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Theory of one-dimensional solitons, polarons, and multipolarons: An alternative formulation

Kihong Kim*
Department of Molecular Science and Technology, Ajou University, Suwon 442-749, Korea

Dong-Hun Lee
Department of Astronomy and Space Science, Kyung Hee University, Yongin 449-900, Korea

~Received 4 August 1999!

We develop an alternative formulation of the theory of solitons, polarons, and multipolarons in quasi-one-
dimensional degenerate and nondegenerate conducting polymers, starting from the continuum Hamiltonian
introduced by Brazovskii and Kirova. Based on a convenient real-space representation of the electron Green
function in one dimension, we present a simple method of calculating the Green function and the density of
states in the presence of a single soliton or polaron defect, through which we derive exact expressions for the
soliton, polaron, and multipolaron excitation energies and the self-consistent gap functions for an arbitrary
value of the electron-phonon coupling constant. We apply our results tocis-polyacetylene.
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I. INTRODUCTION

A wide variety of fascinating physical phenomena occ
in quasi-one-dimensional materials with a Peierls-Fro¨lich
ground state.1,2 In particular, the proposal3–7 that nonlinear
excitations such as solitons and polarons play a crucial
in the electronic properties of conjugated conducting po
mers and other related materials have attracted great int
over the past two decades.2,8–11Experimental and theoretica
efforts to confirm the existence of these nonlinear excitati
and to clarify their properties are being continued to
present day.12–16

In a large number of theoretical studies of solitons a
polarons, the electron-electron interaction is ignored17 and
the lattice motion is treated classically. A simple latti
model of noninteracting electrons in one dimension coup
to phonons was introduced by Su, Schrieffer, and Hee4

and has been applied mainly to numerical studies oftrans-
polyacetylene@(CH)x#, which is a representative conjugate
polymer with two degenerate ground states. A continu
version of this model derived by Takayama, Lin-Liu, a
Maki18 admits exact soliton and polaron solutions and h
been the starting point in a number of analytical studies7,19

In order to treat nondegenerate materials with a uni
ground state and a higher-energy metastable state suc
cis-polyacetylene, Brazovski� and Kirova derived a genera
ized version of the continuum model, which contains a n
parameter,De , representing theextrinsic gap in the elec-
tronic spectrum that exists even in the absence of the Pe
distortion.6 When De50, the model of Brazovski� and
Kirova reduces to that of Takayama, Lin-Liu, and Maki.
DeÞ0, it does not admit the soliton solution, but allows t
so-called multipolaron solutions in addition to the polar
solution.

In this paper, we reformulate the theory of solitons, p
larons, and multipolarons, starting from the continuu
Hamiltonian introduced by Brazovski� and Kirova, which
can describe both degenerate and nondegenerate condu
polymers depending on the value ofDe . We develop an
efficient method for calculating the Green functions asso
ated with the nonlinear excitations, based on a conven
real-space representation of the Green function in one dim
PRB 610163-1829/2000/61~16!/10768~9!/$15.00
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sion. Using the density of states expression obtained fr
the Green function, we compute the soliton, polaron, a
multipolaron excitation energies and the related se
consistent gap functionsexactlyfor anarbitrary value of the
electron-phonon coupling constant. These results are usu
presented in the weak electron-phonon coupling limit in
literature and, to the best of our knowledge, have never b
written down explicitly before. Our method, which involve
only concepts familiar in condensed-matter physics,
simple and transparent and has the advantage of b
readily generalizable to more difficult problems such as
influence of disorder on solitons and polarons.

In the next section, we introduce the Hamiltonian and
soliton wave function. The polaron case will be discussed
Appendix A. In Sec. III and Appendixes A and B, we d
scribe our method for calculating the Green function and
density of states. In Sec. IV, we compute the soliton, p
laron, and multipolaron excitation energies and the s
consistent gap functions and apply the results tocis-
polyacetylene. In Sec. V, we conclude the paper with so
remarks.

