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Theory of one-dimensional solitons, polarons, and multipolarons: An alternative formulation
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We develop an alternative formulation of the theory of solitons, polarons, and multipolarons in quasi-one-
dimensional degenerate and nondegenerate conducting polymers, starting from the continuum Hamiltonian
introduced by Brazovskii and Kirova. Based on a convenient real-space representation of the electron Green
function in one dimension, we present a simple method of calculating the Green function and the density of
states in the presence of a single soliton or polaron defect, through which we derive exact expressions for the
soliton, polaron, and multipolaron excitation energies and the self-consistent gap functions for an arbitrary
value of the electron-phonon coupling constant. We apply our resuttsstpolyacetylene.

[. INTRODUCTION sion. Using the density of states expression obtained from
the Green function, we compute the soliton, polaron, and
A wide variety of fascinating physical phenomena occurmultipolaron excitation energies and the related self-
in quasi-one-dimensional materials with a PeierlSiEno  consistent gap functiorexactlyfor anarbitrary value of the
ground staté? In particular, the propos%ﬂ7 that nonlinear €lectron-phonon coupling constant. These results are usually
excitations such as solitons and polarons play a crucial roleresented in the weak electron-phonon coupling limit in the
in the electronic properties of conjugated conducting p0|yJiterature and, to the best of our knowledge, have never been
mers and other related materials have attracted great intere&fitten down explicitly before. Our method, which involves
over the past two decad&-**Experimental and theoretical only concepts familiar in condensed-matter physics, is
efforts to confirm the existence of these nonlinear excitation§imple and transparent and has the advantage of being

and to clarify their properties are being continued to thereadily generalizable to more difficult problems such as the
present day? 16 influence of disorder on solitons and polarons.

In a large number of theoretical studies of solitons and In the next section, we introduce the Hamiltonian and the
po'aronS, the electron-electron interaction is |gn6?-mhd soliton wave function. The p0|al’0n case will be discussed in
the lattice motion is treated classically. A simple lattice APPendix A. In Sec. Ill and Appendixes A and B, we de-
model of noninteracting electrons in one dimension coupledcribe our method for calculating the Green function and the
to phonons was introduced by Su, Schrieffer, and Héegeidensity of states. In Sec. IV, we compute the soliton, po-
and has been applied mainly to numerical studiesraris Iaron_, and muItlpoIarc_m excitation energies and the self-
polyacetylend (CH), ], which is a representative conjugated consistent gap functions and apply the results cie-
polymer with two degenerate ground states. A continuunPolyacetylene. In Sec. V, we conclude the paper with some
version of this model derived by Takayama, Lin-Liu, andemarks.

Maki'® admits exact soliton and polaron solutions and has
been the starting point in a number of analytical studs.

In order to treat nondegenerate materials with a unique
ground state and a higher-energy metastable state such aswe consider the continuum Hamiltonian of quasi-one-

cis-polyacetylene, Brazovskand Kirova derived a general- dimensional conducting polymers and related materials first
ized version of the continuum model, which contains a newntroduced by Brazovskiand Kirova®?°

parameterA,, representing thextrinsic gap in the elec-

tronic spectrum that exists even in the absence of the Peierls

distortion® When A,=0, the model of Brazovskiand =S [ axw! . d
Kirova reduces to that of Takayama, Lin-Liu, and Maki. If 1~ < XWs(x)| ~ihveos g
A.#0, it does not admit the soliton solution, but allows the

Il. HAMILTONIAN AND WAVE FUNCTIONS

so-called multipolaron solutions in addition to the polaron 1
So|uti0n_ +[Ai(x)+Ae]O’l]\PS(X)+ ,n_th)\ dXAiZ(X)a

In this paper, we reformulate the theory of solitons, po- 1
larons, and multipolarons, starting from the continuum @

