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Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value
of the third-order nonlinear optical susceptibility x®
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We report on a calibration procedure based on third-harmonic generation, which yields absolute values for
x®). By calibrating the nonlinear susceptibiligf® of fused silica against the established, quantum chemically
calculated second-order hyperpolarizabilitigsf various gases at different pressures, we determine reliable
absolute values for fused silica. We propose a standard third-order nonlinear optical suscepjibilitiafs
fused silica ) (—3w,0,0,0)=(2.0£0.2)x10?m?%V? at the wavelength 1.064 um and
X (—30,0,0,0)=(1.6+0.2)x 10" 2m?V? at 1.907um. These results are in excellent agreement with the
cascading experiments reported by Bossteirdl. [Phys. Rev. B61, 10 688(2000].

[. INTRODUCTION In third-harmonic generation experiments the situation is
somewhat different. To date most people have used the value
En route to all-optical signal processing, the developmeny®(—3w,»,»,w)=3.89x 10" ?m?V?=2.79x10 *“*esu of
of materials with large third-order nonlinear optical effects isfused silica, which was obtained by cascading of second-
of decisive importance. For the material characterization andrder susceptibilitieg?.>® The values of the second-order
the assessment of its usefulness for applications, the absoluesceptibilitiesy®), on which this calibration approach is
value of the third-order nonlinear optical susceptibilit{?’) based, changed in past years, and more recent cascading ex-
has to be known. Since most measurements are performeeriments revealed a value of the third-order susceptibility
relative to a reference material, the establishment of a welly®)(—3w,w,w,w) that is a factor 2.4—3 smaller than the
accepted value for a standard material is important. original one’?®
The most widely employed material characterization tech- Our idea here is to determine absolute third-order suscep-
niques are third-harmonic generatigiHG),! degenerate tibilities x®(—3w,0w,0,w) in a direct approach, without
four-wave mixing(DFWM),> and theZ scan’ In THG the  the indirect path using the second-order susceptibiljtiés
frequency of the incoming beam is tripled by the nonlinearin cascading experiment§ig. 1). The second-order hyper-
optical susceptibilityy®)(—3w,w,w,w). Only the instanta-  polarizability y (x per molecule instead of volumef gas

neous electronic effect can contribute to the nonlinearity. Inatoms or diatomic molecules has been calculated quantum
DFWM and theZ scan, vibrational, orientational, and ther- mechanically’, with a sufficient precision to make a calibra-

mal effects can also contribute to the nonlinearity )
Y3 (- w,0,—w,0). By employing short laser pulses the parametric fluorescence
latter two can be avoided. Because one needs fast nonlineari- ©F (Phase-matched)
ties for all-optical signal processing, our main interest is di- SHG
rected toward the fast electronic nonlinearities. Therefore,
and also due to its simplicity, third-harmonic generation is a
very attractive method to characterize newly developed ma-
terials.

For DFWM and theZ scan, standard values have been x? cascading
established. The liquid GSis most commonly used as a and THG
reference material.As the nonlinear refractive indem, is
proportional to the real part of the degenerate nonlinearity

X(z)(—w,w,—w,w), it can also be used as a standard for F|G. 1. Calibration scheme of optical third-order susceptibilities
X( )(_ 0,0,~0,0)! x© of fused silica. Pursuing the left path, the second-order suscep-
tibility x® of a noncentrosymmetric materiéfjuart has to be
measured first by parametric fluorescence (phase-matched
3 second-harmonic generatidSHG). Afterwards x(® of this non-
_ 3 centrosymmetric material can be calibrated by cascading and finally
ny(w)= 4eqcn} REX'V(~ w0, w,0)]. @ comparing third-harmonic generati6RHG) measurement yields
. _ o _ _ _ x® of fused silica. In this work we are following the right path,
Ng is the linear refractive index,the intensity g, the dielec-  \ynich allows us to determing® of fused silica directly by com-
tric constant in vacuum, antdthe speed of light in vacuum. paring it with the nonlinearities of gases in a third-harmonic gen-
The nonlinear refractive inden2 of fused silica has been eration experiment. In the end we can also use the vallw(%f
measured by different methods, and a standard value hagtermined here to confirm the second-order susceptibjlity of
recently been reportet. quartz(dashed arroyv

THG of fused
silica in gas
atmosphere
(this work)
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circle
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tion within an error range of some percent feasible. With a X
third-harmonic generation measurement of a fused silica T

plate in a well-defined gas atmosphere, the ratio of the V2'Wy
third-order  susceptibility x(—3w,»,w,w) of fused gas

silica against the second-order hyperpolarizability Wy

Y —3w, o, v, w) of the involved gas atoms or molecules can 20 )
be retrieved, and an absolute value for the nonlinearity
determined.

