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Symmetry analysis of the localized modes associated with substitutional and interstitial
defects in a two-dimensional triangular photonic crystal

Vladimir Kuzmiak* and Alexei A. Maradudin
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 21 July 1999!

By using a finite-difference time-domain numerical method based on the numerical simulation of the exci-
tation of an isolated eigenstate at a specific frequency by using an oscillating dipole embedded in a two-
dimensional photonic crystal we have calculated both the eigenfrequencies and eigenfunctions of the localized
defect modes induced by defect cylinders placed at the center or in interstitial positions within an otherwise
perfect two-dimensional photonic crystal consisting of dielectric cylinders arrayed in a triangular lattice. In the
case of a substitutional defect cylinder we have imposed boundary conditions appropriate to the irreducible
representations of theC6v point group, and in addition to fully symmetric localized states ofA1 symmetry we
have also found localized modes possessingA2 , B1, andB2 symmetry, and doubly degenerate modes ofE1

andE2 symmetry. For defect rods placed in interstitial positions we have found localized modes that belong to
the irreducible representationsA1 , A2 , B1, andB2 of theC2v point group. We have also studied the effects of
the geometrical and material parameters on the eigenfrequencies and eigenfunctions of the defect modes by
varying the dielectric strength and/or radius of the defect rods. We have shown that the calculated eigenfre-
quencies obtained for a substitutional defect rod within the triangular lattice with lattice constanta whose
radiusr d is in the interval 0,r d,0.5a are in good quantitative agreement with both the nondegenerate and
degenerate modes obtained by the supercell method by Feng and Arakawa@Jpn. J. Appl. Phys. Part 236,
120~1997!#.
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I. INTRODUCTION

The concept of the photonic crystal introduced a dec
ago1,2 attracted a great deal of interest and stimulated int
sive research into photonic-band-gap~PBG! materials3,4 that
exhibit full photonic band gaps in which electromagne
waves of both polarizations are forbidden to propagate.
existence of a photonic band gap gives rise to a numbe
interesting phenomena, such as an inhibition of spontane
emission, which can be utilized in improving the behavior
many optical and electronic devices such as semicondu
lasers, solar cells, and bipolar transistors.1,2

In analogy to the existence of the defect states within
energy band gaps in semiconductors, in photonic crys
exponentially decaying localized defect modes may app
within a photonic band gap when a defect is introduced i
an otherwise perfect photonic crystal.1,5–21The nature of the
localized modes has been under intensive theoretical and
perimental study, in particular in view of their potential a
plications in semiconductor lasers, resonators, single-m
emitting diodes, etc. The localized modes in a PBG struc
have, as do ordinary high-Q resonators, the ability to contro
spontaneous emission. However, in contrast to their coun
parts in quantum electrodynamic~QED! cavities, PBG
modes can extend spatially over many wavelengths. In a
tion to the fact that through the PBG localized modes sp
taneous emission is inhibited, these defect modes also fa
tate coherent energy transport,22 and can modify other
physical phenomena as a consequence of their unique p
erties.

The calculations of the frequencies and the fields ass
ated with these defect modes were initially performed
PRB 610163-1829/2000/61~16!/10750~12!/$15.00
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using supercell and transfer-matrix methods.8,10–13,16,17Later,
a number of methods based on the application of
Green’s-function formalism11,14,15,18 and real space finite
difference time-domain~FDTD! methods20,23,24 were re-
ported. These numerical techniques that allow studying
interaction of the electromagnetic radiation with more co
plex structures proved to be efficient tools for accurately c
culating defect modes.16,17,25By employing the ideas behind
FDTD numerical methods designed to obtain the dispers
relations of phonons and photons in disordered systems26,27

there was developed an approach based on the nume
simulation of the excitation of a single mode by using
oscillating dipole moment located near a dielectric defec28

This method has been applied to the study of the de
modes in photonic crystals consisting of infinitely long pa
allel dielectric rods arranged in simple square and triangu
lattices,29,30 and of line defects.31

In this paper we study the symmetry and the field patte
of the defect modes that appear within the band gaps o
triangular photonic crystal when an impurity rod is plac
either in simple substitutional or interstitial positions with
the supercell, and the dependence of the eigenfrequencie
the dielectric constant and/or radius of the defect rod.
determine the eigenfrequencies and eigenfunctions of the
calized modes we apply a finite-difference time-domain te
nique developed within a Green’s-function approach28 ap-
plied to a defect problem.29 The method is based on th
numerical simulation of the excitation of the defect mode
a virtual oscillating dipole located near the dielectric defe
In the first step, by solving the inhomogeneous wave eq
tion discretized in both space and time, the electric field
diated from the oscillating dipole is determined. Then t
electromagnetic energy emitted by the dipole as a function
10 750 ©2000 The American Physical Society
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PRB 61 10 751SYMMETRY ANALYSIS OF THE LOCALIZED MODES . . .
frequency is evaluated, and the frequency of the defect m
is determined as a resonance frequency. The system
study of the localized modes in two-dimensional~2D! struc-
tures provides valuable information that can be used in
design of photonic band-gap structures and devices opera
in the near infared and optical regimes in which high-Q reso-
nant cavities are used. The growing interest in tw
dimensional structures stems from the fact that they
easier to fabricate than three-dimensional structures, and
provide broader ranges of geometrical and material par
eters for which localized defect modes within the photo
band gaps exist.