Hamiltonian introduced by Brazovgkand Kirova, which

can describe both degenerate and nondegenerate conductingerevg is the Fermi velocity and. is the dimensionless
polymers depending on the value af,. We develop an electron-phonon coupling constafior a precise definition
efficient method for calculating the Green functions associof A in terms of the parameters of the lattice model, refer to
ated with the nonlinear excitations, based on a convenierRef. 21) oi's (i=1,2,3) are Pauli matrices. Thegeal-
real-space representation of the Green function in one dimervalued gap function is written ad (x) =A;(x) + A, where
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A;(x) is the intrinsic gap function, which is sensitive to x x\ E
electron-phonon coupling and varies slowly on the scale of a Y1s(X) = pa(x)=€™ tan £ - Ay ke,

lattice spacing, and\, is a constangxtrinsic component. 7)
The time derivative ofA;(x) is assumed to be sufficiently B e ikx x|\ B

small that the lattice kinetic energy can be ignordty(x), Pas(X) = a(x) = —le tanl‘(g + A_O_'kg}'

with s=1,] being the spin index, is the two-component elec-

tron wave function for noninteracting electrons moving towhere the quantum numbiris related to the energy eigen-

the right (#10) and to the left (r,o): value byE?= (fivk)2+ AZ.2% For a reason to be explained
1s 2/ in the next section, we introduce another equivalent set of
( ¢1S(X)) wave functions
P (x)= . 2
L7 0

o _ _ _ Yrs(X) = a(x) =ie ™"
From the Hamiltonian, we obtain the Dirac-type equation for
the electron wave functions

)’(X) E

tan g—lA—0+|k§
« E ()
—|+i—+iké

ao(X) = o(x) =€~ tanr( £/ tig
—ifvp - AX) °
Fdx ( l/’ls(X)) B ( lﬂls(X)) | which are trivially obtained from Eq7) by replacingk with

A " d Pos(X) ]\ has(X) —I_< gnd_multi_plying the wave functions by We omitted the
I UF gx spin indices in the notation®,, ¢», ¢4, and ¢, because the
wave functions are spin independent. There is also a soliton
and the self-consistent gap equation bound state located &= 0 and described by the wave func-
tions
TAUVEN —
AGO=800= A== = 3" [Y15X) ¥3(x) 1 x Si x
h1s(X)= —= SecV6 —) v () == SecVE —) C)
& &
o X)PE0], (4 2V¢ 2¢

) ) . Though there is no electronic state fo{E|<A,, we can
where the prime on the summation symbol indicates the surg; use the wave functioné7) and (8) for computing the

is over alloccupiedelectronic states. subgap Green functions.

We distinguish between the two cases with=0 and When the extrinsic component of the gap functidn, is
Ae>0. Let us first consider the case wittly=0. Then the  qn76r0, the double degeneracy of the ground state is broken
Hamiltonian has two degenerate ground states W)  anq a higher-energy metastable state with a uniform gap ap-
=Ai(X)==A0, where Ao(>0) is the self-consistent uni- pears For >0, the constant intrinsic gap; can be taken
form Peierls gap parameter. In this paper, we focus on nory, pe positive in the Peierls ground state and negative in the
uniform solutions for the gap function. The best-known onesyaiastable stafd. In both states, the uniform Peierls gap
are the single soliton and the single polaron. Here we discus&arameter is given biio=|A,+A,|. We caution the readers
the soliton and put all the algebra for the polaron in Appenpa+ we will use the same notatiaxy, and the definitior(5),

dix A. The spatial variation is set by the coherence length, g¢qardiess of the value df,. It turns out that the soliton
scale defined by the Fermi velocity and the uniform gap:  gqjytion is not allowed in nondegenerate cases because Egs.
(6) and (7) do not satisfy the gap equatidd) for nonzero

f
_NUF (5) Ae.

