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Nonlinear optical properties of perovskite YMnO3 studied by real-space recursion method

Xiangang Wan, Jinming Dong, Meichun Qian, and Weiyi Zhang
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093,

People’s Republic of China
~Received 7 September 1999!

New types of second-order nonlinear optical properties of hexagonal YMnO3 have been studied, caused by
the coexistence of the noncentrosymmetric ferroelectric ordering of charges and the centrosymmetric spin
ordering below its Neel temperatureTN . Using time-dependent perturbation theory and the Green’s function
method, we have derived an expression for the nonlinear optical susceptibility in terms of the real-space
Green’s function. Then, based upon the multiband Hubbard Hamiltonian and the unrestricted Hartree-Fock
approximation, the real-space recursion method has been used to calculate the electric structure of YMnO3

below TN , and its nonlinear optical susceptibility. The calculated results are very consistent with the experi-
mental observation, and clearly show different contributions to the nonlinear optical response from the Mneg

and Op bands in YMnO3.
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I. INTRODUCTION

The discovery of colossal magnetoresistance in mix
valent manganese perovskites, such as La12xCaxMnO3, has
attracted renewed interest in these doped rare-earth ma
nese oxides because of their potential technological app
tions and similarity to the cuprate superconductors.1 Usually,
the rare-earth and yttrium manganitesRMnO3 have two
structural phases2: a hexagonal phase forR5Ho, Er, Tm,
Yb, Lu or Y, which has a small ionic radius; and an orth
rhombic phase forR5La, Ce, Pr, Nd, Sm, Eu, Gd, Tb or Dy
which has a greater ionic radius. Although magnetic order
can occur in both hexagonal and orthorhombic mangan
ferroelectric ordering occurs only in hexagonal ones hav
noncentrosymmetric symmetries~the P63cm space group!.

Therefore, hexagonal yttrium and rare-earth mangan
comprise an interesting class of materials known as fe
electromagnets, in which ferroelectric and magnetic ord
coexist at low temperatures. Indeed, the coupling phen
enon between the ferroelectric and magnetic orders was
cently observed in YMnO3,3 which displays a ferroelectric
TC'914 K, but a rather low antiferromagneticTN'80 K.
This coupling can lead to a so-called magnetoelectric eff
with an interesting potential use in devices, where the die
tric ~magnetic! properties may be changed by the onset o
magnetic~electric! transition or by application of an externa
magnetic~electric! field. Physically, the more important pa
of optical nonlinearity comes from the electric-dipole mech
nism, including the magnetization-induced second-harmo
generation~SHG! of electric-dipole character.4–8 As is well
known, the second-order optical susceptibility can exist o
in a material with a broken space-inversion symmetry. Ho
ever, a quite different mechanism of electric-dipole nonl
earity was found in the magnetoelectric crystal Cr2O3, with a
centrosymmetric charge distribution but a noncentrosymm
ric antiferromagnetic spin order.4 Hexagonal YMnO3 has a
noncentrosymmetric ferroelectric ordering of charges an
centrosymmetric spin ordering. It is naturally expected t
the coexistence of both charge and spin ordering m
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lead to nonlinear optical polarizationP(2v)5PFE(2v)
1PAFM(2v), which depends on two order parameters.
hexagonal YMnO3, recent experiments5 showed unambigu-
ously the existence of two types of second harmonic spe
produced by a ferroelectric~noncentrosymmetric! ordering
of charges and an antiferromagnetic~centrosymmetric! or-
dering of spins, respectively. Both the SHG’s are of t
electric-dipole character, but have different symmetries w
respect to time-space inversion symmetry operations. An
terference phenomenon between the two nonlinear op
fields has also been observed and used to visualize the
antiferromagnetic domains that exist below the Neel te
peratureTN , which could not be distinguished in linea
optics.5 Although the experimental observations have be
explained by a phenomenological model based on the c
tallographic and magnetic symmetries of YMnO3, it is still
important to develop a microscopic theory for the nonline
optical spectroscopy due to the coexistence of the two o
parameters in YMnO3, taking into account the structura
magnetic, and electric properties of hexagonal YMnO3. This
kind of theory will be helpful in understanding the physic
origin of the colossal magnetoresistance.

