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Non-phase-matched optical third-harmonic generation in noncentrosymmetric media:
Cascaded second-order contributions for the calibration of third-order nonlinearities

Christian Bosshard,* Ulrich Gubler, Phil Kaatz, Witold Mazerant, and Urs Meier
Nonlinear Optics Laboratory, Institute of Quantum Electronics, ETH Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland

~Received 5 October 1999!

Cascaded second-order contributions to third-harmonic generation are analyzed in detail, and are exploited
to obtain reliable reference values for third-order nonlinear optical susceptibilities at several wavelengths. We
describe the influence of boundary conditions on the measured properties for the case of high nonlinearity
crystals such as KNbO3 and the organic salt 4-N, N-dimethylamino-48-N8-methylstilbazolium toluene-p-
sulfonate~DAST!. Wavelength dispersion relations for the electronic third-order susceptibilities derived from
third-harmonic generation experiments are discussed. Our reference standards allow a comparison of the
third-harmonic generation results with measurements of the Kerr susceptibility determined with degenerate
four-wave mixing and thez-scan technique and shows thatx (3)(2v,v,2v,v)>x (3)(23v,v,v,v) in the
investigated wavelength range. The investigation of structure-property relationships between the perovskite
crystals KNbO3 and KTaO3 indicates similar bond nonlinearities in these two compounds.
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I. INTRODUCTION

Third-order nonlinear optical effects are of prime impo
tance for all-optical signal processing. In order to estab
the usefulness of a material for these applications, the
evant nonlinearities have to be accurately known. Since
targeted effects should be very fast, electronic third-or
processes are of great importance. The best technique o
investigation of these effects is third-harmonic generati
which allows one to probe electronic processes only. An
ten encountered problem with all nonlinear optical metho
is, however, that the exact intensities of interacting opti
waves are often not well known. For this reason most m
surements are calibrated against a reference material
known nonlinearities. Therefore there exists a need for r
able reference materials. In this work we show that f
quency tripling in combination with cascaded secon
harmonic and sum-frequency generation is a very effic
tool to obtain self-consistent reliable reference values.

We present our experimental results on the crys
KNbO3, KTaO3, a-quartz, and 4-N, N-dimethylamino-48-
N8-methylstilbazolium toluene-p-sulfonate~DAST! and the
glasses BK7, SF59, and fused silica with emphasis on
theoretical analysis of the cascaded phenomena including
boundary conditions, reliable reference materials, wa
length dispersion of the third-order susceptibilities, a
structure-property relationships. In particular we want to
dress the following issues.

First, the calibration of third-order susceptibilities r
quires reliable values of second-order susceptibilities. T
reference value of the second-order nonlinear optical sus
tibilities x (2) of a-quartz has considerably changed over
last 15 years~from 1.0 pm/V down to 0.6 pm/V atl
51064 nm!, and is now believed to be accurately known.1,2

Kitamoto et al.3 determined the nonlinear optical coefficie
x311

(2)58.661.0 pm/V of congruent LiNbO3 with an absolute
parametric fluorescence experiment atl5532 nm. A com-
parison with second-harmonic-generation experiments r
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tive to a-quartz yielded a value fora-quartz of x111
(2)

50.6 pm/V. In a similar way the authors of Ref. 4 perform
parametric fluorescence experiments with ADP~NH4H2PO4!
~nonlinear optical coefficientx312

(2)! at l5632.8 nm, which
gave x312

(2)51.1060.04 pm/V. Phase-matched frequenc
doubling experiments atl51064 nm with ADP gavex312

(2)

50.9260.06 pm/V, in perfect agreement with the value d
rived at this wavelength based on the Millerd,5

x i jk
~2!~22v,v,v!5

x i
2vx j

vxk
v

x i
2v8x j

v8xk
v8

x i jk
~2!~22v8,v8,v8!

5«0d i jk~x i
2vx j

vxk
v!, ~1!

which accurately describes the dispersion of second-o
nonlinear optical susceptibilities in many inorganic mate
als. A subsequent Maker-fringe experiment witha-quartz as
a reference atl51064 nm yieldedx111

(2)50.6060.04 pm/V.
In addition, Maker-Fringe experiments atl5632.8 nm con-
firmed the validity of Miller’s rule for ADP anda-quartz.
Exact phase-matched frequency-doubling in bulk KNb3
crystals, and a comparison with Maker-Fringe experime
based ona-quartz also confirmed thatx111

(2)50.60 pm/V at
l51064 nm is a very realistic value.6 This confirmed value
can now be experimentally related to the electronic thi
order susceptibilities through cascaded second-order no
ear optical processes that yield the ratiox (3)/@x (2)#2, as dis-
cussed below.

Second, the ratio ofx (3)/@x (2)#2, as obtained from third-
harmonic generation experiments in noncentrosymme
materials, is not very well determined fora-quartz, since its
x (2) is rather small in comparison with its value forx (3). In
contrast to quartz, high-quality crystals of KNbO3 provide a
much more favorable ratio of nonlinear susceptibilitie
KNbO3 has much larger nonlinear optical susceptibiliti
x (2) with respect to itsx (3) values, and allows a more precis
determination of the ratiox (3)/@x (2)#2. We therefore per-
formed our experiments witha-quartz and KNbO3.
10 688 ©2000 The American Physical Society
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Third, the wavelength dependence of third-order susc
tibilities of inorganic crystals is generally poorly understoo
It is of fundamental interest also to establish a reliable st
dard for the dispersion ofx (3), and to theoretically bette
understand the dispersion behavior. We show that a sim
model based on a single oscillator adequately describes
experimental results.

Fourth, KNbO3 was recently investigated for its third
order susceptibilitiesx (3)(2v,v,2v,v) by degenerate
four-wave mixing7,8 and thez-scan technique9 using 100-ps
laser pulses. A comparison between these measurem
~where the third-order susceptibilities can contain electro
and optical-phonon contributions! and the third-harmonic ex
periments~only electronic contributions! described here will
yield information of the importance of optical phonons f
third-order nonlinear optics using inorganic crystals.

Fifth, the effect of longitudinal second-harmonic gene
tion and boundary conditions on the third-harmonic signa
another relevant issue that may be important for high non
earity materials. The basic concept and its influence
a-quartz and KNbO3 will be described below.

II. THEORY

A. Definition of nonlinear optical coefficients

For the definition of the nonlinear optical susceptibiliti
given below in Eq.~2!, various conventions are frequent
used. This has led to some confusion in the literature c
cerning the comparison of experimentally determined val
obtained with different techniques. As an example, very
ten experimental values are directly compared to theore
values that use a completely different convention. Moreov
most often the precise definitions in use are not clea
stated, which further complicates the comparison of non
ear optical susceptibilities. Therefore we devote this sec
to a concise definition of the relevant processes.

The basic equation describing nonlinear optical effe
expresses the macroscopic polarizationP as a power series in
the strength of the applied electric fieldE as

Pi5P0,i1«0~x i j
~1!Ej1x i jk

~2!EjEk1x i jkl
~3! EjEkEl1¯ !,

~2!

where summation over common indices is understood.P0 is
the spontaneous polarization,x (n) is the nth-order suscepti-
bility tensor, and«0 is the vacuum permittivity. The funda
mental quantity describing second-order nonlinear optical
fects is the tensorx i jk

(2) . It is a third rank tensor which, in the
electric dipole approximation, contains nonvanishing e
ments only for noncentrosymmetric molecular and crys
line structures.10 Third-order nonlinearities are describe
through the tensorx i jkl

(3) .
For the definition of the complex electric field amplitud

En(v,kn) we use the most widely applied convention

E~r ,t !5 1
2 (

n
@En~v,kn!exp„i ~knr2vt !…1c.c.#. ~3!