With these independent measurements, we can assess the
standard values and compare them with the values obtained
earlier by cascading. This enables us to introduce @& more g, 2. Geometry of the third-harmonic generation experiments.
reliable standard value of the third-order susceptibilitya thin fused silica plate is placed in the focus of a Gaussian beam
x®(—3w,0,0,0) of fused silica. Furthermore, we can also with the beam waisWW,. The focal parametez, is significantly
confirm the second-order susceptibiligf?) of quartz, by larger than the plate thickness Surrounding the fused silica plate
taking our third-order susceptibility standard vajdé from  is a gas atmosphere with well-defined parameters.
third-harmonic generation, and using the cascading experi-

N

thin fused
silica plate

ments in the backward directiofFig. 1) to calibrate y(? Bii Fiik
againsty®. Pi=piteo| B+ S BBt ZERE - ),
(7)
Il. THEORY -
Yijki = Yijki /6. (8

A. Definition of nonlinear optical coefficients ) )
The factor 6 has to be considered when comparing absolute

In nonlinear optics various conventions for the expansion, 5| ,es of the third-order nonlinear optical properties with the
of the polarizatiorP(r,t) and the electric field&(r,t) have 4 different definitions.

been used. Nonlinearity values of different authors have to Summing over all possible terms, the relevant polarization

be compared carefully, paying attention to different defini-o¢ third-harmonic generation consequently results in
tions.
We define the electric field€(r,t) and polarization 50 €0 (3 Y €0 (3.3
P(r,t) propagating in the direction in an isotropic medium P =" xiiil(—30,0,0,0)E/E; Eiwzz)(( Es. (9
as
The indices in Eq(9) are omitted on the right side of the
equation to simplify the notation. In the following equations
E(r,)=32 {En(r,omexfi(knz—ont)]+c.cl, (3)  the termy™® will always refer to the use in Eq9), if not
m explicitly defined otherwise. Since we have a nearly ideal
gas (see Sec. llID, the relation between the macroscopic
. . 3 third-order susceptibility® and the microscopic molecular
P(r.t)= 2%; P (r o) expli (K 2= 0 ) ]+ C.C, second-order hyperpolarizability is given by
@

where c.c. denotes the complex conjugate of the first term,

X(3)(_3w’w,w'w)=Nf3wf?07(_3w,w;wiw)i (10)

k= (w/c)n, the wave vector, an&,(r,o,,) the complex f _ni,3w+2 11
electric field amplitudes. For the expansion of the polariza- wlw g (1D
tion amplitudes(assuming summation over common indi- .

ces, we write whereN is the number of molecules per volume, ahgs,

are the local-field factors in the Lorentz approximation. With
the molecular densitil and the refractive indices,, 3, de-
pending on the pressugein the gas phase, the third-order
susceptibilityy(®) is a function ofp as shown below. Since

n, s, Of the gas atmospheres in our experiments are almost
1, the local-field factors are close to unity, and can be omit-
ted in practice.

Pi = PO,i + So(XI(]l)EJ + Xl(Jzk)EJ Ek+ XI(]3k>| EJ EkE| +-- '), ( )
5

with P, the spontaneous polarization agtl’ the nth-order
susceptibility. For the atomic or molecular hyperpolarizabili-
ties, the analogous definition is

B. Third-harmonic generation by a Gaussian beam
Pi= pit+eol e Ej+ BijkEjEc+ vij E{EKE ++++),  (6) 9 Y

In the third-harmonic generation experiment a Gaussian
with p the microscopic molecular polarizatiop, the mo-  laser beam is focused on a fused silica plate placed in the
lecular dipole momentg;; the polarizability,8;; the first-  focus(Fig. 2). The electric-field amplitudg,, of the incident
order hyperpolarizability, ang;j, the second-order hyper- Gaussian beam with the beam waistzat0O is
polarizability. In quantum-chemical calculations of the 5
hyperpolarizabilitie$s and%, different definitions of the po- E(r)= EO e ;{_ kwp_ ) (12)
larization expansion are uséd: ¢ 1+iz/z, 2z(1+izlzy))"
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® Im{l,} Imjlg} ' plate is much less than the focal parameig(L <z,), the
® =0, ZTr/A/é integrand can be simplified and the integta{L) solved
Re{f} analytically,
L/2 eiAks(z/+L/2) AL L/2 kg’
1 I4(L =j —————— > dz ~e'tkt f etk dz/
@'*EE S( ) 7|_/2(1+|Z /20)2 —L/2
. 2 sin(AkgL/2
TS miAk= L, = e'AksL’Zr(—s'), (16)
Akg