II. HAMILTONIAN AND WAVE FUNCTIONS

We consider the continuum Hamiltonian of quasi-on
dimensional conducting polymers and related materials
introduced by Brazovski� and Kirova,6,20

H5(
s
E dx Cs

†~x!H 2 i\vFs3

d

dx

1@D i~x!1De#s1J Cs~x!1
1

p\vFlE dx D i
2~x!,

~1!

wherevF is the Fermi velocity andl is the dimensionless
electron-phonon coupling constant.~For a precise definition
of l in terms of the parameters of the lattice model, refer
Ref. 21.! s i ’s ( i 51,2,3) are Pauli matrices. The~real-
valued! gap function is written asD(x)5D i(x)1De , where
10 768 ©2000 The American Physical Society
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D i(x) is the intrinsic gap function, which is sensitive to
electron-phonon coupling and varies slowly on the scale
lattice spacing, andDe is a constantextrinsic component.
The time derivative ofD i(x) is assumed to be sufficientl
small that the lattice kinetic energy can be ignored.Cs(x),
with s5↑,↓ being the spin index, is the two-component ele
tron wave function for noninteracting electrons moving
the right (c1s) and to the left (c2s):

Cs~x!5S c1s~x!

c2s~x!
D . ~2!

From the Hamiltonian, we obtain the Dirac-type equation
the electron wave functions

S 2 i\vF

d

dx
D~x!

D~x! i\vF

d

dx

D S c1s~x!

c2s~x!
D 5ES c1s~x!

c2s~x!
D ~3!

and the self-consistent gap equation

D i~x!5D~x!2De52
p\vFl

2 ( 8 @c1s~x!c2s* ~x!

1c2s~x!c1s* ~x!#, ~4!

where the prime on the summation symbol indicates the s
is over alloccupiedelectronic states.

We distinguish between the two cases withDe50 and
De.0. Let us first consider the case withDe50. Then the
Hamiltonian has two degenerate ground states withD(x)
5D i(x)56D0, where D0(.0) is the self-consistent uni
form Peierls gap parameter. In this paper, we focus on n
uniform solutions for the gap function. The best-known on
are the single soliton and the single polaron. Here we disc
the soliton and put all the algebra for the polaron in Appe
dix A. The spatial variation is set by the coherence length
scale defined by the Fermi velocity and the uniform gap:

j5
\vF

D0
. ~5!

A second dimensionless parameterk is important for po-
larons and is defined and discussed in Appendix A. The s
tial variation of the order parameter for a single soliton
cated atx50 is

D~x!

D0
5tanhS x

j D . ~6!

The resulting~unnormalized! wave functions for unbound
states withuEu>D0 can be written as
a

-

r

m

n-
s
ss
-
a

a-
-

c1s~x!5f1~x!5eikxF tanhS x

j D2 i
E

D0
2 ikjG ,

~7!

c2s~x!5f2~x!52 ieikxF tanhS x

j D1 i
E

D0
2 ikjG ,

where the quantum numberk is related to the energy eigen
value byE25(\vFk)21D0

2.22 For a reason to be explaine
in the next section, we introduce another equivalent se
wave functions

c1s~x!5f̃1~x!5 ie2 ikxF tanhS x

j D2 i
E

D0
1 ikjG ,

~8!

c2s~x!5f̃2~x!5e2 ikxF tanhS x

j D1 i
E

D0
1 ikjG ,

which are trivially obtained from Eq.~7! by replacingk with
2k and multiplying the wave functions byi. We omitted the
spin indices in the notationsf1 ,f2 ,f̃1, andf̃2 because the
wave functions are spin independent. There is also a sol
bound state located atE50 and described by the wave func
tions

c1s~x!5
1

2Aj
sechS x

j D , c2s~x!5
2 i

2Aj
sechS x

j D . ~9!

Though there is no electronic state for 0,uEu,D0, we can
still use the wave functions~7! and ~8! for computing the
subgap Green functions.

When the extrinsic component of the gap function,De , is
nonzero, the double degeneracy of the ground state is bro
and a higher-energy metastable state with a uniform gap
pears. ForDe.0, the constant intrinsic gapD i can be taken
to be positive in the Peierls ground state and negative in
metastable state.21 In both states, the uniform Peierls ga
parameter is given byD05uD i1Deu. We caution the reader
that we will use the same notationD0 and the definition~5!,
regardless of the value ofDe . It turns out that the soliton
solution is not allowed in nondegenerate cases because
~6! and ~7! do not satisfy the gap equation~4! for nonzero
De .