For the present discussion all quantities can be assumed
real. Equations~2! and ~3! then lead to the nonlinear pola
p-
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izations relevant in this work~Pi
2v for second-harmonic gen

eration, Pi
v3 for sum-frequency generation, andPi

3v for
third-harmonic generation!:

Pi
2v5 1

2 «0x i jk
~2!~22v,v,v!Ej

vEk
v

5«0di jk
~2!~22v,v,v!Ej

vEk
v , ~4!

Pi
v35«0x i jk

~2!~2v3 ,v1 ,v2!Ej
v1Ek

v2, ~5!

Pi
3v5 1

4 «0x i jkl
~3! ~23v,v,v,v!Ej

vEk
vEl

v . ~6!

di jk is the nonlinear optical coefficient for second-harmon
generation. Note that there is a prefactor that differs for su
frequency generation and frequency doubling~a factor of 2
difference!. This prefactor takes care that the low-frequen
limit of all susceptibilities is the same for all frequency com
binations.

B. Cascaded second-harmonic generation and sum-frequency
generation

Cascading is a process where lower-order effects are c
bined to contribute to a higher-order nonlinear process.
illustrate this process for the case of third-harmonic gene
tion ~Fig. 1!. Third-harmonic generation can occur in an
material, even air~see below!. In this process a fundamenta
wave at frequencyv produces a wave at frequency 3v ~v
1v1v53v!. In noncentrosymmetric materials sum
frequency mixing (v11v25v3) and second-harmonic gen
eration (v1v52v) are also allowed. We can use the tw
latter processes to also obtain a wave at frequency 3v. We
first generate an intermediate field at frequency 2v through
second-harmonic generation. This field can interact with
fundamental wave through sum-frequency mixing (2v1v
53v) to generate a field at frequency 3v itself.11,12 This
combined process is called cascading, and is schematic
illustrated in Fig. 1. To summarize: if we illuminate a no
centrosymmetric material with a wave at frequencyv and
detect the third-harmonic wave~3v! at the output, this outpu
can contain two contributions: one from direct thir

FIG. 1. Schematic of the generation of a wave at freque
3v through ~a! direct third-harmonic generation„}x (3)

(23v,v,v,v)… and ~b! through cascaded second-harmon
and sum-frequency generation @}x (2)(23v,2v,v)3x (2)

(22v,v,v)#.
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10 690 PRB 61BOSSHARD, GUBLER, KAATZ, MAZERANT, AND MEIER
harmonic generation@}x (3)(23v,v,v,v)#, and one from
cascaded second-harmonic generation and sum-frequ
mixing @}x (2)(23v,2v,v)3x (2)(22v,v,v)#. It is im-
portant to note that these intermediate fields do not nee
be able to propagate. It is possible to generate longitud
fields at frequency 2v that can subsequently interact wi
photons at the fundamental frequencyv.

The cascading of second-order susceptibilities is also
great importance to all-optical signal processing. One
these cascaded effects which have been known for a
time leads to a nonlinear phase shift of the interacting wa
in nearly phase-matched second-harmonic generation
other parametric processes.13–17 Another interesting proces
contributing to cubic nonlinear effects comes from casca
optical rectification and the linear electro-optic effect.7–9,18,19

Cascaded second-order processes allow the calibratio
nonlinear optical susceptibilities without a knowledge of t
laser parameters.7,8,12,19In the case of third-harmonic gener
tion, this calibration can be described as follows: From
theoretical analysis of an experimental curve that shows
caded processes one can directly obtain the ratio

x~3!~23v,v,v,v!

x~2!~23v,2v,v!3x~2!~22v,v,v!
. ~7!

Therefore, if the values ofx (2) are known, the value ofx (3)

can be determined. This principle has been applied
Meredith12 to find the values ofx (3) of crystalline quartz
~a-quartz! and fused silica, based on known values ofx (2) of
a-quartz. An advantage of cascaded second-harmonic
sum-frequency generation is the fact that only electronic
fects are measured, this in contrast to, e.g., thez-scan
technique20 or degenerate four-wave mixing,21 in which all
effects that are fast enough~that can react within the duratio
of the pulses used in the experiment! can contribute~espe-
cially optical phonons!. Note that similar calibration experi
ments were also applied to degenerate four-wave mixing8,19

C. Boundary conditions

The local field can influence cascaded second-harm
generation and sum-frequency generation in third-harmo
generation of noncentrosymmetric media.11,12,22We investi-
gate this influence in a discussion that can be generalize
other cascaded processes.

In the case of second-harmonic generation in nonc
trosymmetric materials, we have a source polarizationPNLS

2v

~NLS is the nonlinear source! and a bound second-harmon
wave E2v, to be inserted into the wave equation, that a
related by~derived from the wave equation, neglecting wa
vector and polarization dependencies!

E2v5
PNLS

2v

«0~«v2«2v!
~ transverse case!, ~8!

E2v52
PNLS

2v

«0«2v ~ longitudinal case!. ~9!

Each crystal lattice site~atom or molecule! experiences a
local field described by11
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EL
2v5E2v1L2vP2v1L2vPNLS

2v 5 f 2vE2v1L2vPNLS
2v ,

~10!

whereL2v51/(3«0), and f 2v is the local-field factor given
by @(n2v)212#/3 in the Lorentz approximation. Note tha
Eq. ~10! differs from the usual linear case

EL
v5Ev1LvPv5 f vEv. ~11!

Equation~10! can be further changed to

EL
2v5 f 2vH E2v1

L2v

f 2v PNLS
2v J [ f 2vEeff

2v , ~12!

whereEeff
2v is the effective field that has to be applied wh

deriving PNLS
2v from macroscopic fields.Eeff

2v should only be
applied for the generation ofP3v ~the bound wave for
second-harmonic generation remains unchanged!. In the Lor-
entz approximation,Eeff

2v becomes

Eeff
2v5H 1

«v2«2v 1
1

«2v12J PNLS
2v

«0
~ transverse case!,

~13!

Eeff
2v5H 2

1

«2v 1
1

«2v12J PNLS
2v

«0
~ logitudinal case!.

~14!

The second term inEeff
2v leads to a modification of the effec

tive third-order nonlinear optical susceptibility~in addition to
the ‘‘usual’’ cascading!. This effect was calledcascading
through the local fieldby Meredith.12 We prefer to view this
effect as a result of the electromagnetic boundary conditio
In the case of transverse fields the modified third-order n
linear optical susceptibility is then

xeff
3v5x3v12xSHG

2v 3xSFG
3v H 1

«v2«2v 1
1

«2v12J , ~15!

where SHG and SFG refer to second-harmonic genera
and sum-frequency generation, respectively. In the cas
phase-matched interactions«v'«2v, the term

L2v

f 2v PNLS
2v ~16!

can be neglected in a first approximation. For longitudin
fields, we obtain

xeff
3v5x3v12xSHG

2v 3xSFG
3v H 2

1

«2v 1
1

«2v12J ~17!