FIG. 3. Traces of the third-harmonic-generation integg(z),
according to Eqs(15) and(16), for a negative wave-vector differ-
ence of fundamental and harmonic frequendidés=Kks,— 3k, <0.

yielding the same result as third-harmonic generation for
plane waves.The approximation in Eq16) is discussed in

(a) For an infinite medium the integration up to the focus yields amore detail in the Appendix. The integra{(L) describes a

pure imaginary value. The integration over the whole space IeadgirCIe in the lower complex plankFig. 3b)], with the peri-

back to zero, with no net third harmonic generatés.For a thin ~ °dicity 2m/Aks in the plate thickness.. The lengthL.
plate in the focus, the integral is a periodic function describing a= w/ Ak for the generation of the maximal third-harmonic

circle in the complex plane. Its diameter @ is inversely proportionaiSignal is usually called the coherence length. -

to AK. After the plate, the spiral of the gas in the positive half-
space < z<<« turns back to the inside of the circle of fused

wherep=\x?+y? is the radial coordinatezo=7W2/\ the  silica (Fig. 4). Because the phase shift between the funda-

= (wlc)n,, the wave vector of the initial beam, arfiy the 1S N0 longerm, the spiral is not just horizontally flipped, but

maximal electric-field amplitude in the beam waist. The cre-2/S0 rotated by this phase difference compared to the spiral

ated third-harmonic bearis, between a lower boundag ~ ©f the negative half-space. Including the transmission factors

=a andz results if°-12 t3 for the fundamental and harmonic frequencies,
®,3w
c(r) - 2 gidkz' —a) (os0_ 2ng cosd, an
= - ’ gs = Lh03w ,3w ,3w
Esu(r)=i . X EOJa(lJriz’/zo)z dz’, (13 Ny cosfy+ng > cosos
w,3w w,3w
c 3w 1 3ka2 14 tg)é&u: . 2n50 COSZj - _ (18)
== —_— - . S w,3w + w, w,3m !
(N=87% 1+izizo O P ™ 2zy(1+izlzy)) (14) Ng™ COSOg+Ng™" COSOg
where Ak=3k,— ks, = 3w/c(n,—na,) is the wave-vector ng3°sinfg=ng>*sing>  (Snelliug, (19

difference. The ternC(r) is easily calculated and will not be

discussed any further. The integral with the external(interna) angle of incidentf,(6s), the

trace of the generated third-harmortg, in the complex
plane follows, as sketched in Fig. 4:

2 @Ak ~a)
lg(Z):famdz (19 ; 3 XEJS) 30430
ng(l’)ZIC(I’)EO n?ﬁlg(o)[tgstsg
can only be solved numerically for general integration 9
boundaries, and is usually visualized in vibration diagrdms +(t;’s)3(t§'g)3ei<AkS*L’”’Z)]
(see the Appendjx The integrall 4(2) is plotted in the com-
plex plane as a function of, with the resulting harmonic x(ss) 2 sifAkL/2)
. . .. . + (tws)3t3w—elAk,L/2 (20)

amplitude being the vector from the origin to the end point of FS% gs/ 'sg AK :

the trace. An integration over the infinite medium yields the

vibration diagram depicted in Fig. 3, with no net third- In Eq. (20) we have two terms which contribute to the third-
harmonic generation. The integration over the negative halfharmonic signalEs,: one from the gas and one from the
spacez<0 yields a spiral with the end point on the imagi- solid. By rotating the plate the interaction length in the solid
nary axis. If the integral is continued te-o, another, is changed, and the signkk, pursues the dotted circle in
horizontally flipped, spiral turns back to zero. Agz=0) is  Fig. 4, showing the well known Maker-fringe pattern in the
purely imaginary and positive fakky<0, the sign ofE3,, at experiment. By measuring the plate in vacuum, and after-
z=0 is negativdEq. (13)], compared to the positive sign of wards at different gas pressures, the two contribution can be
E,. This corresponds to a phase shiftobetween funda- separated and calibrated against one another.

mental and harmonic field. Because of symmetry, the posi-

tive half-space 6.z<<oc then has to cancel the created third Ill. EXPERIMENTAL METHOD

harmonic of the negative half-space.