In Sec. II we describe the theoretical background for
numerical simulations used in calculating the eigenfrequ
cies and the eigenfunctions of the defect modes. In Sec
we present results for the localized modes associated w
defect cylinder placed in substitutional and interstitial po
tions within a triangular lattice, which corresponds to t
system studied experimentally in Ref. 12, and identify
localized modes belonging to substitutional and intersti
defects in terms of the symmetries corresponding to the i
ducible representations of the point groupsC6v and C2v ,
respectively. We study the variation of the defect levels t
appear in the photonic band gaps when the dielectric c
stant and/or the radius of the defect cylinder~s! is modified.
In Sec. IV we summarize and discuss the results.

II. METHOD OF CALCULATION

We consider a two-dimensional photonic crystal that c
sists of infinitely long parallel rods characterized by a diel
tric constantea embedded in a background dielectric ma
rial characterized by the dielectric constanteb . The rods are
assumed to be parallel to thex3 axis, and the intersections o
the axes of the rods with a perpendicular plane form a tw
dimensional triangular lattice. In particular, we are interes
in exploring the nature of defect modes ofC6v and C2v
symmetry that appear within a photonic band gap whe
defect cylinder with modified radius and/or dielectric co
stant is introduced into the otherwise perfect tw
dimensional photonic crystal.

For the vector electromagnetic field in a 2D photonic l
tice the Maxwell equations decouple into separate equat
for E-polarized~TM! andH-polarized~TE! modes, with the
electric field and magnetic field parallel to the rod ax
respectively.5,32,33 The two-dimensional system we study
characterized by a dielectric constant of the form

e~xi!5e0~xi!1ed~xi!, ~2.1!

wheree0(xi) is a periodic function ofxi ,

e0@xi1xi~ l !#5e0~xi!, ~2.2!

with xi( l ) a translation vector of the triangular lattice, whi
ed(xi) is nonzero in only a small region of thex1x2 plane.

In this paper we will consider the particular case of t
defect states ofE polarization with the electric vector give
by

E~x;t !5~0,0,E3~xi ;t !!, ~2.3!
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H~x;t !5~H1~xi ;t !,H2~xi ;t !,0!. ~2.4!

To calculate the eigenfrequencies and the eigenvector
the defect modes in a triangular lattice we employ an
proach based on the application of the Green’s-funct
formalism,28 which describes the radiation from an oscilla
ing dipole in an arbitrary 3D lattice,28 applied to the defect
problem.29 In order to excite an isolated eigenstate sel
tively, a narrow source in the form of an oscillating dipole
placed at an appropriate point within a computational c
We assume that the direction of the dipole momentdm of
frequencyv centered at (x10,x20) within the x1x2 plane is
parallel to the rods, so that Maxwell’s equations for the a
plitude functionsE3(xi ;t), H1(xi ;t), andH2(xi ;t) become

]E3

]x1
5

1

c

]

]t
H2 , ~2.5!

]E3

]x2
52

1

c

]

]t
H1 , ~2.6!

]H2

]x1
2

]H1

]x2
5

1

c

]

]t
$e~xi!E314pdm

3d~x12x10!d~x22x20!exp~2 ivt !%.

~2.7!

By eliminating H1 and H2 the equation forE3 can be
written in the form

FIG. 1. The computational domain in thex1x2 plane assumed in
the numerical calculations that consists of rods withea arrayed in a
lattice characterized by the lattice constanta embedded in a back
ground medium witheb and an isolated substitutional defect cha
acterized byed placed in the center of the domain.
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e~xi!

c2

]2

]t2
E35S ]2

]x1
2

1
]2

]x2
2D E32

v2

c2
4pdm

3d~x12x10!d~x22x20!exp~2 ivt !.

~2.8!