The multiband Hubbard Hamiltonian has been very s
cessful in describing a strongly correlated electronic syst
and widely used to study the electronic and magnetic str
tures in superconducting oxides, transition-metal oxides,
colossal magnetoresistance material.9–12 Since exact analytic
solutions of the Hubbard model cannot be obtained in t
and three dimensions, one usually employs certain appr
mations. The unrestricted Hartree-Fock~HF! approximation
is one of the most straightforward and well-defined appro
mations. It correctly produces the major feature ofd bands in
the presence of strong electron-electron interaction. An
restricted HF approximation has been successfully use
transition-metal oxides.13 The same approximation was als
applied recently by Mizokawa and Fujimori to study the i
terplay between charge, spin, and orbital orderings syst
atically in a series of perovskite-type 3d transition-metal
10 664 ©2000 The American Physical Society
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oxides.14 Their results were very encouraging, and th
found that the unrestricted HF method generally yields
qualitatively correct description of the electronic and ma
netic properties of perovskite oxides in comparison with
perimental observation.14 The validity of the unrestricted HF
approach to Mott insulators was generally discussed a l
time ago by Brandow,15 who concluded that an unrestricte
HF calculation of the Hubbard model gives a useful pictu
of metallic versus insulating behavior of 3d transition-metal
oxides. As is well known, the HF method gives a quali
tively correct result in the first-order approximation, and b
ter methods such as the slave boson method may chang
result quantitatively but not qualitatively. Thus, in this pap
based upon the multiband Hubbard Hamiltonian and the
restricted Hartree-Fock approximation, we try to use the re
space recursion method to calculate the electronic struc
of YMnO3 below TN , and then develop a method to calc
late its nonlinear optical susceptibility. The calculated resu
will be compared with the experimental observations, id
tifying the different contributions to the optical susceptibili
from the antiferromagnetic and ferroelectric orders, resp
tively.

Many physical models have been proposed to calcu
the nonlinear optical susceptibilities of materials16 since the
pioneering work of Bloembergen. Rojo and Mahan used
Lanczos method to calculate the static hyperpolarizability
polymers.17 Using the self-consistent Sternheimer metho
Johnson, Subbaswamy and Senatore calculated the stati
ear and nonlinear polarizabilities of alkali halides.18,19 There
are still some other methods to calculate linear and nonlin
polarizabilities of materials. The first one uses tim
dependent perturbation theory to find a solution of
Schrödinger equation, which is usually called the sum-ov
state method.20 The other one uses the density-matrix fo
malism to give the static and dynamic optic
susceptibilities.21 These two methods are usually done
momentum and energy spaces. All of them need to know
eigenvalues and eigenfunctions of the system, and so c
not be used in larger cluster systems and disordered syst
Since the optical property is a rather localized effect aris
from the interaction between incident photons and electr
in the orbitals of a certain cluster,22 in this paper we prefer to
study the nonlinear optical properties of YMnO3 by using
time-dependent perturbation theory to derive an expres
of the second-order nonlinear optical susceptibility in ter
of the real-space Green’s function, which can be easily
tained by the recursion method and other real-space calc
tion techniques. The real-space recursion method is a p
erful numerical technique to obtain spectral properties of
operator, and can be used to solve a wide range of proble
from identifying the relative stability of a transition-met
alloy structure to obtaining the electronic and topologi
structures of amorphous semiconductors. It has more ad
tages in applications to larger clusters, systems with lo
symmetry, disordered systems, or periodical systems ha
complex unit cells.23 Previously, the recursion method wa
used mainly to calculate the density of states and total en
of a system.

The rest of the paper is organized as follows: In Sec.
we introduce the multiband Hubbard model and the un
stricted Hartree-Fock approximation; then we derive an
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pression for the nonlinear optical susceptibility in terms
the real-space Green’s function. In Sec. III. we present
merical results and a discussion. Conclusions are draw
Sec. IV.

II. MODEL HAMILTONIAN AND FORMULATION

Following Mizokawa and Fujimori, we used a multiban
Hubbard model, which includes a tenfold degeneracy of
transition-metal 3d orbitals and a sixfold degeneracy of th
oxygen 2p orbitals, as well as on-site Coulomb and e
change interaction14:

H5H01H1 ,

H05(
ims

edm
0 dims

† dims1(
jns

eppjns
† pjns

1 (
i jmns

~ t i j
mndims

† pjns1H.c.!

1 (
i jnn8s

~ t i j
nn8pins

† pjn8s1H.c.!, ~1!