The situation changes if a thin plate with thicknésss
placed in the focus. The integration in the gas phase is still For the third-harmonic generation measurements, a pulsed
conducted up to zero instead efL/2, which introduces a Nd:YAG (yttrium aluminum garnegtlaser with a pulse width
negligible error(see the Appendjx If the thicknesd. of the  of 5 ns is employedFig. 5). Either the fundamental wave-

A. Third-harmonic generation setup
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FIG. 4. Generated third-harmonic field;, in the complex
plane for the experimental geometry in Fig.(2) The gas in the
negative half-spacez&0) creates a third-harmonic signah\),
which is reduced by the transmission factor at the fused silica in-
terface (B). In the fused silica the generated third harmonic de-
scribes a circle in the complex plane as a function of its thickness
(C). After transmission out of the fused sili¢R, D', andD"), the
gas in the positive half-space>0) adds an additional contribution
to the generated third-harmonic frequendy;, E’, and E”). By
changing the thickness of the fused silica plate, the sidhg)
follows the dashed circlgb) If the optical path length through the
thin fused silica plate is changed by rotation, the third-harmonic-
generation signal+|E;,|?) oscillates as a function of the angle as

. A=1.064 1tm

N L1
Y
]

Nd:YAG

v Hj-Raman cell laser

ety o

A=1.907 um

polarizer ) @ 0l0 430
63

n—a
|{l 111 ] PM

lens = filter

sample in vacuum chamber

FIG. 5. In the THG setup a Nd:YAG lasek € 1.064um) with
5-ns pulses is either injected directly in the experiment or frequency
shifted by a H Raman cell to the wavelength=1.907um. The
beam is polarized parallel to the rotation axis of the fused silica
plate (s polarized, and focused in the gas chamber. The thin fused
silica plate is mounted on a rotation stage in the focus of the laser
beam. After the THG, the fundamental beam is removed with filters
and the THG signal measured with a photomultip(ieM).

lengthA=1.064um or the B-Raman shifted wavelength
=1907um is used. The beam is polarized parallel to the
rotation axis of the fused silica plate polarized. The beam

is focused with a 500-mm lens on a 1-mm-thick fused silica
plate, which is placed on a rotation stage in a vacuum cham-
ber. The windows are 450 mm apart, creating no detectable
third-harmonic signal. The focal parametes is around
10-15 mm, which is well above the plate thickness and well
below the chamber dimensions. After the chamber, the fun-
damental frequency is removed with filters, and the harmonic
frequency detected with a photomultiplier. The photomulti-
plier signal is measured by a boxcar integrator, and acquired
on a computer, which also drives the rotation stage. To ac-
count for the laser power fluctuations, the third-harmonic

I|||II||II|I|IIII|III1|II

THG signal [arb. units]

p <1 mbar
o p =503 mbar
p = 1707 mbar

FIG. 6. Measurement curves of the THG experiments. The am-

depicted in Fig. 4), according to the Maker-fringe patterns. The plitude of the Maker-fringe curves is decreased with increasing gas
decrease of the THG signal in the wings originates in the smallepressure, as this example with nitrogen shows. The data analysis of
transmission factors for increasing angles, which is not depicted im pressure series yields the ratio of the gas and fused silica nonlin-

(a).

earities(Fig. 10.
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U o o o o o S e e e LA LI ber by cutting the beam with a razor blade perpendicular to
— - - the propagation direction at several positions around the fo-
E 400 ===- ideal Gauss (M2 =1) cus. The pulse energies were measured as a function of the
= M2=1.1 blade position with a pyroelectric Joulemeter. The beam
g’ 300 - width W(z) was determined by applying the error function
= 3 4 (integrated Gaussian functiprCuts close to the focus some-
S 200 - - what destroyed the edge of the razor blade. Also, at low
= L J powers close to the detection limit of the Joulemeter, metal
% 100 . ablation by the laser can be observed at the blade edge under
© | = i a microscope. Therefore, the beam width we measured close
[ PENS W U0 OO RO T IR IR R to the focus may be too large, yielding a worse Gaussian
80 -60 40 20 0 20 40 60 80 beam in our analysis than it is in reality.
We assess our Gaussian beam quality, by applying the
z [mm] )
function
FIG. 7. The laser beam deviates slightly from an ideal Gaussian
beam. The analysis of the beam waist vs propagation distance 7\ 2]12
with Eq. (22) yieldsM2=1.1 at the wavelength =1.064um. The W(z)=M?W,| 1+ Z—) } , (22
0

beam quality is difficult to improve further, and is the main error
source in the calibration experiments.