&= Ay
. . . I1l. GREEN FUNCTION AND THE DENSITY OF STATES

A second dimensionless parameteris important for po-

larons and is defined and discussed in Appendix A. The spa- In this section, we compute the retarded and advanced 2

tial variation of the order parameter for a single soliton lo-x 2 matrix Green function&™ andG~ associated with Eq.

cated atx=0 is (3). For that purpose, we introduce two linearly independent
A(X) « wave functionsy andy that satisfy Eg(3) in the'interval
T ani‘(— ) (6) —L=x=<L and the boundary conditions in whiah(—L)
Ao § and (L) do not diverge a becomes large, whereagL )

The resulting(unnormalizedl wave functions for unbound and#(—L) diverge!® We write the Green function in the
states with E|=A, can be written as form

0 (zﬁﬂx)wz(y) E/q(x)l/fl(y)) sy
G ylE)= G11(X,Y|E) GiX,y|E) _ hoe(Ynhy— o) ¢2(X)f2(y) z//z(x)’szl(y) .
Gai(x Y|E)  GaAx.y|E) | (%(x)%(y) wx)wy)) it x<y,
hoe(Yao— o) \ ho(X)ha(Y)  tho(X) i1 (Y)
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where (10>~ 1) is a constant independent rft>2324
We obtainG* (G ™) by solving for wave functions with Im
E a small positive(negative number.

The wave functions for the single-soliton case, (¢»)
and (¢, ), defined by Eqs(7) and(8), do not satisfy the Yo=-
necessary boundary conditions, and therefore cannot be used (12)
in the representatioil0). However, it is possible to con- ~

|}
anh —
&

struct two new solutions i, ,#,) and (i, ), which sat-
Y=t +e K, Similarly, for the advanced Green functions, we assiine

E
+i—+iké

¢2 AO

isfy the boundary conditions, by a linear superposition of
<0 and obtain

(b1.62) and (1, ,): 7 — e ik(x-L)
_ aik(x+L) f)_-E_- }
e tanl‘(g |AO iké Jymie kD)

ERE
tan E—lA—O+|k§,

. X E
i A—ik(x+L) i — 4
+ie tam‘(f) |A0+|k§, . x| E
yr=¢e tanh < | +i-—+iké],
& Ao
(13
P=e*t +e—ik|_(~ﬁ - KL x\ E .
2 2 z P =e*C"Yitanh | —i — —iké|,
« £ & Ao
= —jelkix+L) tanr(E +iA——ik§} y £
° Vo= —ie*C U tanH 2| +i — —iké|.
k(L) X E 3 Ao
ik(x X\ . B .
e tanl'(g i Ag ke |, These wave functions satisfy the required boundary condi-
(11)  tions thaty (L) andT//l,z(— L) diverge ad goes to infinity,
_ ‘ o whereasy; A —L) and?ﬂl,z(L) do not diverge. Substituting
Jr=e Kt +ekt g, Egs.(12) and(13) into Eq.(10), we find
i X E + !
=gkt tam'(g)—iA——ikg} Gm(x.x)
° i exg =iV(E/Ag)2—1 |x—x'|/¢]
_ E =
+ie Tk(x=L) tam(g) —iA—+ik§ , hug 4\(ElAg)?—1
0

E
— 1+ 0,5 V(E/Ap)?—1 sgrix—x")og

Ao

A
+ Eo[l—totéii JEIAG)Z=1 |to—ty|]

X {2

~ ik kL
b= "+ e ",

. X E
= —jelkx~t) tan)‘(— +i——ik }
FREVPEL
. x\ E X(Uz_1)+(to+t6_2)01+i(to—t6)03], (14
+e k" Ditan : +i+iké|.
0

wherel is the unit matrix and, andt; are defined by

. - L X X'
First, we calc_ulate. the Green function f&F=A,. We intro toztan?‘(—), t(’):tam‘(—). (15)
duce a small imaginary pak to the energy and replaéeby £ &

