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Nonlinear optical properties of perovskite YMnO; studied by real-space recursion method
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New types of second-order nonlinear optical properties of hexagonal ¥Ma@e been studied, caused by
the coexistence of the noncentrosymmetric ferroelectric ordering of charges and the centrosymmetric spin
ordering below its Neel temperatufg, . Using time-dependent perturbation theory and the Green’s function
method, we have derived an expression for the nonlinear optical susceptibility in terms of the real-space
Green'’s function. Then, based upon the multiband Hubbard Hamiltonian and the unrestricted Hartree-Fock
approximation, the real-space recursion method has been used to calculate the electric structure of YMnO
below Ty, and its nonlinear optical susceptibility. The calculated results are very consistent with the experi-
mental observation, and clearly show different contributions to the nonlinear optical response fromege Mn
and  bands in YMnQ.

. INTRODUCTION lead to nonlinear optical polarizatio(2w)=PFE(2w)
+PAFM(2w), which depends on two order parameters. In

The discovery of colossal magnetoresistance in mixedhexagonal YMn@, recent experimentsshowed unambigu-
valent manganese perovskites, such as @aMnQO;, has  gysly the existence of two types of second harmonic spectra
attracted renewed interest in these doped rare-earth mangsroduced by a ferroelectritnoncentrosymmetricordering
nese oxides because of their potential technological applicgss charges and an antiferromagnetientrosymmetric or-
tions and similarity to the cuprate superconductdusually, dering of spins, respectively. Both the SHG'’s are of the
the rare-earth gnd ytrium manganltéwlrlog have two electric-dipole character, but have different symmetries with
$£uth3r2: sh%\?hiir? r?aesnggrrrﬂllFzgﬁi:er;%ﬁgsﬂghf;n-rg?{ho- respect to time-space inversion symmetry operations. An in-

' ' ' terference phenomenon between the two nonlinear optical

rhombic phase foR=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb or Dy, ields has also been observed and used to visualize the 180°
which has a greater ionic radius. Although magnetic ordering . . . .
ntiferromagnetic domains that exist below the Neel tem-

can occur in both hexagonal and orthorhombic manganites, ) L L
ferroelectric ordering occurs only in hexagonal ones havind)er_atuerTN' which could _not be dlstmgws_hed in linear
noncentrosymmetric symmetriéthe P6scm space group optlcs_. Although the expenme_ntal observations have been
Therefore, hexagonal yttrium and rare-earth manganite§*Plained by a phenomenological model based on the crys-
comprise an interesting class of materials known as ferrotallographic and magnetic symmetries of YMyQ is still
electromagnets, in which ferroelectric and magnetic orderg§nportant to develop a microscopic theory for the nonlinear
coexist at low temperatures. Indeed, the coupling phenom@ptical spectroscopy due to the coexistence of the two order
enon between the ferroelectric and magnetic orders was rgarameters in YMn@ taking into account the structural,
cently observed in YMn@?® which displays a ferroelectric magnetic, and electric properties of hexagonal YMnThis
Tc~914 K, but a rather low antiferromagnetig,=~80 K.  kind of theory will be helpful in understanding the physical
This coupling can lead to a so-called magnetoelectric effeciprigin of the colossal magnetoresistance.
with an interesting potential use in devices, where the dielec- The multiband Hubbard Hamiltonian has been very suc-
tric (magneti¢ properties may be changed by the onset of acessful in describing a strongly correlated electronic system,
magnetic(electrig transition or by application of an external and widely used to study the electronic and magnetic struc-
magnetic(electrig field. Physically, the more important part tures in superconducting oxides, transition-metal oxides, and
of optical nonlinearity comes from the electric-dipole mecha-colossal magnetoresistance matetiaf.Since exact analytic
nism, including the magnetization-induced second-harmonisolutions of the Hubbard model cannot be obtained in two
generation(SHG) of electric-dipole charactér® As is well  and three dimensions, one usually employs certain approxi-
known, the second-order optical susceptibility can exist onlymations. The unrestricted Hartree-FogkF) approximation
in a material with a broken space-inversion symmetry. How-s one of the most straightforward and well-defined approxi-
ever, a quite different mechanism of electric-dipole nonlin-mations. It correctly produces the major feature @fands in
earity was found in the magnetoelectric crystaJ@y, with a  the presence of strong electron-electron interaction. An un-
centrosymmetric charge distribution but a noncentrosymmetrestricted HF approximation has been successfully used in
ric antiferromagnetic spin ordérHexagonal YMnQ has a transition-metal oxide$® The same approximation was also
noncentrosymmetric ferroelectric ordering of charges and applied recently by Mizokawa and Fujimori to study the in-
centrosymmetric spin ordering. It is naturally expected thaterplay between charge, spin, and orbital orderings system-
the coexistence of both charge and spin ordering maytically in a series of perovskite-typed3transition-metal
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oxides!* Their results were very encouraging, and theypression for the nonlinear optical susceptibility in terms of
found that the unrestricted HF method generally yields dhe real-space Green’s function. In Sec. Ill. we present nu-
qualitatively correct description of the electronic and mag-merical results and a discussion. Conclusions are drawn in
netic properties of perovskite oxides in comparison with ex-Sec. IV.

