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Non-phase-matched optical third-harmonic generation in noncentrosymmetric media:
Cascaded second-order contributions for the calibration of third-order nonlinearities
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Cascaded second-order contributions to third-harmonic generation are analyzed in detail, and are exploited
to obtain reliable reference values for third-order nonlinear optical susceptibilities at several wavelengths. We
describe the influence of boundary conditions on the measured properties for the case of high nonlinearity
crystals such as KNbQand the organic salt B N-dimethylamino-4-N’-methylstilbazolium tolueng-
sulfonate(DAST). Wavelength dispersion relations for the electronic third-order susceptibilities derived from
third-harmonic generation experiments are discussed. Our reference standards allow a comparison of the
third-harmonic generation results with measurements of the Kerr susceptibility determined with degenerate
four-wave mixing and the-scan technique and shows thdf)(— w,w,— w,»)=xy® (- 3w, 0,w,») in the
investigated wavelength range. The investigation of structure-property relationships between the perovskite
crystals KNbQ and KTaQ indicates similar bond nonlinearities in these two compounds.

. INTRODUCTION tive to a-quartz yielded a value fora-quartz of y{2)

=0.6 pm/V. In a similar way the authors of Ref. 4 performed
Third-order nonlinear optical effects are of prime impor- parametric fluorescence experiments with ANA,H,PO,)
tance for all-optical signal processing. In order to establisinonlinear optical coefficieny{2)) at A =632.8 nm, which
the usefulness of a material for these applications, the reba\,e X(2>=1.10i 0.04 pm/V. Phase-matched frequency-

312

evant nonlinearities have to be accurately known. Since thgq pling experiments at = 1064 nm with ADP gavey?),

targeted effects should be very fast, electronic third-order 4 go+( og pm/V, in perfect agreement with the value de-

processes are of great importance. The best technique of thgeq at this wavelength based on the Mille?
investigation of these effects is third-harmonic generation,

which allows one to probe electronic processes only. An of- X-ZwX‘”X'”
. . . (2)_o _ A AjAkK 220" o'
ten encountered problem with all nonlinear optical methods ~ Xijk (—20,0,0) = 20’ o o Xijk(—20",0",0")
is, however, that the exact intensities of interacting optical Xi Xj Xk
i - 2
waves are often not well known. For this reason most mea =e00ik (XX XK), &y

surements are calibrated against a reference material with

known nonlinearities. Therefore there exists a need for reliwhich accurately describes the dispersion of second-order
able reference materials. In this work we show that fre-nonlinear optical susceptibilities in many inorganic materi-
quency tripling in combination with cascaded second-als. A subsequent Maker-fringe experiment wittyuartz as
harmonic and sum-frequency generation is a very efficien@ reference ak =1064 nm yieldedy{7,=0.60+0.04 pm/V.

tool to obtain self-consistent reliable reference values. In addition, Maker-Fringe experiments Jt632.8 nm con-

We present our experimental results on the crystaldirmed the validity of Miller's rule for ADP ande-quartz.
KNbO;, KTaO,, a-quartz, and AN, N-dimethylamino-4-  Exact phase-matched frequency-doubling in bulk KNbO
N’-methylstilbazolium toluen@-sulfonate(DAST) and the  cCrystals, and a comparison with Maker-Fringe experiments
glasses BK7, SF59, and fused silica with emphasis on thbased ona-quartz also confirmed tha¢{2}=0.60 pm/V at
theoretical analysis of the cascaded phenomena including the= 1064 nm is a very realistic vallfeThis confirmed value
boundary conditions, reliable reference materials, waveean now be experimentally related to the electronic third-
length dispersion of the third-order susceptibilities, andorder susceptibilities through cascaded second-order nonlin-
structure-property relationships. In particular we want to ad-ear optical processes that yield the rgiid)/[ x(?]?, as dis-
dress the following issues. cussed below.

First, the calibration of third-order susceptibilities re-  Second, the ratio of®/[ x(?)]?, as obtained from third-
quires reliable values of second-order susceptibilities. Théxarmonic generation experiments in noncentrosymmetric
reference value of the second-order nonlinear optical suscepaterials, is not very well determined farquartz, since its
tibilities x(?) of a-quartz has considerably changed over they(® is rather small in comparison with its value fgf®). In
last 15 years(from 1.0 pm/V down to 0.6 pm/V ah  contrast to quartz, high-quality crystals of KNp@rovide a
=1064nm, and is now believed to be accurately knotn. much more favorable ratio of nonlinear susceptibilities.
Kitamoto et al? determined the nonlinear optical coefficient KNbO; has much larger nonlinear optical susceptibilities
x2)=8.6+1.0pm/V of congruent LiNb@with an absolute  x(® with respect to its/®) values, and allows a more precise
parametric fluorescence experiment\at 532 nm. A com-  determination of the ratio¢®/[ y(?]%. We therefore per-
parison with second-harmonic-generation experiments relgormed our experiments with-quartz and KNb@
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Third, the wavelength dependence of third-order suscep- .
tibilities of inorganic crystals is generally poorly understood. VAVAVAN .
It is of fundamental interest also to establish a reliable stan- ° 0+o+o ->30 m
dard for the dispersion of(®), and to theoretically better VAVAVE 29 (Be,0,0,0) WWWWW
understand the dispersion behavior. We show that a simple p Da’ﬂ A

model based on a single oscillator adequately describes our
experimental results.

. . . . °
Fourth, KNbQ was recently investigated for its third- ‘AVAVAVA" 20
order susceptibilitiesy®(— w,w,— w,w) by degenerate ° MJ\]W%
.. 3 . . 212 (-20,0,0) 30
four-wave mixind® and thez-scan techniqtfeusing 100-ps ‘AVAVAVA" 0, 0+20 >30
laser pulses. A comparison between these measurements ° , o xm(.am,gw,a,’) HWWWHW’

(where the third-order susceptibilities can contain electronic 'AVAVAVA" AVAVAV&
and optical-phonon contributionand the third-harmonic ex-

periments(only electronic contributionsdescribed here will FIG. 1. Schematic of the generation of a wave at frequency
yield information of the importance of optical phonons for 3 through (a) direct third-harmonic generation (o x(®
third-order nonlinear optics using inorganic crystals. (—3w,w,0,0)) and (b) through cascaded second-harmonic

Fifth, the effect of longitudinal second-harmonic genera-and  sum-frequency  generation [« x®(—3w,20,w) X x?
tion and boundary conditions on the third-harmonic signal i — 2,0, 0)].
another relevant issue that may be important for high nonlin-
earity materials. The basic concept and its influence orfzations relevant in this wor@:’iz‘” for second-harmonic gen-
a-quartz and KNb@will be described below. eration, P”® for sum-frequency generation, arff® for

third-harmonic generation
Il. THEORY
A. Definition of nonlinear optical coefficients Pre= %80)(5}2'2( —20,0,0)EfEY

For the definition of the nonlinear optical susceptibilities =80di(j2|2(—2w,w,w)E§°E‘", (4)
given below in Eq.(2), various conventions are frequently
used. This has led to some confusion in the literature con-
cerning the comparison of experimentally determined values
obtained with different techniques. As an example, very of-
ten experimental values are directly compared to theoretical pie= %Soxi(fk)|(—3w,w,w,w)EJ‘"Eﬁ’E,“’. (6)
values that use a completely different convention. Moreover,
most often the precise definitions in use are not clearlyd;; is the nonlinear optical coefficient for second-harmonic
stated, which further complicates the comparison of nonlingeneration. Note that there is a prefactor that differs for sum-
ear optical susceptibilities. Therefore we devote this sectiofrequency generation and frequency doubl{agfactor of 2
to a concise definition of the relevant processes. difference. This prefactor takes care that the low-frequency

