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Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value
of the third-order nonlinear optical susceptibility x „3…

Ulrich Gubler* and Christian Bosshard
Nonlinear Optics Laboratory, Institute of Quantum Electronics, ETH Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland

~Received 5 October 1999!

We report on a calibration procedure based on third-harmonic generation, which yields absolute values for
x (3). By calibrating the nonlinear susceptibilityx (3) of fused silica against the established, quantum chemically
calculated second-order hyperpolarizabilitiesg of various gases at different pressures, we determine reliable
absolute values for fused silica. We propose a standard third-order nonlinear optical susceptibilitiesx (3) of
fused silica x (3)(23v,v,v,v)5(2.060.2)310222 m2/V2 at the wavelength 1.064 mm and
x (3)(23v,v,v,v)5(1.660.2)310222 m2/V2 at 1.907mm. These results are in excellent agreement with the
cascading experiments reported by Bosshardet al. @Phys. Rev. B61, 10 688~2000!#.
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I. INTRODUCTION

En route to all-optical signal processing, the developm
of materials with large third-order nonlinear optical effects
of decisive importance. For the material characterization
the assessment of its usefulness for applications, the abs
value of the third-order nonlinear optical susceptibilityx (3)

has to be known. Since most measurements are perfor
relative to a reference material, the establishment of a w
accepted value for a standard material is important.

The most widely employed material characterization te
niques are third-harmonic generation~THG!,1 degenerate
four-wave mixing~DFWM!,2 and theZ scan.3 In THG the
frequency of the incoming beam is tripled by the nonline
optical susceptibilityx (3)(23v,v,v,v). Only the instanta-
neous electronic effect can contribute to the nonlinearity
DFWM and theZ scan, vibrational, orientational, and the
mal effects can also contribute to the nonlinear
x (3)(2v,v,2v,v). By employing short laser pulses th
latter two can be avoided. Because one needs fast nonlin
ties for all-optical signal processing, our main interest is
rected toward the fast electronic nonlinearities. Therefo
and also due to its simplicity, third-harmonic generation i
very attractive method to characterize newly developed
terials.

For DFWM and theZ scan, standard values have be
established. The liquid CS2 is most commonly used as
reference material.3 As the nonlinear refractive indexn2 is
proportional to the real part of the degenerate nonlinea
x (3)(2v,v,2v,v), it can also be used as a standard
x (3)(2v,v,2v,v):

n~ I !5n01n2I ~1!

n2~v!5
3

4«0cn0
2 Re@x~3!~2v,v,2v,v!#. ~2!

n0 is the linear refractive index,I the intensity,«0 the dielec-
tric constant in vacuum, andc the speed of light in vacuum
The nonlinear refractive indexn2 of fused silica has been
measured by different methods, and a standard value
recently been reported.4
PRB 610163-1829/2000/61~16!/10702~9!/$15.00
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In third-harmonic generation experiments the situation
somewhat different. To date most people have used the v
x (3)(23v,v,v,v)53.89310222m2/V252.79310214esu of
fused silica, which was obtained by cascading of seco
order susceptibilitiesx (2).5,6 The values of the second-orde
susceptibilitiesx (2), on which this calibration approach i
based, changed in past years, and more recent cascadin
periments revealed a value of the third-order susceptib
x (3)(23v,v,v,v) that is a factor 2.4–3 smaller than th
original one.7,8

Our idea here is to determine absolute third-order susc
tibilities x (3)(23v,v,v,v) in a direct approach, withou
the indirect path using the second-order susceptibilitiesx (2)

in cascading experiments~Fig. 1!. The second-order hyper
polarizabilityg (x (3) per molecule instead of volume! of gas
atoms or diatomic molecules has been calculated quan
mechanically,9 with a sufficient precision to make a calibra

FIG. 1. Calibration scheme of optical third-order susceptibilit
x (3) of fused silica. Pursuing the left path, the second-order sus
tibility x (2) of a noncentrosymmetric material~quartz! has to be
measured first by parametric fluorescence or~phase-matched!
second-harmonic generation~SHG!. Afterwardsx (3) of this non-
centrosymmetric material can be calibrated by cascading and fin
a comparing third-harmonic generation~THG! measurement yields
x (3) of fused silica. In this work we are following the right path
which allows us to determinex (3) of fused silica directly by com-
paring it with the nonlinearities of gases in a third-harmonic ge
eration experiment. In the end we can also use the value ofx (3)