H15(
im

udim↑
† dim↑dim↓

† dim↓

1
1

2 (
imÞnss8

u8dims
† dimsdins8

† dins8

2 j (
imss8

dims
† sW dims8Sim

d ,

where dims(dims
† ) and pjns(pjns

† ) denote the annihilation
~creation! operators of an electron on Mn 3d orbitals at sitei
and O 2p orbitals at sitej, respectively;m and n are the
orbital indices ands the spin index.edm

0 and ep are their
corresponding on-site energies, andedm

0 includes the crystal-
field splitting energy, i.e.,ed

0(t2g)5ed
024 Dq and ed

0(eg)
5ed

016 Dq, with ed
0 the bare on-site energy of the 3d orbit-

als. t i j
mn and t i j

nn8 are the nearest-neighbor 2p-3d and 2p-2p
hopping integrals which are expressed in terms of Sla
Koster parameterspds, pdp, pps, andppp.24 Sim

d is the
total spin operator of a Mn ion, extracting the spin opera
in the orbitalm. u85u2 5

2 j , and the parameteru is related to
the multiplet averagedd-d Coulomb interactionU via u
5U1 20

9 j .
In the unrestricted Hartree-Fock approximation, t

mean-field Hamiltonian becomes

HHF5(
ims

Fedm
0 1unims̄

d
2

j

2
s~m t

d2mm
d !

1u8~nt
d2nm

d !Gdims
† dims1(

jns
eppjns

† pjns

1 (
i jmns

~ t i j
mndims

† pjns1H.c.!1 (
i jn 8ns

~ t i j
nn8pins

† pjn8s

1H.c.! ~2!
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Herent
d andm t

d are the total electron numbers and ma
netization of the Mn 3d orbitals, respectively. They are de
fined asnt

d5(msnms
d with nms

d 5^dms
† dms&, and m t

d5(mmm
d

with mm
d 5nm↑

d 2nm↓
d .

Using the recursion method, the real-space Green’s fu
tion can be calculated in terms of a continued fraction,23 and
the multiband terminator is chosen in our calculation to clo
the continuous fractional.25 Then the nonlinear optical sus
ceptibility can be obtained by the calculated Green’s fu
tion, and our derived expression for it.

Now we try to use the usual time-dependent perturba
theory in the interaction representation26 and Feynman’s dia-
grammatic rules to derive an expression for the optical s
ceptibility by the real-space Green’s function.

The incoming and outgoing states are connected by thS
matrix:

F~1`!5SF~2`!, ~3!

S5T expF2 i E
2`

1`

H8~ t !dtG , ~4!

H85eESr i ~5!

The perturbing Hamiltonian~5! is the electric-dipole in-
teraction. The second-order nonlinear optical susceptib
x (2)(22v;v,v) is described as usual by connected Fe
man diagrams composed of two incoming photon lines w
energyv, one outgoing line with energy 2v, and a single-
electron loop as in Fig. 1. The electron propagator is giv
by

K~2,1!55 2
1

pEEf

`

dE Im G12~E!e2 iE(t22t1), t2.t1

1

pE2`

Ef
dE Im G12~E!e2 iE(t22t1), t2,t1 .

Here, ImGi , j (E)52p(nfn* (r i)fn(r j )d(E2En). In-
stead of integrating over the interaction timest1 , t2, and t3
independently, we consider all possible orderings of th
and complete the integrals with respect to the relative tim
as in the proof of Goldstone’s theorem.26 One component of
x (2), represented in Fig. 1~a! with an order of timest3.t1
.t2, is equal to

E
2`

Ef
d«gE

Ef

`

d«aE
Ef

`

d«b

m

~eag1v!~ebg12v!
. ~6!

FIG. 1. The Feynman diagram forx (2)(22v;v,v)
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For the same Fig. 1~a!, but with an order of times,t1
.t2.t3, or t2.t3.t1, we can obtain another two compo
nents ofx (2), which are written as

E
2`

Ef
d«gE

Ef

`

d«aE
Ef

`

d«bF m

~eag22v!~ebg2v!

1
m

~eag1v!~ebg2v!G . ~7!

Similarly, for Fig. 1~b!, with all different orders of times,
we obtain their contributions tox (2) as

2E
2`

Ef
d«gE

Ef

`

d«aE
2`

Ef
d«bF m

~eag1v!~eab12v!