III. GREEN FUNCTION AND THE DENSITY OF STATES

In this section, we compute the retarded and advance
32 matrix Green functionsG1 andG2 associated with Eq.
~3!. For that purpose, we introduce two linearly independ
wave functionsc and c̃ that satisfy Eq.~3! in the interval
2L<x<L and the boundary conditions in whichc(2L)
andc̃(L) do not diverge asL becomes large, whereasc(L)
and c̃(2L) diverge.15 We write the Green function in the
form
G~x,yuE!5S G11~x,yuE! G12~x,yuE!

G21~x,yuE! G22~x,yuE!
D 55

i

\vF~c1c̃22c2c̃1!
S c̃1~x!c2~y! c̃1~x!c1~y!

c̃2~x!c2~y! c̃2~x!c1~y!
D if x.y

i

\vF~c1c̃22c2c̃1!
S c1~x!c̃2~y! c1~x!c̃1~y!

c2~x!c̃2~y! c2~x!c̃1~y!
D if x,y,

~10!
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where (c1c̃22c2c̃1) is a constant independent ofx.15,23,24

We obtainG1(G2) by solving for wave functions with Im
E a small positive~negative! number.

The wave functions for the single-soliton case, (f1 ,f2)
and (f̃1 ,f̃2), defined by Eqs.~7! and~8!, do not satisfy the
necessary boundary conditions, and therefore cannot be
in the representation~10!. However, it is possible to con
struct two new solutions (c1 ,c2) and (c̃1 ,c̃2), which sat-
isfy the boundary conditions, by a linear superposition
(f1 ,f2) and (f̃1 ,f̃2):

c15eikLf11e2 ikLf̃1

5eik(x1L)F tanhS x

j D2 i
E

D0
2 ikjG

1 ie2 ik(x1L)F tanhS x

j D2 i
E

D0
1 ikjG ,

c25eikLf21e2 ikLf̃2

52 ieik(x1L)F tanhS x

j D1 i
E

D0
2 ikjG

1e2 ik(x1L)F tanhS x

j D1 i
E

D0
1 ikjG ,

~11!

c̃15e2 ikLf11eikLf̃1

5eik(x2L)F tanhS x

j D2 i
E

D0
2 ikjG

1 ie2 ik(x2L)F tanhS x

j D2 i
E

D0
1 ikjG ,

c̃25e2 ikLf21eikLf̃2

52 ieik(x2L)F tanhS x

j D1 i
E

D0
2 ikjG

1e2 ik(x2L)F tanhS x

j D1 i
E

D0
1 ikjG .

First, we calculate the Green function forE>D0. We intro-
duce a small imaginary partẼ to the energy and replaceE by
E1 iẼ. Then the quantum numberk acquires an imaginary
part and is replaced byk1 i k̃ such thatEẼ5(\vF)2kk̃. If we
choose\vFk52AE22D0

2<0,25 Ẽ and k̃ have opposite
signs. In order to obtain the retarded Green functions,
assumeẼ.0 and take theL→` limit first to simplify Eq.
~11! using the fact thatk̃ is negative andek̃L vanishes in this
case. Finally, we take theẼ→0 limit to obtain the simplified
wave functions for use in calculating the retarded Gre
functions:
ed

f

e

n

c15eik(x1L)F tanhS x

j D2 i
E

D0
2 ikjG ,

c252 ieik(x1L)F tanhS x

j D1 i
E

D0
2 ikjG ,

~12!

c̃15 ie2 ik(x2L)F tanhS x

j D2 i
E

D0
1 ikjG ,

c̃25e2 ik(x2L)F tanhS x

j D1 i
E

D0
1 ikjG .

Similarly, for the advanced Green functions, we assumeẼ
,0 and obtain

c15 ie2 ik(x1L)F tanhS x

j D2 i
E

D0
1 ikjG ,

c25e2 ik(x1L)F tanhS x

j D1 i
E

D0
1 ikjG ,

~13!

c̃15eik(x2L)F tanhS x

j D2 i
E

D0
2 ikjG ,

c̃252 ieik(x2L)F tanhS x

j D1 i
E

D0
2 ikjG .

These wave functions satisfy the required boundary con
tions thatc1,2(L) andc̃1,2(2L) diverge asL goes to infinity,
whereasc1,2(2L) and c̃1,2(L) do not diverge. Substituting
Eqs.~12! and ~13! into Eq. ~10!, we find

G6~x,x8!