E+iE. Then the quantum numbéracquires an imaginary WhenE<— Ay, we choosdiv k= \/mg% ThenE and
. — e oy v : _
partand is replaced by+ ik such thaBE=(hvg)“kk. Ifwe  § phave opposite signs. A calculation similar to that for

choosefivek=—E?~A§<0> E and k have opposite =A leads to the symmetry relationship
signs. In order to obtain the retarded Green functions, we

assumeE>0 and take the.—eo limit first to simplify Eg. GL(XX'[E)==Gz(x,x'| —E),

11) using the fact thak i ti @~ vanishes in thi . . (16)
( )usmg e fac is negg |v'e an yanls gs |n” is GL(xx'|E)=GI(xx'|~E).

case. Finally, we take the— 0 limit to obtain the simplified

wave functions for use in calculating the retarded GreerThe subgap Green function fo<QE|<A, will be derived
functions: in Appendix B.
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With the exact Green function in hand, it is a straightforward matter to compute the local electronic density dpstates
spin ps(X,E):

1 1 Al _
ps(x,E)=——Im Tr G*(x,X|E)={ mhve JEZ—-AZ 2|E|cosH(x/ &) (17
0 if O<|E|<Ap.
|
The spatially averaged density of staje$E) is given by IV. SOLITON, POLARON, AND MULTIPOLARON
ENERGIES

1t A. Self-consistency in the uniform case
ps(E)= oL dx ps(X,E) . . )
-L In this subsection, we reformulate the self-consistency

. equation(4) in the uniform case with a constant gap function

{pO(EH(SpS(E) '_f |E[=40 (18 in terms of the Green functions. First, we write the total

0 if 0<|E[<Ay, energy E1) per unit length in terms of the electronic density
of states per spip(E,Ap):

where the density of states in the Peierls ground stg{&),
and the correction to the density of states in the presence of Er AiZ
a single solitondpg(E), are

7A0
3= Thoo +§ f_Ec dE Ep(E,Ag)

1 [E 2

Thug \JE?— A2 T ThueN -2 R dE Ep(E,Ay), (22)
(19 ’
1 A2 ¢ L where the cutoff energ¥., introduced to overcome the
Sps(E)=— 2 > — tan)‘(—) . well-known difficulty of the continuum model that its energy
2mhug |E|\/E —Ag L § spectrum is unbounded, is a function of the gap parameter

Ao=|Aj+A| and satisfies the requirement that the inte-

In the polaron case, we derive the local electronic densit@grated density of states,
of statesp,(x,E) for |[E[=A, from the Green functions de-

rived in Appendix A: Ec
PP N(Ec(Ag),Ag) = fA dEp(E.A), (23
0

|E| : . . o
pp(X,E)= v is a constant independent df,. As mentioned earlier, in
Thug \JE —Af nondegenerate cases wilhh>0, the intrinsic gap\; can be
taken to be positive in the ground state and negative in the

272
w{1— K"Ad 1 metastable state. Equivalently, the absolute valye satis-
2(E?—E3) | cosH[ k(x+x,]/€) fies|Ai|=A¢—A. in the ground state and\;|=Ay+ A, in
the metastable state. Applying the self-consistency condition
1
+ , (20
cosH x(x—xo)/£] ] 9 |EAo]_
dAg| 2L 0 24

where Ey=Aqy1—«? and x, is defined by Eq(Al). The . . .
density of states when=|E|<A, andE# + E, is zero. The 0 E.(22) and using the relationshiffs
spatially averaged density of stateg,(E), for |[E[=A is

iven b IN(E,Aq)
given by —g— =p(EAo),
Pp(E)=po(E)+ Spp(E),
d
i N(Ec(Ag),A0)=0, (25
1 Bl kA3 ¢ dAo
opp(BE)=——% 2 A2 (F2_F2) 2L
mhoe \JE?— A3 (E?—E3) INEA) 1
(21) a5 MGHXXIE)+ G X|E)]

X

K(L + Xo)
tan T +tan

’—(K(L—Xo)>
— |

we derive a new form of the self-consistency equation,
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Ec _dN(E,Aq) 20 —
|Aj|=—mhvek dET C
Ag dAg 15 [
Ec :
=—ﬁvF)\f dEIM[G,(X,X|E) + G (x,X|E)], 10F
Ag N Ep/A0
(26) os | .
in a straightforward manner. Since in the uniform case 005 Ly ]

+ + i Ao A
Glz(x,x|E)—G21(x,x|E)—2hUF E7_al (27)

) FIG. 1. The energy of a soliton-antisoliton paifz2, and the
we obtain polaron energy in the degenerate caBg, versus the electron-
phonon coupling constank,.