determined here to confirm the second-order susceptibilityx (2) of
quartz~dashed arrow!.
10 702 ©2000 The American Physical Society
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PRB 61 10 703OPTICAL THIRD-HARMONIC GENERATION OF FUSED . . .
tion within an error range of some percent feasible. With
third-harmonic generation measurement of a fused si
plate in a well-defined gas atmosphere, the ratio of
third-order susceptibility x (3)(23v,v,v,v) of fused
silica against the second-order hyperpolarizabi
g~23v, v, v, v! of the involved gas atoms or molecules c
be retrieved, and an absolute value for the nonlinearityx (3)

determined.
With these independent measurements, we can asses

standard values and compare them with the values obta
earlier by cascading. This enables us to introduce a m
reliable standard value of the third-order susceptibi
x (3)(23v,v,v,v) of fused silica. Furthermore, we can als
confirm the second-order susceptibilityx (2) of quartz, by
taking our third-order susceptibility standard valuex (3) from
third-harmonic generation, and using the cascading exp
ments in the backward direction~Fig. 1! to calibratex (2)

againstx (3).

II. THEORY

A. Definition of nonlinear optical coefficients

In nonlinear optics various conventions for the expans
of the polarizationP(r ,t) and the electric fieldsE(r ,t) have
been used. Nonlinearity values of different authors have
be compared carefully, paying attention to different defi
tions.

We define the electric fieldsE(r ,t) and polarization
P(r ,t) propagating in thez direction in an isotropic medium
as

E~r ,t !5 1
2 (

m
$Em~r ,vm!exp@ i ~kmz2vmt !#1c.c.%, ~3!

P~r ,t !5 1
2 (

m8
$Pm8~r ,vm8!exp@ i ~km8z2vm8t !#1c.c.%,

~4!

where c.c. denotes the complex conjugate of the first te
km5(v/c)nm the wave vector, andEm(r ,vm) the complex
electric field amplitudes. For the expansion of the polari
tion amplitudes~assuming summation over common ind
ces!, we write

Pi5P0,i1«0~x i j
~1!Ej1x i jk

~2!EjEk1x i jkl
~3! EjEkEl1¯ !,

~5!

with P0 the spontaneous polarization andx (n) the nth-order
susceptibility. For the atomic or molecular hyperpolarizab
ties, the analogous definition is

pi5m i1«0~a i j Ej1b i jkEjEk1g i jkl EjEkEl1¯ !, ~6!

with p the microscopic molecular polarization,m the mo-
lecular dipole moment,a i j the polarizability,b i jk the first-
order hyperpolarizability, andg i jkl the second-order hyper
polarizability. In quantum-chemical calculations of th
hyperpolarizabilitiesb̃ andg̃, different definitions of the po-
larization expansion are used:9
a
a
e

the
ed
re

ri-

n

to
-

,

-

-

pi5m i1«0S a i j Ej1
b̃ i jk

2!
EjEk1

g̃ i jkl

3!
EjEkEl1¯ D ,

~7!

g i jkl 5g̃ i jkl /6. ~8!

The factor 6 has to be considered when comparing abso
values of the third-order nonlinear optical properties with t
two different definitions.

Summing over all possible terms, the relevant polarizat
of third-harmonic generation consequently results in

Pi
3v5

«0

4
x i i i i

~3!~23v,v,v,v!Ei
vEi

vEi
v5

«0

4
x~3!Ev

3 . ~9!

The indices in Eq.~9! are omitted on the right side of th
equation to simplify the notation. In the following equation
the termx (3) will always refer to the use in Eq.~9!, if not
explicitly defined otherwise. Since we have a nearly id
gas ~see Sec. III D!, the relation between the macroscop
third-order susceptibilityx (3) and the microscopic molecula
second-order hyperpolarizabilityg is given by

x~3!~23v,v,v,v!5N f3v f v
3 g~23v,v,v,v!, ~10!

f v,3v5
nv,3v

2 12

3
, ~11!

whereN is the number of molecules per volume, andf v,3v

are the local-field factors in the Lorentz approximation. W
the molecular densityN and the refractive indicesnv,3v de-
pending on the pressurep in the gas phase, the third-orde
susceptibilityx (3) is a function ofp as shown below. Since
nv,3v of the gas atmospheres in our experiments are alm
1, the local-field factors are close to unity, and can be om
ted in practice.

B. Third-harmonic generation by a Gaussian beam

In the third-harmonic generation experiment a Gauss
laser beam is focused on a fused silica plate placed in
focus~Fig. 2!. The electric-field amplitudeEv of the incident
Gaussian beam with the beam waist atz50 is

Ev~r !5
E0

11 iz/z0
expS 2

kvr2

2z0~11 iz/z0! D , ~12!

