianalytical aver-tion of the latter along the lines of Ref. 34 with the ground-
age ground-state exciton ma@s) reaches a minimum ap- State dispersion of Fig. 4 yields a superlinear increase of the
proximately at the QW width where the maximum binding exciton lifetime with temperature: The slope increases in the
energy is reached. range from 5 to 20 K by a factor 2.@ot shown.

The small differences between curv@s) and (iv) dem-
onstrate the quality of our expressifdags.(25) and(26)] for
the average exciton ground-state mass. For this reasonable VI. CONCLUDING REMARKS
and easy-to-use mass expression, only a good estimate for

the in-plane Bohr radius and the dispersion of the involved . In summary, we performeld- p multiband exciton disper-
single-particle subbands is needed. sion calculations of high accuracy even for a very large

In the paper by Triques and Bruthaverage exciton ef- COM momentum and narrow QW'’s using the well-known

fective masses were calculated that are relevant to the fop_xpansilon ml subband §ta}tesc1. For,\';he h'g? quallyy of the nu-
mation process of excitons in two different scenarios. Thes@qer'_call _:_?]SU ts, an ogtlcr:ncl)z& co f tran_s OfT“a“‘l’” v(\;as es-
masses are defined by parabolic fits within a relevant energyential- The optimize transtormation Is refated to an

range of(a) 5 meV, approximately half the exciton binding verage exc;itor_1 kine_tic mass for WhiCh a simple semiana[yti-
energy, in the case when the particles first relax and theﬁal expression is derived. This eliminates, for many practical

form an exciton of kinetic energy lower than the binding PUTPOSes, the need to actually' calculate the ground-state dis-
energy; and(b) 36 meV in the case when the exciton is PErsion- The ground-state exciton dispersion is found to fol-

formed very quickly and relaxes initially via optical-phonon low the respective exciton continuum edg_e closely.

emission, reaching energies below 36 meV, the energy of the 'f‘ add|_t|on, we demonstyated that mqltlband ground-state
GaAs LO phonon. These energy ranges transla@ values exciton dispersion calculations are feasible in real space us-
in general much larger thanay . Therefore, these average ing a finite-difference scheme. Besides the essential opti-

masses should be larger than those of the present Worm'zeOI CO_M transformatlon, a_convenient g_round-state—
However, the values published in Ref. 18 for the 5_mevadapted discretization of the Coulomb potential enhances

mass (0.8,=M3=0.3my for L=10 nm) are smaller than (5 08EE O IER e TRE o e 0 0 eneraliza
ours for narrow QW'’s. Our average masses of scen@io y b 1159

do not fall below 0.8, and show a smooth minimum for a tion for finite-element schemes is straightforward.
QW of width somewhere between 2 and 5 nm. This differ-
ence can be traced back mainly to the inefficiency for narrow
QW's of their method involving an expansion in the subband
states at thd’ point, as already remarked by the authors This work was funded by the Deutsche Forschungsge-
themselves. Indeed, for narrow QW'’s the few states af'the meinschaft in the frame of SFB 296. We wish also to thank
point cannot provide the needed flexibility to simulate stateshe Rechenzentrum of Humboldt University, and the
far away from thd” point. This is substantiated by the lower Konrad-Zuse-Zentrum in Berlin for their support and access
left panel in Fig. 8, showing a ground-state exciton@t to their Cray J93Zproject bvph08as
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APPENDIX: DISCRETIZATION OF THE COULOMB potential discretization on the reference state influences the
POTENTIAL results, we performed calculations of ideal 2D and 3D exci-

In order to attain a simple discretization for the interactiontons using d|sg:ret!zat|ons of the Coulpmb pqtennal based on
reference excitonic ground states with various Bohr radii.

of some Hamilton operator, Glutsch, Chemla, andFigure 12 shows the lowest numerical eigenvalues as a func-
Bechstedt proposed to discretize on the same mesh anothetr

operator whose ground state is analytically known with the | of gridpoint density. One can see that the correct esti-
perat >€ g . : yteaty ref mation of the “unknown” ground state is not so critical: a
same interaction, but with a simple kinetic tefmassm'").

We will call this the reference system. For illustration Con_reference Bohr radiusg within a factor of 2 from the actual
Y ' ' one, agg, still gives good results for the ground state for

sider a simple one-dimensional system with a known . .
round-state wave functiam’x) of enerave™’  The Schi reasonable mesh densities. Apparently, especially for the 2D
ground-state wave functiag(x) of energyE," . The Schre case, it is better to choos® larger rather than smaller in

dinger equation of the reference system discretized on Brder to obtain good results for the excited states.
meshx;=iA, reads For the 2D case, we also show the results obtained with

2 the potential integrated analytically on each Cartesian mesh
~ iyl 906+ =290+ 90 ) T+ Vx)g(x) element, using

m X
ref dx dy 2 2 2 2

=Eg 9(x)), (A1) — =y In(x+ \x*+y?) +xIn(y+ VX7 +y?).

and yields the ground-state-adapted discretization (A3)
. h2 This also gives a very good convergence with the mesh size.

V(x)=Eg + In Fig. 12, the result for the 2D ground state is included, that

ZmrEfAi is obtained if the potential is integrated analytically only at
9(Xi+1)—29(x) +g(X; 1) the o“rigi_n, imd_ ever_ywhere_ else its v_alue at eac_h gridpoint
X , (the “naive” discretization is used. Since both discretiza-
9(xi) tions are the same at the origin, the difference does not origi-
g(x)#0 (A2) nate frpm Fhe divergence at t_his pqint. The superiority of the
! ’ discretizationg/A2) and (A3) is obvious. We therefore ex-
This procedure is very simple, easy to implement, and cheapect Eq.(A2) to yield good results even with not very dense
to calculate, and for the reference system always gives thmeshes.
correct ground-state energy, regardless of how inappropriate For the 3D case a similar expression to E43) for the
the mesh is. In addition, no special handling for potentialsCoulomb potential integrated analytically on a rectangular
with integrable singularities is needed. box can be derived. However, we could not use this result to
Using this discretization for a reference state similarattain an alternative discretization for the real-space QW cal-
enough to the one sought, one can expect good convergencelations, because the natural mesk,py ,z.,z,) is not
with mesh size. In order to check how the dependence of th€artesian in the relative coordinatg—z,,.
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