perimental observatiolf. The validity of the unrestricted HF

approach to Mott insulators was generally discussed a long II. MODEL HAMILTONIAN AND FORMULATION

time ago by Brandow® who concluded that an unrestricted
HF calculation of the Hubbard model gives a useful picture
of metallic versus insulating behavior ofi3ransition-metal
oxides. As is well known, the HF method gives a qualita-
tively correct result in the first-order approximation, and bet-
ter methods such as the slave boson method may change th
result quantitatively but not qualitatively. Thus, in this paper, H=H.+H
based upon the multiband Hubbard Hamiltonian and the un- orTL
restricted Hartree-Fock approximation, we try to use the real-

Following Mizokawa and Fujimori, we used a multiband
Hubbard model, which includes a tenfold degeneracy of the
transition-metal 8 orbitals and a sixfold degeneracy of the
oxygen 2 orbitals, as well as on-site Coulomb and ex-
hange interactidit:

space recursion method to calculate the electronic structure Ho:.z egmd;rmodim0+2 EppjTijnU

of YMnO3; below Ty, and then develop a method to calcu- imo ine

late its nonlinear optical susceptibility. The calculated results

will be compared with the experimental observations, iden- + 2 (t{}‘ndjmqunlr+ H.c)

tifying the different contributions to the optical susceptibility ijmna

from the antiferromagnetic and ferroelectric orders, respec-

tively. + 2 (45 PPt HC), (1)
Many physical models have been proposed to calculate ijnn’ o

the nonlinear optical susceptibilities of materidisince the

pioneering work of Bloembergen. Rojo and Mahan used the _ " T

Lanczos method to calculate the static hyperpolarizability of Hi= % Ui dim; Qi dim)

polymers!’ Using the self-consistent Sternheimer method,

Johnson, Subbaswamy and Senatore calculated the static lin- 1 )t +

ear and nonlinear polarizabilities of alkali halid&s® There t5 2 U dhdimedi, dings

. . . im+ !
are still some other methods to calculate linear and nonlinear imznoe

polarizabilities of materials. The first one uses time- ) b
dependent perturbation theory to find a solution of the - X dimoadima’s1dm'
Schralinger equation, which is usually called the sum-over-

state method” The other one uses the density-matrix for- where d;,(d.) and Pino(P},) denote the annihilation