FIG. 2. Geometry of the third-harmonic generation experimen
A thin fused silica plate is placed in the focus of a Gaussian be
with the beam waistW0 . The focal parameterz0 is significantly
larger than the plate thicknessL. Surrounding the fused silica plat
is a gas atmosphere with well-defined parameters.
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10 704 PRB 61ULRICH GUBLER AND CHRISTIAN BOSSHARD
wherer5Ax21y2 is the radial coordinate,z05pW0
2/l the

focal parameter,W0 the beam waist in the focus,kv

5(v/c)nv the wave vector of the initial beam, andE0 the
maximal electric-field amplitude in the beam waist. The c
ated third-harmonic beamE3v between a lower boundaryz
5a andz results in10–12

E3v~r !5 i
C~r !

n3v
x~3!E0

3E
a

z eiDk~z82a!

~11 iz8/z0!2 dz8, ~13!

C~r !5
3

8

v

c

1

11 iz/z0
expS 2

3kvr2

2z0~11 iz/z0! D , ~14!

whereDk53kv2k3v53v/c(nv2n3v) is the wave-vector
difference. The termC(r ) is easily calculated and will not b
discussed any further. The integral

I g~z!5E
a

z eiDk~z82a!

~11 iz8/z0!2 dz8 ~15!

can only be solved numerically for general integrati
boundaries, and is usually visualized in vibration diagram10

~see the Appendix!. The integralI g(z) is plotted in the com-
plex plane as a function ofz, with the resulting harmonic
amplitude being the vector from the origin to the end point
the trace. An integration over the infinite medium yields t
vibration diagram depicted in Fig. 3, with no net thir
harmonic generation. The integration over the negative h
spacez,0 yields a spiral with the end point on the imag
nary axis. If the integral is continued to1`, another,
horizontally flipped, spiral turns back to zero. AsI g(z50) is
purely imaginary and positive forDkg,0, the sign ofE3v at
z50 is negative@Eq. ~13!#, compared to the positive sign o
Ev . This corresponds to a phase shift ofp between funda-
mental and harmonic field. Because of symmetry, the p
tive half-space 0,z,` then has to cancel the created thi
harmonic of the negative half-space.

The situation changes if a thin plate with thicknessL is
placed in the focus. The integration in the gas phase is
conducted up to zero instead of2L/2, which introduces a
negligible error~see the Appendix!. If the thicknessL of the

FIG. 3. Traces of the third-harmonic-generation integralI s,g(z),
according to Eqs.~15! and ~16!, for a negative wave-vector differ
ence of fundamental and harmonic frequenciesDk5k3v23kv,0.
~a! For an infinite medium the integration up to the focus yield
pure imaginary value. The integration over the whole space le
back to zero, with no net third harmonic generated.~b! For a thin
plate in the focus, the integral is a periodic function describin
circle in the complex plane. Its diameter Ø is inversely proportio
to Dk.
-

f

lf-

i-

ill

plate is much less than the focal parameterz0 (L!z0), the
integrand can be simplified and the integralI s(L) solved
analytically,

I s~L !5E
2L/2

L/2 eiDks~z81L/2!

~11 iz8/z0!2 dz8'eiDksL/2E
2L/2

L/2

eiDkzz8dz8

5eiDksL/2
2 sin~DksL/2!

Dks
, ~16!

yielding the same result as third-harmonic generation
plane waves.1 The approximation in Eq.~16! is discussed in
more detail in the Appendix. The integralI s(L) describes a
circle in the lower complex plane@Fig. 3~b!#, with the peri-
odicity 2p/Dks in the plate thicknessL. The lengthLc
5p/Dks for the generation of the maximal third-harmon
signal is usually called the coherence length.

After the plate, the spiral of the gas in the positive ha
space 0,z,` turns back to the inside of the circle of fuse
silica ~Fig. 4!. Because the phase shift between the fun
mental and harmonic electric field at the endface of the p
is no longerp, the spiral is not just horizontally flipped, bu
also rotated by this phase difference compared to the sp
of the negative half-space. Including the transmission fac
tv,3v for the fundamental and harmonic frequencies,

tgs
v,3v5

2ng
v,3v cosug

ng
v,3v cosug1ns

v,3v cosus
v,3v , ~17!

tsg
v,3v5

2ns
v,3v cosus

v,3v

ng
v,3v cosug1ns

v,3v cosus
v,3v , ~18!

ng
v,3v sinug5ns

v,3v sinus
v,3v ~Snellius!, ~19!

with the external~internal! angle of incidentug(us), the
trace of the generated third-harmonicE3v in the complex
plane follows, as sketched in Fig. 4:

E3v~r !5 iC~r !E0
3S xg

~3!

ng
3v I g~0!@ tgs

3vtsg
3v

1~ tgs
v !3~ tsg

v !3ei ~Dks ,L2p/2!#

1
xs

~3!

ns
3v ~ tgs

v !3tsg
3v

2 sin~DkL/2!