to the beam width vs propagation directi@rig. 7). W, is
signal is measured relative to the one generated in a secofide beam width in the focus, and? is a parameter, describ-
sample and divided pulse by pulse. This second THG line ig"g the beam quality. An ideal Gaussian beam would corre-

not depicted in Fig. 5. spond toM?2=1. For the wavelength =1.064um we find
By rotating the plate, Maker-fringe patterns are obtainedVi® between 1.1 and 1.2. _
(Fig. 6) and analyzed according to E(R0). In the experi- The beam quality at the wavelengkh=1.907um is ad-

mental procedure, a fused silica measurement in vacuurditionally decreased by the frequency shifting in the Ré-
(p<1mbar) is taken first. Afterwards, measurements inman cell. We findv? values between 1.2 and 1.3.
various gas atmospheres are performed, up to a pregsure Simulations of the integral ((z=0) for different focal

=2000 mbar. The pressure-dependent ratio parameterg, revealed only a slight dependencezfn An
error bar of 10% for the wavelength=1.064,m and 15%
x14(0) for A\=1.907um have been shown to be sufficient to ac-
T (21) count for the imperfect beam quality. This error source is the
S

main uncertainty in the measurement procedure and domi-

can be determined by using E€R0) and the fused silica Nates the calibration error bar.
measurements in vacuum.

To validate our experiment series, we performed measure-
ments on different gas molecules. The rare gases helium and ) ) o
argon and the diatomic molecules hydrogenadd nitrogen The nonlinear optical second-order hyperpolarizabilifies
N, were studied. The results from the different gas specie_Qf various atoms and small molecules have been calculated

should yield the same calibration results for fused silica. N the static limit of zero frequerjc%/l_:or the atoms and di-
atomic molecules we are investigating, the dispersions have

also been determined. We calculated the nonlinearities at the
experimental frequencies according to Refalko see Table

To evaluate the numerical integrg)(z=0), a Gaussian ). The hyperpolarizabilitiesy add up independently to the
beam is assumed above, which is impossible to reach pethird-order susceptibilitieg®) according to Eq(10), where
fectly in reality. The Gaussian outcoupling mirror of our la- the molecular densitiN(p) (see below and the refractive
ser provides nearly Gaussian beams at the wavelength indicesn,, 3,(p) are functions of the pressure in the chamber
=1.064um. The beam was analyzed in the vacuum chameof the THG experiment.

C. Hyperpolarizabilities of gas species

B. Gaussian beam profile

TABLE I. Calculated atomic and molecular second-order hyperpolarizabifjtiasthe static limit and at
the experimental wavelengtiiRef. 9. The nonlinearities of the reference have to be changed from atomic
units to Sl units (1 a.ss 7.0423< 10~ >*m®V?) and divided by a factor of 6 due to the different conventions
(Egs.(6)—(8)).

Vstatic Y static Vstatic v (1.907 um) ¥ (1.064 um)
Gas (a.u) (a.u) (1075 m°Vv?) (1075 m°/v?) (1075 m°/v?)
He 43.15 7.192 50.64 51.4 53.2
Ar 1220 203 1430 1480 1620
H, 683 114 801 837 927

N, 1010 168 1190 1220 1320
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FIG. 9. Refractive index dispersion for the four investigated gas
FIG. 8. Deviations of the calculated molecular densiths species. The measured data points. from the Iiterature are interpo-
(number of molecules per volurnbetween the ideal gas model and lated to the employed wavelengths in the THG experiments.
the van der Waals gas as a function of the prespuiEhe differ-
ences are in the range of per mills, and therefore much smaller thaigctionsf, s, [Eq. (11)]. The only really dependent variable
the experimental error. is the wave-vector differenceAk=(3w/c)(n,—nN3,).
Therefore, the dispersion of the nonlinear refractive index is
D. Ideal vs van der Waals gas of main interest and the absolute values of lower importance
. (see Fig. 9.
ex;z;:gdlggal gas, the molecular densiyp,T) can be The ref_ractive indices at standard conditigpg=1 atm,
To=0°C) in Table Il have to be transformed to the pressure
N(p,T)=p/kgT, (23) and temperature in the experiment. As for the hyperpolariz-

abilities, the linear polarizabilities add independently to the
with the Boltzmann constarkg . Using the van der Waals |inear susceptibilityy"):

equation as a more realistic gas model, the molecular density

N(p,T) can be retrieved by numerically solving Y V(= w,0)=Nf,a(—w,0)=n2—1. (25)