The basic equation describing nonlinear optical effectdimit of all susceptibilities is the same for all frequency com-
expresses the macroscopic polarizaffoas a power series in  binations.
the strength of the applied electric fieldas

Piwsz80Xi(j2k)(_w3!wl!w2)E;ulEE)2' (5)

W - @ B. Cascaded second-harmonic generation and sum-frequency
Pi=Po,i+eolxij Ej+ xijk EiExT Xiji EiEkEI1+- ), generation

2 L
@ Cascading is a process where lower-order effects are com-

where summation over common indices is underst@ds bined to contribute to a higher-order nonlinear process. We
the spontaneous polarizatiog(™ is the nth-order suscepti- illustrate this process for the case of third-harmonic genera-

bility tensor, ands, is the vacuum permittivity. The funda- 10N (Fig. 1). Third-harmonic generation can occur in any
mental quantity describing second-order nonlinear optical effaterial, even aitsee below. In this process a fundamental
fects is the tensog(? . It is a third rank tensor which, in the V&€ at frequencyy produces a wave at frequencys 3w

electric dipole approximation, contains nonvanishing ele-t@t®=3w). In noncentrosymmetric materials sum-

ments only for noncentrosymmetric molecular and crystal—gfzg%er]n?y+m'xln§ é;l;r:273(33;31||indezes/?/2dé2ﬁrms%mtzg?\zo
line structure<® Third-order nonlinearities are described EM&HON WTw=2w allowed. u
3) latter processes to also obtain a wave at frequeney\Vge

through the tensogijy; - first generate an intermediate field at frequenaytBrough
E Forkthe defm't'(iﬂ of thetco.rgpllex eleI.Cth field apwplltudes second-harmonic generation. This field can interact with the
n{w.kn) we use the most widely applied convention fundamental wave through sum-frequency mixingo(2w
=3w) to generate a field at frequency»3tself1!? This
E(rt)=1 E (oK. )expli(k-r—wt))+c.cl. (3 _comblned process is called cas_cadllng, and is schematically
(r.t 22;’ [Enl @ kn)eXpli (kn = 1)) . ® illustrated in Fig. 1. To summarize: if we illuminate a non-
centrosymmetric material with a wave at frequeneyand
For the present discussion all quantities can be assumed to detect the third-harmonic wav8w) at the output, this output
real. Equation$2) and (3) then lead to the nonlinear polar- can contain two contributions: one from direct third-
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harmonic generatiope y®)(—3w,w,»,w)], and one from EZ0=E20+ L 20p2o | 20pRvo=f20E20 4 L 2PRYg,
cascaded second-harmonic generation and sum-frequency (10)
mixing [ x?(—3w,20,0) X x?(—2w,0,0)]. It is im-
portant to note that these intermediate fields do not need
be able to propagate. It is possible to generate longitudin
fields at frequency @ that can subsequently interact with
photons at the fundamental frequensy O_Fo| 0po_ foro

The cascading of second-order susceptibilities is also of BL=B"+L"PU=T"E" (1)
great importance to all-optical signal processing. One oEquation(10) can be further changed to
these cascaded effects which have been known for a long
time leads to a nonlinear phase shift of the interacting waves
in nearly phase-matched second-harmonic generation and
other parametric processEs!’ Another interesting process
contributing to cubic nonlinear effects comes from cascadetvhereEZ is the effective field that has to be applied when
optical rectification and the linear electro-optic efféct®1°  deriving PR’ from macroscopic fieldsE5¢ should only be

Cascaded second-order processes allow the calibration epplied for the generation oP3¢ (the bound wave for
nonlinear optical susceptibilities without a knowledge of thesecond-harmonic generation remains unchanhdedhe Lor-
laser parameters>21%In the case of third-harmonic genera- entz approximationE22 becomes
tion, this calibration can be described as follows: From a

pyhereL?*=1/(3¢,), and > is the local-field factor given
%y [(n?®)2+2]/3 in the Lorentz approximation. Note that
g. (10) differs from the usual linear case

2w

L
E20=f20i E204 7 Pr%ﬁ_)s] =f>EZf, (12

theoretical analysis of an experimental curve that shows cas- _,, 1 1 P20s
caded processes one can directly obtain the ratio Eeif = W —g2w * e29+2] g (transverse caje
(13)
XV (~30,0,0,0) @ ,
@)= @)= : 1 1 L
X2 (—3w,20,0) X x'¥(-20,0,0) ng?:( R N NS (|ogitudinal case
Therefore, if the values of(?) are known, the value of®) (14)

can be determined. This principle has been applied b
Meredith? to find the values ofy(®) of crystalline quartz
(a-quart? and fused silica, based on known valueg/&? of

%’he second term iE22 leads to a modification of the effec-
tive third-order nonlinear optical susceptibilityn addition to

a-quartz. An advantage of cascaded second-harmonic aﬁﬁe “usual” cascading This effect was calleccascading

sum-frequency generation is the fact that only electronic eft rough the local fieldoy Meredith: We prefer to view th."?’
fects are measured, this in contrast to, e.g., #eean effect as a result of the electromagnetic boundary conditions.

techniqué® or degenerate four-wave mixifg,in which all In the case of transverse fields the modified third-order non-

effects that are fast enougtiat can react within the duration linear optical susceptibility is then
of the pulses used in the experimenan contributelespe- 1 1
cially optical phonon)s. Note that similar calibration e>§peri- Xg;fv:)(3w+ 2X§ﬁe>< nge — s+ e it (15)
ments were also applied to degenerate four-wave mixifg. e e €
where SHG and SFG refer to second-harmonic generation
C. Boundary conditions and sum-frequency generation, respectively. In the case of
ehase-matched interaction§~£2“, the term

The local field can influence cascaded second-harmoni

generation and sum-frequency generation in third-harmonic |20

generation of noncentrosymmetric medftad®??We investi- prﬁ‘fs (16)
gate this influence in a discussion that can be generalized to

other cascaded processes. can be neglected in a first approximation. For longitudinal

In the case of second-harmonic generation in noncene|ds, we obtain
trosymmetric materials, we have a source polarizaB@fis
(NLS is the nonlinear sourgeand a bound second-harmonic 30 30 20 30 1 1
wave E2“, to be inserted into the wave equation, that are Xeft =X "+ 2XshieX XsFq) ~ szt s2eg 5| (17)
related by(derived from the wave equation, neglecting wave

vector and polarization dependengies .
D. Wavelength dependence of second- and third-order

p2o susceptibilities of inorganic materials
NLS
EZ“’:S (67— 29 (transverse cage (8) For second-order nonlinear opti¢second-harmonic and
0 sum-frequency generatinnEqg. (1) accurately describes the
- dispersion of second-order nonlinear optical susceptibilities
20_ _ ' NLS N in many inorganic materials with wavelength-independent
E*= gogzw (longitudinal cask ©) Miller & coefficients. However, we fountkee below that

this simple relation does not hold for the case of KNb@n
Each crystal lattice sitéatom or molecule experiences a appropriate equation describing our results for this case is
local field described by based on the model of a single oscillator, and is given by
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2 i crystal that is mainly used as a standard reference material
Xii (—w3,03,01) =022 77 7L both for x? and y(®.
(w05~ wp)(wp~ wp)(wh— w3) KNbO; and KTaQ are both perovskite ABO;) com-
X(N2+N3+)\3) (18  pounds. Whereas KTaOhas cubic symmetry at room

_ _ . temperaturé® KNbO; is only cubic at high temperatures,
for sum-frequency generation. The last term of this equation g (ransforms with decreasing temperature to the tetragonal
takes into account contributions from lattice oscillations iN(at ~440°0, orthorhombic(at 223°Q and rhombohedral
the infrared and is described by the paramdter _ (at—50°C) phases? In a first approximation we can assume

For third-harmonic generation, useful theoretical des(:rlp(;ffat the cubic contributions tg(®) are the same for KTap

tions have been discussed for quite some time, since it is nd KNbQ. A comparison of the experimental electronic
fundamental interest to know the d|sperS|onx5_F forat  nonlinear optical susceptibilities of the two will show
least two reasons(i) to obtain a better theoretical under- whether our assumption is justified.