D. Wavelength dependence of second- and third-order
susceptibilities of inorganic materials

For second-order nonlinear optics~second-harmonic and
sum-frequency generation!, Eq. ~1! accurately describes th
dispersion of second-order nonlinear optical susceptibili
in many inorganic materials with wavelength-independ
Miller d coefficients. However, we found~see below! that
this simple relation does not hold for the case of KNbO3. An
appropriate equation describing our results for this cas
based on the model of a single oscillator, and is given b
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x i i i
~2!~2v3 ,v2 ,v1!5«0

d i i i

~v0
22v1

2!~v0
22v2

2!~v0
22v3

2!
2I

3~l1
21l2

21l3
2! ~18!

for sum-frequency generation. The last term of this equa
takes into account contributions from lattice oscillations
the infrared and is described by the parameterI.

For third-harmonic generation, useful theoretical desc
tions have been discussed for quite some time, since it i
fundamental interest to know the dispersion ofx (3) for at
least two reasons;~i! to obtain a better theoretical unde
standing of the dispersion behavior in inorganic~and or-
ganic! materials: and~ii ! to obtain a reliable standard for th
wavelength dependence ofx (3). A generalization of Miller’s
rule @Eq. ~1!# to third-order nonlinearities,23

x i jkl
~3! ~23v,v,v,v!5«0d i jkl ~x i

3vx j
vxk

vx l
v!, ~19!

has not been as successful in predicting the wavelength
persion as in second-order nonlinear optics. Wang24 pro-
posed a different relationship that seems to be more ge
ally valid. In the limit v2.0 he obtained

x i i i i
~3!5Q@x i

~1!#2, ~20!

A further treatment by Boling, Glass, and Owyoung25

yielded

x i i i i
~3!5Q8@ni

212#2@ni
222#, ~21!

whereQ andQ8 are quantities that are wavelength indepe
dent for many materials. A further approach is based on
simple model of a single electronic oscillator as in the c
of KNbO3 for sum-frequency generation.26 As we concen-
trate on the transparent spectral region of our materials,
neglected possible two-photon resonances in the first
proximation. In this case the dispersion of the third-ord
susceptibility for third-harmonic generation is described b

x i i i i
~3!~23v,v,v,v!5«0

d i i i i

~v0
22v2!3

„v0
22~3v!2

…

. ~22!

It should be noted that in contrast to the other equations
relation in Eq.~22! contains two adjustable parameters. W
will discuss these dispersion relations for the cases of fu
silica, a-quartz, BK7, and KNbO3 and show that Eq.~22!
best describes our experimental results.

III. MATERIALS DESCRIPTION

In the following, we briefly describe the most importa
parameters required for our experiments. We investigated
fused silica, glasses BK7, and SF59, and the crys
a-quartz ~point group 32!, KNbO3 ~point group mm2!,
KTaO3 ~point group m3m!, and the organic sal
4-N,N-dimethylamino-48-N8-methylstilbazolium toluene-p-
sulfonate~DAST! ~point groupm!. Fused silica and BK7 are
often used as reference materials in third-order nonlinear
tical experiments. SF59 is a glass with a large refract
index and enhanced third-order nonlinearities with respec
fused silica.27,28 We investigated it since it could very we
serve as a reference material with a large third-order non
ear optical response.a-quartz is a well characterized trigon
n
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crystal that is mainly used as a standard reference mat
both for x (2) andx (3).

KNbO3 and KTaO3 are both perovskite (ABO3) com-
pounds. Whereas KTaO3 has cubic symmetry at room
temperature,29 KNbO3 is only cubic at high temperatures
and transforms with decreasing temperature to the tetrag
~at ;440 °C!, orthorhombic~at 223 °C! and rhombohedra
~at 250 °C! phases.30 In a first approximation we can assum
that the cubic contributions tox (3) are the same for KTaO3
and KNbO3. A comparison of the experimental electron
nonlinear optical susceptibilities of the two will sho
whether our assumption is justified.

DAST consists of a typical donor-acceptorp-conjugated
molecule, and a guest molecule that form high-quality no
centrosymmetric crystals with large second-ord
nonlinearities.31 In DAST crystals the angular deviation o
the charge-transfer axes of the stilbazolium chromopho
from a completely aligned system is about 20°,32 which gives
rise to exceptionally large second-order susceptibiliti
Also, large third-order susceptibilities are expected for lig
polarized along the polar axisa. Since DAST has very large
second-order nonlinear optical susceptibilities~e.g., x111

(2)

520206220 pm/V at l51318 nm!, significant cascaded
second-order effects are expected as well.19

IV. FREQUENCY CONVERSION EXPERIMENTS

A. Second-harmonic generation

Most of the results described here rely on the nonlin
susceptibilityx111

(2)50.60 pm/V ofa-quartz atl51064 nm.
Since the cascaded contributions to third-harmonic gen
tion are not very pronounced for this material, KNbO3 was
additionally used whenever possible. In order to obtain r
able values we first always measured the relevant nonlin
optical coefficientx333

(2) of KNbO3 with respect tox111
(2) of

a-quartz@assuming that the Millerd with

d1115~2.6660.09!31022 m2/C

for a-quartz holds up to a wavelength of 2100 nm# with
frequency doubling, and subsequently analyzed the s
crystals with third-harmonic generation.

Several pulsed nanosecond laser sources were used fo
second-harmonic generation experiments. A Nd:YAG~yt-
trium aluminum garnet! laser~l51.064mm, a 10-Hz repeti-
tion rate, and a pulse duration of 5 ns! either directly gener-
ated the second-harmonic or pumped a H2 gas Raman cell,
yielding a frequency shifted wavelength of 1.907mm. In
addition a Nd:YAG laser~l51.318mm, a 10-Hz repetition
rate, and a pulse duration of 60 ns! and a HoTmCr:YAG
laser~l52.1mm, a 2-Hz repetition rate, and a pulse dur
tion of 80 ns! were used. The fundamental beam was th
focused onto the sample with af 5500 mm lens, and the
generated second-harmonic wave was detected with a ph
multiplier. The beams at frequenciesv and 2v were always
s polarized. The second-harmonic-generation measurem
were performed by rotating the samples around an axis
allel to the polarization to generate well-known Maker-frin
interference patterns. Figure 2 shows the experimental s
used. As in usual nonlinear optical experiments, the Mak
fringe curves were referenced against a well-known mate
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10 692 PRB 61BOSSHARD, GUBLER, KAATZ, MAZERANT, AND MEIER
which in our case wasa-quartz. We measured the nonline
optical susceptibilityx333

(2) of KNbO3 at the four wavelengths
mentioned above. The theoretical analysis of the experim
tal Maker-fringe curves was based on the equations of R
33.

B. Third-harmonic generation

The same laser sources as in the case of the sec
harmonic-generation experiments were used. Th
harmonic-generation measurements were performed by r
ing the samples around an axis parallel to the polarizatio
generate well-known Maker-fringe interference patterns. T
beams at frequencyv and 3v were alwayss polarized. Fig-
ure 2 shows the experimental setup used. All measurem
were either carried out in vacuum except for DAST whi
was measured in air according to a specially develo
procedure.34 It is important to realize that reliable measur
ments have to be carried out in vacuum~in our case we used
0.05–0.1 bar! because air also makes an important contri
tion to the third-harmonic signal. The reason for this aris
from the large coherence length of air,l c5l/@6(n3v

2nv)#, due to an almost dispersionless refractive index,
the fact that the signal at the third-harmonic is proportio
to the product@x (3)#2l c

2. The materials of interest have
large value ofx (3), but a small coherence length of the ord
of 10–100mm, whereas air, on the other hand, has a v

FIG. 2. Experimental setup for second- and third-harmonic g
eration for a fundamental wave atl51907 nm. Here the case o
second-harmonic generation is shown. Thes-polarized fundamenta
is focused on the sample. The generated light at 2v or 3v is inci-
dent on a photomultiplier tube. Filters are used to reject the fun
mental beam and to keep the signal within the linear range of
detection setup. In the case of third-harmonic generation,
sample is kept in a vacuum chamber with glass windows~dashed
line! to exclude contributions from air.