(p+N?2a)

E—b) =KkgT, (24) From the local-field correctioni€Eg. (11)], and by referring

N to the standard conditions as mentioned above, it follows that
with a andb two parameters tabulated for various gases in

the literature'®> Comparison of the ideal and van der Waals n’-1 /3=

models disclose only minor differencéselow 0.25% for nZyp  Nal3=Nconst, (26)

the investigated pressures up to 2000 mffag. 8). To re-

duce computation time in the data analysis, we worked with

2_ 2_
the ideal gas equation and did not numerically solve the van n2 ! = E ng 1, (27)
der Waals equation. n“+2  Ngng+2
E. Refractive indices N ng—l N n(Z)—l 12
Refractive indices of the investigated gases have been No ng+2 No ng+2

measured in the visible and in the near infrared by different

authorst*~1® The extrapolation to the longest wavelength  For molecular densitiedl, either the equation for an ideal

=1.907um is believed to be accurate, as no infrared activg Eq. (23)] or the van der Waal§Eq. (24)] gas can be de-

vibration occurs for He, Ar, Bl and N. ployed. For fused silica the refractive indica§354.7 nm)
Since all refractive indices of the gases are very close te=1.476 24,n(635.7 nm)=1.456 99,n(1064 nm)=1.449 69,

1, they have no significant influence on the transmission coand n(1907 nm)=1.43959, from Sellmeier dispersion for-

efficientst3 [Egs. (17) and (18)] and the local field cor- mulas, are usetf.

TABLE 1l. Interpolated and extrapolated refractive indiags at standard condition§py=1 atm, T,
=0°C) (Refs. 14-18

(ng—1)x1078 (ng—1)x107° (ng—1)x1078 (ng—1)x1078
Gas AN=354.7 nm A=635.7nm A=1064 nm A=1907 nm
He 35.308 34.852 34.721 34.672
Ar 289.543 280.973 278.608 277.718
H, 144.579 138.350 136.656 136.021

N, 306.932 297.710 295.161 294.202
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lium, the standard deviation of a free running focal param-
eterz, increases dramatically, due to the very minor curva-
ture in the data points. Therefore, the focal parameter is kept
constant at the value determined by the measurements of the
other three gases.

At a wavelengthn =1.907um, the above analysis is no
longer suitable. The diminished beam quality leads to larger
standard deviations in the focal parametgr Consequently,
we used the focal parameters from the Gaussian beam analy-
sis of the beam cutting. The experimental error is enlarged as
discussed above.

For both wavelengths the evaluated calibration values of
fused silica determined with different gases are in good
agreement with one anoth@rable Il1). All results are within
the error bar of the average third-order susceptibility
X3(—3w,0,0,0)=(2.04£0.20)x 10" ?m?V? at 1.064
um, andy®(—3w,w,w,w)=(1.56+0.25)x 10~ *m?/V? at
He A 1.907 um. The scattering at=1.907um is larger, as might
% o—Q be expected from the lower quality of the laser beam. The
0 400 800 1200 1600 2000 numbers for argon seem to be systematically larger than for

pressure p [mbar] the other gas species. One might speculate that its calculated
hyperpolarizabilityy is slightly too large. Furthermore, the
%rfllibration values determined with hydrogen at
=1.907um are also somewhat lower than the average. Nev-
certheless, all these deviations are within the uncertainties ex-
pected from the nonideal Gaussian profile of our laser beam.
The comparison with our absolute measurements of the
V. RESULTS AND DISCUSSION second-order susceptibiliy® of fused silica by cascadifig
provides an additional verification of our results. The agree-

The evaluations of the THG measurements yield the ratiogmment with the cascading calibration values of
[Eq. (21)] of the gas and fused silica contributions to the y(3)(— 3w, w,w,w)=(1.99+0.20)x 10" 22m¥V2 at 1.064
third harmonic signalFig. 10. The magnitude of the non- ;m andy®)(-3w,w,w,»)=(1.62+0.15)x 10" 2m?V? at
linearity ratio originates in*/x{2 and the curvature de- 1.907um is excellent. In these values, an experimental error
pends on the wave-vector differendd, and the focal pa- of the second-order susceptibiligy?) has also been included
rameterz,. To determine the calibration values of the third- when compared to the original paper. The agreement be-
order susceptibility\/%ﬁ) the numerical integral, is fitted to  tween the two methods is better than we could expect from
the points in Fig. 10. our experimental uncertainties in the THG experiments.