Star!ding of_the disp__ersion bghavior_ in inorgariend or- DAST consists of a typical donor-accepterconjugated
ganig materials: andii) to obtain a rehab_le s_tandard_for the molecule, and a guest molecule that form high-quality non-
wavelength dependence of%). A generalization of Miller's centrosymmetric  crystals  with large  second-order

rule [Eq. ()] to third-order nonlinearities] nonlinearities’ In DAST crystals the angular deviation of
3, _ s (LB e 0 o the charge-transfer axes of the stilbazolium chromophores
Xij (=30,0,0,0)=208ja (XX XX"): A9 oy completely aligned system is about 3dfvhich gives
has not been as successful in predicting the wavelength disise to exceptionally large second-order susceptibilities.
persion as in second-order nonlinear optics. Wamgo-  Also, large third-order susceptibilities are expected for light
posed a different relationship that seems to be more genepolarized along the polar ax& Since DAST has very large

ally valid. In the limitw—>0 he obtained second-order nonlinear optical susceptibilitiésg., x{3;
3) (1)72 =2020+220 pm/V atA=1318 nm), significant cascaded
i = QLxi 1%, (200 second-order effects are expected as well.
A further treatment by Boling, Glass, and Owyo@ng
yielded IV. FREQUENCY CONVERSION EXPERIMENTS
Xi(i?i):Q’[niz"”Z]z[niz_Z], (21) A. Second-harmonic generation

Most of the results described here rely on the nonlinear

hereQ andQ’ are guantities that are wavelength indepen- s
h Q Q guanti wav gth Indep uscept|b|I|tyX(121)l= 0.60 pm/V of a-quartz ath, =1064 nm.

dent for many materials. A further approach is based on th h ded ibuti hird-h .
simple model of a single electronic oscillator as in the case>"C€ the cascaded contributions to third-harmonic genera-

of KNbO; for sum-frequency generatidi.As we concen- tON are not very pronounced for this material, KNp@as
: : gddmonally used whenever possible. In order to obtain reli-

neglected possible two-photon resonances in the first a&ble values we first always measured the relevant nonlinear

proximation. In this case the dispersion of the third-orderoPtical coefficientxgég of KNbO; with respect tox{7) of
susceptibility for third-harmonic generation is described by @-duartz[assuming that the Milles with

Sii 8111=(2.66+0.09 X 10 2m?/C

2 2,3 2 2\ " (22)

(05~ 0) (w5~ (30)7) for a-quartz holds up to a wavelength of 2100 hmith

It should be noted that in contrast to the other equations thegquency doubling, and subsequently analyzed the same
relation in Eq.(22) contains two adjustable parameters. WeCrystals with third-harmonic generation.

will discuss these dispersion relations for the cases of fused Several pulsed nanosecond laser sources were used for the
silica, a-quartz, BK7, and KNb@and show that Eq(22) second-harmonic generation experiments. A Nd:YA&

Xi(isii)(_Sw,w,w,w):go

best describes our experimental results. trium aluminum garnetlaser(\ = 1.064um, a 10-Hz repeti-
tion rate, and a pulse duration of 5)reither directly gener-
IIl. MATERIALS DESCRIPTION ated the second-harmonic or pumped agds Raman cell,

yielding a frequency shifted wavelength of 1.9@xm. In

In the following, we briefly describe the most important addition a Nd:YAG lasef\ =1.318um, a 10-Hz repetition
parameters required for our experiments. We investigated thete, and a pulse duration of 60)nend a HoTmCr:YAG
fused silica, glasses BK7, and SF59, and the crystallaser(A\=2.1um, a 2-Hz repetition rate, and a pulse dura-
a-quartz (point group 32, KNbO; (point group mm2),  tion of 80 n3 were used. The fundamental beam was then
KTaO; (point group m3m), and the organic salt focused onto the sample with fa=500 mm lens, and the
4-N,N-dimethylamino-4-N’-methylstilbazolium toluen@-  generated second-harmonic wave was detected with a photo-
sulfonate(DAST) (point groupm). Fused silica and BK7 are multiplier. The beams at frequenciesand 2» were always
often used as reference materials in third-order nonlinear ops polarized. The second-harmonic-generation measurements
tical experiments. SF59 is a glass with a large refractivavere performed by rotating the samples around an axis par-
index and enhanced third-order nonlinearities with respect tallel to the polarization to generate well-known Maker-fringe
fused silica?’?® We investigated it since it could very well interference patterns. Figure 2 shows the experimental setup
serve as a reference material with a large third-order nonlinused. As in usual nonlinear optical experiments, the Maker-
ear optical response-quartz is a well characterized trigonal fringe curves were referenced against a well-known material
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Nd :YAG laser TABLE |. Second-order susceptibilities of-quartz ({2

A=1.9im (h=1.084m, =Gns) and [x{311%) and KNbQ (x3; and [x351%). [x'?]? is equal to

—“_0—‘1—':0"—_1:] XA (—30,20,0) X Y (—20,0,). X(-20,0,0) and
z Ho

fiter e cell x®(—3w,2w,») were calculated from Eq1) (for a-quart and

Eq. (18) (for KNbO,).

vacuum cell

e

N xR 20,0,0) X2 X 20.0,0)  [XE°
(nm) (pm/V) (pm/V)? (pm/V) (pm/V)?

a-quartz KNbQ
. . . 1064  0.60@:-0.040 0.385 4421.2 -
FIG. 2. Experimental setup for second- and third-harmonic gen-
eration for a fundamental wave at=1907 nm. Here the case of 1318 0.584-0.040 0.359 4061.0 1940
1907  0.555:0.040 0.322 3321.2 1330

second-harmonic generation is shown. Bhmolarized fundamental
is focused on the sample. The generated lighta@b? 3w is inci- 2100 0.545-0.040 0.312 31212 1170
dent on a photomultiplier tube. Filters are used to reject the funda=
menta! beam and to keep the signal .Within the !inear range of th%mall value ofy
detection setup. In the case of third-harmonic generation, th
sample is kept in a vacuum chamber with glass windésleshed
line) to exclude contributions from air.

®) put a very large coherence lengi.g.,
?C=1.5 cm atA =1000 nm, the refractive index data taken
from Ref. 35.