1
m

~eag22v!~eab2v!
1

m

~eag1v!~eab2v!G .
~8!

Herem is defined as

m5(
i

(
j

(
k

Im Gi , j~«g!Im Gk,i~«a!Im Gj ,k~«b!r ir j r k .

In the above formula,eag5ea2eg , and ea(eg) is one-
electron energy.Ef is the Fermi energy. Equations~6!–~8!
are our basic equations used to calculatex (2)(22v;v,v)
for YMnO3.

III. CALCULATED RESULTS AND DISCUSSIONS

The band-structure parameters used in our numerical
culations are obtained by fitting the cluster-model pho
emission spectra of the valence band and the transition-m
2p core level to experimental spectra.27 In this paper, the
bare on-site energies of Mn 3d and O 2p orbitals are taken
as ed

05225.5 eV andep50 eV. The crystal-field splitting
energy and the Slater-Koster parameters are chosen as 1
5 1 eV, andpds521.8 eV, pdp50.9 eV, pps50.6 eV,
andppp520.15 eV, respectively. The on-site Coulomb r
pulsion energy and Hund coupling constant are taken aU
57.5 eV andj 50.76 eV. With the set of parameters give
above, we calculated the electronic structures of YMn3
self-consistently by the iteration scheme. Its density of sta
in the energy range of212 eV to 8 eV is shown in Fig. 2
For convenience, the Fermi energy (Ef50) is set at the
middle of the band gap, which is 1.48 eV. The top pan
represents the total density of states of YMnO3, and the
middle and bottom panels are the partial densities of st
for Mn 3d and O 2p orbitals, respectively. As can be see
from Figs. 2~b!–2~d!, the main contributions to the density o
states near the Fermi energy are given by the Mneg and Op
orbitals. The electron occupation numbers in thet2g andeg
bands are 3.098 and 1.406, respectively. The extra elect
in the Mn 3d band come from O 2p orbitals due to the
hybridization between them. The magnetic moment on
ion is 3.7mB , which is larger than the experimental valu
3.1mB .28 The bandwidth of Mnt2g orbitals is much narrower
than the Mneg orbital, indicating thatt2g orbitals are more
localized than theeg orbital.



ic
y
he
a
rd

.
t

ric
ti-
n
91

,

t
e

d

8,
ig.

214

57
n-

ith
ted
e

re-
ge
mi

nts
m
e

he

in

tions

.

ear

PRB 61 10 667NONLINEAR OPTICAL PROPERTIES OF PEROVSKITE . . .
Hexagonal YMnO3 belongs to the noncentrosymmetr
P63cm space group. BelowTc its SHG can be produced b
electric dipoles due to the ferroelectric ordering of t
charge. Based upon group theory, it is known that there
only four independent tensor elements of the second-o
nonlinear optical susceptibility (xxzx5xyzy, xxxz5xyyz,
xzxx5xzyy, andxzzz) due to its space structure symmetry16

Below TN , hexagonal YMnO3 belongs to the magnetic poin
group 6mm, where spin ordering is centrosymmetric,29

which cannot contribute tox (2) by itself. However, the co-
existence of antiferromagnetric ordering with ferroelect
ordering in YMnO3 gives rise to an electric-dipole suscep
bility xxxx .5 xzzz, xzxx, andxxxx are calculated based upo
Eqs. ~6!–~8!. Their static values are 11.7, 2.89 and 1.
31028 esu, respectively. Staticxzzz is the largest, and both
staticxzzz andxzxx are larger than staticxxxx , probably be-
cause both ofxzxx and xzzz stem directly from the electric
dipole contribution; howeverxxxx is magnetization induced
and therefore is an indirect electric dipole contribution.

Fröhlich et al. measured the SH spectra of YMnO3 in the
energy range 2\v52.0 – 3.2 eV atT56 K. They found
that crystallographic-inducedxzxx has a peak located at 2v
52.7 eV, and antiferromagnetic-inducedxxxx has a peak a
2v52.46 eV.5 In order to compare with experiment, w
have also investigated the dynamic optical response
YMnO3. Dispersions ofxxxx , xzxx, andxzzz are calculated
and shown in Fig. 3. Positions of the first peak are locate