Then by approximating the spatial and time derivatives
the latter equation by finite differences, one obtains

Ei , j
k1152Ei , j

k 2Ei , j
k211

1

e i , j
S Dt

Dx1
D 2

@Ei 11,j
k 1Ei 21,j

k 22Ei , j
k #

1
1

e i , j
S Dt

Dx2
D 2

@Ei , j 11
k 1Ei , j 21

k 22Ei , j
k #

1
4pdm

e i , j
~vDt !2

d i i 0

Dx1

d j j 0

Dx2
exp~2 ivkt!, ~2.9!

where the indexk refers to a grid point of time, the indicesi
and j denote thex1 andx2 axes, respectively,Dt is the divi-
sion of time, andDx1 , Dx2 are the intervals between th
neighboring nodes along thex1 andx2 axes, respectively, on
a discrete two-dimensional mesh. To evaluate the elec
n

ic

field radiated from the oscillating dipole we solve Eq.~2.9!
with the initial conditionsE3(xi ;0)50, ]E3(xi ;0)/]t50.

By using the values of the electric field obtained by so
ing Eq. ~2.9! in a computational domain we determine th
components of the magnetic field to evaluate the electrom
netic energyU emitted per unit time by the oscillating dipol
placed atx0 within the supercell. It is given by the surfac
integral of the normal component of the Poynting vect
which can be transformed into a volume integral by us
Gauss’s theorem. By calculating the Poynting vector and
using the normalization condition

E
V
e~x!uEd~x!u2dx5V, ~2.10!

whereEd(x) is the eigenfunction of the defect mode andV is
the volume on which the cyclic boundary conditions are a
plied, one obtains

U5
pvd

2udm•Ed~x0!u2

2V$~v2vd!21G2%
. ~2.11!
-
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FIG. 2. The central part of the com
putational domain consisting of the si
nearest neighbors in the vicinity of
simple substitutional defect rod place
in the center in the supercell~a! and
symmetry patterns that belong to a
possible irreducible representations
the point groupC6v . Shaded and blank
areas indicate the subdomains that a
symmetric and asymmetric with respe
the symmetry operations applied to th
irreducible subdomain represented b
1/12 and 1/4 of the supercell@~b!–~f!#.
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PRB 61 10 753SYMMETRY ANALYSIS OF THE LOCALIZED MODES . . .
FIG. 3. The central part of the com
putational domain used for the calcula
tion of the defect consisting of two in
terstitial defect rods placed along th
@1,0# direction ~a! and symmetry pat-
terns that belong to all possible irreduc
ible representations of the point grou
C2v. Shaded and blank areas indica
the subdomains that are symmetric a
asymmetric with respect to the symme
try operations applied to the irreducibl
subdomain represented by 1/4 of th
supercell.
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HereG is a small positive constant that ensures the c
sality of the Maxwell curl equations for the electric and ma
netic fields given by Eqs.~2.5!–~2.7!. From the frequency
dependence of the electromagnetic energy emitted by th
pole per unit time given by Eq.~2.11! we determine the
frequency of the defect mode as the resonance frequenc

The difference equation~2.9! is solved numerically in the
x1x2 plane within a computational domain shown in Fig.
consisting of 838 unit cells, each of which is characterize
by the lattice constanta. Each unit cell is sampled on
40340 mesh, and we take 320 time steps per oscillat
period. We found that by using these steps of spatial

FIG. 4. The photonic band structure forE-polarized electromag-
netic ~EM! waves in a two-dimensional triangular crystal with th
lattice constanta51.27 cm, radius of the rodR50.48 cm,ea59,
eb51.04, and the filling fractionf 50.518.
-
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.

n
d

temporal discretization the eigenfrequencies and eigenfu
tions of the localized modes are converged with an error
is smaller than 1%. The fields at the nodes outside the c
putational domain are related to the fields inside it by imp

FIG. 5. The eigenfrequencies of localized defect modes belo
ing to the irreducible representations of theC6v point group as
functions of the dielectric constant of the defect cylinder placed
the center of the lattice. The localized modes are depicted within
three lowest frequency band gaps revealed by the photonic b
structure shown in Fig. 4. The borders of the gaps are indicated
the horizontal dashed lines. The order of the modes of ident
symmetry within the same band is denoted by the number in pa
theses.
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10 754 PRB 61VLADIMIR KUZMIAK AND ALEXEI A. MARADUDIN
ing periodic boundary conditions. The defect modes inve
gated within the computational domain are excited by
oscillating dipole centered near the defect cylinder in
photonic crystal, and the solution of Eq.~2.9! is carried out
for enough dipole cycles that a converged eigenfreque
and a converged distribution of the electric field associa
with the localized mode are achieved.