Different geometrical conditions were selected in order to
S . distinguish between cascaded second-harmonic and sum-
which in our case wag-quartz. We measured the nonlinear ¢e . ency generation and pure third-harmonic generation. At
optical susceptlbllltyx(33)3 of KNbO; at the four wavelengths  510g nm, 1907 nm and 1318 nm measurements were per-
mentioned above. The theoretical analysis of the.experimer}brmed with e-quartz and KNb@ At A=1064 nm only
tal Maker-fringe curves was based on the equations of Ref, quartz was investigated, since the third harmonic was ab-
33. sorbed in KNbQ too strongly. The data points for angles of

incidence between-5° and+5° were always neglected due
B. Third-harmonic generation to clearly visible multiple reflections that can influence the

. results. The same samplesmfuartz and KNb@were used
The same laser sources as in the case of the secong-

harmonic-generation  experiments were used.  Third r second- and third-harmonic generation. All third-
-0 . P : harmonic-generation experiments were also referenced to
harmonic-generation measurements were performed by rot

, . d by rotalyqe silica to establish a reliable reference value for that
ing the samples around an axis parallel to the polarization t?naterial(see Sec. IV,

gggﬂ:ﬁ;’;’g;hgg\g; mik;-wg%eéng:%ﬁ;rgae%erlgisg'-The The equa_ltions for the theoretical analysis can be found in
ure 2 shows the experimental setup used. All meaéuremen e Appendix. We ext_ended our the(_)ry from tha_t of Ref. 12
were either carried out in vacuum except. for DAST which th?t we treat rota_tlonal Maker fringes, and mclude_ the

ontributions from air. Reference 4 also treated rotational

was meas4urep| inar accordlng. to a speqally develope aker fringes(without air contributiong but had a different
proceduré® It is important to realize that reliable measure- (wrong sign in their Eq.(31)

ments have to be carried out in vacugimour case we used
0.05-0.1 barbecause air also makes an important contribu-

. . R - . C. Absolute value of the third-order susceptibilities
tion to the third-harmonic signal. The reason for this arises

from the large coherence length of ait,=\/[6(n3* As mentioned above, a special feature ofltgzascading is the
—n®)], due to an almost dispersionless refractive index, and@ct that it often is a self-calibrating proces¥:*In the case
the fact that the signal at the third-harmonic is proportional 50 ' . .
to the product x®®1212. The materials of interest have a ]
large value ofy(®, but a small coherence length of the order 45
of 10-100um, whereas air, on the other hand, has a very :
S ol e :
X,(,,%) /[1(,5) XX(,%)] Q-,m ............................................. ]
in T QB :
Vx(”?i) kown cascading g}s, _ ]
’ [ = data points
) 40 R constant Miller-8 (Eq.(1))
an L omat tire g [ ot el Ficorecton [EE),
% harmonic generation 1000 1200 1400 1600 1800 2000 2200

|x‘3’ (fused silica) | wavelength (nm)

FIG. 3. Schematic diagram of the procedure to determine the FIG. 4. Dispersion of the second-order susceptibimg?j)3 of
third-order nonlinearity of fused silica based on the cascading oKNbO; with two theoretical models. It is clearly seen that the
second-order nonlinearities in third-harmonic generation. Miller & poorly describes the dispersion.
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TABLE II. Ratios y®/(x?)? for a-quartz (¢{3/[x{21%) and KNbQ(x$hsd[ x$241%) obtained from
third-harmonic-generation experiments wih and without contributions from the boundary conditions. $
indicates the data after weighted averaging. It should be notedyRa{x(?)2(SI)= (1/4m) x 3/ (x?)?

(esv.

N X2 I xPI(@)FE P22 O (D) B ()28
(nm) a-quartz a-quartz a-quartz KNbO; KNbO; KNbO;
1064 643-40 64340 643 - - -

1318 608-41 608+-41 616 3.5¢:0.13 3.20:0.13 3.18
1907 588- 35 588+ 35 618 3.8%0.08 3.58£0.08 3.58
2100 850260 850+ 260 663 3.5%0.11 3.22£0.08 3.22

of cascading in third-harmonic generation this means that finear optical susceptibilityy2; of KNbO; [including the
theoretical fit of an experimental curve that shows cascadegd, raction of Eq(23)] are given in Table I, and displayed in
processes directly yields the ratig®)/(x(®)? without any Fig. 4. The theoretical curve in Fig. 4 is based on Bd),
required knowled(gg of the laser beam parame}g)rs. Thereforgng was subsequently used for a calculation of the relevant
if the values ofx'” are known, the value o™ can be ponjinear optical susceptibilitiey®]? for the cascading
determined. A reference3measurement with, e.9., fused silicy periments. It is clearly seen that the curve based on the
then yields a value of‘) for that material(Fig. 3. This jiller § does not adequately describe the dispersion of the

. . . o . 3
principle was applied by Meredithto find the values of( X2} of KNbOs, in contrast to the oscillator model with an

_ . 333
of crystalline quartz(a-quart and fused silica based on jhtareq correction term. Therefore it is also of no surprise

(2) - . . . . .
known values ofy'* of a-quartz. We here extend the work a1 the Miller s does not describe the dispersion of the third-
to different wavelengths, additional materials to obtain betteg qar susceptibility either, as will be shown below.

ratios x(®/(x(?)?, and by applying the rotational Maker-
fringe technique.
B. Cascaded second-harmonic generation and sum-frequency

V. RESULTS generation

The second-order nonlinear optical susceptibilif§éd of
. ) a-quartz and KNb@at different wavelengths were obtained
If_accurate _values should be obtained thg mﬂuence ofs just describedy@(—2w,w,») and Y@ (- 30,20, )
multiple reflectlons on.the ggnerated harmonic signals havgere calculated from Ed1) (for a-quart2 and Eq.(18) (for
to be considered. We investigated the cases of coherent a’PGNbO3). The experimental results were subsequently used in

incoherent multiple reflectiorﬁaﬁ.A careful evaluation of dif-  the evaluation of the third-harmonic generation experiments
ferent parts of the Maker-fringe curves always yielded thenat we carried out as described above.

same results for the third-order susceptibilities, and therefore |, analogy to frequency doubling, incoherent multiple re-
indicated that coherent multiple reflections can be neglecteGiactions were also taken into account for third-harmonic

For the case of incoherent contributions where we sum ovegeneration. This leads to modified third-order nonlinear op-
all reflections from the two sample surfaces we obtained ¢z susceptibilities

reduction ofy'%; for KNbO; of 1% when taking these reflec-
tions into account by

A. Second-harmonic generation

[1=(r3)*[1-(r*)*]
[1_(r2w)4][1_(rw)8] X(3)/:X(3)><

(23) 1+(r3w)2(rw)6 (24)

2)r _ (2
X‘(?:B)SI_X53)3 1+(r2w)2(rw)4 '

wherer® is the Fresnel reflection coefficient given b§  These corrections do not influence the ragfd/[ x(®]?, but
=(n®—1)%/(n®+1)2. Our experimental results for the non- modify the third-order susceptibilities by 1-2 % for materi-

TABLE lIl. New absolute values of® (in units of 10°2?m?V?) based on third-harmonic-generation experimentsv-afuartz and
KNbO; with (#) and without contributions from the boundary conditions. For the derivation of these values we assumed the second-order
susceptibilities ofa-quartz and KNb@to be exact. If, additionally, errors for them are introduced, the uncertainties for the values given
below become approximately twice as large.

