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Electron-phonon effects in graphene and armchain(10,10 single-wall carbon nanotubes
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The electron-phonon interaction in low-dimensional tight-binding systems is discussed. A sheet of graphite,
which is two-dimensional, and an armchair single-wall carbon nanot@®&NT), which is quasi-one-
dimensional, are taken as examples. For the modulated hopping the matrix elements for both systems are
derived in the context of a two parameter model for the phonon vibrational spectrum. It is found thdbthey
both structuresdisplay a deformation type of potential, and are reduced by a factor ©fR)1 whereR
depends on the phonon parameters. It is also shown that the ordinary electron-phonon coupling displays a
deformation type of approximation for both systems. Next, a different type of interaction is considered—the
phonon modulated electron-electron interaction. It gives two contributions—random phase approximation with
one phonon line and exchange interaction with one phonon line. We find that for the two-dimeitgnal
graphene and for the quasi-10,10 SWNT, the modulated hopping and exchange coupling govern the
electron transport at room temperatures.

I. INTRODUCTION temperatures the resistivity is linear with(which is charac-
teristic for a metallic systejn Second, considering the re-

Carbon nanotubes are newly discoverd nanoparticlessults from Ref. 9 one could say that the SWNT is a ballistic
which have unique electrical and mechanical properties. Aonductor even at =300 K.
carbon nanotube is a graphite sheet rolled into a cylinder; its To explain the mechanism of electric transport in these
diameter is much smaller than its length. Every tube is charsystems we turn towards the electron-phonon interaction,
acterized by a chiral indexn(m), with n andm being two  which is the deciding factor in the context of the flow of
integers, which specify the carbon nanotube uniquely. Theielectricity and heat.
electronic structure is either metallic or semiconducting de- To begin the investigation of the electron-phonon cou-
pending on ,m).? It is very important to describe the two- pling one needs to have proper phonon despersions. Section
dimensional graphite properly and then apply the formalism| is devoted to the lattice dynamics of graphene &h@,10
to the quasi-one dimensional single-wall carbon nanotub&WNT. A model with two parameters is proposed—the pa-
(SWNT). rameters are for the central force)(and for the angle bend-

A (10,10 single-wall nanotube has a diameter of approxi-ing (8) that involves a three-body force. It turns out, that
mately 14 A. Many calculations and experiments are fo-with this model, one can describe all of the features of the
cused on this kind of SWNT'$? Therefore, we take an in- in-plane phonon spectrum for graphene with a suitable
finitely long (10,10 tube as an example for developing choice of the two parameters. The same choicerf@nd 8
further models. Some of the experiméntsare dealing with  is used for the armchair tube.
ropes and bundles of SWNT’s. Several groups have an- |n Sec. lll, the electron-phonon interaction for graphene is
nounced measurements on the electrical resistivity of singlederived. The electrons are described by a tight-binding wave
wall nanotubes. They report that for single-rope samples th@unction. The simplest interpretation is that the vibrating ions
resistivity at T=300 K is in the range of 10° carry the electron orbitals with them as they move—this is
—10“Q cm. The characteristic feature is thdp/dT is  the so-called rigid ion approximation. In tight-binding sys-
positive at or near room temperatures, which indicates théems, where the electrons are well localized, the rigid ion
metallic nature of the system. approximation is a very reasonable approach. In graphene

Reference 7 indicates that the V characteristics are lin- the Fermi surface is near th€ points from the Brillouin
ear atT=300 K with resistance typically of 1K. Refer-  zone (BZ).!° Only phonons with long wavelengths are in-
ence 8 reports that at very low temperatures the conductane®lved. Instead of calculating the potential one parametrizes
is quantized. This group also announced a resistance in theby assuming that it is proportional to the relative distance
order of 1M). According to their results, the resistance atbetween nearest neighbors. We will assume that this is true
T=300 K appears to scale with the overlap area with thefor the carbon nanotube also. The interaction Hamiltonian is
electrodes. The experiments in Ref. 9 deal with multiwallwritten for a solid with two atoms per unit cell. It turns out
carbon nanotubes. According to this report only the outethat the deformation constabx of the interaction is signifi-
layer contributes to the transport. The experiments indicateantly reduced by a factor that depends only ondhend 8
that even at room temperatures the conductance is quantizedrameters from the phonon model.
by one unit ofG,=2e?*/h=77.48uS. The nanotube behaves  Besides the traditional modulated hopping two more
as a ballistic wire even at=300 K. Therefore, there are terms are derived for the electron-phonon interaction. One of
two types of reported results in the literature. First, at roonthem is the linear electron-phonon coupling, that arises from
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the Coulomb interaction between the electrons and the ions. The second type force is due to the bond-bending between

The other one is the phonon modulated electron-electron inthe atoms. The three-body potential was proposed in Ref. 13

teraction and it was firstly introduced in Ref. 11. This type offor silicon. The model is described by

interaction could be important for low-dimensional tight-

binding systems. The position of the atom, which is included

in the Coulomb potential is modulated by the lattice vibra-

tions. Keeping only terms of first order in the ion displace-

ments around equilibrium, one is able to obtain the form ofwhere 6;;, is the angle-formed between the j bond and

the Hamiltonian. thei—k bond. 6, is the equilibrium angle and for the hex-
In Sec. IV, the same derivation is given for the armchairagonal lattice is 120°g is a characteristic constant for this

(10,10 SWNT. The formalism developed for the modulated type of force.

hopping, the linear electron-phonon coupling and the phonon The two parameters of this model are determined by fit-

modulated electron-electron interaction is applied to theing them to the well-known graphene spectrum from Ref.

nanotube by imposing discrete boundary conditions in the 2.

appropriate direction. In the graphite structure, the angle between two closest
Section V discusses the electron self-energy for the threbonds is

different types of electron-phonon coupling. For the phonon

modulated electron-electron interaction two sets of Feynman [rij+ (U= up) ][+ (U —uy) ]

diagrams are found. One of them is the random phase ap- cosbijx=

proximation with one phonon line. The other one is the ex-

change interaction with one phonon line. The contributionsgince one is considering small displacements from equilib-
from both types of diagrams are discussed for the tWogiym the above expression can be expanded for small.
dimensional graphene and for the quasi-one-dimension&fier one does that. the result takes the form v
(10,10 nanotube.