malism to give the static and dynamic optical (creation operators of an electron on Mrd%rbitals at site
susceptibilities! These two methods are usually done ingnd O 2 orbitals at sitej, respectively;m and n are the
momentum and energy spaces. All of them need to know thgpital indices andr the spin index.5,, and €, are their
eigenvalues _and eigenfunctions of the system, and so Cou‘fbrresponding on-site energies, mgan includes the crystal-
ngt be used in larger clustgr systems and (_jlsordered sy_st_en}%ld splitting energy, i.e.,eg(tz )= 68—4 Dq and eg(e )
Since the optical property is a rather localized effect arising_ 0.6 D ith €° the b 9 it f thel D bgt-
from the interaction between incident photons and electrons €d d: W', €q (N€ bare on-site energy o ol
in the orbitals of a certain clusté?,n this paper we prefer to  als.tjj" andtj" are the nearest-neighbopzd and 2p-2p
study the nonlinear optical properties of YMp®y using hopping integrals which are expressed in terms of Slater-
time-dependent perturbation theory to derive an expressiokoster parameterpdo, pdw, ppo, andppm.?* S, is the
of the second-order nonlinear optical susceptibility in termgotal spin operator of a Mn ion, extracting the spin operator
of the real-space Green’s function, which can be easily obin the orbitalm. u’=u—3j, and the parameteris related to
tained by the recursion method and other real-space calculthe multiplet averagedal-d Coulomb interactionU via u
tion techniques. The real-space recursion method is a pow=U+ %j.
erful numerical technique to obtain spectral properties of any In the unrestricted Hartree-Fock approximation, the
operator, and can be used to solve a wide range of problemsjean-field Hamiltonian becomes
from identifying the relative stability of a transition-metal
alloy structure to obtaining the electronic and topological HF_E
structures of amorphous semiconductors. It has more advan-'
tages in applications to larger clusters, systems with lower
symmetry, disordered systems, or periodical systems having
complex unit cell$ Previously, the recursion method was
used mainly to calculate the density of states and total energy
of a system. /
The rest of the paper is organized as follows: In Sec. I, +ij%w (tir}mdiTmopinv+H'C')+__z, (tinjn piTn«rpin’o
we introduce the multiband Hubbard model and the unre- unne
stricted Hartree-Fock approximation; then we derive an ex- +H.c) (2

imoo’

0 d J d d
€dmt Unim;—EO'(,LLt ~ Hm)

imo

T T
dimadima_’_j; Eppjr‘lapjn(r
o

+u’(nf—nd)
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For the same Fig. (&), but with an order of timest;
>t,>15, Or t,>t3>t,, we can obtain another two compo-
nents ofy(?, which are written as

E o o0
f fdsgf deaf dey,
- Ef Ef

o
(eag+ w)(ebg_ w)

)
(eag_ Zw)(ebg_ w)

@ ®)

. (7)

FIG. 1. The Feynman diagram ff?(—2w;w,®)
Similarly, for Fig. Xb), with all different orders of times,
Heren? and u¢ are the total electron numbers and mag-We obtain their contributions tg® as
netization of the Mn 8 orbitals, respectively. They are de- c . .
fined asnd=3,nd . with nd =(d! dnno, and ud==ud _f fdsgf dsaf "de,
with ,udm=n9m—nml. - Ey -
Using the recursion method, the real-space Green’s func-
tion can be calculated in terms of a continued fractiband s £ )
the multiband terminator is chosen in our calculation to close (€ag—2w)(€ap— ) (€qgtw)(€qp—w)
the continuous fractiondf. Then the nonlinear optical sus- (8)
ceptibility can be obtained by the calculated Green'’s func- _ )
tion, and our derived expression for it. Here u is defined as
Now we try to use the usual time-dependent perturbation
theory in_the interaction representaﬁBand Feynman’s dia- M:Z 2 2 Im G j(gg)Im Gy i(g2)IM Gj ()1l ri.
grammatic rules to derive an expression for the optical sus- T K
ceptibility by the real-space Green’s function.
The incoming and outgoing states are connected bysthe  In the above formulag, = e€,— €4, and e,(ey) is one-