FIG. 3. Schematic diagram of the procedure to determine
third-order nonlinearity of fused silica based on the cascading
second-order nonlinearities in third-harmonic generation.
n-
f.

d-
-

at-
to
e

nts

d

-
s

d
l

r
y

small value ofx (3) but a very large coherence length~e.g.,
l c51.5 cm atl51000 nm, the refractive index data take
from Ref. 35!.

Different geometrical conditions were selected in order
distinguish between cascaded second-harmonic and s
frequency generation and pure third-harmonic generation
2100 nm, 1907 nm and 1318 nm measurements were
formed with a-quartz and KNbO3. At l51064 nm only
a-quartz was investigated, since the third harmonic was
sorbed in KNbO3 too strongly. The data points for angles
incidence between25° and15° were always neglected du
to clearly visible multiple reflections that can influence t
results. The same samples ofa-quartz and KNbO3 were used
for second- and third-harmonic generation. All thir
harmonic-generation experiments were also referenced
fused silica to establish a reliable reference value for t
material~see Sec. IV!.

The equations for the theoretical analysis can be found
the Appendix. We extended our theory from that of Ref.
in that we treat rotational Maker fringes, and include t
contributions from air. Reference 4 also treated rotatio
Maker fringes~without air contributions!, but had a different
~wrong! sign in their Eq.~31!.

C. Absolute value of the third-order susceptibilities

As mentioned above, a special feature of cascading is
fact that it often is a self-calibrating process.8,12,19In the case

-

a-
e
e

e
f

FIG. 4. Dispersion of the second-order susceptibilityx333
(2) of

KNbO3 with two theoretical models. It is clearly seen that th
Miller d poorly describes the dispersion.

TABLE I. Second-order susceptibilities ofa-quartz ~x111
(2)

and @x111
(2) #2! and KNbO3 ~x333

(2) and @x333
(2) #2!. @x (2)#2 is equal to

x (2)(23v,2v,v)3x (2)(22v,v,v). x (2)(22v,v,v) and
x (2)(23v,2v,v) were calculated from Eq.~1! ~for a-quartz! and
Eq. ~18! ~for KNbO3!.

l
~nm!

x111
(2) (22v,v,v)

~pm/V!
@x111

(2) #2

~pm/V!2
x333

(2) (22v,v,v)
~pm/V!

@x333
(2) #2

~pm/V!2

a-quartz KNbO3

1064 0.60060.040 0.385 44.261.2 -
1318 0.58460.040 0.359 40.661.0 1940
1907 0.55560.040 0.322 33.261.2 1330
2100 0.54560.040 0.312 31.261.2 1170
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TABLE II. Ratios x (3)/(x (2))2 for a-quartz (x1111
(3) /@x111

(2) #2) and KNbO3(x3333
(3) /@x333

(2) #2) obtained from
third-harmonic-generation experiments with~#! and without contributions from the boundary conditions.
indicates the data after weighted averaging. It should be noted thatx (3)/(x (2))2(SI)5(1/4p)x (3)/(x (2))2

~esu!.

l
~nm!

x (3)/(x (2))2

a-quartz
x (3)/(x (2))2#

a-quartz
x (3)/(x (2))2#,$

a-quartz
x (3)/(x (2))2

KNbO3

x (3)/(x (2))2#

KNbO3

x (3)/(x (2))2#,$

KNbO3

1064 643640 643640 643 - - -
1318 608641 608641 616 3.5060.13 3.2060.13 3.18
1907 588635 588635 618 3.8960.08 3.5860.08 3.58
2100 8506260 8506260 663 3.5360.11 3.2260.08 3.22
at
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of cascading in third-harmonic generation this means th
theoretical fit of an experimental curve that shows casca
processes directly yields the ratiox (3)/(x (2))2 without any
required knowledge of the laser beam parameters. There
if the values ofx (2) are known, the value ofx (3) can be
determined. A reference measurement with, e.g., fused si
then yields a value ofx (3) for that material~Fig. 3!. This
principle was applied by Meredith12 to find the values ofx (3)

of crystalline quartz~a-quartz! and fused silica based o
known values ofx (2) of a-quartz. We here extend the wor
to different wavelengths, additional materials to obtain be
ratios x (3)/(x (2))2, and by applying the rotational Maker
fringe technique.

V. RESULTS

A. Second-harmonic generation

If accurate values should be obtained the influence
multiple reflections on the generated harmonic signals h
to be considered. We investigated the cases of coherent
incoherent multiple reflections.36 A careful evaluation of dif-
ferent parts of the Maker-fringe curves always yielded
same results for the third-order susceptibilities, and there
indicated that coherent multiple reflections can be neglec
For the case of incoherent contributions where we sum o
all reflections from the two sample surfaces we obtaine
reduction ofx333

(2) for KNbO3 of 1% when taking these reflec
tions into account by

x333
~2!85x333

~2!3
@12~r 2v!4#@12~r v!8#

11~r 2v!2~r v!4 , ~23!

where r v is the Fresnel reflection coefficient given byr v

5(nv21)2/(nv11)2. Our experimental results for the non
a
d

re,

a,

r

f
e
nd

e
re
d.
er
a

linear optical susceptibilityx333
(2) of KNbO3 @including the

correction of Eq.~23!# are given in Table I, and displayed i
Fig. 4. The theoretical curve in Fig. 4 is based on Eq.~18!,
and was subsequently used for a calculation of the relev
nonlinear optical susceptibilities@x (2)#2 for the cascading
experiments. It is clearly seen that the curve based on
Miller d does not adequately describe the dispersion of
x333

(2) of KNbO3, in contrast to the oscillator model with a
infrared correction term. Therefore it is also of no surpr
that the Millerd does not describe the dispersion of the thir
order susceptibility either, as will be shown below.

B. Cascaded second-harmonic generation and sum-frequency
generation

The second-order nonlinear optical susceptibilitiesx (2) of
a-quartz and KNbO3 at different wavelengths were obtaine
as just described.x (2)(22v,v,v) and x (2)(23v,2v,v)
were calculated from Eq.~1! ~for a-quartz! and Eq.~18! ~for
KNbO3!. The experimental results were subsequently use
the evaluation of the third-harmonic generation experime
that we carried out as described above.

In analogy to frequency doubling, incoherent multiple r
flections were also taken into account for third-harmo
generation. This leads to modified third-order nonlinear o
tical susceptibilities

x~3!85x~3!3
@12~r 3v!4#@12~r v!12#

11~r 3v!2~r v!6 . ~24!

These corrections do not influence the ratiox (3)/@x (2)#2, but
modify the third-order susceptibilities by 1–2 % for mate
nd-order
given
TABLE III. New absolute values ofx (3) ~in units of 10222 m2/V3! based on third-harmonic-generation experiments ofa-quartz and
KNbO3 with ~#! and without contributions from the boundary conditions. For the derivation of these values we assumed the seco
susceptibilities ofa-quartz and KNbO3 to be exact. If, additionally, errors for them are introduced, the uncertainties for the values
below become approximately twice as large.

l
~nm!

x1111
(3)

a-quartz
x3333

(3)

KNbO3 x f s
(3)

x1111
(3) #

a-quartz
x3333

(3) #
KNbO3 x f s

(3)#

1064 2.4860.15 - 1.9960.15 2.4860.15 - 1.9960.15
1318 2.2160.12 67.562.5 - 2.2160.12 61.762.5 -
1907 1.9960.08 51.561.1 1.6260.06 1.9960.08 47.461.1 1.6260.06
2100 2.0660.12 41.361.3 1.6360.11 2.0660.13 37.761.3 1.6360.11
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als with large refractive indices, KNbO3, KTaO3, and SF59.
The influence of the boundary conditions will be discuss
separately~Sec. VI!.