Section VI is devoted to some numerical estimates of the 1
electron lifetime and the electrical conductivity for the sheet oSty = { S

V= g .,Ek (COs6;j —Cc0sbp)?, 2

()

[rij + (U= up) [ rie+ (u—u)|

. e > ?"'Fik “(Ui—u;)
of graphite and the individudll0,10 SWNT.
LS (U= uy) 4
Il. LATTICE DYNAMICS FOR GRAPHENE 2 Y Rk

AND (10,10 SWNT 1. 1
The constant- is canceled by cog,=cos 128=—3. The

A. The model microscopic equations due to the combined force from the
A model is suggested for the phonon spectrum of a two{W0 potentials can be written. This leads to the dynamical
dimensional sheet of graphite. Since the structure and th@atrx
bond lengths for an armchait0,10 tube and graphene are

very similar, one expects to obtain a very good approxima- u=X; F A c

tion for the phonon modes of SWNT from the graphene F* u—X, C B

spectrum. The measured and calculated spectrum for two- A C*  u—X £ 5
dimensional(2D) graphite can be found in Ref. 12. That L

report uses the Born-von Karman lattice dynamical model c* B* F u—X;

and interactions up to fourth neighbors are included.
The purpose of this work is not to improve on this ap-
proach, but to give a simpler alternative for the phonon dis-

with elements

persions. For the transport properties of an armchair SWNT u=Mao%,
one needs to incorporate the different modes and their polar- 3 458 9
izations, which is easy to do with the proposed model for the X1=—a — 4+ ——co0sQ,a,
in-plain vibrations for graphene. 2 8 8 Y
We assume that there are two types of forces between the
atoms. One of them is a central force, which depends only on 3a 458 3pB 3B Qxa\/§ Q,a

the distance between two neighboring atoms. The potential X2~ T g~ ~ 5 €0SQya+—5-Cos——Cos—>—,
which describes this force is given by

3.3 Qa3 a
o F= T'Bi(sinan—Ze'_z_sinQTy ,
VZEE [(u—u))-r;;]1% (1)
ij’
A: e_i(Qxalz\@) ae'(QxaV§/2)+ z_‘_@) COS_an ,
where u; ; are the displacements of the atoms from their 2 4 2

equilibrium positions,ﬂ,j is the unit vector between those
two atoms, andr is a constant that characterizes the central c=_ ( ay3 _ 9\/§B> o1 (Qa2d)g Qya
force. 2 4 2’
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=198 . = 3a 9B Q,a
— o (Qar2y3) i(Qxav3/2) 4 y
B=e { > e > +—4 cos—2

wherea= \3ac_
isac_c=1.42 A.

The goal is to solve for the normal modes for different
symmetry points in the Brillouin zone of graphite since the

fourth-order equation that arises from the above matrix can-
not be solved analytically in general. After one obtains sim-
plified expressions for the modes at different symmetry
points, one compares with the known phonon specrtum for

graphite in order to find the best numbers for the mode
parametersy and 3.

Simple results can be found at the K, andM points in
the Brillouin zone;

M (1)1%’1’2: 0,

278

MwF34 36!4‘7

Mwﬁ’1=3a,

3a 278
Ma)ﬁ34 > —_—+ — 5

3B

J’_
I\/Ile 3a 5

waA'z:Za,

27
wa,hg:a-i— T'B,

Mwf ,~68.
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FIG. 1. Phonon spectrum for graphene wiik-8.98 N/nf and
B=0.4 N/n?t.

we take into account that the tube is essentially a one-
dimensional system. The translational symmetry of the arm-
chair SWNT persists along the tube axis, but no longer
around the circumference. The phonon wave vector is dis-
crete in this direction and takes discrete values. For an arm-
chair tube

m 2w

QXZN E.

wherem=0,1,...N. We are interested in transport proper-
ties where the acoustic modes are important. Only the long-
wave length modes and the polarization vectors around the
point need to be determined. Results fior=0 are given on
Fig. 2. « and 8 have the same values as for graphene.

The terms from the dynamical matrix are expanded for
small wave vectors;

(6)

Obviously, there are more constraints here than parameters.
But, nevertheless, all the characteristic features of the pho-
non spectrum for graphene are obtained. Atlhpoint the
two lower modes start at zero frequency and the higher
modes start from the same nonzero value. At kheoint,
two of the modes are degenerate—the longitudinal optical
and the longitudinal acoustic modes have a common fre-
qguency.

To find the best fit for the paramete#sand 8 one has to
look at the problem of interest. Here we are interested in theo
longitudinal acoustic branch. A good approximation of the £
LA branch can be obtained by choosing=8.98 N/nf and
B=0.4 N/nf. The graphene spectrum for these values is
presented in Fig. 1. The lower branches are described venz
well while the upper branches are shifted upward althought
they retain the general features of the graphene spectrum.

B. Phonon spectrum for a(10,10 SWNT

To obtain the phonon dispersion relations and the polar-
ization vectors for a SWNT we explore the connection be-
tween the structure of the tube and the carbon sheet and also
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FIG. 2. Phonon spectrum fan=0 for the SWNT.
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9 2

F=-158QQ,a% ©)
3a 278 \3[a 9

A:7+T+|Qxa7 E—Z,B), (10

. 3la 9
C=-iQa>|5-7 ) (11

3a 278 \3a
_7+T_I xa7 E_Z . (12
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R
(77A,x_ 77B,x)%I m[Qxa( Naxt 778,x)
- an( Nay™t 7]B,y)]v (20
R
( Ay~ 7'/B,y)% —I m[Qxa( 77A,y+ 77B,y)

+ an( Daxt UB,X)L (21

_a— 9/2pB
R= o 9/28" (22)