The symmetry of the eigenmode can be specified by
posing periodic boundary conditions reflecting the charac
istics of a particular irreducible representation of the po
groupC6v , and by placing the dipole in an appropriate sy
metrical position. Employing the symmetry of theC6v point
group leads to a large reduction of the computational ta
since the calculations for the defect modes that correspon
nondegenerate states ofA1 , A2 , B1, andB2 symmetry were
carried out in 1/12 of the supercell, while doubly degener
states ofE symmetry have been calculated within 1/4 of t
supercell. By applying all symmetry operations belonging
the C6v point group to the irreducible subdomain we o
tained patterns corresponding to each of the individual i
ducible representations—shown in Figs. 2~a!–2~e!—where
the blank and shaded areas indicate domains that are
metric and asymmetric, respectively. In Fig. 2~a! we present
the configuration consisting of the six nearest-neighbor
rods characterized by the dielectric functionea embedded in
the background medium witheb and with a defect rod in the
center of the supercell characterized byed . In Fig. 2~a! we
also show the mirror reflectionssv2 ,sv3 ,sv18 ,sv38 , indicated
by broken lines, andsv1 ,sv28 , which coincide with thex1

FIG. 6. The spatial distribution~a! of the electric field and~b!
the energy density associated with the localizedA2 symmetry defect
mode of frequencyva/2pc50.648 associated with a defect ro
with ed529. The field patterns are shown within the region of t
x1x2 plane consisting of 838 unit cells.
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andx2 axes, respectively. For the doubly degenerate irred
ible representationsE1 and E2 we display in Fig. 2~e! and
Fig. 2~f! the patterns belonging to theE1

xz and E2
xy basis

functions. The patterns associated with the partner-b

functionsE1
yz andE2

(x22y2)/2 belonging to the different rows
of identical irreducible representations can be obtained
the rotation of those forE1

xz andE2
xy throughp/2.

The configurations with the defect rod placed in an int
stitial position have been calculated within 1/4 of the sup
cell. In Fig. 3 we display the distributions of subdomai
determined by applying of all possible symmetry operatio
belonging to theC2v point group corresponding toA1 , A2 ,
B1, andB2 symmetry. The blank areas indicate the subd
mains that are invariant with respect to the symmetry ope
tions applied to the irreducible subdomain, while the shad
areas correspond to the asymmetric subdomains. In Fig.~a!
we indicate mirror reflectionssx ,sy with respect to the mir-
ror planes that intersect thex1x2 plane along thex1 and
x2-axes, respectively.

III. RESULTS

We first apply the method outlined in the preceding s
tion to the defect modes in a two-dimensional triangular p
tonic lattice with the lattice constanta51.27 cm, consisting
of identical dielectric rods of radiusR50.48 cm, which cor-
responds to the filling fractionf 50.518. The cylinders,
which are characterized by the dielectric constantea59, are

FIG. 7. The spatial distribution~a! of the electric field and~b!
the energy density shown in a supercell consisting of 838 unit cells
associated with the localizedB1 symmetry defect mode of fre
quency va/2pc50.469 associated with the defect rod withed

520.
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PRB 61 10 755SYMMETRY ANALYSIS OF THE LOCALIZED MODES . . .
embedded in a background medium witheb51.04. This con-
figuration is identical to one of the systems that we cons
ered in our previous paper in which we studied the localiz
defect modes ofA1 symmetry of theC6v point group.30 We
identified the frequency of the localized defect state crea
by removing a single rod from the center of the lattice w
the sharp peak in the frequency dependence of the trans
ted power along the@1,0# direction in the identical system
found by Smithet al.12

In this paper we systematically study the localized def
modes with all symmetries that correspond to the irreduc
representations of theC6v point group by varying the dielec
tric strength of an impurity cylinder placed in the center
the the supercell and in an interstitial position within t
triangular lattice. In Fig. 4 we show the photonic band str
ture for E-polarized electromagnetic waves in a tw
dimensional triangular crystal with the lattice constanta
51.27 cm, and radius of the rodR50.48 cm that corre-
sponds to the filling fractionf 50.518. The rods, which are
characterized by the dielectric constantea59, are embedded
in a background dielectric with the dielectric constanteb
51.04. The photonic band structure was evaluated by
plane wave method33 ~PWM! by expanding the field vari-
ables into 299 plane waves. We are interested in the th
lowest frequency band gaps, which in terms of normaliz
frequencies exist in the regions 0.24,va/2pc,0.29, 0.42
,va/2pc,0.49, and 0.62,va/2pc,0.68. For the case o
the lattice with the geometrical parameters considered ab
the boundaries of the three lowest gaps in GHz are 5.67,v

FIG. 8. The spatial distribution~a! of the electric field and~b!
the energy density shown in a supercell consisting of 838 unit cells
associated with the localizedB2 symmetry defect mode of fre
quencyva/2pc50.63 associated with a defect rod withed536.
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,6.86, 9.93,v,11.58, and 14.66,v,16.07.
By varying the dielectric constant of the impurity cylinde

in the range 1,ed,40 and evaluating the frequency depe
dence of the radiated power of the oscillating dipole plac
near the defect rod we have found the localized modes o
symmetries within the three lowest band gaps. Besides
single mode levels ofA1 , A2 , B1, andB2 symmetry we have
found doubly degenerate defect states that reflect the t
dimensional irreducible representations ofE1 and E2 sym-
metry. In Fig. 5 we display the dependence of the eigen
quencies of the localized modes as functions of the dielec
strength of the defect rod. The regions of the three low
band gaps are denoted by horizontal dashed lines, and
order of the modes of the same symmetry within the sa
band gap is indicated by the number in the parentheses.