)
(Gag+ w)(€apt2w)

matrix: electron energyE; is the Fermi energy. Equation{§)—(8)
are our basic equations used to calculgt®(—2w;w,w)
D(+0)=SP(—x), (3  for YMnOs.
+o0 I1l. CALCULATED RESULTS AND DISCUSSIONS
S=Tex;{—|j H’(t)dt}, (4) : -
—o The band-structure parameters used in our numerical cal-

culations are obtained by fitting the cluster-model photo-
H' =eESr; (5)  emission spectra of the valence band and the transition-metal
2p core level to experimental specfraln this paper, the
The perturbing Hamiltoniart5) is the electric-dipole in- bare on-site energies of Mnd3and O 2 orbitals are taken
teraction. The second-order nonlinear optical susceptibilitys €= —25.5 eV ande,=0 eV. The crystal-field splitting
X(Z)(—Zw;w,w) is described as usual by connected Feyn-energy and the Slater-Koster parameters are chosen as 10 Dq
man diagrams composed of two incoming photon lines with= 1 eV, andpdo=—1.8 eV, pd7=0.9 eV, ppo=0.6 eV,
energyw, one outgoing line with energy«2 and a single- andppw=—0.15 eV, respectively. The on-site Coulomb re-
electron loop as in Fig. 1. The electron propagator is giverpulsion energy and Hund coupling constant are takeb) as
by =7.5 eV andj=0.76 eV. With the set of parameters given
above, we calculated the electronic structures of YMnO
1 (= _ self-consistently by the iteration scheme. Its density of states
e dEIm G(E)e 'F27, 1>t in the energy range of 12 eV to 8 eV is shown in Fig. 2.
K(2,1)= f For convenience, the Fermi energig:&0) is set at the
1 (E iE(t-ty) middle of the band gap, which is 1.48 eV. The top panel
;f_wdElm Gu(BE)e ™2, <ty represents the total density of states of YMp@nd the
middle and bottom panels are the partial densities of states
for Mn 3d and O 2 orbitals, respectively. As can be seen
from Figs. Zb)—2(d), the main contributions to the density of
states near the Fermi energy are given by thedyland Op
rbitals. The electron occupation numbers in theand ey
ands are 3.098 and 1.406, respectively. The extra electrons
in the Mn 3d band come from O @ orbitals due to the
hybridization between them. The magnetic moment on Mn
ion is 3.7ug, which is larger than the experimental value
. ) B 3.1u .*® The bandwidth of Mrty, orbitals is much narrower
f fds f de f dey, M . (6) than the Mney orbital, indicating that, orbitals are more
g g T(€agt o)(epgt20) localized than the, orbital.

Here, ImG; (E)=—7Z,¢;(ri)dn(rj) S(E—E,). In-
stead of integrating over the interaction tintgs t,, andts
independently, we consider all possible orderings of thes
and complete the integrals with respect to the relative time%
as in the proof of Goldstone’s theoréthOne component of
x®, represented in Fig.(&) with an order of timeg;>t;
>t,, is equal to
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FIG. 2. Density of states of hexagonal YMaOrhe unit of the
x coordinate is eV(a) Total density of state®), (c), and(d) Partial 20 =1.6, 1.28, and 0.96 eV f0fyxx, Xzxx» aNd X555 With
densities of states for My, Mn e, and Op bands, respectively. peak values, 1.572, 0.970 and 2192107 esu, respec-

