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The product Jahn-TellddT) effect is defined as the combined vibronic instability of two open shells which
both transform according to degenerate irreducible representations. Such effects are of potential relevance for
the study of the excited states in fullerenes and fullerides. We describe here as a prototypestiig}
®(e+t,) product system in cubic symmetry. Stationary points on the potential energy surface are searched
under guidance of the epikernel principle. It is shown that the combined activity of the two shells can lead to
minima with low ranking subgroup symmetries. If the distorting forces in the two shells have opposite signs a
remarkable conflict arises between the epikernel principle and the JT theorem itself, which drives the system in
the direction of further symmetry lowering. The icosahedral limit, where couplirgatadt, modes becomes
degenerate, is also studied using the method of the isostationary function. In this limit the product system has
rotational symmetry o5O(3) or SO(3)® SO(2) type, depending on the relative signs of the force elements
in the two shells.

[. INTRODUCTION As a result the excited state JT problem often reduces to an
isolated subspace of the product space, which can then be
The Jahn-TellefJT) effect refers to the vibronic instabil- treated as a separate JT problem.

ity of an electronic level which transforms according to a  This need not be the case in icosahedral fullerenes where
degenerate irreducible representation of a symmetry grouprepelling electrons are smeared out over a spherical surface.
Whenever several electronic levels are energetically close, As an example for the excited state of neut@y,, with
may be required to extend the JT treatment to the manifoltHOMO and LUMO transforming, respectively, &, and
of all levels involved. Such a case is usually referred to ad,,, several terms of thel ,® T, singlet manifold are being
the pseudo-JT effect, although it might equally well be calledclaimed to participate in the JT distorted emitting stsféis
a sum-JT problem, since the active manifold now transformsuggests that thel ,® T4, product problem would be a use-
as thedirect sumof irreducible representatiods. A further  ful starting point to describe the JT activity in this case.
possibility arises if the electronic space covers theect In the present paper we lay the foundations for the analy-
product of two degenerate irreducible representations. Wesis of this complex product problem by studying the product
propose to call such cases product-JT systems. They are trubf two T-type shells. This logically precedes the more com-
second-generation JT problems, since they combine the Jdlicated case of the coupling of a five-componéhtensor
activities of two open shells. Vibronic interactions betweenwith a three-component vector. As a prototype we have
shells in a product JT problem take place via coupling to achosen thél;® T, product problem in cubic symmetry. The
common phonon system. This coupling has an effective tworesults also apply to such icosahedral problemsTas
particle character, as opposed to sum-JT problems where diT, 4, which would correspond to the product problem for
rect one-particle vibronic interaction elements between shellthe excited states cﬂ:ga )
are allowed. The prime example of a product-JT system is
the excited manifold that results from a HOMO LUMO II. THE HAMILTONIAN
transition, where both the highest occupied molecular orbit-
als (HOMO) and lowest unoccupied molecular orbitals A- The linear Hamiltonian of the T;®(e+t;) and T ®(e+t,)

(LUMO) are degenerate. Ldt, andI'y, be the symmetry JT systems
representations of these levels, apdoe the symmetry of a  The threefold degeneraf€ representation of the cubic
normal mode. The product problem is then denotedlas  groups couples to doubly degeneratéype and threefold
®'pt@{Z ¥}, with degeneratd,-type vibrations. The bases of tfig and T,
levels are chosen generally asy,z) and ¢, 7,{), respec-
Yie([Ta®TJUT,®Tp]). (1.)  tively, and the linear JT Hamiltonians of the two separate

o . ~ systems can be obtained using the appropriate Clebsch-
Square brackets in this equation denote the symmetrize@ordan coefficients,

squares of thd" representations. In principle one might an-

ticipate that transition.-me'tal chemistry would abound with Hﬁrf:r: FTle(Q9£;+ QELI),
product-JT problems, in view of the ubiquitotyg— € tran-
sition between the cubic crystal field components of ¢he Ty®e _ 0T (T