Add and subtract the microscopic equations to obtain 4f one uses our fitted values for the force constants, one can

solution for (74 x.y— 78,x,y) IN terms of (A x y+ 78 x,y)

M wZ( Naxt 778,x) = Q)zlaZDr( Naxt nB,x)
+ ian-Di( Nax— 77B,x)
+ QnyazDr( Ayt 7]B,y)

—iQyaDi(7ay— 78,y), (13

M @?( 774 x— 778.) = —1Qx@D;( 774 x+ 78 x)
+(G—QZa’D,)(nax— 78x)
+iQyabi(7ayt 78y)
+QQy2°D(7ay— 7y)s (14

M wz( Ayt 7]B,y) = QnyazDr( Daxt 77A,x)
- ianDi( Nax— 7]B,x)
—QZa’D,( NayT 78,y
_iQani(nA,y_ nB,y): (15)
M w2( Ay~ 77B,y) = ian-Di( NaxT 77B,x) + QnyaZDr( A, x

—nB,x) —1QxaDj( Tay T nB,y)
+(G-Q%a’D,)(nay—nsy),  (16)

B 9
Dr_l_Gﬁy (17)
V3 9
Di:T<a_ 5/5’), (18)
27
G=3a+ 5 8. (19

The subscript®\ andB correspond to the two atoms in the
unit cell. The acoustic modes are the ones in E#3) and
(15 and the optical modes are those in E¢is}) and (16).

estimate that the factdR~0.67.

The above derivations are for a two-dimensional layer of
graphite. From here it is easy to derive the optical modes for
a SWNT. SeQ,=0 and keeQ,=Q continuous. Then, the
expressions become

K]
(max— nB,x): -l ERQE( Nayt 775,y), (23

3
(77A,y_ nB,y): =1 ERQd Naxt 7]B,x)- (24

These results are important in the determination of the matrix
elements for the electron-phonon interaction as is shown in
the following sections.

I1l. ELECTRON-PHONON INTERACTIONS
IN GRAPHENE

A. Modulated hopping in terms of the tight-binding
approximation

We are interested in electron-phonon coupling in
graphene. The electron, that is responsible for the electric
conduction, in the plane is in@, state. Start with the Hamil-
tonian

H=Ho+Humog

_ + +
HO__\]Ojé (Cj,ocj+ls,0'+cj+5,o'cj,0')’
10,0

_ 4 + +
Hmod= _31]25: 0 (Uj =V} 5)(C] 4Ci+ 501 C4 50Ci o)
, 0,0

where & is the unit vector connecting nearest neighbors in
the hexagonal structure—see Fig. 3.s a spin index.J,
=2.6 eV is the nearest-neighbor integral for graphltecan

be taken to bel;~qgJo, Where we use,=2.2 A"l as in
Ref. 14. Actually,J, is higher for the nanotub€.We keep
the same value for both systems in order to illustrate the
model better.u; and v; are small displacements from the
equilibrium positions of the two ions in the unit cell. They

They are coupled; although the acoustic modes are of intereate expanded in terms of the phonon creation and annihila-

for us, we have to include the optical modes also.

At long wavelength only the terms of first order wave
vector are kept in the expressions for the optical modes.

Thus, we are able to write

tion operators

A~ . 0
=3 e Ao, (25
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He-pn=D 2 XalQlCi: g G, Ao- (30
i

SN For graphene we are interested in what happens arourit the
P -7 L point only, where the two bands cross the Fermi level. We

e make an expansion around these poinks—k,+k, wherek
A B -’ is a small vector. Therefore, we expect the deformation type

0 =’ of approximation to be valid. One finds, that
a2 ,/',
EinF|F|Z|, (31)
FIG. 3. Structure of a layer of graphite. Nag= + eI, (32)
h
Xo= SNMon (26) wherev,:zJo\/§a/2 and the phase factor i®(k)=(27/3
Q +tan "k, /k,) andi,j=A,B. For the matrix elements in the
Ag= ij+ bo, (27 same bandN1,,) and between the two bandsi(,) we find

wq is the frequency of the phonons aﬁ;gl is the polarization
vector of the ion. Then the electron field operators are writ- (& — a2
ten in terms of the creation and annihilation operators for the Mk’ 11= AEB 2XqQodee''? 7

electrons
A A 277 Q RAB (l)‘i‘ (!),
X | 7a- 08 = — Ko+ Rag— o2+
=2 (k)i (28 " S( 3 02 2
X
: ~ A 2

where (k) is the tight-binding wave function and is the X e H(QRas/2)— 5. 5cos<?ﬂ-+k0- Rga
band index® Thus, the full expression for the Hamiltonian is

Q'Rga ¢+ .
| ~ RO S kR + +——|e | (QRen2)|, (33)
Hint= 2 2 doJo INM 5'(1]nelk'R”—77nrelk'Rn’) 2 2
ij,nn’ Kk’ Qs @Q
><[>\i*(k’)e*i(k"R(n)f*k'Rﬁ)JrA-(k)e*i(k"R(n)*"'Rgf)]
. My 20= =My 11, (34)

XC;/Y)\iCk*)‘j(bQ—’— th)‘Sk’,k+Q- (29)

This is a general formula for the modulated hopping o,
electron-phonon interaction of a solid with two atoms per Mkk/,lZIAEB 2XqGodoe ¥~ 92
unit cell. For graphene all the vectors in the above formulas

are two dimensional. Now, one can evaluate the matrix ele-

ments for the electron-phonon coupling. The constants X
which control the processes between different energy bands,
are also present.