N X X535 X X5
(nm) a-quartz KNbO; X\ a-quartz KNbO; x4
1064 2.48-0.15 - 1.99-0.15 2.48-0.15 - 1.99-0.15
1318 2.21+0.12 67.525 - 2.210.12 61.7425 -
1907 1.99-0.08 51511 1.62-0.06 1.99-0.08 47.4-1.1 1.62-£0.06

2100 2.06:0.12 41.3-1.3 1.63-0.11 2.06:0.13 37. %13 1.63£0.11
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This procedure was carried out farquartz and KNb@ The
results, weighted with the experimental errors, are summa-
rized in Table Ill. The final values are the ones including the
boundary conditions. Inclusion of this effect hardly influ-
ences the values faw-quartz and fused silica. Only in the
case of KNbQ can a reduction in the values gf°) be noted
(Table 11I).

For a-quartz,x andy plates were investigatetFig. 5).
From symmetry considerations we have
X3 30,0,0,0)= Y8 {—3w,0,0,0). The x and y
plates were rotated with their axes along the crystallographic
y andz axes(the x plate andx andz axes(they plate, Fig.

5). Only for they plate with rotation axis and light polar-
izations along the x axis is cascading observed
[P~ 3w,20,0) X Y{2)(—2w,w,0)]. For light polarized
along thez axis (both x andy plateg, only the interaction

FIG. 5. Third-harmonic Maker-fringe curves of yaplate of  with x4 —3w,»,»,) produces a third-harmonic signal.
a-quartz at\ = 1907 nm.(a) Light polarizations along where cas- From a measurement of theplate with the rotation axis
caded second-order contributions appear. The interference effecgd light polarizations along thg axis we expect the same
are not very pronounced since the valuexé? is quite small as  ya|ye OfX(3) as for the first configuratiofa y plate with a
compared to(. (b) Light polarizations along where no cascaded  rotation axis and light polarizations aloagdue to symmetry
second-order contributions are present. considerations. Our experimental results are summarized in

Tables Il and V.
als with large refractive indices, KNROKTa0;, and SF59. In KNbOs, a, b, andc plates were investigated. To deter-
The influence of the boundary conditions will be discussednine the cascaded contributions ta@ndb plates were ro-
separatelySec. V_D- _ _ tated around the crystallographicdirection, and the polar-

For the determination of absolute valqesjé?) theratios  jzer and analyzer were chosen along the same direction.
XS X2 and x(31x42 were first obtained from the ex- This yields a signal at the third-harmonic wavelength that
perimental Maker-fringe curvegTable I)). The first ratio  depends or)((fg)s:(—E.w,w,w,w) and
yields x) based on the known value of\?). From the )

second ratioy!>) can subsequently be determingelg. 3. X534 —30,20,0) X Y —20,0,0).

TABLE IV. Summary of all third-harmonic-generation experimegtd) (in units of 10°2? m%V?) with
(#) and without contributions from the boundary conditions.

Material A (nm) X (1?:1)11 X (235)22 X (333)33 X (1?:1)33
a-quartz 1064 2.480.15 2.48-0.15 2.57-0.24 -
1318 2.210.15 2.210.15 - -
1907 1.99-0.08 1.99-0.08 2.12:0.11 -
2100 2.06:0.12 2.06:0.12 2.17#0.14 -
KNbO3 1318 - - 67.5-2.5 -
- - 61.7+2.5# -
1907 44+ 3 106+ 8 51.5t1.1 -
44+ 3 106+ 8 47.4t1.1# -
2100 - - 41.31.3 -
- - 37.7=1.3# -
KTaO; 1907 674 674 674 12.8£2.3
(x&1=53+3)
SF59 1907 39.60.5 39.6:0.5 39.6:0.5 -
2100 35.8:2.4 35.8:2.4 35.8:2.4 -
BK7 1064 2.980.26 2.98-0.26 2.98-0.26 -
1907 2.38&0.11 2.38:0.11 2.38:0.11 -
2100 2.2%-0.16 2.29-0.16 2.29-0.16 -
fused silica 1064 1.990.15 1.99-0.15 1.99-0.15 -
1907 1.62-0.06 1.62-0.06 1.62:0.06 -
2100 1.630.11 1.63-0.11 1.63-0.11 -
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Figure 6 shows Maker-fringe curves of the same KNbO Many experiments over the last years suggest that the
crystal for three different wavelengths. It is nicely seen thatvalue of the second-order susceptibility afquartz at\
increased dispersion leads to more complex interference pat- 1064 nm iSX(121)1: 0.6 pm/V. Nevertheless we shox@,
terns as the fundamental wavelength decreases. Results 9fsaq on our experiments, as a function of the Squaxéiéf

Fhese experiments for sevembhndb plates are summarized of a-quartz at\=1064 nm in Fig. 7. The facto€ contains
in Tables Il and IV. the wavelenath di . ) ) i
g ispersion gf;j3; of a-quartz for second
harmonic generation and sum-frequency generation based on
AR P the Miller 6 [Eq. (1)]. The equation in Fig. 7 allows one to
] calculate the value oj(g) at any of the wavelengths dis-
cussed in this work for any desired valueydf), of a-quartz

50¢ —
45 (3)= (2) 1(2)
4ok Xis —Cx[xm]

9 35

NZ 30k atA=1064 nm.

R‘.E 25E Typically third-harmonic Maker-fringe curves based on a

o 20f STy combination ofy(® and[)((z)]_2 show additional oscillations

(%’& 15 22 o — C=47B(1=1318nm) | as compared to “p_ure” th|rd—harmor_1|c—generat|on curves

R 10f C=450 (A=1907 nm) |3 (see Figs. 5 and)6lt is, however, possible to have cascaded
05E Xﬁﬁ =086 pmNV | | .. C =453 (A=2100 nm) | contributions to third-harmonic generation that do not show

09 b T e LS b oS additional oscillations, as illustrated in Flg(@ Thls figure
@) of a-quartz at A=1064nm (PmAV) _shows the examp!e of la plate of KNbG, with light polar-_

X1y Oro-au P ized alonga. In this geometry we have cascaded contribu-
tions throughy{3)(—3w,2w,w) X x2)(— 2w, ,w). In our
experiments these contributions could not be observed, since
fhe relevant  coherence lengths[l .(— 3w, w,w,w)
=3.409um andl.(— 3w,2w,w)=3.871um for perpendicu-
lar incidencé do not differ sufficiently. A theoretical analy-
tionale. The factoC contains the wavelength dispersionydf) of S!S of the curve without cascading in FigaByields values

a-quartz based on the Mille3. To derivex( of fused silica at any ~ ©f X that are typically 15-20 % too large. .

of the four indicated wavelengths from our measurements using a [N addition, so-called Iongltudlnql second-harmonl(; and
different valuey{?, of e-quartz at\ =1064 nm one just needs to Subsequent sum-frequency generation can also contribute to
insert that value into the appropriate equation to obtain the desirethe third-order nonlinearity: if we illuminate, e.g.,caplate
value of x{%;. An example: if we had performed our evaluation Of KNbO; with ana-polarized fundamental beam, a longitu-
based ony{2/=0.70 pm/V, we would have obtained a value of dinal polarization can be generated through the nonlinear

X =2.21x 10" 2m?/V2 at A =1907 nm. optical susceptibility x$2. The associated field cannot

FIG. 7. Third-order nonlinear optical susceptibility
YO (-3w,0,w,0) of fused silica at various wavelengths obtained
from cascaded second-order processes in third-harmonic generati
in a-quartz and KNb@ as a function ofy{?) of a-quartz atx
=1064 nmy®(S)=[47/9% 10°]1X x®(esy); Sl:systene interna-
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propagate, but can couple to the field at frequesadiirough  propagation along the crystallograpticdirection both for

X(123)1 and can also contribute to the signal at frequeney 3 light polarized (i) along the crystallographi@ axis for