tively. The highest peaks ofyxy, Xzxx; @ndyx;,,are located

Hexagonal YMnQ belongs to the noncentrosymmetric at the same @=1.6 eV, and their values are 1.572, 1.108,
P63cm space group. Below, its SHG can be produced by and 4.517x 10 7 esu, respectively. It can be seen from Fig.
electric dipoles due to the ferroelectric ordering of the3 that there is one peak qof,,, located at 22=2.24 eV in
charge. Based upon group theory, it is known that there arthe energy range of 2.0-3.0 eV. The peak value is 8.214
only four independent tensor elements of the second-ordex 10 8 esu. In the same range, there are two peaks,iq
nonlinear optical susceptibility .= Xyzys Xxxz= Xyyz located at 20=2.60 and 2.88 eV, and their values are 9.257
Xzxx= Xzyy» andy;,,) due to its space structure symmetty. and 6.53% 10 8 esu, respectively. It is obvious that in gen-
Below Ty, hexagonal YMnQ@ belongs to the magnetic point eral our calculated peak positions are very consistent with
group 6mm, where spin ordering is centrosymmetfic, the experimental data, and only the position of the calculated
which cannot contribute tq(? by itself. However, the co-  y,,, peak shifts slightly to lower energy than that of the
existence of antiferromagnetric ordering with ferroelectricexperimental valudthe theoretical value of @=2.24 eV
ordering in YMnQ gives rise to an electric-dipole suscepti- versus the experimental one ob2 2.46 eV)>
bility Xyxx-> Xz220 Xzxx» 8N xxxx are calculated based upon  The complete band structure of Mhand Op contains
Eqgs. (6)—(8). Their static values are 11.7, 2.89 and 1.91many band branches, which are responsible for different re-
X 1078 esu, respectively. Statig,,,is the largest, and both gions of they(?) spectra. The experimental frequency range
static x,,,and x4 are larger than statig,,,, probably be- 24w=2.0-3.2 eV involves only bands around the Fermi
cause both ofy,. and x,,, stem directly from the electric surface. From Fig. 2, we can see there are notpjrstates
dipole contribution; howeveg,, is magnetization induced, near the Fermi surface. Therefore, only the Ejpand Op
and therefore is an indirect electric dipole contribution. bands makes contributions to the low-frequency components

Frohlich et al. measured the SH spectra of YMni@ the  of x,,, and x. Spectra observed in the experiment. From
energy range Ro=2.0 — 3.2 eV atT=6 K. They found the inset of Figs. @) and 2d), we can see the peaks in the
that crystallographic-induceg,, has a peak located aw2  density of statesDOS) of the Mn e, band are located at
=2.7 eV, and antiferromagnetic-inducegg,, has a peak at —2.02-1.18, 0.44, 0.60, 0.80, 0.85, 1.13, and 1.16 eV. The
2w=2.46 eV° In order to compare with experiment, we peaks in the DOS of the @ band are located at 1.99,
have also investigated the dynamic optical response of-1.04, 0.58, and 1.16 eV. Hence both the 2.24-eV peak in
YMnO;. Dispersions Ofyyyx, Xzxx» @ndx,,;are calculated the y,yx spectra and the 2.6-eV peak in tle,, spectra are
and shown in Fig. 3. Positions of the first peak are located atwo-photon resonance peaks, and are caused by transitions



10 668 WAN, DONG, QIAN, AND ZHANG PRB 61

between the Mrey band to the Mrey band, the Mney band IV. CONCLUSION
to the Op band, and the @ band to the o band. Since our In this baper. we bresent an expression for the second-
calculation has been done in real space, it is very easy to IS paper, we p Xxp :

decide the ratio between the three different contributions. W&'d€" nonllne’ar optl_cal suspeppbﬂny in terms of the rea}l-
find the contribution from the transition betweenpGnd O SPace Green'’s function, which is calculated by the recursion

p bands is the lowest. Also, the contributions from the tran-M&thod. Then, using our derived formula, we investigate the
sitions of Mne, to Mn e, and Gp to Mn e, bands are about nonlinear optical _propz)ertles of YMnéognd find that. peaks
equal to each other in magnitudae ratio of the former to  Of low frequency iny(®) are caused mainly by transitions of
the latter is about 0.45 to 0.55ndicating that the effect of Mn €4 to Mn ey bands, and Mrey to O p bands, indicating
the latter cannot be neglected, which is different from thethe importance of the latter. Our main result is in agreement
simple explanation for the resonance peaks xff) in  with the experiment. Our method can be applicable to many
YMnOg from the phenomenological model based only uponother systemgfor example, clusters, systems with complex
the symmetries of the system. unit cells, and disorder systeinsThere are many methods

There are two peaks ip,,,spectra in the range from 2.0 which can be used to calculate the real-space Green’s func-
to 3.0 eV. Their positions are«2=2.24 and 2.60 eV, and tion. This, using our derived expressions, all these methods
their values are 0.954 and 1.0670 ’ esu, which are larger can be used to calculate the nonlinear optical susceptibility.
than that ofy,,,. It will be more interesting to measure their
values.
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