FIG. 2. Density of states of hexagonal YMnO3. The unit of the
x coordinate is eV.~a! Total density of states~b!, ~c!, and~d! Partial
densities of states for Mnt2g , Mn eg , and Op bands, respectively
re
er

of

at

2v51.6, 1.28, and 0.96 eV forxxxx , xzxx, andxzzz, with
peak values, 1.572, 0.970 and 2.19231027 esu, respec-
tively. The highest peaks ofxxxx , xzxx, andxzzzare located
at the same 2v51.6 eV, and their values are 1.572, 1.10
and 4.51731027 esu, respectively. It can be seen from F
3 that there is one peak ofxxxx located at 2v52.24 eV in
the energy range of 2.0–3.0 eV. The peak value is 8.
31028 esu. In the same range, there are two peaks inxzxx
located at 2v52.60 and 2.88 eV, and their values are 9.2
and 6.53831028 esu, respectively. It is obvious that in ge
eral our calculated peak positions are very consistent w
the experimental data, and only the position of the calcula
xxxx peak shifts slightly to lower energy than that of th
experimental value~the theoretical value of 2v52.24 eV
versus the experimental one of 2v52.46 eV).5

The complete band structure of Mnd and Op contains
many band branches, which are responsible for different
gions of thex (2) spectra. The experimental frequency ran
2\v52.0–3.2 eV involves only bands around the Fer
surface. From Fig. 2, we can see there are no Mnt2g states
near the Fermi surface. Therefore, only the Mneg and Op
bands makes contributions to the low-frequency compone
of xzxx and xxxx spectra observed in the experiment. Fro
the inset of Figs. 2~c! and 2~d!, we can see the peaks in th
density of states~DOS! of the Mn eg band are located at
22.02,21.18, 0.44, 0.60, 0.80, 0.85, 1.13, and 1.16 eV. T
peaks in the DOS of the Op band are located at21.99,
21.04, 0.58, and 1.16 eV. Hence both the 2.24-eV peak
the xxxx spectra and the 2.6-eV peak in thexzxx spectra are
two-photon resonance peaks, and are caused by transi

FIG. 3. The dynamical response of the second-order nonlin
optical susceptibity for hexagonal YMnO3 ~in 1026 esu). The unit
of the x coordinate is eV.~a! xxxx . ~b! xzxx. ~c! xzzz.
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10 668 PRB 61WAN, DONG, QIAN, AND ZHANG
between the Mneg band to the Mneg band, the Mneg band
to the Op band, and the Op band to the Op band. Since our
calculation has been done in real space, it is very eas
decide the ratio between the three different contributions.
find the contribution from the transition between Op and O
p bands is the lowest. Also, the contributions from the tra
sitions of Mneg to Mn eg and Op to Mn eg bands are abou
equal to each other in magnitude~the ratio of the former to
the latter is about 0.45 to 0.55!, indicating that the effect of
the latter cannot be neglected, which is different from
simple explanation for the resonance peaks inx (2) in
YMnO3 from the phenomenological model based only up
the symmetries of the system.

There are two peaks inxzzz spectra in the range from 2.
to 3.0 eV. Their positions are 2v52.24 and 2.60 eV, and
their values are 0.954 and 1.06731027 esu, which are large
than that ofxzxx. It will be more interesting to measure the
values.

In order to see how the Coulomb interaction affects
x (2) spectra, we have also calculatedxxxx , xzxx, andxzzzof
YMnO3 with different U ’s. We find that the influence o
Coulomb interaction on the nonlinear optical property
YMnO3 is similar to that in carbon nanotubes.30 We find that
with an increase ofU, xxxx , xzxx, and xzzz will decrease,
and the peak positions in their spectra will shift to right, i.
to higher frequencies, because an increasing Coulomb in
actionU will increase the energy gap.
sh
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IV. CONCLUSION

In this paper, we present an expression for the seco
order nonlinear optical susceptibility in terms of the re
space Green’s function, which is calculated by the recurs
method. Then, using our derived formula, we investigate
nonlinear optical properties of YMnO3, and find that peaks
of low frequency inx (2) are caused mainly by transitions o
Mn eg to Mn eg bands, and Mneg to O p bands, indicating
the importance of the latter. Our main result is in agreem
with the experiment. Our method can be applicable to ma
other systems~for example, clusters, systems with compl
unit cells, and disorder systems!. There are many method
which can be used to calculate the real-space Green’s f
tion. This, using our derived expressions, all these meth
can be used to calculate the nonlinear optical susceptibi
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