For the determination of absolute values forx (3) the ratios
x i i i i

(3)/@x i i i
(2)#2 and x i i i i

(3)/x f s
(3) were first obtained from the ex

perimental Maker-fringe curves~Table II!. The first ratio
yields x i i i i

(3) based on the known value ofx i i i
(2) . From the

second ratiox f s
(3) can subsequently be determined~Fig. 3!.

FIG. 5. Third-harmonic Maker-fringe curves of ay plate of
a-quartz atl51907 nm.~a! Light polarizations alongx where cas-
caded second-order contributions appear. The interference ef
are not very pronounced since the value ofx (2) is quite small as
compared tox (3). ~b! Light polarizations alongz where no cascaded
second-order contributions are present.
d

This procedure was carried out fora-quartz and KNbO3. The
results, weighted with the experimental errors, are sum
rized in Table III. The final values are the ones including t
boundary conditions. Inclusion of this effect hardly influ
ences the values fora-quartz and fused silica. Only in th
case of KNbO3 can a reduction in the values ofx (3) be noted
~Table III!.

For a-quartz,x and y plates were investigated~Fig. 5!.
From symmetry considerations we hav
x1111

(3) (23v,v,v,v)5x2222
(3) (23v,v,v,v). The x and y

plates were rotated with their axes along the crystallograp
y andz axes~the x plate! andx andz axes~the y plate, Fig.
5!. Only for the y plate with rotation axis and light polar
izations along the x axis is cascading observe
@x111

(2)(23v,2v,v)3x111
(2)(22v,v,v)#. For light polarized

along thez axis ~both x and y plates!, only the interaction
with x3333

(3) (23v,v,v,v) produces a third-harmonic signa
From a measurement of thex plate with the rotation axis

and light polarizations along they axis we expect the sam
value of x (3) as for the first configuration~a y plate with a
rotation axis and light polarizations alongz! due to symmetry
considerations. Our experimental results are summarize
Tables III and IV.

In KNbO3, a, b, andc plates were investigated. To dete
mine the cascaded contributions thea andb plates were ro-
tated around the crystallographicc direction, and the polar-
izer and analyzer were chosen along the same direct
This yields a signal at the third-harmonic wavelength th
depends onx3333

(3) (23v,v,v,v) and

x333
~2! ~23v,2v,v!3x333

~2! ~22v,v,v!.

cts
TABLE IV. Summary of all third-harmonic-generation experimentsx (3) ~in units of 10222 m2/V2! with
~#! and without contributions from the boundary conditions.

Material l ~nm! x1111
(3) x2222

(3) x3333
(3) x1133

(3)

a-quartz 1064 2.4860.15 2.4860.15 2.5760.24 -
1318 2.2160.15 2.2160.15 - -
1907 1.9960.08 1.9960.08 2.1260.11 -
2100 2.0660.12 2.0660.12 2.1760.14 -

KNbO3 1318 - - 67.562.5 -
- - 61.762.5# -

1907 4463 10668 51.561.1 -
4463 10668 47.461.1# -

2100 - - 41.361.3 -
- - 37.761.3# -

KTaO3 1907 6764 6764 6764 12.862.3
(xeff

(3)55363)

SF59 1907 39.660.5 39.660.5 39.660.5 -
2100 35.862.4 35.862.4 35.862.4 -

BK7 1064 2.9860.26 2.9860.26 2.9860.26 -
1907 2.3860.11 2.3860.11 2.3860.11 -
2100 2.2960.16 2.2960.16 2.2960.16 -

fused silica 1064 1.9960.15 1.9960.15 1.9960.15 -
1907 1.6260.06 1.6260.06 1.6260.06 -
2100 1.6360.11 1.6360.11 1.6360.11 -
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FIG. 6. Third-harmonic Maker-fringe curve
of a b plate of KNbO3 at three different wave-
lengths with clearly visible cascaded contrib
tions. To the right the sample geometry is show
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Figure 6 shows Maker-fringe curves of the same KNb3
crystal for three different wavelengths. It is nicely seen t
increased dispersion leads to more complex interference
terns as the fundamental wavelength decreases. Resu
these experiments for severala andb plates are summarize
in Tables III and IV.

FIG. 7. Third-order nonlinear optical susceptibilit
x (3)(23v,v,v,v) of fused silica at various wavelengths obtain
from cascaded second-order processes in third-harmonic gener
in a-quartz and KNbO3 as a function ofx111

(2) of a-quartz atl
51064 nmx (3)(SI)5@4p/93108#3x (3)~esu!; SI:système interna-
tionale. The factorC contains the wavelength dispersion ofx111

(2) of
a-quartz based on the Millerd. To derivex fs

(3) of fused silica at any
of the four indicated wavelengths from our measurements usin
different valuex111

(2) of a-quartz atl51064 nm one just needs t
insert that value into the appropriate equation to obtain the des
value of x111

(2) . An example: if we had performed our evaluatio
based onx111

(2) 50.70 pm/V, we would have obtained a value
x fs

(3)52.21310222 m2/V2 at l51907 nm.
t
at-

of

Many experiments over the last years suggest that
value of the second-order susceptibility ofa-quartz atl
51064 nm isx111

(2)50.6 pm/V. Nevertheless we showx f s
(3) ,

based on our experiments, as a function of the square ofx111
(2)

of a-quartz atl51064 nm in Fig. 7. The factorC contains
the wavelength dispersion ofx111

(2) of a-quartz for second-
harmonic generation and sum-frequency generation base
the Miller d @Eq. ~1!#. The equation in Fig. 7 allows one t
calculate the value ofx f s

(3) at any of the wavelengths dis
cussed in this work for any desired value ofx111

(2) of a-quartz
at l51064 nm.

Typically third-harmonic Maker-fringe curves based on
combination ofx (3) and@x (2)#2 show additional oscillations
as compared to ‘‘pure’’ third-harmonic-generation curv
~see Figs. 5 and 6!. It is, however, possible to have cascad
contributions to third-harmonic generation that do not sh
additional oscillations, as illustrated in Fig. 8~a!. This figure
shows the example of ab plate of KNbO3 with light polar-
ized alonga. In this geometry we have cascaded contrib
tions throughx131

(2)(23v,2v,v)3x311
(2)(22v,v,v). In our

experiments these contributions could not be observed, s
the relevant coherence lengths@l c(23v,v,v,v)
53.409mm andl c(23v,2v,v)53.871mm for perpendicu-
lar incidence# do not differ sufficiently. A theoretical analy
sis of the curve without cascading in Fig. 8~a! yields values
of x1111

(3) that are typically 15–20 % too large.
In addition, so-called longitudinal second-harmonic a

subsequent sum-frequency generation can also contribu
the third-order nonlinearity: if we illuminate, e.g., ac plate
of KNbO3 with ana-polarized fundamental beam, a longitu
dinal polarization can be generated through the nonlin
optical susceptibility x311

(2) . The associated field canno

ion

a

ed
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FIG. 8. Third-harmonic Maker-fringe curve
of KNbO3 at l51907 nm to determinex1111

(3) . ~a!
b plate with light polarizations alonga. Cascaded
contributions are present but not visible due to
unfavorable combination of coherence length
~b! c plate with light polarizations alonga where
cascaded second-order contributions can be
glected.
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propagate, but can couple to the field at frequencyv through
x131

(2) , and can also contribute to the signal at frequencyv.
Therefore, in contrast to the cases above, no additional in
ference effects appear in the third-harmonic Maker-frin
curves@Fig. 8~b!#. Since the contribution from longitudina
cascading is small in our case, the experiments for thec plate
therefore directly yieldx1111

(3) andx2222
(3) ~Table IV!.