We begin by examining the localized states ofA1 sym-
metry associated with a configuration with a single rod
moved from the center, and gradually increase the dielec
constant of an isolated substitutional rod. We found two s
of localized states ofA1 symmetry that appear at the freque
cies close to the upper-band-gap edge whened51 and ed
512. When we increaseed the frequencies sweep down
wards across the gap to reach the lower edge whened52
anded519, respectively. The third set of resonant modes
A1 symmetry shown in Fig. 5 appears in the lowest band g
whened is in the range 2,ed,7. The localized states ofA2
symmetry appear in the third lowest band when the dielec
constant of the defected is in the range 27,ed,31. In Figs.
6~a! and 6~b! we present the distribution of the electric fie

FIG. 9. The spatial distribution~a! of the electric field and~b!
the energy density shown in a supercell consisting of 434 unit cells
associated with the localizedE1 symmetry defect mode of fre
quencyva/2pc50.472 associated with a defect rod withed524.
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10 756 PRB 61VLADIMIR KUZMIAK AND ALEXEI A. MARADUDIN
and the energy density associated with the defect leve
eigenfrequencyva/2pc50.648 ~v515.32 GHz!. The de-
fect state shown in this figure is associated with an impu
rod with ed529. The field patterns are displayed in a regi
of the x1x2 plane consisting of 838 unit cells.

Localized states ofB1 symmetry exist in the second an
third lowest band gaps. They appear when 17,ed,26 and
9.5,ed,11, respectively. In Figs. 7~a! and 7~b! we show
the distribution of the electric field and the energy dens
associated with the defect mode ofB1 symmetry created by a
substitutional impurity rod withed520 and the eigenfre
quencyva/2pc50.469 ~v511.08 GHz! within the second
lowest band. The domain shown in Fig. 7 consists of 838
units cells. The localized states ofB2 symmetry appear
within the third lowest band gap when 29,ed,35. In Figs.
8~a! and 8~b! we present the distribution of the electric fie
and the energy density within the supercell consisting
838 unit cells associated with the defect mode due to
substitutional impurity rod withed536 and the eigenfre
quencyva/2pc50.63 ~v514.89 GHz!.

The doubly degenerate localized states ofE1 symmetry
that we have found within the second and third lowest ba
gaps occur for the dielectric constant of the defect rod in
ranges 11.5,ed,14 and 23,ed,31, both of which par-
tially overlap the ranges ofed in which defect states ofB1
symmetry appear. In Figs. 9~a! and 9~b! we show the distri-
bution of the electric field and the energy density associa

FIG. 10. The spatial distribution the energy density shown i
supercell consisting of 434 unit cells associated with the localize
modes ofE2 symmetry with frequency~a! va/2pc50.445 ~b!
va/2pc50.482 associated with a defect rod characterized by
dielectric constanted536.
of

y

y

f
e

d
e
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with the doubly degenerate defect level with the eigenf
quencyva/2pc50.472 ~v511.16 GHz! within the second
lowest band gap, which is associated with a defect rod ch
acterized by the dielectric constanted524. We note that the
electric-field pattern reflects the symmetry of theE1

xz basis
function that is antisymmetric with respect to theC2 andsv28
operations of theC6v point group.

The results obtained for the doubly degenerate state

a

e

FIG. 11. The electromagnetic energy radiated by an oscilla
dipole embedded in a supercell containing a defect~a! with the
radiusr d5R when the dielectric strength of the rod is varied in t
range 36,ed,39; ~b! with the dielectric constante536 when the
radius of the rod is varied in the rangeR,r d,1.04R.
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E2 symmetry reveal the existence of two sets of defect st
that appear in the second and the third lowest bands.
defect modes ofE2 symmetry that occur in the second lowe
band when 29,ed,40 consist of two levels that coexist fo
ed in the range 36,ed,39, and are separated b
Dva/2pc50.38~Dv50.898 GHz!. The defect modes ofE2
symmetry that appear in the third lowest band and oc
when 15,ed,22 also consist of two separate levels th
simultaneously appear within this band gap whened.18. In
Figs. 10~a! and 10~b! we show the distribution of the energ
density associated with the doubly degenerate defect le
with the eigenfrequenciesva/2pc50.445 ~v510.51 GHz!
andva/2pc50.482~v511.39 GHz! within the second low-
est band gap, which are associated with a substitutional
fect rod characterized by the dielectric constanted536.