Dk
eiDk,L/2D . ~20!

In Eq. ~20! we have two terms which contribute to the thir
harmonic signalE3v: one from the gas and one from th
solid. By rotating the plate the interaction length in the so
is changed, and the signalE3v pursues the dotted circle in
Fig. 4, showing the well known Maker-fringe pattern in th
experiment. By measuring the plate in vacuum, and af
wards at different gas pressures, the two contribution can
separated and calibrated against one another.

III. EXPERIMENTAL METHOD

A. Third-harmonic generation setup

For the third-harmonic generation measurements, a pu
Nd:YAG ~yttrium aluminum garnet! laser with a pulse width
of 5 ns is employed~Fig. 5!. Either the fundamental wave

ds

a
l



he

ica
am-
ble

ell
un-
nic
lti-
ired
ac-
nic

ncy

lica
ed
ser

ers

m-
gas
is of
nlin-

in
e
es

n

e
ic
s
e
lle
d

PRB 61 10 705OPTICAL THIRD-HARMONIC GENERATION OF FUSED . . .
FIG. 4. Generated third-harmonic fieldE3v in the complex
plane for the experimental geometry in Fig. 2.~a! The gas in the
negative half-space (z,0) creates a third-harmonic signal (A),
which is reduced by the transmission factor at the fused silica
terface ~B!. In the fused silica the generated third harmonic d
scribes a circle in the complex plane as a function of its thickn
~C!. After transmission out of the fused silica~D, D8, andD9!, the
gas in the positive half-space (z.0) adds an additional contributio
to the generated third-harmonic frequency~E, E8, and E9!. By
changing the thickness of the fused silica plate, the signalE3v

follows the dashed circle.~b! If the optical path length through th
thin fused silica plate is changed by rotation, the third-harmon
generation signal (;uE3vu2) oscillates as a function of the angle a
depicted in Fig. 4~a!, according to the Maker-fringe patterns. Th
decrease of the THG signal in the wings originates in the sma
transmission factors for increasing angles, which is not depicte
~a!.
lengthl51.064mm or the H2-Raman shifted wavelengthl
51907mm is used. The beam is polarized parallel to t
rotation axis of the fused silica plate~s polarized!. The beam
is focused with a 500-mm lens on a 1-mm-thick fused sil
plate, which is placed on a rotation stage in a vacuum ch
ber. The windows are 450 mm apart, creating no detecta
third-harmonic signal. The focal parameterz0 is around
10–15 mm, which is well above the plate thickness and w
below the chamber dimensions. After the chamber, the f
damental frequency is removed with filters, and the harmo
frequency detected with a photomultiplier. The photomu
plier signal is measured by a boxcar integrator, and acqu
on a computer, which also drives the rotation stage. To
count for the laser power fluctuations, the third-harmo

FIG. 5. In the THG setup a Nd:YAG laser (l51.064mm) with
5-ns pulses is either injected directly in the experiment or freque
shifted by a H2 Raman cell to the wavelengthl51.907mm. The
beam is polarized parallel to the rotation axis of the fused si
plate~s polarized!, and focused in the gas chamber. The thin fus
silica plate is mounted on a rotation stage in the focus of the la
beam. After the THG, the fundamental beam is removed with filt
and the THG signal measured with a photomultiplier~PM!.

FIG. 6. Measurement curves of the THG experiments. The a
plitude of the Maker-fringe curves is decreased with increasing
pressure, as this example with nitrogen shows. The data analys
a pressure series yields the ratio of the gas and fused silica no
earities~Fig. 10!.
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10 706 PRB 61ULRICH GUBLER AND CHRISTIAN BOSSHARD
signal is measured relative to the one generated in a se
sample and divided pulse by pulse. This second THG lin
not depicted in Fig. 5.

By rotating the plate, Maker-fringe patterns are obtain
~Fig. 6! and analyzed according to Eq.~20!. In the experi-
mental procedure, a fused silica measurement in vacu
(p,1 mbar) is taken first. Afterwards, measurements
various gas atmospheres are performed, up to a pressup
52000 mbar. The pressure-dependent ratio

xg
~3!I g~0!

xs
~3! ~21!

can be determined by using Eq.~20! and the fused silica
measurements in vacuum.