We have seen above that in the case ofa-quartz the
second-order effects are dominated by the third-order o
leading to a considerable uncertainty in the determination
the ratiox1111

(3) /@x111
(2)#2. The other extreme case in which th

combination of cascaded second-harmonic and s
frequency generation completely dominates direct th
harmonic generation was observed for the case of the org
crystal DAST, where we performed experiments withb andc
plates. Atl52100 nm,x1111

(3) could not be determined sinc
the product x111

(2)(23v,2v,v)3x111
(2)(22v,v,v) is too

large ~Fig. 9!: x1111
(3) could be varied from 0 to 5000 time

x f s
(3) in the theoretical analysis~see the Appendix!, without

significantly changing the experimental Maker-fringe curv

C. Third-harmonic generation in centrosymmetric materials

KTaO3 only has the two independent componentsx1111
(3)

5x2222
(3) 5x3333

(3) and x2233
(3) 5x1133

(3) 5¯ . These two compo-
nents can be determined through two independent meas
ments, e.g., by measuring the third-harmonic signal for li
r-
e

s,
f

-
-

nic

.

re-
t

propagation along the crystallographicb direction both for
light polarized ~i! along the crystallographica axis for
x1111

(3) (23v,v,v,v) as well as~ii ! at 45° to this direction for
xeff

(3)50.5@x1111
(3) 13x1133

(3) # ~polarization and rotation axis al
ways parallel to each other; see Table IV!.

In isotropic glasses all tensor elements are equal. Fig
10 show an example of experimental curves for fused sil
BK7, and SF59.

VI. DISCUSSION AND CONCLUSIONS

A. Absolute value of the third-order susceptibilities and
evaluation of reference materials

We have determined a reliable standard value for fu
silica for several wavelengths based on third-harmon
generation measurements using cascaded second-harm
and sum-frequency generation. The use of KNbO3 leads to a
more precise determination, since its second-order susc
bilities are much larger than the ones ofa-quartz and we
therefore obtain more favorable ratiosx (3)/@x (2)#2. The re-
quired second-order susceptibilityx333

(2) determined in this
work are larger than the ones in a recently published pape36

We speculate that the sample used in that work might h
been of inferior quality.

At l51907 nm we can compare our results to other
periments. Our reference value for fused silica ofx (3)

5(1.6260.06)310222 m2/V2, derived from our experi-
-
al

on
T.
FIG. 9. Third-harmonic Maker-fringe curve
of a c plate of DAST atl52100 nm for light
polarizations alonga where cascaded second
order contributions appear. The theoretic
analysis gave

sqrt@x111
~2! ~23v,2v,v!3x111

~2! ~22v,v,v!#

5520 pm/V,
in good agreement with expected values based
measured nonlinear optical coefficients of DAS
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ments, is a factor of 2.40 lower than the one currently u
@x (3)5(3.8960.15)310222m2/V2#.12 By adjusting the ref-
erence value forx111

(2) of a-quartz in Ref. 12 to the same on
used here, we obtain a nonlinear optical susceptibility wh
is a factor of 2.46 smaller than the value in that referen
which is in excellent agreement with the factor of 2.40 me
tioned above. Fora-quartz we obtain a smaller ratio ofR1

5x1111
(3) /@x111

(2)#25602 than Meredith did in Ref. 12 (R1

5668). On the other hand, we obtained a larger value
R25x f s

(3)/x1111
(3) 50.81460.018 compared toR250.732.37

The productR13R2 gives the same value in both cases. O
the other hand, we measuredx f s

(3)/x3333
(3) 50.76460.029, and

might therefore speculate that they and z axes in the
a-quartz sample used in Ref. 37 were interchanged by e

In a more recent work, Mito, Hagimote, and Takaha
also carried out experiments witha-quartz at the same
wavelength.4 They obtained x f s

(3)5(1.3360.15)
310222m2/V. The discrepancy with our data is mainly du
to a different ratio ofx f s

(3)/x1111
(3) , for which they obtained

0.73260.022.
Our procedure, based on gas-phase third-harmo

generation experiments of fused silica, gave an excel
agreement with the results presented here.38 Specifically we
obtainedx f s

(3)5(2.060.2)310222 m2/V at l51064 nm and
x f s

(3)5(1.660.2)310222 m2/V at l51907 nm in those ex-
periments~see Ref. 38, this issue!. In comparison to previ-
ously published values of BK7, we find slightly lower valu
for BK7 @x (3)5(1.4760.07)3x f s

(3) as compared tox (3)

51.673x f s
(3) at l51907 nm#.37

FIG. 10. Examples of third-harmonic Maker-fringe curves
fused silica, BK7 and SF59, atl52100 nm.
d

h
,

-

r

r.
i
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nt

The silicate glass SF59 has a third-order nonlinearity t
is about 25 times as large as fused silica~Table IV!. Al-
though less nonlinear than, e.g., KTaO3, it is well suited as a
reference material since~i! the nonlinearity is much large
than the one of fused silica, and~ii ! it is a glass that can
easily be cut and polished, that is, it combines sufficien
high third-order nonlinearities with excellent optical qualit
We therefore propose the silicate glass SF59 as one of
best reference materials for the determination of third-or
susceptibilities.

Based on measured second-order hyperpolarizabilitie
solution the macroscopic third-order nonlinearities of DAS
were estimated using the oriented gas model.39 We calcu-
lated extremely large values (x1111

(3) .80003x f s
(3)) due to the

high degree of orientation and the large packing density
the molecules in the crystal lattice in comparison to dis
dered polymers. Unfortunately our preliminary resu
showed that the cascaded contributions completely mask
third-order nonlinearity.x1111

(3) could be varied from 0 to
50003x f s

(3) in the theoretical analysis without significant
changing the experimental Maker-fringe curves. This find
sets an upper limit ofx1111

(3) ,50003x f s
(3) .

B. Boundary conditions

We analyzed the influence of the boundary conditions
the measured third-order susceptibilityx (3). As can be seen
from Tables III and IV, the influence of the transver
boundary conditions was up to 10% for the crystals inve
gated~<10% change ofx (3) with and without this contribu-
tion for KNbO3, and no change fora-quartz!. The boundary
conditions did not influence our results on the absolute v
ues of fused silica.

In the case of longitudinal contributions~e.g., frequency
doubling usingx311

(2) for perpendicular incidence on ac plate
of KNbO3, with light polarized alonga in combination with
sum-frequency generation based onx131

(2)!, our estimations
showed that the longitudinal field generated at frequencyv
leads to an increase in the third-order susceptibility
KNbO3 of at most 2%~and is within experimental error!. If
we also include the longitudinal boundary conditions th
increase is almost exactly compensated for. These obse
tions are understandable from looking at Eqs.~15! and~17!:
the factor 1/(n2v)2 is considerably smaller than 1/@(nv)2

2(n2v)2#, which explains the small contribution of longitu
dinal cascading tox (3). Second, the ratios 1/(n2v)2 and
1/@(nv)21(n2v)2# in Eq. ~17! do not differ very much,
which explains the compensation of the two terms.