Ec Ay
Al _)‘LOdE /EZ—Aﬁ ground stateEZ and ES are relatedl by the condition that the
total number of electronic states in both cases has to be the

E.+ \/EE—AS) same:

Ao

[ Ec
=N\Ag cosh i —|=\AqlIn
A0 1 S EO
(28) E+2LfAO°dEpS(E):ZLLO"dEpO(E), (34
which reduces to where the number 1/2 on the left-hand side accounts for the
1 midgap statdper spin. Substituting Eqs(18) and(19) into
E.=A, cosl’( X) (29 Eq. (34) and using the fact tha: differs from E by a term
of order 1L, we derive
in the degenerate case whekg=|A;|. One can easily see

that, in the weak-coupling limit, Eq28) is approximated by ES EY ¢ "(1> ] )’(l 1
— =-—— 5tanh —|cot *|sinh —| |+ O| —|.
1 A AO AO 2L A A |_2
Ao=2E, exp{—x<11A—e , (30) (35
0
Using this in Eq.(33), we find, in theL—oe limit,
where the upperlower) sign corresponds to the ground g a33 ”
(metastablestate. The total energy per unit length, obtained 2 1 (1
from Eq.(22), is given by Es=—40 cos?(x) cot * smf(g) : (36)

Er A? A - Ec which reduces to the well-known value of the soliton excita-
2L mhUEN h Thue cos A_o tion energy in the weak-coupling limit,A%, /7, as\ goes to
zero and increases monotonicallyAg as\ grows to infin-
2cosh L E 31) ity. In Fig. 1, we plot the energy of a single soliton-
Ao/ l)’ antisoliton pair, E, together with the polaron energy in the
. . . . degenerate case to be obtained in the next subseldfign
which, using the gap equatid@8), can be rewritten as (42)], as a function oh.
A1 (2|Ai|>
h .

+_ —_—
A, 2 S NA,

+ Ly
ESIH

Er A7 A2
2L ThUEN a Thug

(32 C. Polaron and multipolaron energies

The polaron excitation enerdy, is obtained in a manner
similar to that in the previous subsection. Defining the elec-

tron occupation numbers of the subgap statek-akE, and
We compute the soliton excitation energy in the de- —E; asn, andn_(n, ,n_=0,1,2), we have

generate case using the density of states expression obtained

B. Soliton energy

in Sec. lll. Regardless of the number of electrons occupyingiE 1 L 5 Ay 2
the midgap state witlE=0, E, is given by P= TRUEN 7LdXAi 1- A—iK(t+—L) -1
_ 1 - 2rtant EP
T Thuen 7LdXAo[tan (x1§)—1] +(n.—n_)Ey,—4L LOdE Epp(E)

s 0
—4L[ Jf°dE Eps(E)— JAE°dE Epo(E)

, (33 - JAEng Epo(E)}, 37)

where E; is the energy cutoff in the presence of a solitonwhere the constank;(=A,—A.>0) satisfying Eq.(28) is
defect, whileEJ[ = A, cosh(1k)] is the cutoff in the Peierls the intrinsic gap in the ground state afl is the energy
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TABLE |. Polaron and multipolaron states ais-polyacetylene
when\=0.4 andI’'=0.15. N=n, —n_+2 is the effective occu-
pation numberQ=2-n,—n_ is the effective charged is the
angle (in radiang defined by Eq.(41) and E, is the excitation
energy.