5
7 i

\vF

exp@6 iA~E/D0!221 ux2x8u/j#

4A~E/D0!221

3H 2F E

D0
11s16A~E/D0!221 sgn~x2x8!s3G

1
D0

E
@12t0t087 iA~E/D0!221 ut02t08u#

3~s221!1~ t01t0822!s11 i ~ t02t08!s3J , ~14!

where1 is the unit matrix andt0 and t08 are defined by

t05tanhS x

j D , t085tanhS x8

j D . ~15!

WhenE<2D0, we choose\vFk5AE22D0
2.25 ThenẼ and

k̃ have opposite signs. A calculation similar to that forE
>D0 leads to the symmetry relationship

G11
6 ~x,x8uE!52G22

7 ~x,x8u2E!,
~16!

G12
6 ~x,x8uE!5G21

7 ~x,x8u2E!.

The subgap Green function for 0,uEu,D0 will be derived
in Appendix B.



tes

PRB 61 10 771THEORY OF ONE-DIMENSIONAL SOLITONS, . . .
With the exact Green function in hand, it is a straightforward matter to compute the local electronic density of sta~per
spin! rs(x,E):

rs~x,E!52
1

p
Im Tr G1~x,xuE!5H 1

p\vF

1

AE22D0
2 FUEU2

D0
2

2uEucosh2~x/j!
G if uEu>D0

0 if 0,uEu,D0 .

~17!
e
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The spatially averaged density of statesrs(E) is given by

rs~E!5
1

2LE2L

L

dx rs~x,E!

5H r0~E!1drs~E! if uEu>D0

0 if 0,uEu,D0 ,
~18!

where the density of states in the Peierls ground state,r0(E),
and the correction to the density of states in the presenc
a single soliton,drs(E), are

r0~E!5
1

p\vF

uEu

AE22D0
2

,

~19!

drs~E!52
1

2p\vF

D0
2

uEuAE22D0
2

j

L
tanhS L

j D .

In the polaron case, we derive the local electronic den
of statesrp(x,E) for uEu>D0 from the Green functions de
rived in Appendix A:

rp~x,E!5
1

p\vF

uEu

AE22D0
2

3H 12
k2D0

2

2~E22E0
2!

F 1

cosh2@k~x1x0#/j!

1
1

cosh2@k~x2x0!/j#
G J , ~20!

whereE05D0A12k2 and x0 is defined by Eq.~A1!. The
density of states when 0<uEu,D0 andEÞ6E0 is zero. The
spatially averaged density of states,rp(E), for uEu>D0 is
given by

rp~E!5r0~E!1drp~E!,

drp~E!52
1

p\vF

uEu

AE22D0
2

kD0
2

~E22E0
2!

j

2L

~21!

3F tanhS k~L1x0!

j D1tanhS k~L2x0!

j D G .
of

ty

IV. SOLITON, POLARON, AND MULTIPOLARON
ENERGIES

A. Self-consistency in the uniform case

In this subsection, we reformulate the self-consisten
equation~4! in the uniform case with a constant gap functio
in terms of the Green functions. First, we write the to
energy (ET) per unit length in terms of the electronic densi
of states per spinr(E,D0):

ET

2L
5

D i
2

p\vFl
1(

s
E

2Ec

2D0
dE Er~E,D0!

5
D i

2

p\vFl
22E

D0

Ec
dE Er~E,D0!, ~22!

where the cutoff energyEc , introduced to overcome the
well-known difficulty of the continuum model that its energ
spectrum is unbounded, is a function of the gap param
D05uD i1Deu and satisfies the requirement that the in
grated density of states,

N~Ec~D0!,D0!5E
D0

Ec
dE r~E,D0!, ~23!

is a constant independent ofD0. As mentioned earlier, in
nondegenerate cases withDe.0, the intrinsic gapD i can be
taken to be positive in the ground state and negative in
metastable state. Equivalently, the absolute valueuD i u satis-
fies uD i u5D02De in the ground state anduD i u5D01De in
the metastable state. Applying the self-consistency condi

]

]D0
FET~D0!

2L G50 ~24!

to Eq. ~22! and using the relationships26

]N~E,D0!