In Fig. 11~a! we display the dependence of the radiat
power of the oscillating dipole placed in a supercell conta
ing defect rods whose dielectric constant lies in the ra
36,ed,39. For each value of the dielectric constant w
found two peaks that indicate the existence of doubly deg
erate levels ofE2 symmetry, which decrease ased increases.
The results shown in Fig. 11~b! illustrate an alternative way
in which the positions of the eigenfrequencies of the def
modes can be controlled by varying the radius of the rod.
the defect rod characterized by the dielectric constanted
536 we have increased the radius of the defect rod in
rangeR,r d,1.04R. The peaks associated with three diffe
ent values of the defect radius clearly demonstrate that
frequency of the mode can be tuned downwards to lo
frequencies in two equivalent ways—either by increasing
radius or the dielectric strength of the defect rod.

We also examined the system studied by Feng
Arakawa,21 who considered a two-dimensional triangul
photonic crystal with a lattice constanta51.27 cm, consist-
ing of cylinders characterized by the dielectric constantea
513 and radiusR50.2a embedded in vacuum. The photon

FIG. 12. The photonic band structure for E-polarized EM wav
in a two-dimensional triangular crystal with the lattice constana
51.27 cm, radius of the rodR50.2a, ea513, eb51, and the fill-
ing fraction f 50.145.
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band structure forE-polarized electromagnetic waves prop
gating through this lattice, shown in Fig. 12, reveals a ph
tonic band gap in the frequency range 0.275,va/2pc
,0.46. Feng and Arakawa, who used a supercell metho
study the dependence of the defect levels on defect s
found nondegenerate and doubly degenerate levels tha
pear when the radius of the defect cylinder is within t
range 0,r d,0.5a. In our previous paper30 we have identi-
fied a nondegenerate level that appears when the radius
the range 0.3a,r d,0.5a as possessingA1 symmetry. By
extending the search to all symmetries of theC6v point
group we study the dependence of the defect levels on
size of the rod starting from the configuration in which
central rod is completely removed (r d50). Then we gradu-
ally increase the radius of a rod until we reach the clo
packed configuration in the vicinity of the defect cylind
(r d50.5a). In addition to the nondegenerate states that
pear in the ranges of the radius of the defect rod 0,r d
,0.18a and 0.32a,r d,0.5a, which were identified as pos
sessingA1 symmetry, we have identified the doubly dege
erate states that appear when 0.22a,r d,0.5a as those be-
longing toE1 andE2 symmetries. In Fig. 13 we present th
dependence of the eigenfrequencies of the localized mo
within the lowest band gap in the photonic band struct
considered in Ref. 21 on the radius of the defect rod. T
boundaries of the gap are indicated by the horizontal do
lines.

We also studied the possibility of tuning of the defe
mode by means of the radial displacement of each of
nearest neighbors of the defect rod. Namely, we exami

s

FIG. 13. The eigenfrequencies of localized defect modes
longing to the irreducible representations of theC6v point group as
functions of the radius of a defect rod placed in the center of
two-dimensional triangular lattice with the lattice constanta
51.27 cm, whenea513, eb51, R50.2a. The localized modes are
shown within the lowest band gap revealed by the photonic b
structure shown in Fig. 12 with band edges indicated by
horizontal-dashed lines.
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the effect of the fully symmetric radial displacement of t
nearest neighbors, which belongs to theA1 irreducible rep-
resentation, on the defect levels produced by a defect
with the radiusr d50.5R in the lattice considered in Ref. 2
(ea513, eb51, r 50.2a, f 50.145), and on the defect sta
produced by a defect cylinder characterized byed516 em-
bedded in the lattice considered in Ref. 12. The depende
of both defect levels on the position of the nearest-neigh
rods shown in Figs. 14~a! and 14~b! displays a monotonic

FIG. 14. The effect of a symmetric distortion on the eigenf
quency of the localized mode associated with a substitutional de
rod ~a! with ed513 embedded in the lattice withf 50.145,ea

513, eb51; ~b! with ed516 embedded in the lattice withf
50.518,ea59, eb51.04.
d

ce
r

behavior i.e., the frequency of the modes sweeps upw
~downward! across the gap when the inward~outward! dis-
tortion of the nearest-neighbor environment occurs.