n,. n. N Q 0  EplAg Interpretation

1 2 1 -1 066 0.93 Electroite) polaron

0 1 1 +1 066 0.93 Holgh) polaron

2 2 2 -2 119 151 e-e bipolaron

1 1 2 0 119 151 e-h bipolaron(or exciton
0 0O 2 +2 119 151 h-h bipolaron

2 1 3 -1 141 175 e-e-h tripolaron

1 0 3 +1 141 1.75 e-h-h tripolaron

2 0 4 0 148 187 e-e-h-h quadripolaron
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where 6 is defined byx=sin6 and E=A, cosé. It turns
out that, in the degenerate case witk 0, stable solutions
that satisfy Eq(41) and minimize Eq(40) exist only for the
electron polaron staten(. =1, n_=2), with the effective
chargeQ=2—-n,—n_=—1 and the spinfS=1/2, and the
hole polaron staten,=0, n_=1), with Q=+1 and S
=1/2. In both casesy=tan [tanh(1k)] and

~ tanh(1/h) £ Ag
T lanram i1 % Vanam 1

(42)

Ep=%AO cosi 1/\)cot Y[ ycosH(1/\) +sintP(1/)],

which reduce toc=1/\2, Eg=Aq/+2 andE,=2y2A,/m

cutoff in the presence of a polaron defect. We emphasize tha the weak-coupling limit. The behavior &, as a function

the coherence lengthappearing in the definitions of and
t_ [Eq. (A3)] is defined byhvg /Ay, not byZive/A;. Equa-
tion (34) is replaced by

p 0
1+2LF°dEpp(E):2LJECdEpo(E). (39)
Ag A

Substituting Eq(21) into the above equation, we find

a2+ of ]

(39

E} EQ ¢

—=-———tan icot*l
A, A, L ™M\a,

The polaron energi, to order 1 follows from this and Eq.
(37) and is equal to

Ep,=(n,—n_+2)E,

+4A A tt
; o COs )\TAO CO

1 [ A
;SII’I )\_Ao
4

Ltvel

4
+ ;Aor(tanhflk— K),

KA
——COo
Eo

4
— —Eptan?
r

(40)

where I'=A./ANAy. The self-consistency condition is
equivalent to the condition th&t, has to be minimized with
respect tox for given values ofn, andn_. Applying a
weaker condition for whicli, takes an extremal value, that
is, JE,/dk=0, to Eq.(40), we obtain

tan !

1 T
tané cotl-(x—l“ +I tang= Z(n+—n,+2),

(41)

NI

of \ in the degenerate case is shown in Fig. 1.

In the nondegenerate case wlth-0, stable polaron and
multipolaron(bipolaron, tripolaron, quadripolarpsolutions
exist for all possible combinations of, andn_ except for
n,.=0 andn_=2. There are three bipolaron solutions with
effective occupation humbeX=n,—n_+2=2. Both the
electron-electron bipolaronn(. =n_=2, Q=-2) and the
hole-hole bipolarontf, =n_=0, Q=+2) have zero, spin
while the electron-hole bipolaronn(=n_=1, Q=0),
which can also be called an exciton, exists in either spin
singlet (S=0) or triplet (S=1) forms. More details about
the interpretation of multipolaron solutions can be found in
Refs. 2 and 9. Explicit values of,Eq, and E, for given
values ofA andI' can be obtained only numerically. As a
specific example of applying Eggl0) and(41), we consider
the case otis-polyacetylene. There is a considerable uncer-
tainty in the precise values af andT’'(=A./NAp). In order
to make a rough estimate of the excitation energy, we use a
set of the approximate values close to those assumed in, Ref.
21 which arex=0.4, A,=0.06 eV, Ay=1 eV, and there-
fore,I'=0.15. The results are listed in Table I.