To validate our experiment series, we performed meas
ments on different gas molecules. The rare gases helium
argon and the diatomic molecules hydrogen H2 and nitrogen
N2 were studied. The results from the different gas spec
should yield the same calibration results for fused silica.

B. Gaussian beam profile

To evaluate the numerical integralI g(z50), a Gaussian
beam is assumed above, which is impossible to reach
fectly in reality. The Gaussian outcoupling mirror of our l
ser provides nearly Gaussian beams at the wavelengl
51.064mm. The beam was analyzed in the vacuum cha

FIG. 7. The laser beam deviates slightly from an ideal Gaus
beam. The analysis of the beam waist vs propagation distanz
with Eq. ~22! yields M251.1 at the wavelengthl51.064mm. The
beam quality is difficult to improve further, and is the main err
source in the calibration experiments.
nd
is

d

m
n

e-
nd

s

r-

-

ber by cutting the beam with a razor blade perpendicula
the propagation direction at several positions around the
cus. The pulse energies were measured as a function o
blade position with a pyroelectric Joulemeter. The be
width W(z) was determined by applying the error functio
~integrated Gaussian function!. Cuts close to the focus some
what destroyed the edge of the razor blade. Also, at
powers close to the detection limit of the Joulemeter, me
ablation by the laser can be observed at the blade edge u
a microscope. Therefore, the beam width we measured c
to the focus may be too large, yielding a worse Gauss
beam in our analysis than it is in reality.

We assess our Gaussian beam quality, by applying
function

W~z!5M2W0F11S z

z0
D 2G1/2

, ~22!

to the beam width vs propagation direction~Fig. 7!. W0 is
the beam width in the focus, andM2 is a parameter, describ
ing the beam quality. An ideal Gaussian beam would cor
spond toM251. For the wavelengthl51.064mm we find
M2 between 1.1 and 1.2.

The beam quality at the wavelengthl51.907mm is ad-
ditionally decreased by the frequency shifting in the H2 Ra-
man cell. We findM2 values between 1.2 and 1.3.

Simulations of the integralI g(z50) for different focal
parametersz0 revealed only a slight dependence inz0 . An
error bar of 10% for the wavelengthl51.064mm and 15%
for l51.907mm have been shown to be sufficient to a
count for the imperfect beam quality. This error source is
main uncertainty in the measurement procedure and do
nates the calibration error bar.

C. Hyperpolarizabilities of gas species

The nonlinear optical second-order hyperpolarizabilitieg
of various atoms and small molecules have been calcul
in the static limit of zero frequency.9 For the atoms and di-
atomic molecules we are investigating, the dispersions h
also been determined. We calculated the nonlinearities a
experimental frequencies according to Ref. 9~also see Table
I!. The hyperpolarizabilitiesg add up independently to th
third-order susceptibilitiesx (3) according to Eq.~10!, where
the molecular densityN(p) ~see below! and the refractive
indicesnv,3v(p) are functions of the pressure in the chamb
of the THG experiment.

n

mic
ns
TABLE I. Calculated atomic and molecular second-order hyperpolarizabilitiesg in the static limit and at
the experimental wavelengths~Ref. 9!. The nonlinearities of the reference have to be changed from ato
units to SI units (1 a.u.57.0423310254 m5/V2) and divided by a factor of 6 due to the different conventio
~Eqs.~6!–~8!!.

Gas
g̃static

~a.u.!
gstatic

~a.u.!
gstatic

(10254 m5/V2)
g ~1.907mm!
(10254 m5/V2)

g ~1.064mm!
(10254 m5/V2)

He 43.15 7.192 50.64 51.4 53.2
Ar 1220 203 1430 1480 1620
H2 683 114 801 837 927
N2 1010 168 1190 1220 1320
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D. Ideal vs van der Waals gas

For an ideal gas, the molecular densityN(p,T) can be
expressed as

N~p,T!5p/kBT, ~23!

with the Boltzmann constantkB . Using the van der Waals
equation as a more realistic gas model, the molecular den
N(p,T) can be retrieved by numerically solving

~p1N2a!S 1

N
2bD5kBT, ~24!

with a and b two parameters tabulated for various gases
the literature.13 Comparison of the ideal and van der Waa
models disclose only minor differences~below 0.25%! for
the investigated pressures up to 2000 mbar~Fig. 8!. To re-
duce computation time in the data analysis, we worked w
the ideal gas equation and did not numerically solve the
der Waals equation.