~ ~ . 277 Q'RAB ¢+ ¢’
7]A‘55|n(?_k0'RAB_T+ 2

) “ 2
X e H(QRap/2) /% &In(? + kO' Rga
B. Deformation potential approximation

The Fermi surface of the two-dimensional graphite has + Q RBA+ ¢t e
small circles around th&-points in the Brillouin zone. Be- 2 2
cause of the symmetry of the system it is only necessary to

consider one of them, which we choose to kg

=(2//3a,2m/3a). The excited electronic states are in the Mk 21= — My 12, (36)
vicinity of this point and they are located in a small wave-

vector space. Only the long-wave lim@—0 in the first

Brillouin zone is needed and only acoustic phonons are imWhereRg=RR—Rg . Further manipulations are possible—
portant; takewq=sQ, with s being the sound velocity in the take the limit for smallQ and expand around thi€ point.
layer. Then, it is possible to write the Hamiltonian of inter- Using the results about the calculated phonon spectrum for
action in the form graphene in the previous section, one obtains

e 1(Q-Rga/2) , (35)
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coordinates. The first thing that needs to be done is to diag-
(7axt 78y onalizeH,. This could be done by using EqL0) and apply-

. V3
My=— |q0‘JOXQT
ing the transformation

¢+’ '
X QxacosT+anS|nT +(7ayT 78y) 1
A=—=(a+ By), (42
¢+’ ¢+ ' 2
X QxasinT—ancosT) (1-R), (37)
~ 1
By=—=(ax— By, 43
k \/5( k= Bk (43
M igqgJoX 3 + 78y
=—] _ ~ . .
12= ~180J0Xo 77| (7axt 76 with B,=e'?®B, , whered(k) is the phase factor o o,
b+’ b+ o' Only nearest neighbors are taken into consideration. For
X QaninT—anCOST + (gt 7ay) small k around theK point in the BZ 6(k) coincides with
¢(k) defined earlier in Eq(32). The next step is to take the
b+ b b+’ Fourier transformation of the Coulomb potential and of the
X Qxacos—+anSin—> (1-R). (38  charge densities. According to Ref. 16 the wave function for
2 2 the ions is given byy,.=|c[re”%"2. The normalization

e . 5 .
The following conclusions can be made. First, the matrixcondition gives thalc;|*= /96 Therefore, one can easily

elements for both transitions—intraband and interband—arfainOI

in the deformation type form and they are reduced by a fac- 2_ g2

tor (1-R), which depends on the parameters chosen to de- , :j d3r p:(r)el9 =7 ab @i 44
scribe the oscillations of the ions. Our choice ferand 3 pia) pilr) “ (a?+g>)* “9

gives thatR~0.67. Second, it is evident that not only the . ) .
longitudinal modes are important, but also the transversé/hereZ is the number of electrons in the ion.
modes give a similar contribution. Both types of polariza- FOr the conduction electrons in graphite we take that
tions are present iM,; and M,. The formulas(37) and ¢2p2=|ce|r-ne“’e”2—the free electrons are inp2 atomic
(38) disagree with the ones found in Ref. 14 by a factor (1orbitals™® To proceed further adopt a coordinate system with
—R)~0.33. Also the dependance f1|? on the phonon  z axis along they vector;
wave vectorQ is clearly displayed in the present calculation.
q-r=cosé,
C. Electron-phonon and phonon-modulated electron-electron
interactions 6] n= cosdg,

The model is a neutral tight-binding systems that has two o
atoms per unit cell. For graphite the ion cores haweave I-N=Ccos# cosfy+ sin Osin 6,Cc0S¢.
symmetry and the electrons that are responsible for the co
duction procesg,-wave symmetry. Since this is a neutral
system the average number of conduction carriers on each
side is equal to the valence of the ions. We also assume that «(qQ)

r]I:hus, the expression fgr.(q) is found to be

167|c,|?
_6mleel e 2020, 1)(a2- 50D

the rigid ion approximation is valid and the electrons can hop B (g2+ ag)4
to the neighboring sites. The problem can be approached in a _ 2
more general way starting from the Hamiltonian +3sit 6o(ag—g%)]. (45)
H=Hg+Hinq, (39) 6, is the anglg betweeln ahd the normal vector to the
graphene plana. The normalization of the usedp2-wave
functions determines the constaft,|?>. One finds|cy/?
Ho=—J0>, (Al Bj+BL A+ > wgabag, (40) = a3/(32) and the expression for the electron density turns
10 Q out to be
2 3r 43 6
e d I’ld r2 ae
Hin=o > f— i(r1—Rp) —pe(r1—Ry)Ci C )=——. (46)
int= 5 “~ |r1_r2| [pi(ry n) — Pell1 n)Cn Cn] pe(d (a£+q2)3
X[ pi(ro— Rn,)—pe(rz—Rn,)c:,cn,], (41)  Note that the angle betweenand the normal vector to the

graphite plane ig,=90°.
wherep; andp, are the ion and electron charge densities. By It is possible to obtain several terms from the Hamiltonian
A; andB; we denote the electron operators for the two ionsfrom Eq.(41). One of them is the traditional modulated hop-
in the unit cell. The formalism for a crystal with one atom ping for which we find the same results for the matrix ele-
per unit cell was already developed in Ref. 11. Here, wements as in Eq937) and(38) providing the expressions are
perform the same calculation for a solid with two atoms perexpanded for smak around theK point. Another term is the
unit cell. We want to expressl;,; in terms of collective electron-phonon interaction, which is written as
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i whereQ, is the phonon wave vector in the graphite plane.
He-p=5 > Xquopt(Q)pe(Q) The last term is the phonon modulated electron-electron
Q coupling. This interaction is produced by multiplying the
X O-[( paeilok—Q =601 7 + 18t terms that contaip, in Eq. (41). The expression is practi-
Q-[(7a 78) (s @t Bt o) cally the same as in Ref. 11. Its origin comes from the inter-

— (paellfk- Q-] ;IB)(Olﬂqﬁk action of the electrons and phonons through the Coulomb
potential, which is modulated by the lattice vibrations of the
+,8k++Qak)]AQ, (47 solid. One finds that there are four possible combinations
p1(Q)=pi(Q) —Zpe(Q). (48)