. . . . : =F L,+Q.L,),
shell. However, in these systems interelectronic repulsion be- Hiinear=F2e(Qol oy Qcl-e)
tween d electrons is usually of the same order of T,6t - g At
magnitude—if not larger—than the JT stabilization energy. Hjinear— Fru(Qel e+ QL+ QL)
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To®ty (T P T (T space is readily obtained following the rules for the matrix
H 22— F LI+Q,LT+Q,L], 2.1 P y obtal 9!
inear— 12 Qebs+ Qyly+Qcly) @ elements of one-particle operators in a product space. The
where matrix form of the Hamiltonian¥ \11%T2° for the {T,
®T,}®e JT system is a nine-dimensional square matrix with
-1 0 0 1 0 0 the nonzero matrix elements on the diagonal only:
ot 1l 0 -1 0| r_3
L"ZE , LI= > -1 0f, 1
T1®T
0 o0 2 0 0 0 (Mo 2 11=5 (~ Qo+ V3QA) (Friet Fro),
0O O 0 0O 0 -1 1
o o —1| il o o o (Hinsar® )20=5 (= Qu+ V3QuF 116
g__ 3 7}__ [}
215 1 o CARPI 1
~5(Qs+ V3Qo)Frze,
0O -1 0
(T= ! -1 0 O 1
2\ o o) (Hiar?**)39= 5 (~ Qurt VBQFrie+ QuFrze,

Thesel quantities are electronic operators in matrix form. TieTjee 1
Frie.Fr2e.Fr1t, andF, are called the force elements or (M| L., 2 )as=— 7(Qot V3Qo)Frie
vibronic constants for thd,®e, T,®e,T;®t,, and T,®t,
JT systems, respectivel@, andQ, are the two components 1
of thee-type vibrational mode an@;,Q,,, andQ, the three +5(=Qp V3QoFrse,
components of thé,-type mode. Note that only one active
mode of each symmetry type is considered. The two shells 1
i T,®T

are thus coupled to the same phonon part. As the electromc(Hfmleirz}cae)%: _ E(Q“’+ \/§QE)(FT19+ Froo),
operators forT,; and T, symmetries have exactly the same
form, we have taken:;1=I:;2=I:; (p = 6,6é&1,0) for
simplicity. Actually, they have been distinguished in the cal- T,®T 1

impl |yAT Hatl, they nav Istinguished | I{inﬁrz}m)%:_z(Qo_i_ V3QoFr1et QoFr2e,
culations.L ,*, for example, operates on the basisTefand
takes the basis of, as constant parameters.

1
{T1@Tree,
Ht = QFrie+ = (—Qp+ V3Q.)Froe,
B. The linear Hamiltonian of the {T,®T,}®(e+t,) product (Hiinear” )77~ QoFrie 2( Qs QelFrze

system
We now consider the formation of product states, e.g., as , {Ti®Tylee, _ = _E +J30)F
a result of a transition from an occupi@d into an emptyT, (Hiinear” Jea=QoFr1e™ 5(Qy V3QoFrze,
shell. In this scheme, th&, and T, parts can be identified,
i i T{®T
respectively, as hole and electron states. The coupling of (Hfinﬁrz}m)gg:Qa(FneJr Froo). 2.2
these states gives rise to a product space with nine orbital
components, which will be expressed as The matrix form of the linear Hamiltonian for théT,

{x&xn,xg,y&€yn.yL,z&,zn,2L}. The JT activity in this ®T,}®t, JT system is given by

0 Q?'[ Qf; Q}t 0 0 Q];?t 0

Himea? 2= 0 Q' 0 QF 0 Qf 0 Qf 0 [, 2.3
O 0 Q}t Q%]t Qét o 0 O Qét

0 Q 0 0 Q' 0 Qf o Qf

n
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&Hlinear
QA

with Q!'= — (1//2)F1;Q, andi is taken as 1 and 2. 1
Qanll=— Ko\ X

X> . (3.9
C. The total Hamiltonian of the {T,®T,}®(e+t,) JT system
The total Hamiltonian contains the linear JT terms and thd ©" theT,® T, system, we have

totally symmetric elasticity terms contributed by the vibra-

tional modes. The latter part is expressed as 1
P P 1Qull= g {0 +y?= 22 Fragt (€24 7~ 20)F e,

HE2=HE+H 2, , (2.9
ith V3
" 1Qull= = 5 A =y2) Fraet (€2 7)),
e 1 2 2 ty 1 2 2 2 -
Hoin=5Ke(Qy+ Qo). H jp= 5 Kr(Qe+ Q5+ Q)). N
2
(2.9 1Q¢ll= K_T(yz Frict 7¢Fr20), (3.9