E. Refractive indices

Refractive indices of the investigated gases have b
measured in the visible and in the near infrared by differ
authors.14–18 The extrapolation to the longest wavelengthl
51.907mm is believed to be accurate, as no infrared act
vibration occurs for He, Ar, H2, and N2.

Since all refractive indices of the gases are very close
1, they have no significant influence on the transmission
efficients tv,3v @Eqs. ~17! and ~18!# and the local field cor-

FIG. 8. Deviations of the calculated molecular densitiesN
~number of molecules per volume! between the ideal gas model an
the van der Waals gas as a function of the pressurep. The differ-
ences are in the range of per mills, and therefore much smaller
the experimental error.
ity

n

h
n

n
t

e

to
o-

rectionsf v,3v @Eq. ~11!#. The only really dependent variabl
is the wave-vector differenceDk5(3v/c)(nv2n3v).
Therefore, the dispersion of the nonlinear refractive index
of main interest and the absolute values of lower importa
~see Fig. 9!.

The refractive indices at standard conditions~p051 atm,
T050 °C! in Table II have to be transformed to the pressu
and temperature in the experiment. As for the hyperpola
abilities, the linear polarizabilitiesa add independently to the
linear susceptibilityx (1):

x~1!~2v,v!5N fva~2v,v!5nv
2 21. ~25!

From the local-field corrections@Eq. ~11!#, and by referring
to the standard conditions as mentioned above, it follows

n221

n212
5Na/35N const, ~26!

n221

n212
5

N

N0

n0
221

n0
212

, ~27!

n5F S 112
N

N0

n0
221

n0
212D Y S 12

N

N0

n0
221

n0
212D G1/2

. ~28!

For molecular densitiesN, either the equation for an idea
@Eq. ~23!# or the van der Waals@Eq. ~24!# gas can be de-
ployed. For fused silica the refractive indicesn(354.7 nm)
51.476 24,n(635.7 nm)51.456 99,n(1064 nm)51.449 69,
and n(1907 nm)51.439 59, from Sellmeier dispersion fo
mulas, are used.14

an

FIG. 9. Refractive index dispersion for the four investigated g
species. The measured data points from the literature are inte
lated to the employed wavelengths in the THG experiments.
TABLE II. Interpolated and extrapolated refractive indicesn0 at standard conditions~p051 atm, T0

50 °C) ~Refs. 14–18!.

Gas
(n021)31026

l5354.7 nm
(n021)31026

l5635.7 nm
(n021)31026

l51064 nm
(n021)31026

l51907 nm

He 35.308 34.852 34.721 34.672
Ar 289.543 280.973 278.608 277.718
H2 144.579 138.350 136.656 136.021
N2 306.932 297.710 295.161 294.202
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IV. RESULTS AND DISCUSSION

The evaluations of the THG measurements yield the ra
@Eq. ~21!# of the gas and fused silica contributions to t
third harmonic signal~Fig. 10!. The magnitude of the non
linearity ratio originates inxg

(3)/x f s
(3) and the curvature de

pends on the wave-vector differenceDkg and the focal pa-
rameterz0 . To determine the calibration values of the thir
order susceptibilityx f s

(3) the numerical integralI g is fitted to
the points in Fig. 10.

For argon, nitrogen, and hydrogen at the wavelengthl
51.064mm, it is possible to treat the focal parameterz0 as a
free parameter and determine it in the evaluation proced
of the nonlinearity ratio vs pressure. The resulting para
etersz0 are in agreement with the values determined fr
direct measurements with the razor blade. In the case of

FIG. 10. Nonlinearity ratios@Eq. ~21!# of the four investigated
gas species vs the pressure in the THG chamber at wavelengt
1.064 mm ~a! and 1.907mm ~b!. The evaluation of the measure
ratios, indicated by the lines, yields the calibration values for
third-order susceptibilityx (3) of fused silica.
s

re
-

e-

lium, the standard deviation of a free running focal para
eterz0 increases dramatically, due to the very minor curv
ture in the data points. Therefore, the focal parameter is k
constant at the value determined by the measurements o
other three gases.

At a wavelengthl51.907mm, the above analysis is n
longer suitable. The diminished beam quality leads to lar
standard deviations in the focal parameterz0 . Consequently,
we used the focal parameters from the Gaussian beam a
sis of the beam cutting. The experimental error is enlarge
discussed above.