]E
5r~E,D0!,

d

dD0
N„Ec~D0!,D0…50, ~25!

]N~E,D0!

]D0
5

1

p
Im@G12

1 ~x,xuE!1G21
1 ~x,xuE!#,

we derive a new form of the self-consistency equation,
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uD i u52p\vFlE
D0

Ec
dE

]N~E,D0!

]D0

52\vFlE
D0

Ec
dE Im@G12

1 ~x,xuE!1G21
1 ~x,xuE!#,

~26!

in a straightforward manner. Since in the uniform case

G12
1 ~x,xuE!5G21

1 ~x,xuE!5
2 i

2\vF

D0

AE22D0
2

, ~27!

we obtain

uD i u5lE
D0

Ec
dE

D0

AE22D0
2

5lD0 cosh21S Ec

D0
D5lD0 lnS Ec1AEc

22D0
2

D0
D ,

~28!

which reduces to

Ec5D0 coshS 1

l D ~29!

in the degenerate case whereD05uD i u. One can easily see
that, in the weak-coupling limit, Eq.~28! is approximated by

D052Ec expF2
1

l S 17
De

D0
D G , ~30!

where the upper~lower! sign corresponds to the groun
~metastable! state. The total energy per unit length, obtain
from Eq. ~22!, is given by

ET

2L
5

D i
2

p\vFl
2

D0
2

p\vF
H cosh21S Ec

D0
D

1
1

2
sinhF2cosh21S Ec

D0
D G J , ~31!

which, using the gap equation~28!, can be rewritten as

ET

2L
5

D i
2

p\vFl
2

D0
2

p\vF
F uD i u
lD0

1
1

2
sinhS 2uD i u

lD0
D G . ~32!

B. Soliton energy

We compute the soliton excitation energyEs in the de-
generate case using the density of states expression obt
in Sec. III. Regardless of the number of electrons occupy
the midgap state withE50, Es is given by

Es5
1

p\vFlE2L

L

dx D0
2@ tanh2~x/j!21#

24LF E
D0

Ec
s

dE Ers~E!2E
D0

Ec
0

dE Er0~E!G , ~33!

whereEc
s is the energy cutoff in the presence of a solit

defect, whileEc
0@5D0 cosh(1/l)# is the cutoff in the Peierls
ned
g

ground state.Ec
s andEc

0 are related by the condition that th
total number of electronic states in both cases has to be
same:

1

2
12LE

D0

Ec
s

dE rs~E!52LE
D0

Ec
0

dE r0~E!, ~34!

where the number 1/2 on the left-hand side accounts for
midgap state~per spin!. Substituting Eqs.~18! and ~19! into
Eq. ~34! and using the fact thatEc

s differs fromEc
0 by a term

of order 1/L, we derive

Ec
s

D0
5

Ec
0

D0
2

j

2L
tanhS 1

l D cot21FsinhS 1

l D G1OS 1

L2D .

~35!

Using this in Eq.~33!, we find, in theL→` limit,

Es5
2

p
D0 coshS 1

l D cot21FsinhS 1

l D G , ~36!

which reduces to the well-known value of the soliton exci
tion energy in the weak-coupling limit, 2D0 /p, asl goes to
zero and increases monotonically toD0 asl grows to infin-
ity. In Fig. 1, we plot the energy of a single soliton
antisoliton pair, 2Es , together with the polaron energy in th
degenerate case to be obtained in the next subsection@Eq.
~42!#, as a function ofl.

C. Polaron and multipolaron energies

The polaron excitation energyEp is obtained in a manne
similar to that in the previous subsection. Defining the el
tron occupation numbers of the subgap states atE5E0 and
2E0 asn1 andn2(n1 ,n250,1,2), we have

Ep5
1

p\vFlE2L

L

dx D i
2H F12

D0

D i
k~ t12t2!G2

21J
1~n12n2!E024LF E

D0

Ec
p

dE Erp~E!

2E
D0

Ec
0

dE Er0~E!G , ~37!

where the constantD i(5D02De.0) satisfying Eq.~28! is
the intrinsic gap in the ground state andEc

p is the energy

FIG. 1. The energy of a soliton-antisoliton pair, 2Es , and the
polaron energy in the degenerate case,Ep , versus the electron-
phonon coupling constant,l.
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cutoff in the presence of a polaron defect. We emphasize
the coherence lengthj appearing in the definitions oft1 and
t2 @Eq. ~A3!# is defined by\vF /D0, not by\vF /D i . Equa-
tion ~34! is replaced by

112LE
D0

Ec
p

dE rp~E!52LE
D0

Ec
0

dE r0~E!. ~38!