Therefore, in contrast to the cases above, no additional inte!3}(— 3w, »,w,w) as well agii) at 45° to this direction for

ference effects appear in the third-harmonic Mal_<er-1_‘ring(—:')(‘(f;]?:0.5[)(‘1‘?1pL 3x3%4 (polarization and rotation axis al-

curves[Fig. 8b)]. Since the contribution from longitudinal ways parallel to each other; see Table.lV

cascading is small in our case, the experiments focthiate In isotropic glasses all tensor elements are equal. Figure

therefore directly yieldy(), and x5, (Table V). 10 show an example of experimental curves for fused silica,
We have seen above that in the caseaofiuartz the BK7, and SF59.

second-order effects are dominated by the third-order ones,

Ieadlng tO(;i) con(szlgjgrable uncertainty in the det-ermlr.]atlon of VI. DISCUSSION AND CONCLUSIONS

the ratiox311/[ xi11l°- The other extreme case in which the

combination of cascaded second-harmonic and sum- A. Absolute value of the third-order susceptibilities and

frequency generation completely dominates direct third- evaluation of reference materials

harmonic generation was observed for the case of the organic \we have determined a reliable standard value for fused
crystal DAST, where we performed experiments visthndc  sijlica for several wavelengths based on third-harmonic-
plates. Atx =2100 nm,x{3), could not be determined since generation measurements using cascaded second-harmonic
the product x{2(—3w,20,0) X x{)(—2w,0,0) is too  and sum-frequency generation. The use of KNbfds to a
large (Fig. 9): x{3}, could be varied from 0 to 5000 times more precise determination, since its second-order suscepti-
Xg) in the theoretical analysigsee the Appendix without bilities are much larger than the ones @fquartz and we
significantly changing the experimental Maker-fringe curves therefore obtain more favorable ratigé”/[ (). The re-
quired second-order susceptibility3; determined in this
work are larger than the ones in a recently published p&per.
We speculate that the sample used in that work might have
KTaO, only has the two independent componegts),  been of inferior quality.
= x$ = xs and x$h=x3h="--. These two compo- At A=1907 nm we can compare our results to other ex-
nents can be determined through two independent measurgeriments. Our reference value for fused silica @)
ments, e.g., by measuring the third-harmonic signal for light= (1.62+0.06)x 10" 2> m?%V?, derived from our experi-

C. Third-harmonic generation in centrosymmetric materials

1104

IR S FIG. 9. Third-harmonic Maker-fringe curve

of a ¢ plate of DAST atA=2100 nm for light
polarizations alonga where cascaded second-
order contributions appear. The theoretical

E® p3o
analysis gave
I —s J—) sarf X\ 34— 3,20,0) X Y{3i —20,0,0)]
a
i..

8103

6103

THG signal (arb. units)

=520 pm/V,
in good agreement with expected values based on
measured nonlinear optical coefficients of DAST.

angle (deg)
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0.8

T - The silicate glass SF59 has a third-order nonlinearity that

Cha. . is about 25 times as large as fused sili@able 1V). Al-
06l - shea

fused lsilica
though less nonlinear than, e.g., KTa@ is well suited as a
reference material sinc@) the nonlinearity is much larger
than the one of fused silica, ar(d) it is a glass that can
easily be cut and polished, that is, it combines sufficiently
high third-order nonlinearities with excellent optical quality.
We therefore propose the silicate glass SF59 as one of the
best reference materials for the determination of third-order
susceptibilities.

Based on measured second-order hyperpolarizabilities in
solution the macroscopic third-order nonlinearities of DAST
were estimated using the oriented gas mddaNe calcu-
lated extremely large valueg},>8000x x{¥) due to the
high degree of orientation and the large packing density of
the molecules in the crystal lattice in comparison to disor-
dered polymers. Unfortunately our preliminary results
showed that the cascaded contributions completely mask the
third-order nonlinearity.y{3}, could be varied from 0 to
5000% x!2) in the theoretical analysis without significantly
changing the experimental Maker-fringe curves. This finding
sets an upper limit of{3),,<5000x y{2).

THG signal (arb. units)

08

0.6

THG signal (arb. units)
o
»n

o
[

o
o

@

THG signal (arb. units)
»

e R T T B. Boundary conditions

angle (deg) We analyzed the influence of the boundary conditions on

FIG. 10. Examples of third-harmonic Maker-fringe curves of the measured third-order SUSC§pthIIW). As can be seen
fused silica, BK7 and SF59, at=2100 nm. from Tables Il and IV, the influence of the transverse
boundary conditions was up to 10% for the crystals investi-

ments, is a factor of 2.40 lower than the one currently usedated(<10% change of(®) with and without this contribu-
[x®=(3.89+0.15)x 10 22m?/V?].12 By adjusting the ref- tion for KNbO;, and no change fasi-quarta. The boundary
erence value foy{?) of a-quartz in Ref. 12 to the same one conditions did not influence our results on the absolute val-
used here, we obtain a nonlinear optical susceptibility whicthes of fused silica.
is a factor of 2.46 smaller than the value in that reference, In the case of longitudinal contributiorie.g., frequency
which is in excellent agreement with the factor of 2.40 men-doubling u:sing)((321)1 for perpendicular incidence on@plate
tioned above. Forn-quartz we obtain a smaller ratio &;  of KNbO;, with light polarized alonga in combination with
= x3/[x$71?=602 than Meredith did in Ref. 12R;  sum-frequency generation based gff), our estimations
=668). On the other hand, we obtained a larger value foshowed that the longitudinal field generated at frequengy 2
Ry=x!¥/x{$,=0.814-0.018 compared toR,=0.732¥"  |eads to an increase in the third-order susceptibility of
The productR; X R, gives the same value in both cases. ONKNbO; of at most 2%(and is within experimental errprif
the other hand, we measurgéf)/ x{35:=0.764-0.029, and we also include the longitudinal boundary conditions this
might therefore speculate that the and z axes in the increase is almost exactly compensated for. These observa-
a-quartz sample used in Ref. 37 were interchanged by errotions are understandable from looking at EG$) and (17):
In @ more recent work, Mito, Hagimote, and Takahashithe factor 1/62“)? is considerably smaller than [{h®)?
also carried out experiments with-quartz at the same —(n?*)2], which explains the small contribution of longitu-
wavelengtif. ~ They  obtained  x{2=(1.33t0.15) ginal cascading toy®. Second, the ratios 1¢“)2 and
X 10~ 22m?/V. The discrepancy with our data is mainly due 1[(n®)2+(n2)?] in Eq. (17) do not differ very much,
to a different ratio ofy{2/x{}1;, for which they obtained \hich explains the compensation of the two terms.
0.732+0.022. DAST, with its huge second-order susceptibilities, was
Our procedure, based on gas-phase third-harmoniqyoped to be more susceptible to the boundary conditions.
generation experiments of fused silica, gave an excellenypfortunately, we could not detect any remarkable effects
agregmen(tgywth the results plrgser;ted & ®pecifically we  gither. Nevertheless organic crystals may be the best solution
obtainedyts’=(2.0-0.2)x10"“ m*/V at A=1064 nm and {5 ohtain a unequivocal interpretation of the importance of
X§9=(1.6+0.2)x10 2 m?V at A=1907 nm in those ex- the boundary conditions: If intermolecular interactions be-
periments(see Ref. 38, this isslieln comparison to previ- tween the molecules in the crystal lattice can be neglected, a
ously published values of BK7, we find slightly lower values combination of measurements with different input polariza-
for BK7 [x®=(1.47+0.07)xx{2 as compared toy®  tions and crystal plates may vyield reliable quantitative re-
=1.67<x!3) at A=1907 nm.¥’ sults.
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3.0 T T T r T 120 v T v T T
I === Miller -5 (Eq.(19)) o 1@ (KNbO3)
) m e .
@ Miller -8 (Eq.(19)) ] ool \ model of Wang (£q.0) § a
28 %, 100 m 1 (KNbOy)
- model of Wang (Eq.(20)) | T oscillator mode! (Eq.(22)) ‘Xéf” (KNbOQ)
— 3
§ 28 oscillator model (Eq.(22)) 1 o 5533
g ) ] Py a2 (KTaOy)
gE 241 = v SF59
o )
X 22 =
= A
= 20 ) . ) ) .
3 1000 1200 1400 1600 1800 2000 2200
18+ i wavelength (nm)
N N S N S FIG. 12. Wavelength dispersion of the third-order susceptibili-
1000 1200 1400 1600 1800 2000 2200 ties of KNbO,, KTaO,, and SF59. The single-oscillator model best
wavelength (nm) represents the experimental data pointsf§¥s; of KNbO;.
35 v °rvrv g rryvvryrrroo T T 1 v v
(b) & BK7 For the cases of KNbg KTaO;, and SF59, we do not
L e o-quartz (1(131)11) have en_ough Qata points _to theoretically descripe the wave-
& BOFN @ | length dispersion of the third-order nonlinear optical suscep-
g L1 D oquanz () || tibility. We can still illustrate, however, that the harmonic-
NE . S~a o fused silica oscillator model would yield the most useful description for
5 25 KNbO; (Fig. 12. As in the case of'Z;, however, an infra-
z red contribution has to be taken into account. To include this
% 20 contribution in the wavelength dependence more data points
’ are needed.
15 D. Structure-property relationships