DAST, with its huge second-order susceptibilities, w
hoped to be more susceptible to the boundary conditio
Unfortunately, we could not detect any remarkable effe
either. Nevertheless organic crystals may be the best solu
to obtain a unequivocal interpretation of the importance
the boundary conditions: If intermolecular interactions b
tween the molecules in the crystal lattice can be neglecte
combination of measurements with different input polariz
tions and crystal plates may yield reliable quantitative
sults.
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C. Dispersion of the third-order susceptibilities

Figure 11 shows the dispersion of the third-order non
ear optical susceptibilities of fused silica,a-quartz, and BK7.
Figure 11~b! displays the different dispersion functions f
the case ofx1111

(3) . We can clearly see that the oscillat
model in Eq.~22! gives the best agreement with the expe
mental data. In Fig. 11~b! all three materials and the corre
sponding theoretical curves are displayed. The associate
rameters are listed in Table V.

FIG. 11. ~a! Comparison of different models for the descriptio
of the wavelength dispersion ofx1111

(3) of a-quartz. The single-
oscillator model best represents the experimental data points~b!
Wavelength dispersion of the third-order susceptibilities of fus
silica, a-quartz, and BK7. The theoretical curves are based on
oscillator model@Eq. ~22!#.

TABLE V. Parameters describing the dispersion of the thi
order susceptibilities based on the single-oscillator model.

Material
d11113«0

(108 m2 s8/V2)
l0

~nm!

fused silica 6.600 156.5
a-quartz (x1111

(3) ) 7.744 157.6

a-quartz (x3333
(3) ) 14.097 147.6

BK7 5.422 167.8
-

-

pa-

For the cases of KNbO3, KTaO3, and SF59, we do no
have enough data points to theoretically describe the wa
length dispersion of the third-order nonlinear optical susc
tibility. We can still illustrate, however, that the harmoni
oscillator model would yield the most useful description f
KNbO3 ~Fig. 12!. As in the case ofx333

(2) , however, an infra-
red contribution has to be taken into account. To include t
contribution in the wavelength dependence more data po
are needed.

D. Structure-property relationships

Since KNbO3 is cubic at high temperatures we can com
pare the electronic nonlinearities of the two perovski
KNbO3 and KTaO3 under the assumptions that the cub
~purex (3)! contributions to the third-order nonlinearities a
equal, and that the temperature dependence ofx (3) can be
neglected. In this case the cubic nonlinear optical susce
bilities of KNbO3 can be calculated from the ones of KTaO3

by a rotation of 45° of thex (3) tensor around theb axis. We
then theoretically obtainx1111

(3) (KNbO3)5x3333
(3) (KNbO3)

5xeff
(3)(KTaO3) and x2222

(3) (KNbO3)5x3333
(3) (KTaO3). Our ex-

periments yielded an excellent correspondence ofx3333
(3) and

x1111
(3) (KNbO3) with xeff

(3)(KTaO3) ~Table IV!. This indicates
similar bond nonlinearities in these two compounds.40 For
x2222

(3) (KNbO3), the simple model breaks down. The fact th
x2222

(3) (KNbO3).x3333
(3) (KTaO3) is reasonable, however, sinc

the lattice constant of KNbO3 alongb is considerably smaller
than alonga andc. Note that theb axis of KNbO3 is also the
direction along which we have the largest linear refract
index.

E. Third-harmonic generation vs degenerate four-wave mixing

Based on our dispersion relation for the third-order s
ceptibility of fused silica, we can estimate the electronic co
tribution to the nonlinear refractive indexn2 that is relevant
for all-optical signal processing applications and which
defined through

n5n01n2I ~25!

whereI is the light intensity.n2 andx (3) are related through

d
e

FIG. 12. Wavelength dispersion of the third-order susceptib
ties of KNbO3, KTaO3, and SF59. The single-oscillator model be
represents the experimental data points forx3333

(3) of KNbO3.
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n25
3 Re@x~3!~2v,v,2v,v!#

4n0
2c«0

, ~26!

with c the velocity of light in vacuum. The modification o
Eq. ~22! for four-wave-mixing yields

x i i i i
~3!~2v,v,2v,v!5«0

d i i i i

~v0
22v2!4 . ~27!

If we take the parameters of Table V, insert them into E
~27!, and use Eq.~26!, we obtain a value forn2 of fused
silica of (2.260.1)310220 m2/W at l51064 nm. If we
compare this value with the generally accepted one ofn2
5(2.7460.17)310220 m2/W,41 we obtain a good agree
ment. Moreover, we can conclude that most of the non
earity of fused silica in the degenerate case of equal inter
ing frequencies is electronic in nature.

For SF59 we cannot provide a dispersion relation, si
not enough data points are available. Nevertheless, in
approximation we can compare the measured ratios
x (3)(23v,v,v,v)/x f s

(3)(23v,v,v,v), determined here
with the measured ratios of

x~3!~2v,v,2v,v!/x f s
~3!~2v,v,2v,v!,

determined by thez-scan technique20 in our laboratory. This
comparison gives 24.8~measured by third-harmonic gener
tion atl51907 nm! with respect to 23.0~measured with the
z-scan technique atl51064 nm!. Since all measurement
were performed away from electronic resonances, we
again conclude that the contribution tox (3)(2v,v,2v,v)
is mostly of electronic origin.

Third-order susceptibilities x (3)(2v,v,2v,v) of
KNbO3 were determined with degenerate four-wave mixi
with 100-ps pulses atl51064 nm.8 A ratio of x2222

(3) /x3333
(3)

5180/6053.0 was obtained. If we compare these resu
with third-harmonic generation,x2222

(3) /x3333
(3) 5106/47.452.2

60.2, we also find a strong anisotropy. The difference
tween the two ratios results likely from additional contrib
tions from optical phonons in the former case, since they a
play an important role for the dielectric constant and
linear electro-optic effect.42 Our findings are further
supported by the fact that x (3)(2v,v,2v,v)
.x (3)(23v,v,v,v) for both tensor elements.

Finally we can look at KTaO3. Third-harmonic generation
yields a ratio of x (3)(23v,v,v,v)/x f s

(3)(23v,v,v,v)
541, whereas thez-scan technique givesx (3)(2v,v,
2v,v)/x f s

(3)(2v,v,2v,v)580. This again implies stron
ger contributions to x (3)(2v,v,2v,v) from optical
phonons, since both measurements were carried out far a
from electronic resonances.

We can also compare the third-order susceptibility
fused silica with those ofa-quartz. Both materials are mad
out of the same atoms (Si, O2). We could therefore expect t
have the same values which is obviously not the case@e.g.,
x (3)

1111(a-quartz)/x (3)~fused silica!51.26#. We can first ap-
ply the Miller d @Eq. ~19!#, which should be adequate for
comparison at identical wavelengths, and we therefore
pect the same value for the Millerd. If we compare
the values at, e.g.,l52100 nm, we obtaind1111(a quartz)/
d~fused silica)50.55 and d3333(a-quartz)/d~fused silica!
.

-
ct-

e
st
of

n

s

-

o
e

ay

f

x-

50.54: the ratio becomes worse. However, we did not ta
the densityr adequately into account.37 According to the
Clausius-Mossotti equation the density is proportional
(n221)/(n211), and therefore the Millerd is proportional
to r24. To correct for this fact it should be more appropria
to use a modified Millerd given by d85d3r3. We then
obtain the following relations:
d11118 (a-quartz)/d~fused silica!50.96 and
d33338 (a-quartz)/d~fused silica!50.94. The agreement be
tween fused silica anda-quartz is much improved, and w
see that the density correction is necessary.