V. CONCLUSION

In the present paper, we have reformulated the theory of
solitons, polarons, and multipolarons in both degenerate and
nondegenerate conducting polymers. Especially, we have de-
veloped a simple method for calculating the Green function
and the density of states in the presence of a soliton or po-
laron defect and computed the soliton, polaron, and multipo-
laron excitation energies and the self-consistent gap func-
tions exactly for an arbitrary value of the electron-phonon
coupling constanitsee Eqs(36) and(40)—(42)]. Our method
can be generalized in a straightforward way to more compli-
cated situations. In a previous work, Kim and Wilkins have
devised an efficient numerical method for calculatingeke
act disorder-averaged Green function in the presence of a
soliton or polaron defect and disord@rlt appears that, by
combining this method with the results of the present work,
one can study the disordered soliton or polaron problem in
an exact and self-consistent manner. Work in this direction
will be presented in a separate publication.
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Pas(X)=ho(X)

:efikx

E
ké+-——1+6(1—i)t, —y(1+i)t_|,
APPENDIX A: POLARON GREEN FUNCTION ¢ Ao ( St = ) }

The spatial variatior_l of_the order parameter for a singleyhich are obtained from EqA2) by replacingk with —k
polaron located at=0 is given by and multiplying the wave functions by 1. In addition, there
are two subgap polaron bound states locateB-att Ey=
K(X—Xg) +Ag\/1— 2, the wave functions for which we do not write
—tam{T ] down here explicitly. As in the soliton case, we can also use
the wave functiongA2) and(A4) for computing the subgap
Green functions when<€|E| <Ay andE# *E,.
We superpose two independent solutions in the polaron
case, Egqs(A2) and (A4), to make two new wave functions

_ _ S ~ (¢1.42) and (1,9,) satisfying the necessary boundary
The dimensionless parameterappearing in this equation conditions. WherE= A, following the same procedure as in
determines the shape of the polaron, which changes from agec. 111, we obtain the simplified wave functions

extremely shallow well centered at=0 for 0O<k<1 to a

well-separated pair of a soliton and an antisoliton located at

Xo and —X,, respectively, asc— 1. This parameter cannot gy = iKXHL)
take an arbitrary value, since the self-consistent gap equation -

is not satisfied for every value &. WhenA.=0 and in the

weak electron-phonon coupling limiithat is, the A—0

A(X) B Kk(X+Xp)
Ao = 1—K[ tam{T

(AL)
1+«
1-«k

Xo 1

g—ﬂln

, O<k<1.

ké+ E y(1+i)t, — 5(1—i)t},
A

limit), it turns out thatx has the unique value of {2, as " :eik(x+L)[k§;_ E+1—’y(1—i)t +8(1+i)t }
will be shown in Sec. IV C. 2 A " )
In case of the single-polaron configuration, the exact un- (A5)
normalized wave functions for unbound states wijth| E
BAO can be written gg "lzjl:e—ik(x—L)[kg_ A—+1—5(l+i)t++y(1—i)t_},
0

P1s(X) = pp(x) =€

E
ké+ ——1+y(1+i)t,
Ag Tp=e kD)

E
K+ — 1+ 5(1—i)t+—7(1+i)t_},
Ao
—5(1—i)t_},
with #iv k= — EZ— A2 % for computing the retarded Green
(A2)  functions and

Pras(X) = p(x) = €'

E
ké— A—O+1— y(1—i)t,

: E
Py=e K&tL) kg—A—0+1—6(1+i)t++y(1—i)t},
+5(1+i)t_},
: —ik(x+L) E i i
wheret, , t_, v, andé are defined by =€ ké+ A—0—1+ S(1—i)t —y(1+i)t_|,
(A6)
I_{K(erxo) l_{K(x—xo) ) )
t,=tanh————|, t_=tan , - E
¢ § Y= 0D ki+ = Tk y(L+t, - 81—t
(A3) - 0 :
k[ ifikek k[ ihkek ~ _ weevl. E . ]
=_ =—|1— =e kE— —+1—y(1—-i)t, +56(1+i)t_|,
y 2(1+E+Ao’ 1) 2( Etd,) 2 _f A, 4 M+ 6( ) |

Similarly to the soliton case, we introduce an equivalent sefor the advanced Green functions. The Green functions ob-
of wave functions tained by substituting Eq$A5) and (A6) into Eq. (10) are
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Fi exd =iV(E/Ag)“—1|x—x'|/€] ;
For wmf {Z(A—Hm—«E—mw T sgix—x')r

K2A?