Ke andK+ are the harmonic force constants of thandt,

type vibrational modes, respectively. The total Hamiltonian N

of the{T,®T,}®(e+t,) JT system can then be simply writ- _Ve I

ten as ||Q7;|| KT(ZXFTlt LEF 12,
HZHQHZ-FH{T1®T2}®9+H{T1®T2}®t2. (2.6)

vib linear linear 2
11Q,l|= K_T(XyFTlt+ EnFrar).
Ill. EXTREMA ON THE JT SURFACE

Substituting|| Q|| back into(E) yields the extrema of the
JT surface provided the corresponding eigenvector coeffi-

or by the unitary transformation and energy minimizationCiems are known. The usual recipe to solve this problem is to

procedure. The same methods can also be applied to th&sSsume that the JT effect acts in an econo_mic way, remoying
product problem. Generally, the eigenvalue of the Hamil_only those symmetry elements that are directly responsible
tonian for the system is a function of the vibrational modes,for the degeneracy. The tendency of the ‘]T forqes to con-
which can be written as serve as many symmetry elements as possible is known as
the epikernel principlé® Epikernels are intermediate sub-

1 groups in the decomposition scheme of the original point
(E)= 5 % KAQ3, + (x| Hiinearl X), (3.)  group. In line with this principle the extrema of the linear

T® (e+t,) problem are found along tetragon® 4), trigo-
where| y) is the pure electronic state aftt}i,,, is the linear  nal (D3q), or orthorhombic Dy,) distortions, which are in-
JT Hamiltonian. In principley is a nine-dimensional vector deed the principal epikernels of the distortion spatead-
in the T;® T, product space, requiring nine eigenvector co-dition the +t,) space also contains lower rankir@py,
efficients subject to a normalization condition. However,€pikernels, which only become extremal if higher-order cou-
since the present Hamiltonian reduces to a sum of oneRling terms are included in the Hamiltonian. Two different
particle operators, we can do with a fewer number of coefC2n subgroups have to be considered, corresponding to the
ficients. Indeed, any eigenvector of this Hamiltonian cantwo classes of twofold symmetry axes in the cubic group: if
strictly be written as a simple product of B and aT, the twofold axis is along a tetragonal symmetry axis we will

Extrema on the JT surface of the separdte(e+t,)
problem can easily be found by thepiR and Pryce methot,

component, i.e., denote the subgroup eGZh(Cﬁ), if it is in between these
directions we will denote the subgroup @s,(C,).
X)=(XITp) +Y[Tey) + 2 Ti)) (El T2 + 7l T2, + L Tay), Subsequently, we will apply the same recipe to the prod-

(3.2 uct problem and use epikernel symmetries to project ex-
{éemal eigenvectors. Later on we will introduce the method
of the isostationary function to gain a deeper understanding
of the structure of the JT surface.

where only six coefficients are needed, subject to separa
particle and hole normalization conditions,

x2+y24z2=1, 4P+ 2=1. (33

|x) should further be multiplied by symmetric or antisym- A. The {T;®T}®e JT system

metric spin functions to realize triplet or singlet spin states. The structure of the JT surface in tleeplane is easily
These spin parts will not affect the JT treatment. In contrastresolved since the corresponding JT Hamiltonian is already
if the electron-hole attraction operator is added to the Hamilin diagonal form[cf. Eq. (2.2)]. Two types of minima may
tonian, the single product nature [of) is lost, and rotations be found, depending on the relative sign of the,, and
in the full nine-dimensional product space become possible-1,. coupling constants. IF;;. and F1,. have the same
As we have explained in the Introduction we will not explore sign the lower part of the surface consists of three potential
such possibility in the present paper. wells with absolute minima along the tetragonal directions.
Minimizing the energy inQ space, positions of the ex- The well positions are given in Table | in terms of the pa-
tremal points can be found by the formula rameters
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TABLE I. {T1®T,}®e: FrieF10>0, tetragonal minima. TABLE Ill. {T,®T,}®t,: FrqFo>0, trigonal minima.
Label ®y.2)©(&m.0)  [|Qyll 1Q]I Energy  Label *Y,2)® (& 7,9) Qe 11Q,ll [1Ql Energy
Xé (1,0,0)2(1,0,0) a —\3a Ep,, 1 ( )