For both wavelengths the evaluated calibration values
fused silica determined with different gases are in go
agreement with one another~Table III!. All results are within
the error bar of the average third-order susceptibi
x (3)(23v,v,v,v)5(2.0460.20)310222m2/V2 at 1.064
mm, andx (3)(23v,v,v,v)5(1.5660.25)310222m2/V2 at
1.907mm. The scattering atl51.907mm is larger, as might
be expected from the lower quality of the laser beam. T
numbers for argon seem to be systematically larger than
the other gas species. One might speculate that its calcu
hyperpolarizabilityg is slightly too large. Furthermore, th
calibration values determined with hydrogen atl
51.907mm are also somewhat lower than the average. N
ertheless, all these deviations are within the uncertainties
pected from the nonideal Gaussian profile of our laser be

The comparison with our absolute measurements of
second-order susceptibilityx (3) of fused silica by cascading8

provides an additional verification of our results. The agr
ment with the cascading calibration values
x (3)(23v,v,v,v)5(1.9960.20)310222m2/V2 at 1.064
mm andx (3)(23v,v,v,v)5(1.6260.15)310222m2/V2 at
1.907mm is excellent. In these values, an experimental er
of the second-order susceptibilityx (2) has also been include
when compared to the original paper. The agreement
tween the two methods is better than we could expect fr
our experimental uncertainties in the THG experiments.

The error range of our absolute nonlinearity measu
ments overlap also with the error bars of the cascading
periments in Ref. 7 which yielded a third-order susceptibil
x (3)(23v,v,v,v)5(1.3360.15)310222m2/V2 at 1.907
mm. However, the agreement is worse than for our own c
cading experiments.

of

e

-
TABLE III. Third-order susceptibilitiesx (3) ~23v, v, v, v! of fused silica calibrated by THG measure
ments in various gas atmospheres.

x (3) ~1.064mm!
(10222 m2/V2)

x (3) ~1.064mm!
(10214 e.s.u.)

x (3) ~1.907mm!
(10222 m2/V2)

x (3) ~1.907mm!
(10214 e.s.u.)

He 1.9560.20 1.3960.15 1.6960.25 1.2160.18
1.5260.25 1.0960.18

Ar 2.1860.20 1.5660.15 1.7560.25 1.2560.18
2.1660.20 1.5460.15 1.5760.25 1.1260.18

H2 1.9760.20 1.4160.15 1.4260.25 1.0260.18
1.9960.20 1.4260.15 1.3860.25 0.9960.18

N2 1.9660.20 1.4060.15 1.6060.25 1.1460.18

average 2.0460.20 1.4660.15 1.5660.25 1.1260.18
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The comparison with the cascading experiments
Meredith and co-workers5,6 with x (3)(23v,v,v,v)53.89
310222m2/V2 at 1.907mm leads to very bad agreement
first. If the second-order susceptibilityx111

(2)(22v,v,v)
50.94 pm/V @d11(22v,v,v)50.47 pm/V#, which
Meredith and co-workers assumed for quartz at 1.064mm,
is corrected to the currently accepted val
of x (2)(22v,v,v)50.60 pm/V @d11(22v,v,v)
50.30 pm/V#, the third-order susceptibility changes tox (3)

3(23v,v,v,v)51.58310222m2/V2. This value is then in
good agreement with the values in this paper, and with
cascading experiments.

The various calibration measurements of the third-or
susceptibility at degenerate frequencies yield an avera
standard value ofx (3)(2v,v,2v,v)52.04310222m2/V2

~Ref. 4! at 1.053mm. As the nonlinearity is measured at
slightly different point in the dispersion relation,x (3) does
not have to coincide with our experiments, but should at le
be in the same range, a requirement that is obviously
filled.

V. CONCLUSIONS

We have shown that it is possible to measure the abso
value of the nonlinear optical third-order susceptibil
x (3)(23v,v,v,v) by THG in a well-defined gas atmo
sphere with an error of 10–15 %. The measurements on
different gas species are in good agreement with one ano
leading to the same absolutex (3)(23v,v,v,v) within the
experimental error range. The comparison with our casc
ing experiments, which are completely independent of
THG measurements, discloses the same results, with de
tions significantly smaller than the experimental error ba

All these measurements enable us to define a more
able reference value for the third-order susceptibi
x (3)(23v,v,v,v) of fused silica. Averaging the result
from THG and cascading experiments, we find

x~3!~23v,v,v,v!5~2.060.2!

310222m2/V2 at 1.064mm

~29!

and

x~3!~23v,v,v,v!5~1.660.2!