1000 1200 1400 1600 1800 2000 200 _ _ _ _
Since KNbQ is cubic at high temperatures we can com-

pare the electronic nonlinearities of the two perovskites
FIG. 11. (a) Comparison of different models for the description KNbO; and KTaQ under the assumptions that the cubic
of the wavelength dispersion of{3), of a-quartz. The single- (pure x®)) contributions to the third-order nonlinearities are
oscillator model best represents the experimental data pdbits. equal, and that the temperature dependencg®fcan be
Wavelength dispersion of the third-order susceptibilities of fusedneglected. In this case the cubic nonlinear optical suscepti-
silica, a-quartz, and BK7. The theoretical curves are based on thejlities of KNbO; can be calculated from the ones of KTa0

wavelength (nm)

oscillator mode[Eq. (22)]. by a rotation of 45° of the¢® tensor around thb axis. We
then theoretically obtain {3 ,(KNbO3) = x$354 KNbO5)
C. Dispersion of the third-order susceptibilities = X§(KTa0y) and x53,{ KNbO3) = x35{KTa0,). Our ex-

_ _ _ ) ~ periments yielded an excellent correspondencg g, and

Flgu_re 11 show; the dispersion of the third-order non“n'X(fi)n(KNboa) with ng’f)(KTaO3) (Table 1V). This indicates
ear optical susceptibilities of fused siliagsquartz, and BK7.  gimjlar bond nonlinearities in these two compoufiior
Fhlgure 1J(b)f ol(lgS)playS the dlffTrenlt dlsperilon Lunct'o(‘ﬁ for +(3) (KNbO,), the simple model breaks down. The fact that
the case ofyiyy;. We can clearly see that the oscillator | (3) (KNbO,) >y 3L (KTa0y) is reasonable, however, since
model in Eq.(22) gives the best agreement with the experi-he [attice constant of KNbgalongb is considerably smaller
menta_l data. In E|g. 1) all three_ materials and the COITe- than alonga andc. Note that theb axis of KNbQ; is also the
sponding theoretical curves are displayed. The associated pgirection along which we have the largest linear refractive
rameters are listed in Table V. index.

E. Third-harmonic generation vs degenerate four-wave mixing
TABLE V. Parameters describing the dispersion of the third-  Based on our dispersion relation for the third-order sus-

order susceptibilities based on the single-oscillator model. ceptibility of fused silica, we can estimate the electronic con-
P N tribution to the nonlinear refractive index, that is relevant
. 11117 €0 0 for all-optical signal processing applications and which is
Material (10° m?£1v?) (nm) defined Itahroughg P g app
fused silica 6.600 156.5
a-quartz (3, 7.744 157.6 N= Aot ol (25
a-quartz (s 14.097 147.6 02
BK7 5.422 167.8

wherel is the light intensityn, and x(® are related through
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3REXP(—w,0,—w,0)] rotation axis

4nsceq

n, , (26)

with ¢ the velocity of light in vacuum. The modification of
Eq. (22) for four-wave-mixing yields

Siiii

(—w,w,—w,w)=som.

3
Xiin

(27)

If we take the parameters of Table V, insert them into Eq.
(27), and use EQq(26), we obtain a value fon, of fused
silica of (2.2-0.1)x10°%° m¥W at A=1064 nm. If we
compare this value with the generally accepted onenof FIG. 13. Schematic of the experimental sample geometry for the
=(2.74+-0.17)x 10 %° m?W,*! we obtain a good agree- case ofs-polarized beams corresponding to the measurement of
ment. Moreover, we can conclude that most of the nonlin-{3,. of a KNbO; crystal in air.

earity of fused silica in the degenerate case of equal interact-

ing frequencies is electronic in nature. _ . )
For SF59 we cannot provide a dispersion relation, since- 0.54: the ratio becomes worse. However, we did not take

not enough data points are available. Nevertheless, in firdf€ densityp adequately into accourit. According to the

determined here (N?—1)/(n?+1), and therefore the Milles is proportional

to p~%. To correct for this fact it should be more appropriate
to use a modified Millers given by 8’ =8x p3. We then
obtain the following relations:
8111 @-quartz)/S(fused silica=0.96 and
83434 a-quartz)/S(fused silica=0.94. The agreement be-
tween fused silica and-quartz is much improved, and we
see that the density correction is necessary.

)((3)(—3w,w,w,w)/)(g)(—3w,w,w,w),
with the measured ratios of

X (0,0, 0,0) (- 0,0,-0,0),

determined by the-scan techniqu®@ in our laboratory. This
comparison gives 24.8neasured by third-harmonic genera-
tion atA =1907 nm with respect to 23.0measured with the
z-scan technique ax=1064 nn). Since all measurements
were performed away from electronic resonances, we can
again conclude that the contribution {6 (— w,»,— ®,®)

is mostly of electronic origin.