The above formulas are investigated for longitudinal ZAB Pn(A+Q)pn(—0Q)
~ ~ nn' =A,
phonons— g= 7. In the limit of small wave vectoQ

we find that
=pa(d+Q)pa(—a) +pa(q+Q)pe(—a)
~ 3
D=vp1(Q)pe(Q)=47Z€| — ——|. (49 +pe(d+Q)pa(—a)+pe(d+Q)ps(—a), (52
e &
Therefore, the matrix elements for the electron-phonon inter- A=A/ A, (53
action are of the form of a deformation potential with a de- a
formation constanD. For transitions in the same band and o o= =
between bands up to a phase factor we find pe(q)=el?k-a-Ig 7 By, (54)
M..=2X~D w 50 In general, processes are possible between any combination
11 oDQ, co 2 ) (50 . .
of four bands. To determine the matrix elements correctly

one needs to put all phase factors that depend on the physical

= 6(k—Q)— (k) structure of the solid. The complete expressionHqr
= N —o2?™m—M—"—— ~ . ph—m
M12=2XoDQ, sin 2 ’ B for the different transitions is given below;
4i R
Hefphfm: ) E e (it l92>/2XQ(Q' nQ)qug(q)AQ
kk'aQ

+ + + + + + + + 01 02
X (s qr Q@ —q@k @kt g1 By - q@kBrr T Bics g+ 0By — oBrBr +:8k+q+Qak'_quak’)Cos?COS?

+ + + + + + + + ; 01 . 0>
~ (@i qr Q@ —q@kBrr + A g1 QB — g @k T Bick g+ QB —gBk F Bict g1 Qs — gPrPBr: )1 COSSIN-
+ + + + + + + + i 61 02
_(ak+q+Qakquka’k'+:8k+q+Qakr7qa’kak’+:8k+q+Q:8kuqakﬁk’+ak+q+Q:8k/7q,8k,8k’)|SmECOSE

6, 0
+ + + + + + + + il U2
- (ak+q+Qakqukﬁk' + oy gt By 7qﬂkak’ + Bi+ g+ o 7q0‘kﬁk’ + B+ g+ By 7qakak’)5|n35|n? )

(59
|
where Mg =vp2(a). (57
0,=0(k+q+Q)—0(k), Having the expressions for the matrix elements one is able to

proceed with further calculations.

0,= 0(k' —q)— O(k").
IV. ELECTRON-PHONON INTERACTIONS

The matrix elements in general could be written as a part that IN A (10,10 SWNT

is common to all processes and a part that depends on the ) _ S
phase factors. The term that appears in all transitions we A. Deformation potential approximation
denote as for the modulated hopping

R The length of a SWNT is much larger than its diameter.
IMg.0l=4M4(a- 70)Xq, (56)  Observed lengths 0f10,10 armchair tubes are of several
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wum and the diameter of an individual tube is approximately 3 3
14 A. It is essentially a quasi-one dimensional systét. M12=200doXq| (7ax+t 78:)1 g~ Qa+5 (7ay~ 78y) |-
The whole formalism of describing the carbon nanopar- (64)
ticles was already developed in the previous section, where
we discussed a two dimensional sheet of graphite. For thilext, use Eqs(23) and (24) to eliminate (7 xy— 78 .xy)-
nanotube, the Fermi surface is collapsed into two symmetrid he final form for the matrix elements for the modulated
points K andK’ at +2/3a, wherea is the length of the hopping is
primitive translational vectdf—see Fig. 3. B
In the circumferential directions only discrete wave vec- _ N _
tors are allowed. The appropriate boundary conditions for an M11=doJoXo 5~ Qalnay* 718y (1~ R), (69
armchair tube are

V3
m 2 M= qOJOXQTQa( Naxt M) (1—R). (66)
K=\ T (58
a The matrix elements are reduced by{R), which depends

wherem=0,2, ... N—1. Thek,=k wave vector, which is 0N the parametera and S—the constants which character-

along the tube axis, is kept continuous. The energy disperize the phonon spectrum for the tube. Since-{)~0.33

sion relations can be obtained in this v\?ﬁy'.l'he lowest then squaring the matrix element causes a significant reduc-

bands in all armchair tubes are nondegenerate and they croégn of (1—R)>~0.1. The same result was found for

the Fermi level. Thus, an armchair tube is expected to be graphene. Again the modulated hopping is written in terms

metal—only infinitesimal excitations are needed to exciteof the deformation potential approximation.

carriers into the conduction band. Compare with the results from Ref. 20. Both calculations
Again we are interested in carrier excitations around¢he give similar results about the dependance on the phonon

points in the Brillouin zone. Thus, for the expansikrk,  Wave vectorQ. The major difference is that the matrix ele-

+k, whereky=27/3a andk is small, one finds ments here are show_n to be reduced by a f_actmc R, _
because of the coupling between the acoustic and optical
E=+uekK, (59 phonons.
App=+te (273 (60) B. Electron-phonon and phonon-modulated electron-electron

interactions
wherevg=Jy\/3a/2. As in graphene one obtains a lindar
dependence in the energy with the difference it a one
dimensional vectorK is renamed back t&).
The evaluation of the matrix elements is based on th ity are the same as for graphene.
matrix elements for graphene, given in E(33~(36). The Consider the electron-phonon interaction. The Hamil-
summations over nearest neighbors are done and the eXprg§nian has the same form as in E47). The deformation

sions simplify to ~ . .
ons plify constantD is also the one derived for graphene. The only
Mics 0.11= 2doJoXo difference here is that the electron and phonon wave vectors
' are one dimensional. The phase fac#k) is also involved

All the formulas developed previously for the two dimen-
sional graphite layer are expected to be valid here. The ex-
ressions for the electron charge density and ion charge den-

Qa 7 Qa in the expression for the matrix elements. For(1®,10
X ) (Max= 118x)| 1+ COS—CO8 5+ = SWNT it was already derived that it is a constaftk)
= —2m/3. Therefore,
. . Qa 7 Qa
+ + -+ — =
\/§| ( 77Ay nBy)SInTCO 3 4 ! M 11—~ — IXQZDQZ' (67)
(61)
M1~ Q3. (68)
M+ 0.12= ZqOJOXQ{i(nAX_F ﬂBx)Si&Sin T, Qa Transitions between two different bands to first order of the
’ 4 3 4 phonon wave vector are not allowed in the armchair tube.
Qa (= Oa The fact thatM;,~Q? is a consequence of the coupling
+ \/§( Nay— 7Mgy)COS——Sin = + _) . (62 between acoustic and optical phonons and of the one dimen-
4 3 4 sionality of the system.