Now we turn to the results obtained for the defect sta
implied by a defect consisting of two identical defect ro
placed along the@1,0# direction near the cylinder in the cen
ter of the supercell that is shown in Fig. 3~a!. We again
consider the two-dimensional triangular lattice studied
Ref. 21 and concentrate on theE-polarized defect modes tha
appear within the lowest frequency band gap in the f
quency range 0.27,va/2pc,0.46. The localized states as
sociated with the two interstitial defects along the@1,0# di-
rection in the hexagonal lattice have been systematic
studied by varying the dielectric constant of the defect ro
in the range 1,ed,40. By implementing boundary condi
tions appropriate to the irreducible representations of theC2v
point group we have classified the modes ofA1 , A2 , B1, and
B2 symmetry possessing the patterns depicted in Fig. 3~a!–
3~d!. The values of the eigenfrequencies have been evalu
by solving Eq. ~2.9! in 1/4 and 1/2 of the computationa
domain consisting of 838 unit cells.

In Fig. 15 we display the eigenfrequencies of the inters
tial defect states of all possible symmetries of theC2v point
group as functions of the dielectric strength of the def
cylinder. Here the boundaries of the lowest frequency ba
gap are indicated by broken lines. The defect modes ofB2
symmetry appear in the band gap as donor states when
dielectric constanted52, and the frequency of the mod
sweeps downward across the gap ased is increased in the
range 2,ed,20. The frequency of the mode ofA1 symme-

-
ct

FIG. 15. The eigenfrequencies of localized defect modes
longing to the irreducible representations of theC2v point group as
functions of the dielectric constant of two interstitial defect ro
placed along the@1,0# direction near the vicinity of the center of th
lattice shown in Fig. 3~a!. The localized modes are depicted with
the lowest frequency band gap revealed by the photonic band s
ture shown in Fig. 12. The edges of the gaps are indicated by
horizontal-dashed lines.
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try diplays a similar dependence when the dielectric cons
of the defect rod is increased from 2 to 40. Also the def
levels belonging toB1 andA2 symmetries, which appear a
frequencies close to the upper edge of the band gap w
ed55 and ed510, respectively, decrease monotonica
across the band gap when the dielectric constant is incre
from 5 to 40.

To demonstrate characteristic features of the field dis
bution and energy density corresponding to each of the i
ducible representations of theC2v point group shown in Fig.
3, we display the electric-field and energy-density patte
associated with~a! an A1 state with the eigenfrequenc
va/2pc50.378~v58.98 GHz! produced by interstitial rods
characterized byed58—see Figs. 16~a! and 16~b!; ~b! anA2
state with the eigenfrequencyva/2pc50.382 ~v59.08
GHz! that appears whened524—see Figs. 17~a! and 17~b!;
~c! a B1 state with the eigenfrequencyva/2pc50.371 ~v
58.82 GHz! created by the defect rods withed524—see
Figs. 18~a! and 18~b!; and ~d! a B2 state with the eigenfre
quencyva/2pc50.362 ~v58.61 GHz! found for the inter-
stitial rods characterized byed56—see Figs. 19~a! and
19~b!.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have applied a finite-difference tim
domain method to study isolated defects that introd
strongly localized states within the forbidden gaps of a p

FIG. 16. The spatial distribution~a! of the electric field and~b!
the energy density associated with the localizedA1 symmetry defect
mode of frequencyva/2pc50.378 associated with two interstitia
defect rods placed along the@1,0# direction with ed58. The field
patterns are shown within the region of thex1x2 plane consisting of
838 unit cells.
nt
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tonic band structure of a two-dimensional photonic latt
that consists of a triangular array of circular dielectric rod
We studied the system with a substitutional rod placed in
center of the supercell, which corresponds to the configu
tion studied experimentally by Smithet al.12 We also ex-
plored the system consisting of two rods placed in intersti
positions along the@1,0# direction in the lattice. By varying
the dielectric strength and/or the radius of the defect rods
have studied the dependence of the eigenfrequencies o
defect states on these parameters. The defect levels as
ated with a substitutional impurity found within the thre
lowest frequency band gaps possess symmetries corresp
ing to all the irreducible representations of theC6v point
group, while the localized modes induced by defect ro
placed in interstitial positions have been found by impos
periodic boundary conditions reflecting the symmetry
each of the irreducible representations of theC2v point
group. We found that the doubly degenerate defect state
E2 symmetry associated with a substitutional defect rod fo
doublets in certain ranges of the dielectric constant of
defect cylinder. The eigenfrequencies of localized def
modes belonging to the irreducible representations of
C2v point group as functions of the dielectric constant of tw
interstitial defect rods placed along@1,0# display qualita-
tively similar behavior as those associated with the subst
tional defect rod, except that the localized states of all p

FIG. 17. The spatial distribution~a! of the electric field and~b!
the energy density associated with the localizedA2 symmetry defect
mode of frequencyva/2pc50.382 associated with two interstitia
defect rods placed along@1,0# direction withed524. The field pat-
terns are shown within the region of thex1x2 plane consisting of
838 unit cells.
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sible symmetries occur simultaneously in a wide range
dielectric strength.