Substituting Eq.~21! into the above equation, we find

Ec
p

D0
5

Ec
0

D0
2

j

L
tanhS D i

lD0
D cot21F1

k
sinhS D i

lD0
D G1OS 1

L2D .

~39!

The polaron energyEp to order 1 follows from this and Eq
~37! and is equal to

Ep5~n12n212!E0

1
4

p
D0 coshS D i

lD0
D cot21F1

k
sinhS D i

lD0
D G

2
4

p
E0 tan21FkD0

E0
cothS D i

lD0
D G

1
4

p
D0G~ tanh21k2k!, ~40!

where G[De /lD0. The self-consistency condition i
equivalent to the condition thatEp has to be minimized with
respect tok for given values ofn1 and n2 . Applying a
weaker condition for whichEp takes an extremal value, tha
is, ]Ep /]k50, to Eq.~40!, we obtain

tan21F tanu cothS 1

l
2G D G1G tanu5

p

4
~n12n212!,

~41!

0<u<
p

2

TABLE I. Polaron and multipolaron states incis-polyacetylene
when l50.4 andG50.15. N5n12n212 is the effective occu-
pation number,Q522n12n2 is the effective charge,u is the
angle ~in radians! defined by Eq.~41! and Ep is the excitation
energy.

n1 n2 N Q u Ep /D0 Interpretation

1 2 1 21 0.66 0.93 Electron~e! polaron
0 1 1 11 0.66 0.93 Hole~h! polaron
2 2 2 22 1.19 1.51 e-e bipolaron
1 1 2 0 1.19 1.51 e-h bipolaron~or exciton!
0 0 2 12 1.19 1.51 h-h bipolaron
2 1 3 21 1.41 1.75 e-e-h tripolaron
1 0 3 11 1.41 1.75 e-h-h tripolaron
2 0 4 0 1.48 1.87 e-e-h-h quadripolaron
at

whereu is defined byk5sinu and E05D0 cosu. It turns
out that, in the degenerate case withG50, stable solutions
that satisfy Eq.~41! and minimize Eq.~40! exist only for the
electron polaron state (n151, n252), with the effective
chargeQ[22n12n2521 and the spinS51/2, and the
hole polaron state (n150, n251), with Q511 and S
51/2. In both cases,u5tan21@ tanh(1/l)# and

k5
tanh~1/l!

Atanh2~1/l!11
, E05

D0

Atanh2~1/l!11
,

~42!

Ep5
4

p
D0 cosh~1/l!cot21@Acosh2~1/l!1sinh2~1/l!#,

which reduce tok51/A2, E05D0 /A2 andEp52A2D0 /p
in the weak-coupling limit. The behavior ofEp as a function
of l in the degenerate case is shown in Fig. 1.

In the nondegenerate case withG.0, stable polaron and
multipolaron~bipolaron, tripolaron, quadripolaron! solutions
exist for all possible combinations ofn1 andn2 except for
n150 andn252. There are three bipolaron solutions wi
effective occupation numberN[n12n21252. Both the
electron-electron bipolaron (n15n252, Q522) and the
hole-hole bipolaron (n15n250, Q512) have zero, spin
while the electron-hole bipolaron (n15n251, Q50),
which can also be called an exciton, exists in either s
singlet (S50) or triplet (S51) forms. More details abou
the interpretation of multipolaron solutions can be found
Refs. 2 and 9. Explicit values ofk,E0, and Ep for given
values ofl and G can be obtained only numerically. As
specific example of applying Eqs.~40! and~41!, we consider
the case ofcis-polyacetylene. There is a considerable unc
tainty in the precise values ofl andG(5De /lD0). In order
to make a rough estimate of the excitation energy, we us
set of the approximate values close to those assumed in,
21 which arel50.4, De50.06 eV, D051 eV, and there-
fore, G50.15. The results are listed in Table I.