G*(x,x')=

AE{([l—t,tL:i VEIAZ—1t_—t" |Ik](1—0oy)
0

" E5—E?
1=t t, FiV(EIAQ) 1|ty —t, [/k](1+ o))} +{[ 1~ (E/Ao)?]
X(t_+t —t,—t ) k+2—t_t —t t" TiJ(E/Ag)2—1[t,t’ —t_t"
F(to =t +t,—t)/k]sgnx—x)}o +i{FiV(E/Ag)Z—1[2—t_t), —t,t"

+(t_+t—t, =t )/ k]sgrix—x")+[1—(E/Ag)?)(t_ —t_ +t, —t) )/ k+t,t" —t_t' }og

] , (A7)

The Green functions foE< — A are obtained using the symmetry relationship 84), which is valid in the polaron case,
too.

When O<|E|<A, andE# * E,, we obtain

¢l: eQ(X‘H—)

—iqg+E—1+y(1+i)t+—5(1—i)t_}
Ap

,7[/2: eQ(X+L)

—iqé— A£+1—y(1—i)t++5(1+i)t_}
0
(A8)
~ E
wlzeq(xL>[—iqg— Ao T1a(l+it, + y(l—i)t},
0

~ E
lﬂzzeq(XL)[—iqg-l- - ltal-it - y(1+i)t},
0

whereq=ik=\1—(E/A)? ¢ (see Appendix Bandy and  are given by Eq(A3) with ik replaced byg. Substituting Eq.
(A8) into Eg. (10), we obtain

. 1 exdg—V1—(E/Ap)|x—x"|/£]
G*(x,x’)=—ﬁ—vF 4@ | [ (A 1+ o, +iV1—(E/Ag)°sgrn(x— X)03)

E
Ez—éz A—O{[l—t,t’,+ VI—(E/AQ)t_—t" |Ik](1— o) +[1—t t' + V1= (E/Ag)?|t, —t,|/k](1+oo)}

H{[1—(E/A)?J(t_+t" —t, —t' ) k+2—t_t, —t t" +1—(E/Ay)?
X[ttt —t_t) +(t_—t_ +t,—t} )/ k]sgnx—x")}o,+i{y1—(E/Ag)?
X[2—t_t, —t t" +(t_+t_ t’ )/ k]sgnx—x")

1 (E/AQ)2](t_—t" +t, —t) ) k+t t. —t_t,}73

], (A9)
wheret’, andt’ are defined similarly ta, andt_ except that is replaced by'.

APPENDIX B: SUBGAP GREEN FUNCTION IN THE SOLITON CASE

Here we calculate the Green function fo(E|<A,. In this case, we havké= +iJ1—(E/Ag)?’==*iqé. We choosek
= —iq?® and take thd.— o limit to simplify Eq. (11) using the fact thag is positive ande™ 9" vanishes:

-5 o
an £ i aé|, an E I qé|,

‘//1: eq(X+L) lr//2: —ieq(XJrL)

(B1)
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r(x) E X
tan E —|A—0+q§, tanl‘(g

The Green functions are obtained in a straightforward manner by substitutin® Bdlirectly into Eq.(10). We find that the
retarded and advanced Green functions are the same in the present case and given by

’lzlzie_q(x_l-) ?02: e_Q(X_L)

E
+|A—O+q§ .

S 1 exgd —V1—(E/Ag)?x—x |/§][ [ 1+ ot i VI (ETA st )
“(Xx')=—— —1+otiyl- 2sgr(x—x')o

fivg 41— (E/A,)? A T 0/'s :

A0 ’ ' ’ . ’
+E[l_tot0+\1_(E/Ao) |t0_to|](0'2_l)+(to+t0_2)0'l+|(t0_t0)0'3 . (BZ)
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