310222m2/V2 at 1.907mm

~30!

which we propose as new standard values for fused si
Furthermore, we can confirm the second-order susceptib
x (2) of quartz to bex (2)(22v,v,v)50.60 pm/V at a wave-
length 1.064mm andx (2)(22v,v,v)50.56 pm/V at 1.907
mm.
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APPENDIX

For the numerical integral

I g~z!5E
a

z eiDk~z82a!

~11 iz8/z0!2 dz8, ~A1!

various definitions are used by different authors, depend
on the choice of the focus coordinates and the integra
boundaries. The amplitude for all definitions stays the sa
but the phase factor changes. Therefore, the measured
monic intensity is independent of the initial notation.

Attention has to be paid at the interface of two nonline
media. The accumulated phase of the integral in the fi
medium has to be correctly added to the phase in the sec
medium. The phase mismatch between the fundamental
harmonic wave has to persist at the interface, as neithe
them experience a phase shift.

A convenient way to visualize the numerical integra
I g(z) and to increase the intuitive understanding are vib
tion diagrams according to Ward and New10 ~see, e.g., Fig.
3!. The integralI g(z) is plotted as a curve in the comple
plane, withz as a running parameter. The trace starts w
z5a in the origin of the complex plane, and is built up b
adding vector increments of the integral argument. The v
tor from the origin to the end point of the trace portrays t
created third harmonic.

Assuming a gas medium occupying only the positive ha
spacez.0, a numerical evaluation of the integral shows
spiral with the end point on the imaginary axis~Fig. 11!. The
wave-vector differenceDk53kv2k3v5(3v/c)(nv2n3v)
is negative for normal dispersionn3v.nv ~it holds for prac-
tically all dielectrics and gases in the visible spectral regio!,
and therefore the end point of the spiral lies on the nega
imaginary axis.

The integration over the negative half-spacez,0 exhibits
a horizontally flipped spiral. The phase exp(2iDka)5exp
(2i`) is not defined, which corresponds to a free rotation
the complex plane. In order to be in agreement with
spiral of the positive half-space atz50, the phase is fixed by

FIG. 11. Vibrational diagram for a gas medium with norm
dispersion in the positive half-spacez.0. The generated third-
harmonic field describes a spiral in the complex plane as a func
of the propagation coordinatez.
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a50, showing a smooth curve when integrated over
whole space@Fig. 3~a!#.

In the experiment the gas phase extends only untz
52L/2, which gives a small deviation of the phase if com
pared with the integration over the whole half-spacez,0
@Fig. 12~a!#. The error in the amplitude is even smaller
one is close to the focus of the beam. For a thin fused si
plate in the beam focus, an approximation is introduced
Eq. ~16!, yielding a little different trace in the vibration dia
gram than the exact numerical integration@Fig. 12~b!#.

I s~L !5E
2L/2

L/2 eiDks~z81L/2!

~11 iz8/z0!2 dz8'S eiDksL/2
2 sin~DksL/2!

Dks
D .

~A2!

The circle of the approximation is rotated by the abov
mentioned phase deviation of the gas in order to show
smooth curve at the interface. The distortion from a perf
circular shape is very minor for a thin fused silica plate.

For the positive half-spacez.0, the same approximatio
as for the negative half-space applies, also resulting i
small phase difference. All three approximations are m
dependent on the phase than on the amplitude of the field

FIG. 12. Vibrational diagrams of the exact solutions and
proximations used in the experimental data analysis.~a! In the gas,
the numerical integral of the third-harmonic generation is conduc
until z50 instead ofz52L/2, which results in a deviation in the
phase but only little in the amplitude.~b! The plane-wave approxi
mation for the thin fused plate results in a rotation of the exa
numerically integrated solution.
d

e

-
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t
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e
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one measures the intensity of the generated third-harm
frequency, the phase deviations have no influence.

By also incorporating the third-order susceptibilitiesx (3)

and the transmission factors, vibration diagrams of the to
THG process can be depicted~Fig. 4!.5,19 The diagrams for
the numerical integration and the approximation are rota
with respect to one another by an angle~Fig. 13!. The result-
ing Maker-fringe patterns created by the amplitudes sh
only minor differences between the exact solution and
approximation, as illustrated above. Simulations for our
perimental conditions exhibit agreement better than 99%
any case. For our data analysis we consequently emplo
approximations@Eq. ~20!# to save calculation time.

-

d

t,

FIG. 13. Overall vibrational diagrams for the THG process
the experiment, with the third-order susceptibilitiesx (3) and the
transmission factors included. The approximation~full line! results
in a rotation of the exact vibrational diagram~dotted line!. The
amplitudes which are measured in a THG experiment by vary
the plate thickness~dashed line! exhibit practically no differences in
the two approaches.
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