V. CONCLUSION

In the present paper, we have reformulated the theory
solitons, polarons, and multipolarons in both degenerate
nondegenerate conducting polymers. Especially, we have
veloped a simple method for calculating the Green funct
and the density of states in the presence of a soliton or
laron defect and computed the soliton, polaron, and multi
laron excitation energies and the self-consistent gap fu
tions exactly for an arbitrary value of the electron-phon
coupling constant@see Eqs.~36! and~40!–~42!#. Our method
can be generalized in a straightforward way to more com
cated situations. In a previous work, Kim and Wilkins ha
devised an efficient numerical method for calculating theex-
act disorder-averaged Green function in the presence o
soliton or polaron defect and disorder.15 It appears that, by
combining this method with the results of the present wo
one can study the disordered soliton or polaron problem
an exact and self-consistent manner. Work in this direct
will be presented in a separate publication.
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APPENDIX A: POLARON GREEN FUNCTION

The spatial variation of the order parameter for a sin
polaron located atx50 is given by

D~x!

D0
512kH tanhFk~x1x0!

j G2tanhFk~x2x0!

j G J ,

~A1!

x0

j
5

1

4k
lnS 11k

12k D , 0,k,1.

The dimensionless parameterk appearing in this equation
determines the shape of the polaron, which changes from
extremely shallow well centered atx50 for 0,k!1 to a
well-separated pair of a soliton and an antisoliton located
x0 and 2x0, respectively, ask→1. This parameter canno
take an arbitrary value, since the self-consistent gap equa
is not satisfied for every value ofk. WhenDe50 and in the
weak electron-phonon coupling limit~that is, the l→0
limit !, it turns out thatk has the unique value of 1/A2, as
will be shown in Sec. IV C.

In case of the single-polaron configuration, the exact
normalized wave functions for unbound states withuEu
>D0 can be written as22

c1s~x!5f1~x!5eikxFkj1
E

D0
211g~11 i !t1

2d~12 i !t2G ,
~A2!

c2s~x!5f2~x!5eikxFkj2
E

D0
112g~12 i !t1

1d~11 i !t2G ,
wheret1 , t2 , g, andd are defined by

t15tanhFk~x1x0!

j G , t25tanhFk~x2x0!

j G ,
~A3!

g5
k

2 S 11
i\kFk

E1D0
D , d5

k

2 S 12
i\kFk

E1D0
D .

Similarly to the soliton case, we introduce an equivalent
of wave functions
-
n
nt

y

e

an

at

on

-

t

c1s~x!5f̃1~x!

5e2 ikxFkj2
E

D0
112d~11 i !t11g~12 i !t2G ,

~A4!

c2s~x!5f̃2~x!

5e2 ikxFkj1
E

D0
211d~12 i !t12g~11 i !t2G ,

which are obtained from Eq.~A2! by replacingk with 2k
and multiplying the wave functions by21. In addition, there
are two subgap polaron bound states located atE56E0[
6D0A12k2, the wave functions for which we do not writ
down here explicitly. As in the soliton case, we can also u
the wave functions~A2! and~A4! for computing the subgap
Green functions when 0<uEu,D0 andEÞ6E0.

We superpose two independent solutions in the pola
case, Eqs.~A2! and ~A4!, to make two new wave function
(c1 ,c2) and (c̃1 ,c̃2) satisfying the necessary bounda
conditions. WhenE>D0, following the same procedure as i
Sec. III, we obtain the simplified wave functions

c15eik(x1L)Fkj1
E

D0
211g~11 i !t12d~12 i !t2G ,

c25eik(x1L)Fkj2
E

D0
112g~12 i !t11d~11 i !t2G ,

~A5!

c̃15e2 ik(x2L)Fkj2
E

D0
112d~11 i !t11g~12 i !t2G ,

c̃25e2 ik(x2L)Fkj1
E

D0
211d~12 i !t12g~11 i !t2G ,

with \vFk52AE22D0
2 25 for computing the retarded Gree

functions and

c15e2 ik(x1L)Fkj2
E

D0
112d~11 i !t11g~12 i !t2G ,

c25e2 ik(x1L)Fkj1
E

D0
211d~12 i !t12g~11 i !t2G ,

~A6!

c̃15eik(x2L)Fkj1
E

D0
211g~11 i !t12d~12 i !t2G ,

c̃25eik(x2L)Fkj2
E

D0
112g~12 i !t11d~11 i !t2G ,

for the advanced Green functions. The Green functions
tained by substituting Eqs.~A5! and ~A6! into Eq. ~10! are
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G6~x,x8!5
7 i

\vF

exp@6 iA~E/D0!221ux2x8u/j#

4A~E/D0!221
H 2S E

D0
11s16A~E/D0!221 sgn~x2x8!s3D

1
k2D0

2

E0
22E2 F E

D0
$~@12t2t28 7 iA~E/D0!221ut22t28 u/k#~12s2!