—(+,+,+
yn (0,1,0)2(0,1,0) @ V3a Eo,, xyz 3 ) y v Eo,
74 (0,0,1)2(0,0,1) —2a Dun 1 iy
& —=(+,*,
. 3
_ —=(=,+,1)
a=5—(FrietFrae), Xz 3 v v 7Y Eoy
2Ke 1 I
®—=(—,+,
L V3
- _ 2 _ —=(+,—,+)
Ep,, ZKE(FT1e+ Frae)”. (3.9 Xy2 3 Yy v -y Eo,
1
The electronic states are denoted &y/(z) ® (¢, 5,¢) forms. ® ﬁ(+’_'+)
Note that both particle and hole components are only deter- RPN
mined up to an arbitrary phase. Féi11cF10.<0, six Xyz \/§( +) -y - y Eo
minima are found in between the tetragonal turning points. ®i(+ Ly &
These minima have only orthorhombic symmetry. The three 3
sz {ahxes OLFhISDZh Sutil%roupilcl:(irr:espfond tol tiﬁ%delent]en.tts 3n this and subsequent tables, the-* and “ —" signs will be
of the cubic group. YVe will Ineretore aiso denote 1t as, .o iy the electronic states to denote 1 and “—1,” respec-

D2h(3C§). This D, subgroup is the lowest symmetry group

that can be attained by artype distortion. It is also referred

to as thekernelof thee space. The results are given in Table F,F1,>0, the trigonal and orthorhombic extrema of the

Il and involve two further parameters, separateT®t, system are easily retrieved in the product
3 problem as well. Using the parameters

BZZ_KE(FTle_FTZe)! _ \/E —
Y= _3KT( T1t T2)

tively.

1

Ep,, =~ 5 (FTie~ FrieFr2e+ Frze). (3.7) 1

o 2Kg € o ¢ Ep,,=— 3_KT(FTlt+ Fra)?, (3.9
A new feature of the product-JT system which already shows
up in this{T,®T,}®e problem is the appearance of low £, = (Fruet Fro)?
symmetry absolute minima whenever the JT force elements Don 4K DT T2
of the component systems have different signs. This result ) ) )
arises from a conflict between the epikernel principle and th@n€ obtains the results in Tables |ll and IV. The trigonal

JT theorem itself and will be discussed thoroughly in Sec. \/POINts in the table are absolute minima for equal signs of
F11t andF15. Under aD gy distortion the nine components

of a T{® T, product space spaA;®2A,®3E representa-

tions. The ground state h&s symmetry, as it is formed by
As for the previous case the crucial feature of the system _

in t, space should depend on the relative sign of the hole and TABLE IV. {T1@To}®t;: FryF12>0, orthorhombic saddle

B. The {T®T,}®t, JT system

particle force elements. F;, andF,, have the same sign, PONts:
TABLE Il. {T1®T,}®e: FieF12<0, orthorhombic minima. Label *.y,2)®(&,7.0) [Qell 1Q,II 11Q,l| Energy
L 08 2,40 2 E
X —=(*+,*, —=(t,+, 3 '
Label xy.2e(End)  [1Qll Il Energy Y T TOEFHF0 v Eoy
_ 1 1 3
X7 (1,0,0)%2(0,1,0) a s Ep,, xy ﬁ(+,—,0)® ﬁ("‘,_xo) —2v Epy
yé (0,1,0)2(1,0,0) a B Eo,, 1 1 5
Xz —(+.,0,+)® —=(+,0,+) 5y Ep’
L & 3 72 2 :
x{ (1,0,0)®(0,0,1) —§a+7 _7(1_5[3 Eb,, - 1 1 ,
Xz —(+,0,-)® —=(+,0,— -3 Ep:
. 3B, oo Z (0 2y o},
yg (01110)®(010:1) —§a+?,8 ?_a-i- EB EDzh 1 1
3 3 z —=(0+,+)® —=(0+,+) 3 Eg
z¢ (0,0,1)®(1,0,0) _EH_?,B _Fﬁ%ﬁ Eo,, y @( ) @( ) 2y Dy,
3 3 _ 1 1
1 1 - — - — 3
zy (0,0,1)(0,1,0) —Fam— —a—38 Ep, yz JE(O'+’ )® JE(O'+’ ) =3y Eoy,
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TABLE V. {T;®T,}®ty: FryF12<0, orthorhombic extrema. TABLE VI. {T1®Ty}®ty: FryF12:<0, Cyn(C,) extrema.
Label *.y.2)® (& 7.8) QeI 11Q,II 1lQ I Energy  Label ®.y.2)®(&7.8) Q¢ 11Q,lI [1Q.ll Energy
_ 1 1 s 1 1
Xyg?? ﬁ(_l-i_vo)@ﬁ(—‘rv-i_vo) 55 ED’Z’h a ﬁ(_,+,+)®ﬁ(+,+,+) Y o S ECZh