Further insight can be gained by using the deformation po- Consider the new contribution to the electron-phonon in-
tential approximation. Taking the limit of a small wave vec- teraction which is the phonon modulated electron-electron

tor k around theK point and a small phonon vect@ the interaction. We obtain the matrix elements from EB5).
matrix elements become For the tubed;=0 and#,=0 because the phase factors are

constants. Therefore, only the first term survives and the ma-
3 J3 trix element up to a phase factor is given by the expression
M11=20pJoXq 5( Nax— 78x) T (7ayt 78y)i ?Qa , .
63) Mg, .o,= —4iMy (q- 79)Xq, (69
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FIG. 4. Feynman diagram for first-order electron-phonon inter-
action. FIG. 5. Feynman diagram for the RPA with one phonon line.

Different matrix elements are obtained corresponding to difimeans that one needs to do the above integration once and
ferent electron-phonon coupling processes. The expressiotisen use the appropriate deformation constant.
for the different terms in the original Hamiltonian—Eq.  Consider the quasi-one-dimensional armchair SWNT. Us-
(41)—is rather general and it can be applied to other tighting the known energy dispersioneg= *+v¢|k—kg| we find
binding systems. The idea is that the effects of several con-
tributions with different origin are comparable for low- o™ Q? i
dimensional systems and the evaluation of the transport Z_T:(kBT)walade_z‘s(fk_ € (73
characteristics needs to be done carefully. Q
For small wave vectorg,<« the bare Coulomb potential 1 (keT) |CPL
is a good approximation. -_ B8 1= E0
Notice that the above was done assuming that this is es- T h 2MsPug’
sentially a one-dimensional system. But carbon nanotubes

have finite diameters and are quasi-one dimensional. Th,[\%here we Usedip=sQ, with s being the speed of sound in

) ) ; . e graphite plane. The band indices &je=1,2 andL, is
Eorzl(())(;niﬁbegtte&rflctlon for electrons on a cylinder with radkus the length of the unit cell in 1DC is the deformation con-

stant and it is eitheD or D for the modulated hopping or the

h . linear electron-phonon coupling. A nonzero answer is ob-
Mgo=a'IL(QRIKL(AR) \/ 51 —=i(a-&o). (700 tained only for the case#j, so only intraband transitions
Q give contributions to the self energy.

I (qR) andK(qR) are the modified Bessel functions from  For graphene we perform the same integration. Bhe
first and second kind of the order—which stands for angu- function is used to do the integration over the angular vari-
lar momentum of the interaction. If=0 then we are dealing able. The result is
with a intraband transitions; it =1 then the transitions are
interband. But in this case transitions between bands do not 1 (kgT) [CJ?A,
take place and therefoiteis always zero. T T

CJ?

(74

———— €, (75)
T h 4gMs?E
V. ELECTRON SELF-ENERGY whereA, is the area of the unit cell ang is the energy of
) . _ . the electron.
A. Modulated hopping and linear electron-phonon interaction
The imaginary part of the electron self-energy is a very B. RPA with one phonon line for the phonon modulated
important quantity. It is closely related to the relaxation time Coulomb interaction

of the electrons Besides the contribution to the electron self energy from

the modulated hopping and ordinary electron-phonon inter-
—ImZ (k)= (71)  action, there is a contribution from the phonon modulated
T . .
electron-electron interaction. It was already shown, that there
Several transport properties depend on the self-energy. Heege two sets of Feynman diagrams that correspond to it. One
we will examine the impact of different types of interactions of them is the random phase approximation with one phonon
on it. line—see Fig. 5. Using Lehmann representation it was de-
The first effect is how the imaginary part of the self- rived that in 2D and 3D, in general, the contribution to the
energy depends on the electron-phonon interaction. The baelf-energy from the RPA could be neglectd.
sic diagram is given on Fig. 4. It has one phonon line repre- Some analytical results for the RPA diagrams can be ob-
sented by a dashed line. This diagram represents two types tined for SWNT due to the one dimensionality of the sys-
the electron-phonon interaction—the modulated hopping antem. The self energy for the RPA diagrams, after the sum-
the linear electron-phonon coupling. mation overiQ,, is done, is
The expression for the self energy is well-known and in
the high temperature limit is given &y

E E (A77QQ)2 Mgpq

(k)=
M2 o 2NMB iq, aQ  @q  €rpa
—ImS(k)=2m(kgT) X, 57— d(ex— €1 0)-  (72)
Q hog y Notf"  1+No—f’
Thus, we obtain that-Im3 (k) is proportional to the tem- iqntik,tog—€" iqptik,—wg—¢€" ’

peratureTl, which is characteristic for a metallic system. The
matrix elements are already derived and they are of defor-
mation type with different deformation constants. Thiswhere the following definitions are made

(76)
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- f dk  f—fiiq f(e'+w)=1/(ePlE =) 1 1), (84)

Py=2 . :

(27) iqn+ €~ €k+q
6”=fk+q+Q. (85)

erpa=1—M¢Pq,
Now, the imaginary part of the electron self energy can be
found by substitutingk ,— €,+ 5. One notes that two terms

" c can be found in the high-temperature limit. One is propor-
f7=1/(ePék+a+Q+1), tional to T2 and the othgr one IiJS linear with Pop
M, is the electron-electron interaction for the nanotube and The term proportional ta?is

it is taken to be the Coulomb interaction in 1B is the
polarization factor for the bubble. It is only for excitations in i 2(keT)%eLo

the same band. This is obtained by considering the correla- —=

tion function for the Green'’s function, which needs to be 27 NM qQiij
evaluated in order to construct the Feynman diagrams. This
means that the two lines making the bubble belong to the
same band. Using the fact th&{—x)=1—1f(x) for the