The eigenfrequencies of the modes shown in Fig. 5
Fig. 15 typically decrease monotonically ased is increased.
This behavior can be explained in terms of the variatio
theorem in electromagnetism4

v25

E dr
1

e
u¹3Hu2

E drH 2

, ~4.1!

which links the mode frequency with the spatial variation
the magnetic-field distribution. First we observe that t
eigenfrequency depends on the magnitude of the diele
strength of the defect rod because it scales asvd;1/Ae and,
simultaneously, depends on the variation of the field dis
bution. This, for example, explains the fact that the def
modes with fixed eigenfrequency that belong to the symm
tries with a stronger variation of the field distribution occ
for larger values ofed . The variational principle given by
Eq. ~4.1! also explains the equivalence of adjusting the s
of the defect rod and changing the dielectric constanted that
is demonstrated in Figs. 11~a! and 11~b!.

By changing the position of the nearest neighbors in
vicinity of the defect cylinder placed in the center of th
supercell we found that symmetric relaxation increases
eigenfrequency of the eigenmode for inward distortio
while the outward distortion leads to a decrease of the de

FIG. 18. The spatial distribution~a! of the electric field and~b!
the energy density associated with the localizedB1 symmetry defect
mode of frequencyva/2pc50.371 associated with two interstitia
defect rods placed along@1,0# direction withed524. The field pat-
terns are shown within the region of thex1x2 plane consisting of
838 unit cells.
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level. This result can be again interpreted in terms of
variational theorem: the inward distortion increases the av
age dielectric constant in the region in which most of t
variation of the field distribution is concentrated, and th
according to the scaling of the eigenfrequency given byvd

;1/Ae, leads to a lower value ofvd and vice versa.
We also examined the photonic crystal consisting

GaAs rods arrayed in a two-dimensional triangular latt
considered in Ref. 21, in which the dependence of the
quencies of the localized states on the defect size was s
ied. By inspecting the defect levels belonging to the irred
ible representations of theC6v point group we have
identified the nondegenerate and doubly degenerate le
that appear in the band gap for the radius of the defect ro
the range 0,r d,0.5a as those belonging to theA1 , E1, and
E2 irreducible representations.

The defect size dependence shown in Fig. 13 confir
that the defect produced by reducing the size of the de
rod creates a single acceptorlike defect level that app
close to the lower edge of the band gap, while increasing
radius of the defect rod creates both single and doubly
generate donorlike levels stemming from the upper edge
the band gap. This is consistent with the results demonstr
theoretically and experimentally in 2D and 3D photon
crystals.1,5,12

It is worth pointing out that information on the symmet
provides a natural tool to classify the modes, and belo
along with the eigenfrequency, polarization, and field dis

FIG. 19. The spatial distribution~a! of the electric field and~b!
the energy density associated with the localizedB2 symmetry defect
mode of frequencyva/2pc50.362 associated with two interstitia
defect rods placed along@1,0# direction withed56. The field pat-
terns are shown within the region of thex1x2 plane consisting of
838 unit cells.
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bution to the key characteristics that allow identifying pea
observed in transmission measurements. On the other h
the symmetry analysis of the defect modes plays a cru
role in the coupling efficiency, since incident plane wav
can excite only the modes whose symmetry matches the
larization and direction along which the plane wave pro
gates.

In conclusion, we have systematically studied the def
states associated with substitutional and interstitial de
rods. By imposing boundary conditions appropriate to ir
ducible representations of theC6v andC2v point groups, and
by varying the dielectric strength of the defect rods,
found the defect states associated with all possible irred
ible representations. By inspecting the spatial distribution
the electromagnetic field and the energy density we h
verified the localized nature of the modes possessingC6v and
C2v symmetry. The field distributions of the defect mod
resemble the behavior of the basis functions belonging to
irreducible representations. The symmetry analysis allo
classifying experimentally observed defect modes and de
u
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e
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p
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al
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ct
ct
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mining the appropriate polarization and direction of pro
gation of the incident light in order to couple the energy in
the cavity. We have shown that the properties of these m
can be controlled by changing the nature and/or the siz
the defect. We also studied the effect of a local symme
distortion of the photonic crystal in the vicinity of the defe
rod and interpreted the results obtained by using the va
tional theorem. Studies in progress focus on the extensio
the present method to the solution of the problem of surf
modes and to frequency-dependent and nonlinear Kerr
defects. We also plan to study energy transfer between i
acting defects and other properties associated with the
poral behavior of the modes.
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