For argon, nitrogen, and hydrogen at the wavelength The error range of our absolute nonlinearity measure-
=1.064um, it is possible to treat the focal parametgmas a ments overlap also with the error bars of the cascading ex-
free parameter and determine it in the evaluation procedurperiments in Ref. 7 which yielded a third-order susceptibility
of the nonlinearity ratio vs pressure. The resulting paramy®)(—3w,w,»,»)=(1.33+0.15)x 10 ?*m?V? at 1.907
eterszy are in agreement with the values determined fromum. However, the agreement is worse than for our own cas-
direct measurements with the razor blade. In the case of he&ading experiments.

0 400 800 1200 1600 2000
pressure p [mbar]

3.
%3 10

FIG. 10. Nonlinearity ratio$Eq. (21)] of the four investigated
gas species vs the pressure in the THG chamber at wavelengths
1.064 um (a) and 1.907um (b). The evaluation of the measured
ratios, indicated by the lines, yields the calibration values for th
third-order susceptibility(® of fused silica.

TABLE IIl. Third-order susceptibilities(® (—3w, , », ») of fused silica calibrated by THG measure-
ments in various gas atmospheres.

x® (1.064 um) x® (1.064 um) x® (1.907 um) x® (1.907 um)

(10722 m?Iv?) (10 *¥e.s.u.) (1022 m?Iv?) (10 *e.s.u.)
He 1.95+0.20 1.39-0.15 1.69-0.25 1.210.18
1.52+0.25 1.09-0.18
Ar 2.18+0.20 1.56-0.15 1.75-0.25 1.25-0.18
2.16+0.20 1.54-0.15 1.57-0.25 1.12-0.18

H, 1.97+0.20 1.410.15 1.42-0.25 1.02-0.18
1.99+0.20 1.42-0.15 1.38-0.25 0.99-0.18

N, 1.96+0.20 1.40-0.15 1.60-0.25 1.14-0.18

average 2.0£0.20 1.46-0.15 1.56-0.25 1.12-0.18
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The comparison with the cascading experiments of Im{lg}
Meredith and co-workeré with x®)(—3w,w,w,w)=3.89
X 10722m?/V? at 1.907um leads to very bad agreement at g 0% R I=
first. If the second-order susceptibility{2}(—2w,w,w) eily}

=0.94 pm/V [di1(—2w,w,w)=0.47 pm/V], which
Meredith and co-workers assumed for quartz at 1.p64,
is corrected to the currently accepted value
of Y—20,0,0)=0.60pm/NV  [dy(—20,0,0)
=0.30 pm/V], the third-order susceptibility changes &)
X(—3w,0,0,0)=1.58<10?2m?V2. This value is then in
good agreement with the values in this paper, and with our L
cascading experiments.

The various calibration measurements of the third-order
susceptibility at degenerate frequencies yield an averaged
standard value of®)(— w,», — 0, 0)=2.04X 1022 m?/V?
(Ref. 4 at 1.053um. As the nonlinearity is measured at a  FIG. 11. Vibrational diagram for a gas medium with normal
slightly different point in the dispersion relatiolszr,(?’) does dispersion in the positive half-spa@>0. The generated third-
not have to coincide with our experiments, but should at leagtarmonic field describes a spiral in the complex plane as a function
be in the same range, a requirement that is obviously fulof the propagation coordinae

filled.
APPENDIX
V. CONCLUSIONS For the numerical integral
We have shown that it is possible to measure the absolute
value of the nonlinear optical third-order susceptibility z @Ak -a)
X®(—3w,0,0,0) by THG in a well-defined gas atmo- Ig(Z)—J ———>dz, (A1)
a(1+iz'/zp)

sphere with an error of 10—15 %. The measurements on four
different gas species are in good agreement with one another,
leading to the same absoluié®)(—3w,w,w,w) within the ~ various definitions are used by different authors, depending
experimental error range. The comparison with our cascad®n the choice of the focus coordinates and the integration
ing experiments, which are completely independent of théoundaries. The amplitude for all definitions stays the same,
THG measurements, discloses the same results, with devi@ut the phase factor changes. Therefore, the measured har-
tions significantly smaller than the experimental error bars. monic intensity is independent of the initial notation.