Ng=1/(efe—1),

(79-Q)? 4°M3
2 12
wqQ Mg

X[ﬁ(éi'k_égl_Mé)+5(6k,i_GEI+Ma)]. (86)

Fermi distribution function one is able to arrive at

dk 2(ex— €x—q)
P=2f—(fk—fk ) —, (77
‘ 2m e ex—q)?—(igp)?
where
€ €k—q=UEd. (78
In the limit for smallq one finds
2
UEq (79

Py= :
T al(vea)?—(ig,)2]

The polarization factor has poles atvgq. The dielectric

function becomes

UFquzl’IT

— 80
+(iQn)2_(UFQ)2 ©0

€rpa=1

To obtain the correct result for the electron self energy all of

Making use of thes function we obtain

1 16(kgT)’Loeke

X1, 8
T m?hviMs? &7
|_f1 In?x -
=), 287 (88)
1-—Inx
UF

wherel =0.17. There are two terms proportional Tp

ve(kgT) E (77Q'Q)2 q°M

2

q ”
o€ x—€)

2 I ]

—Im3(k);= -

q
(89

s (k= ek < (7-Q)% g°M]
_ - ,
2NM @ 0q M2

5( €k 6;’ .

the frequency summations have to be done before making (90

the continuationk,,— €,+1i4. The summation oveig,, can

be easily performed in Eq76)

N(Mé)-ﬁ-f(e"—wQ)
iky+ M+ wg—€”

e 5 (1g'Q)* d'My

(k)=
o NMm qq  wq Mg

1+N(M{) —f(€'— wq)
+

- (No+£")
Ikn—Mé—FwQ—e” Q

N(Mg)+f(e"+wg) 1+N(Mgy)—f(e"+wg)
_|_

" ikn+M{— wo— €’ ikn—M{—wo— €’
X(1+ NQ—f”)], (81)
where
MéZZ(qu)z(l—I:)A—:), (82

N(M})=1/(e"Ma—1), (83

From here one can estimate that orlym3., survives and
for the lifetime we find

1 8(ksT)e*L ke
—=|k—kg| —————XI. 91
T | F| ’ITZMSU'Z: ( )

It follows that 1/~vg|k—kg|. The above formula is ob-
tained only for transitions between the two bands. The intra-
band transitions give zero result.

C. Exchange self-energy

One can look beyond the RPA approximation by assum-
ing that the effects from the exchange phonon modulated
electron-electron interaction are not snfallt comes from
the different ways of pairing of the electron operators. There
are four diagrams that correspond to the exchange
interaction—see Fig. 6. In the problem for graphene the pair-
ing has to be done for two different operators present in the
expression—«, and B8,. The exchange interaction up to a
phase factor is written as
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FIG. 6. Feynman diagrams for the exchange interaction with

one phonon line.

Vexch= — 2 XQ(q'Q)Ung(q)
k,q.Q

O(k+Q)—6(k)

X Cosf(aktrQak"' ﬂ;‘FQBk)

~0(k+Q)—6(k)
s1n(+<a:+Qﬂk+ Bi+ )

The Hamiltonian can be expressed in the following way

> U(K,Q)XqCq.nCinAg;
Q.nn’

Vexeh= —
where we define

U(k,Q)ii= 79 [(k+Q)S(k+Q)

— kS(k)]COSG(k_'—Qzﬂ,

U(K,Q)ie= 70" [(k+Q)S(k+Q)—kS(k)]

_ B(k+Q)— (k)
XSInf,

1
S(k)= 2 % Mqfi—ok- Q.
For small wave vector® one is able to write

U(k,Q)~ (70 Q)S(K).

Now, the one-phonon self-energy is obtained

1S%(K) < (70 Q)2 No+f(e')
D [
p Q wQ |kn_6 +(1)Q
1+Nqy—f(€’
L 1N e
ikn—e’—wQ

f(e')=1/(ef +1),

r—
€ _€k+Q'

ELECTRON-PHONON EFFECTS IN GRAPHENE AND ...

f(€k+q+Q+f(€qu)]

(92

(93

(94

(99

(96)

97)

(99)

(99

(100
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In the high-temperature limit, neglecting the phonon energy
compared to the electron energy,

2 (77Q'Q)2
—Im2 (k) =2(keT)S(K) X — 5 — 8 ex— €x+q)-
Q pwy

(101
The result looks the same as the one derived for the modu-
lated hopping and the linear electron-phonon coupling— Eq.
(72). This is not a surprise since the exchange interaction
was written in a form of a deformation type of interaction.
The next step is to evaluate the functi§(k), which is
contained inU(k,Q). It serves the role of a deformation
constant for the exchange interaction. In a more general way
S(x) could be written as

2
eke
Sip,2p(X)=— ﬁJlD,ZD(X)- (102
In the Appendix we derivd(x) in 1D and 2D. From there it
is estimated thal;p(x=1)=0.77 andJ,p(x=1)=1.17.

There is a direct analogy between these three types of
electron-phonon interaction. Thus, to estimatene needs to
use Eqs(74) and(75) and substituté&,, andS, instead of
C.

VI. CONDUCTIVITY

First, we consider the electrical conductivity of the two-
dimensional graphite. It can be estimated by the formula

(103

where N(eg) is the number of states. Following Ref. 15.
N(eF)=4Aoe/377J(2)a2. For graphene with a circular Fermi
surface(v,)2= 3v?, with v being the velocity of the elec-

tron. We use the value given for the carbon nanotube—
=8.1x10° m/s®We obtained that the lifetime of the charge
carriers ist~ ¢ * for all processes. Following Mathiessen’s
rule

Ogr= e2<Ux>2N(EF)7'gr )

1 1
—_ 4t — 4 ...
T T1 T2

(104

The conductivity is a quantity that does not depend on the
energy of the particles. One readily obtains that

4e(v,)°Ms*h
Tqr— oy .
o (DI + Sy 2+ |D[?) (ke T)