1@12t1t18 7 iA~E/D0!221ut12t18 u/k#~11s2!!%1$@12~E/D0!2#

3~ t21t28 2t12t18 !/k122t2t18 2t1t28 7 iA~E/D0!221@ t1t28 2t2t18

1~ t22t28 1t12t18 !/k#sgn~x2x8!%s11 i $7 iA~E/D0!221@22t2t18 2t1t28

1~ t21t28 2t12t18 !/k#sgn~x2x8!1@12~E/D0!2#~ t22t28 1t12t18 !/k1t1t28 2t2t18 %s3G J , ~A7!

The Green functions forE<2D0 are obtained using the symmetry relationship Eq.~16!, which is valid in the polaron case
too.

When 0<uEu,D0 andEÞ6E0, we obtain

c15eq(x1L)F2 iqj1
E

D0
211g~11 i !t12d~12 i !t2G ,

c25eq(x1L)F2 iqj2
E

D0
112g~12 i !t11d~11 i !t2G ,

~A8!

c̃15e2q(x2L)F2 iqj2
E

D0
112d~11 i !t11g~12 i !t2G ,

c̃25e2q(x2L)F2 iqj1
E

D0
211d~12 i !t12g~11 i !t2G ,

whereq5 ik5A12(E/D0)2/j ~see Appendix B! andg andd are given by Eq.~A3! with ik replaced byq. Substituting Eq.
~A8! into Eq. ~10!, we obtain

G6~x,x8!52
1

\vF

exp@2A12~E/D0!2ux2x8u/j#

4A12~E/D0!2 H 2S E

D0
11s11 iA12~E/D0!2sgn~x2x8!s3D

1
k2D0

2

E0
22E2 F E

D0
$@12t2t28 1A12~E/D0!2ut22t28 u/k#~12s2!1@12t1t18 1A12~E/D0!2ut12t18 u/k#~11s2!%

1$@12~E/D0!2#~ t21t28 2t12t18 !/k122t2t18 2t1t28 1A12~E/D0!2

3@ t1t28 2t2t18 1~ t22t28 1t12t18 !/k#sgn~x2x8!%s11 i $A12~E/D0!2

3@22t2t18 2t1t28 1~ t21t28 2t12t18 !/k#sgn~x2x8!

1@12~E/D0!2#~ t22t28 1t12t18 !/k1t1t28 2t2t18 %
s3G J , ~A9!

wheret18 and t28 are defined similarly tot1 and t2 except thatx is replaced byx8.

APPENDIX B: SUBGAP GREEN FUNCTION IN THE SOLITON CASE

Here we calculate the Green function for 0,uEu,D0. In this case, we havekj56 iA12(E/D0)2[6 iqj. We choosek
52 iq25 and take theL→` limit to simplify Eq. ~11! using the fact thatq is positive ande2qL vanishes:

c15eq(x1L)F tanhS x

j D2 i
E

D0
2qjG , c252 ieq(x1L)F tanhS x

j D1 i
E

D0
2qjG ,
~B1!
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c̃15 ie2q(x2L)F tanhS x

j D2 i
E

D0
1qjG , c̃25e2q(x2L)F tanhS x

j D1 i
E

D0
1qjG .

The Green functions are obtained in a straightforward manner by substituting Eq.~B1! directly into Eq.~10!. We find that the
retarded and advanced Green functions are the same in the present case and given by

G6~x,x8!52
1

\vF

exp@2A12~E/D0!2ux2x8u/j#

4A12~E/D0!2 H 2F E

D0
11s11 iA12~E/D0!2sgn~x2x8!s3G

1
D0

E
@12t0t081A12~E/D0!2ut02t08u#~s221!1~ t01t0822!s11 i ~ t02t08!s3J . ~B2!
ev
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