Third-order  susceptibilities y®(— 0,0,— w,w) of Third-harmonic generation provides a direct measurement
KNbO; were determined with degenerate four-wave mixingof the purely electronic third-order nonlinear optical re-
with 100-ps pulses at=1064 nm® A ratio of x5)/x5hs  sponse. This is an advantage with respect to most other tech-
=180/60=3.0 was obtained. If we compare these resultsniques that measure a combination of electronic and other
with third-harmonic generationy$3/ x$3h=106/47.4=2.2  distortional effects that are often difficult or even impossible
+0.2, we also find a strong anisotropy. The difference beto resolve. We have determined new reliable reference
tween the two ratios results likely from additional contribu- values for the electronic third-order susceptibilities
tions from optical phonons in the former case, since they alsq®)(—3w,w,», ) [e.g., x{2)=(1.62+0.06)x 10~ ?? m?/V?
play an important role for the dielectric constant and theat \ =1907 nnj due to the combination of second-and third-
linear electro-optic effect Our findings are further harmonic generation exploiting cascaded second-order non-
supported by the fact that x®)(~w,0,~®,0) |inearities usinga-quartz and KNbQ We analyzed the
>x®)(~3w,0,,w) for both tensor elements. ~ boundary conditions relevant in third-harmonic generation of

_ Finally we can look at KTa@ Thwd-hagmomc generation  poncentrosymmetric materials, and showed that in the case
yields a ratio of y®)(—3w,0,0,0)/\{P(-30,0,0,0)  of the high nonlinearity materials KNbGand DAST its in-
=41, whereas thezscan technique givex®(—w,»,  fluence on the measured values was up to 10%. We demon-
—0,0) x{2(— w,0,— w,0)=80. This again implies stron- strated that a simple oscillator model adequately describes
ger contributions to y®(—w,0,—w,w) from optical the wavelength dispersion of the third-order susceptibility in
phonons, since both measurements were carried out far awalye measured wavelength range. We suggest the silicate glass
from electronic resonances. SF59 as a suitable candidate for a reference material at the

We can also compare the third-order susceptibility ofmoment. The different measured values of fused silica and
fused silica with those of--quartz. Both materials are made a-quartz could be interpreted by taking into account the dif-
out of the same atoms (Si D We could therefore expect to ferent densities. For the case of KNjQve found consider-

F. Conclusions

have the same values which is obviously not the ¢asg.,
x® 1111 @-quartz) i (fused silica= 1.26]. We can first ap-
ply the Miller § [Eq. (19)], which should be adequate for a

able anisotropies in third-harmonic generation and degener-
ate four-wave mixing. The difference in these anisotropies is
attributed to additional optical-phonon contributions in the

comparison at identical wavelengths, and we therefore exatter case. Using a simple model we could nicely correlate

pect the same value for the Milleb. If we compare
the values at, e.gh\=2100 nm, we obtairn;,, a quartz)/
S(fusedsilica)j=0.55 and &334 a-quartz)/5(fused silica

the third-order nonlinearities of KNbQOand KTaQ. This
indicates similar bond nonlinearities in these two com-
pounds.
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APPENDIX: THEORETICAL DESCRIPTION OF THIRD- AK3®' = K3 cos6”— K2 coS62“ — k¥ COSH”
HARMONIC GENERATION IN SINGLE CRYSTALS
INCLUDING CASCADED SECOND-ORDER 4o , ,
CONTRIBUTIONS =T(n“’ Cosf”—n““ cosf°), (A3)

We assume that the fundamental, the second-harntionic
the case of cascadingand the third-harmonic waves are all ~ Ak¥*=k3“ cosg®**—k?* cos§*”—k” cosg”
s polarized (e.g., along thec axis in the case of¢{3; of o
KNbO;), and that the sample is rotated around the same axis =—(3n3%“ cos#*®—2n%“ cosH?“—n® cosh®),
(Fig. 13. The nonlinear optical susceptibilities are defined as A

in Egs. (4)—(6), wherex?(x)") represents the process of wheren is the refractive index of the samplejs the sample
frequency doublingsum-frequency generatibrBy solving  thickness, an@“(6%“, 63®) is the internal angle of incidence
the wave equation and applying the electromagnetic boundsf the wave at the appropriate frequency. The further quan-
ary conditions, the field at the third harmonic can be calcutities are

lated. The theory described here extends the work of Ref. 12

to rotati_or_lal _Maker-fringe_cur_ves. In comparison to Ref. 4 Eair 1= =30ty 3 Eair_zz(t("i/lti"/z)s)(g?r), (A4)
we explicitly include contributions from air.
The calculations yield the total field at frequenay &fter Epi= Tileﬁw , Eb2=t§,“§T2’1E3‘” , (A5)
the sample
EL=(TTH'ES”, EL=UnTINEX . (A6)

|Etod*= Cair+ (Ep1— Epa)?+ (Efy— Epp) 2+ 2(Ep, — Ep,) .
5 In the case of cascading induced by transverse waves at
Ak “’L) the second-harmonic frequency, we hawereE® is the

X(Ep1~Epz) + 4By Epo T Eb2]3|n2( 2 external field at frequency)

+4E! [Ero+ E!.1sir? Ak 3 3 . 1 (3) 1 (2)(,,(2)
bl[ b2 bZ]SI 2 Eb :(toll) W(ZX +§X (X )
. AkSw,L 1 1 L2w
—4Ep Ep; sz( > ) (A1) XWJFEX(Z)(X(z))'sofzw)(E‘”)g-

The different quantities are described in the following. (A7)

The indexb always denotes bound wave. The contribution

from air is contained in In the case of cascading through longitudinal fields at fre-

quency 2 (as e.g., for & plate of KNbQy), we have

_ ' 1 1 1
Cair= (Eair_l_ Eair_2)2_ 2( Eair_l_ Eair_Z)(Eb2+ Ebz) E3w (t0,1)3ﬁ X (3)_ _Xl(ozr:g(XI(ozrzg) ’ s
AL (n®)*=(n**)*| 4 2 (nong)
+2(Ebl+Ek;1)(Eair_1_ Eair_z)_4 Sinz( 2 ) 1 2 | 2w
+5 Iong()(long) ez | (E” ) (A8)
2 fi long

X[ EblEair_1+ EbZEair_2+ El,JZEair_Z_ Eair_lEair_ﬂ
Here X( represents the second harmonic that is gener-

k321w long
-4 sir?(—) Ep1Eair 1 ated along the propagation direction of the fundameietal.,
- X311 for perpendicular incidence oncplate of KNbQG; with
30’ light polarized alonga). Note that in this case the field gen-
+4 sinz(T) Ep1Eair 2- (A2) erated at & does not propagate itself. Likewisg,,q is the

refractive index along the propagation direction. Local-field

The wave vector mismatches are given by corrections are accounted for through

1 ()22 -, (nlong>2+2
Ak3=k3“ cosh”—k3“ cosg®® 3¢, 3 ' lngm 3
(A9)

_6’77 © P 3w 03w
=~ (n”cos6”—n** cost*), E3*’ is given by

9 1

3w’ _ (10 \3 — (2
b (tO/l) (nw)2+4(n2w)2+4nwn2w COi 62w_ 0‘")—9([’]3‘")2TUU2 X

1
E X(Z)W(E’”)S- (A10)
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The transmission factors for the fundamental and third- n“ cosf®”+cose
harmonic waves are given b is the external angle of o=
L 9 9 2 " n%¢ cos#*+cosh
incidence

" 2 cosf " 2n® cos6” (7o 1(2n?“ cos6?®+n® cosh®) + cosé
017 N cosh®+cosd’ MO n®cosh’+cosh’ 2 n®® cos#** + cose ’
(A11) (A14)
20 2 cosf 20 2n3 cosg>® Ty n3¢ cos#3+n® cosh®
b0~ 130 o503 1 cos’ M0 3% o6+ cosp’ ! n®® cos#**+ cosd

(A12)

1 2w 2w ® 10} 3w 3w
. . 5(2n“? cos#-“+n® cosf”) +n>“ cosé
The factors resulting from the electromagnetic boundary (Tilz)': 3( )

conditions at the different interfaces are expressed as n>® cos§”*+ cosé (2\15)
_ Cosf+n”cose” (A13)  Incoherent multiple reflections were taken into account
v cosh+ N?“cosh’’ through Eq.(24).
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