(105

Only the modulated hopping and the exchange scattering
will contribute to the electron transport. Their dominance is
guaranteed by the fact that the deformation constants for
these two processes are an order larger than the deformation
constant for the linear electron-phonon interaction. Using the

expressions for the constants one fiB$=3.87 eV, |D|
=0.87 eV, and|S,p|=4.46 eV. Thus, the contribution
from the electron-phonon deformation constant is neglected.
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One estimates that,,=7.87x 10 2 S. Compare to the ac- Up to now only the contribution from the modulated hop-
cepted valueoy,~4x10 2 S. The contribution from the ping was considered for these tight-binding systefifs.
RPA with one phonon line is not significant. Now due to the reduction one expects that other processes
The situation with the carbon nanotube is the following.could be important. To see which type of interaction is domi-
The standard formula for the conductivity in 1D is nant compare the deformation constani®{=3.87,
[D]=0.87, S;p=3.03, andS,,=4.56 eV. Therefore, the
5 modulated hopping and the exchange interaction give similar
. :2e vt (106) contributions in agreement with Ref. 11 and the ordinary
ube™ gy electron-phonon interaction could be neglected.
Second, it was found that for graphene-/e, with ¢,

wherer is the relaxation time determined from all processesbeing the energy of the electron. The interesting fact is that
that contribute to the transport. The resultaris found from  the relaxation time is energy dependente, *, but the elec-
the Mathiessen’s rule according to E@04). The factor of 2  trical conductivity is constant. The modulated hopping and
indicates that there are two bands that cross the Fermi levdhe exchange scatterings give similar contributions and the
The dominant processes are the modulated hopping and tfRPA with one phonon line can be neglected. The accepted
exchange interactions. The relaxation time due to these pro@lue for oy, is approximately 41072 Q"1 which is in a
cesses is a constant. The numerical value is obtained to [@9od agreement with our numerical estimates.
r=7.57x10 * s. The linear electron-phonon coupling is  Third, we obtained that in the quasi-one-dimensional me-
neglected as having a small deformation constant. The RPfllic SWNT the important contribution comes from the
contribution should also be neglected, becallsekg| is  Same processes as in graphene—modulated hopping and ex-
small compared to the constant terms. change interaction. We find that the lifetime of the charge
Another term to the lifetime is proportional T 2, which ~ carriers is constant, which leads to a constant mean free path.
is a signature of a relaxation time due to the traditionalThe numerical value for corresponds tb ;,, smaller than the
electron-electron interaction. We estimate that4.18  size of the sample. Thus, the electron transport is governed
X108 s at room temperature. A typical electron-electronby the electron-phonon interaction at room temperatures and
relaxation time in a metallic system is of the order of the nanotube is not in the ballistic regime. This is in dis-

1071° s. This kind of process has a much slower time tharfgreement with the experimental results, presented by Ref. 9.
the one for the processes involving phonons at room temIhe conclusion from our theoretical derivations is that the

peratures, thus, it is neglected. nanotube should behave as a 1D metallic systenil at

Therefore, one finds that the electrical transport properties 300 K. The estimated value for the resistance is in a good
are governed by a constant lifetime, determined from twcagreement with the resistance given by Refs. 5, 6, and 8.
processes—modulated hopping and exchange inetraction.
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the ballistic transport to occur the following condition must ACO05960R22464.
be true—+<Lp,,L,, whereL is the length of the sample,

Ln=v7 is the mean free path and, is phase coherence APPENDIX

length.v =8.1X10° m/s is the velocity of the electrons. The
length of the tube typically i =1—10 um. We derived
that the electron lifetime is finite and it correspondsLtg
~61 nm. This shows that the mean free path is smaller than

fche siz_e of the sarr_]ple a_nd the nanotube at room temperature S(K)1p= ij dqM,f_q0. (A1)
is not in the ballistic regime. 27k 4

The functionS(k) in 1D and 2D is evaluated here. Using
the definition in 1D we have

Now the change of variablds—g—k is made and the inte-

gration is restricted in the first Brillouin zone. Thus,
Several important results were obtained by the above cal-

culations. First, we were able to derive the matrix elements

of three types of the electron-phonon coupling—modulated

hopping, linear electron-phonon coupling, and phonon

modulated electron-electron interaction, which all displayed 2k

a deformation type of approximation. The matrix elementsS(k),p=— —F[(1+x)2|n |1+ x|—(1—x)2In|1—x|—2x]

for the modulated hopping for graphene and SWNT are re- 27X

VII. CONCLUSIONS

q
= 2 —
Mq=2e InkF (A2)

duced due to the fact that the acoustic modes are coupled to (A3)
the optical ones. This was found by introducing a two pa-

rameter model for the description of the phonon spectra for k)= eszJ A4
the two systems. Sk == 5791000 (A4)
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wherex=k/kg . Since we are interested at processes around e%ke (27 (3 14 3x cos¢
the Fermi level we takex=1 and the above expressions S;p(X)= ~2mx o (EX cosp—x2 | +| x— T)
become
. ) 3cogp—1
1+x°—2xCcos¢+x“| coOSp— —————
e2k 2
S(1)=- J (1) (A5)
P \/1+x —2XCcos¢p+1— xcos¢ A8
X(1—cos¢) (A8)
Jip(1)=41n2-2. (AB6) Now atx=1 the S(x) function can be written in the usual
form —
Therefore,J;p(x)~0.77. e’k
The analytical evaluation di(k) in 2D is more difficult S(x)=- P ‘]2D( )- (A9)

because the integration now becomes two-dimensional. Aft

e .
the appropriate change of variables g—k we obtain jZD(X) is evaluated when =1

+(1-3 cos¢)sin§

Jzo(le)If d¢ (—cos¢ 1
e? Kk’ 0

S(K)p= — ﬁf dk’f de

—k'?cos¢

\/k 2+ k?— 2kk’ cos¢

(A7) +%(2 cosp—3 cogp+1)In 1+i¢
sin;
If the integration overp is done first, this leads to elliptical
integrals. It turns out that simple results can be obtained if (A10)
we integrate ovek’ first. With x=k/kg the above expres- The above integral can be done and we obtain ha(x

sion becomes =1)~1.17.
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