F. Conclusions

Third-harmonic generation provides a direct measurem
of the purely electronic third-order nonlinear optical r
sponse. This is an advantage with respect to most other t
niques that measure a combination of electronic and o
distortional effects that are often difficult or even impossib
to resolve. We have determined new reliable refere
values for the electronic third-order susceptibiliti
x (3)(23v,v,v,v) @e.g.,x f s

(3)5(1.6260.06)310222 m2/V2

at l51907 nm# due to the combination of second-and thir
harmonic generation exploiting cascaded second-order n
linearities usinga-quartz and KNbO3. We analyzed the
boundary conditions relevant in third-harmonic generation
noncentrosymmetric materials, and showed that in the c
of the high nonlinearity materials KNbO3 and DAST its in-
fluence on the measured values was up to 10%. We dem
strated that a simple oscillator model adequately descr
the wavelength dispersion of the third-order susceptibility
the measured wavelength range. We suggest the silicate
SF59 as a suitable candidate for a reference material a
moment. The different measured values of fused silica
a-quartz could be interpreted by taking into account the d
ferent densities. For the case of KNbO3, we found consider-
able anisotropies in third-harmonic generation and dege
ate four-wave mixing. The difference in these anisotropie
attributed to additional optical-phonon contributions in t
latter case. Using a simple model we could nicely correl
the third-order nonlinearities of KNbO3 and KTaO3. This
indicates similar bond nonlinearities in these two co
pounds.

FIG. 13. Schematic of the experimental sample geometry for
case ofs-polarized beams corresponding to the measuremen
x3333

(3) of a KNbO3 crystal in air.
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APPENDIX: THEORETICAL DESCRIPTION OF THIRD-
HARMONIC GENERATION IN SINGLE CRYSTALS

INCLUDING CASCADED SECOND-ORDER
CONTRIBUTIONS

We assume that the fundamental, the second-harmoni~in
the case of cascading!, and the third-harmonic waves are a
s polarized ~e.g., along thec axis in the case ofx3333

(3) of
KNbO3!, and that the sample is rotated around the same
~Fig. 13!. The nonlinear optical susceptibilities are defined
in Eqs. ~4!–~6!, wherex (2)(x (2)8) represents the process
frequency doubling~sum-frequency generation!. By solving
the wave equation and applying the electromagnetic bou
ary conditions, the field at the third harmonic can be cal
lated. The theory described here extends the work of Ref
to rotational Maker-fringe curves. In comparison to Ref.
we explicitly include contributions from air.

The calculations yield the total field at frequency 3v after
the sample

uEtotu25Cdir1~Eb12Eb2!21~Eb18 2Eb28 !212~Eb18 2Eb28 !

3~Eb12Eb2!14Eb1@Eb21Eb28 #sin2S Dk3vL

2 D
14Eb18 @Eb21Eb28 #sin2S Dk321vL

2 D
24Eb1Eb18 sin2S Dk3v8L

2
D . ~A1!

The different quantities are described in the followin
The indexb always denotes bound wave. The contributi
from air is contained in

Cair5~Eair_12Eair_2!
222~Eair_12Eair_2!~Eb21Eb28 !

12~Eb11Eb18 !~Eair_12Eair_2!24 sin2S Dk3vL

2 D
3@Eb1Eair_11Eb2Eair_21Eb28 Eair_22Eair_1Eair_2#

24 sin2S Dk321vL

2 DEb18 Eair_1

14 sin2S Dk3v8L

2
DEb18 Eair_2. ~A2!

The wave vector mismatches are given by

Dk3v5kb
3v cosuv2k3v cosu3v

5
6p

l
~nv cosuv2n3v cosu3v!,
is
s

d-
-
2

.

Dk3v85kb
3v cosuv2k2v cosu2v2kv cosuv

5
4p

l
~nv cosuv2n2v cosu2v!, ~A3!

Dk321v5k3v cosu3v2k2v cosu2v2kv cosuv

5
2p

l
~3n3v cosu3v22n2v cosu2v2nv cosuv!,

wheren is the refractive index of the sample,L is the sample
thickness, anduv(u2v,u3v) is the internal angle of incidenc
of the wave at the appropriate frequency. The further qu
tities are

Eair_15t0/1
3vt1/2

3vxair
~3! Eair_25~ t0/1

v t1/2
v !3xair

~3! , ~A4!

Eb15T1
1/2Eb

3v , Eb25t1/2
3vT2

0/1Eb
3v , ~A5!

Eb18 5~T1
1/2!8Eb

3v8 , Eb28 5t1/2
3v~T2

0/1!8Eb
3v8 . ~A6!

In the case of cascading induced by transverse wave
the second-harmonic frequency, we have~whereEv is the
external field at frequencyv!

Eb
3v5~ t0/1

v !3
1

~nv!22~n3v!2 S 1

4
x~3!1

1

2
x~2!~x~2!!8

3
1

~nv!22~n2v!2 1
1

2
x~2!~x~2!!8«0

L2v

f 2v D ~Ev!3.

~A7!

In the case of cascading through longitudinal fields at f
quency 2v ~as e.g., for ac plate of KNbO3!, we have

Eb
3v5~ t0/1

v !3
1

~nv!22~n3v!2 S 1

4
x~3!2

1

2
x long

~2! ~x long
~2! !8

1

~nlong
2v !2

1
1

2
x long

~2! ~x long
~2! !8«0

L2v

f long
2v D ~Ev!3. ~A8!

Here x long
(2) represents the second harmonic that is gen

ated along the propagation direction of the fundamental~e.g.,
x311

(2) for perpendicular incidence on ac plate of KNbO3 with
light polarized alonga!. Note that in this case the field gen
erated at 2v does not propagate itself. Likewisenlong is the
refractive index along the propagation direction. Local-fie
corrections are accounted for through

L5
1

3«0
, f 2v5

~n2v!212

3
, f long

2v 5
~nlong

2v !212

3
.

~A9!

Eb
3v8 is given by
Eb
3v852~ t0/1

v !3
9

~nv!214~n2v!214nvn2v cos~u2v2uv!29~n3v!2 Tvv

1

2
x~2!8x~2!

1

~nv!22~n2v!2 ~Ev!3. ~A10!
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The transmission factors for the fundamental and th
harmonic waves are given by~u is the external angle o
incidence!

t0/1
v 5

2 cosu

nv cosuv1cosu
, t1/0

v 5
2nv cosuv

nv cosuv1cosu
,

~A11!

t0/1
3v5

2 cosu

n3v cosu3v1cosu
, t1/0

3v5
2n3v cosu3v

n3v cosu3v1cosu
,

~A12!

The factors resulting from the electromagnetic bound
conditions at the different interfaces are expressed as

Tvv5
cosu1nv cosuv

cosu1n2vcosu2v , ~A13!
-

y

T2
0/15

nv cosuv1cosu

n3v cosu3v1cosu

~T2
0/1!85

1
3 ~2n2v cosu2v1nv cosuv!1cosu

n3v cosu3v1cosu
,

~A14!

T1
1/25

n3v cosu3v1nv cosuv

n3v cosu3v1cosu

~T1
1/2!85

1
3 ~2n2v cosu2v1nv cosuv!1n3v cosu3v

n3v cosu3v1cosu
,

~A15!

Incoherent multiple reflections were taken into accou
through Eq.~24!.
.
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