All these measurements enable us to define a more reli- Attention has to be paid at the interface of two nonlinear

able reference value for the third-order susceptibilitymedia. The accumulated phase of the integral in the first
¥ (—3w,0,0,0) of fused silica. Averaging the results medium has to be correctly added to the phase in the second

from THG and cascading experiments, we find medium. The phase mismatch between the fundamental and
harmonic wave has to persist at the interface, as neither of
¥3(=30,0,0,0)=(2.0£0.2) them experience a phase shift. o
A convenient way to visualize the numerical integrals
X10 2?m?/V?  at 1.064um l4(2) and to increase the intuitive understanding are vibra-

(29) tion diagrams according to Ward and Néwsee, e.g., Fig.
3). The integrall4(z) is plotted as a curve in the complex
and plane, withz as a running parameter. The trace starts with
z=a in the origin of the complex plane, and is built up by
Y3 (~30,0,0,0)=(1.650.2) adding vector increments of the integral argument. The vec-
tor from the origin to the end point of the trace portrays the
X107 #mAV? at 1.907um created third harmonic.
(30) Assuming a gas medium occupying only the positive half-
spacez>0, a numerical evaluation of the integral shows a
which we propose as new standard values for fused silicaspiral with the end point on the imaginary axisg. 11). The
Furthermore, we can confirm the second-order susceptibilityave-vector differenceAk=3k,—ks,=(3w/c)(n,—nz,)
x? of quartz to bey'?(—2w,w,w)=0.60 pm/V at a wave- is negative for normal dispersian,,>n,, (it holds for prac-
length 1.064um and y®(—2w,w,»)=0.56 pm/V at 1.907 tically all dielectrics and gases in the visible spectral region
pum. and therefore the end point of the spiral lies on the negative
imaginary axis.
The integration over the negative half-spaee0 exhibits
a horizontally flipped spiral. The phase expQka)=exp
This research was supported by a grant from the ETH—i«) is not defined, which corresponds to a free rotation in
Research Council. We thank P. Kaatz for helpful commentshe complex plane. In order to be in agreement with the
in planning these experiments. spiral of the positive half-space at 0, the phase is fixed by
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Im{l,} Im{E34/i}
(b) T Reyy

"o

" Re{E3 /i)

numerical integral
— — — - approximation

FIG. 12. Vibrational diagrams of the exact solutions and ap-
proximations used in the experimental data analysisln the gas,
the numerical integral of the third-harmonic generation is conducted
until z=0 instead ofz= —L/2, which results in a deviation in the
phase but only little in the amplitudéb) The plane-wave approxi-
mation for the thin fused plate results in a rotation of the exact,
numerically integrated solution.

.............. numerical integral

a=0, showing a smooth curve when integrated over the approximation
whole spacéFig. 3a)]. — — — — resulting curves
In the experiment the gas phase extends only until  FIG. 13. Overall vibrational diagrams for the THG process in

= —L/2, which gives a small deviation of the phase if com-the experiment, with the third-order susceptibilitig? and the
pared with the integration over the whole half-spaee0  transmission factors included. The approximatiarl line) results
[Fig. 12a)]. The error in the amplitude is even smaller asin a rotation of the exact vibrational diagrafdotted ling. The
one is close to the focus of the beam. For a thin fused silicamplitudes which are measured in a THG experiment by varying
plate in the beam focus, an approximation is introduced irthe plate thicknesglashed lingexhibit practically no differences in
Eg. (16), yielding a little different trace in the vibration dia- the two approaches.

gram than the exact numerical integratidtig. 12b)].

one measures the intensity of the generated third-harmonic

L2 gldks(Z' +L12) kL2 SIN(AkGL/2) frequency, the phase deviations have no influence.
IS(L):J iz’ dz/~| et e By also incorporating the third-order susceptibilitigS’
Cp(1+iz'z9)? AKq y p g p e

(A2) and the transmission factors, vibration diagrams of the total
THG process can be depictégig. 4).>*° The diagrams for
The circle of the approximation is rotated by the above-the numerical integration and the approximation are rotated
mentioned phase deviation of the gas in order to show avith respect to one another by an an¢ffég. 13. The result-
smooth curve at the interface. The distortion from a perfectng Maker-fringe patterns created by the amplitudes show
circular shape is very minor for a thin fused silica plate.  only minor differences between the exact solution and the
For the positive half-space>0, the same approximation approximation, as illustrated above. Simulations for our ex-
as for the negative half-space applies, also resulting in @erimental conditions exhibit agreement better than 99% in
small phase difference. All three approximations are moreny case. For our data analysis we consequently employed
dependent on the phase than on the amplitude of the field. AgpproximationgEq. (20)] to save calculation time.
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