— 1 1 s 1 1
xXyén E(+,+,O)®J—E(7,+,O) —30 Epy b ﬁ(+,7,+)® ﬁ(+'+'+) ) % s Eg,
_ 1 1 5 1 1
Xz¢{ \/_E(_’O'+)®¢_§(+'O'+) 36 Epy. c ﬁ(+’+’_)® ﬁ(+’+’+) § & vy Eg,

— 1 1 s 1 1
XZE{ ¢_§(+'O'+)®T§(_'O'+) -35 Epy. d ﬁ(+’+’+)® ﬁ(+,—,—) y -8 -6 Eg,
_ 1 1 s 1 1
yzn{l —2(0,—,+)®E(0,+,+) 55 EDgh e ﬁ(+’+,+)® ﬁ(_,—i_’_) ) y ) Eczh

7 i(0+ +)®i(0— +) -2 1 1
yznl \/E [ \/E " —50 Eszrh f ﬁ(+’+,+)®ﬁ(_,_’+) -6 =0 Y ECZh

1 1
. . . . . — (-, ") —=(—,+,-) - -
occupying the orbital singlets of the trigonally splittdd g J§( e \/§( ) yo° o Ecy,
and T, manifolds. The complete set of trigonal energy ex- 1 1
pressions reads h ﬁ(—,—ﬁr)@ ﬁ(_'+'+) § -y -6 Eg,
1 1
Eo(A )Z—L(F +F1p)2=E [ —=(—,+,7)® —=(—,+,+) ¢ -6 —v Ec,
o(Az 3K, Tt P Dyy? V3 V3
1 1
i —(—,+, ) —=(+,+,-) - -5 -6 E
, ) J \/5( ) \/§( ) Y Con
El(E):3_KT(2FTlt+FTltFTZt_Fth)v . 1 1 5 s E
—(+,— ) —=(+,+,-) - -
\/§( ) \/§( ) Y Con
1 1
EZ(E):s_KT(_F'Zl'lt+FT1tFT2t+2F'IZ'2t)' ' ﬁ(+’_’_)®ﬁ(_’+’_) -6 & —v Eg,
Ea(AL, A E)zi(F +Fr)2=—2E5. .. (3.9 1 2
S 3K, T Pad Epy, =~ 2 (Fru—Fr2)”, (3.10
T

Note that the third excited statEg, is fourfold degenerate. It
corresponds to the occupation of the orbital doublets of the 2
trigonally splittedT,; and T, manifolds. Ec,,=~ 310 F2,— FFruFract F2,,|.

T

The orthorhombic extrema obey,, symmetry group

2 . .
based on oné; axis and two perpgndlculg(tz elements. \ote that different orthorhombic eigenstates are used in
Subsequently, we will use the notati@ry,(C3,2C;). These  1opies vV and V. IND,(C2,2C,), T, subducesB; @B,
extrema turn out to be saddle points. The Hessian matrix fog19 B representations versus®B,@Bs for T,, yielding a
the xy isomer in thet, space is given by direct product of type A¢3B;®2B,®2B;. In Table 1V,
the orthorhombic ground states, with enelt@yéh, are ofB

0 -Ky O
*H K 0 ! 0 symmetry, while the eigenvectors in Table V with energy
9QiQ; . . - T : Epy, ., are of A-type symmetry.
L]=&mn . . . .
Jmeme 0 0 Ky To identify the symmetry of the 12 points in Table VI we

The corresponding eigenvalues ardK,Ky,Ky, indicat- consider as an example the point labefedro reach this

ing that there is indeed one direction of negative curvature POINt the distortion first acts along @, direction, which
If F1y, andF 1o, have different signs the energies of trigo- educes the symmetry already toDgy, subgroup based on

nal and orthorhombic points raise and the structure of théhe axes C3)2,C3¥,C5Y. The distortion then continues along
surface is completely altered. The lower part of the surface ishe Q.+ Q,, direction, thus further destroying thé:i)2 and
now dominated by extrema db,,(C3,2C,) and C,,(C,)  C¥ elements. The point is thus characterized by &,
symmetry. Details of the electronic vectors, well positions,s;hgroup, based on ti@Y symmetry element. Note that the
and energies of these critical points are given in Tables \gorresponding eigenvector is antisymmetric under this two-

and VI in terms of the parameters fold rotation axis. ForFyF1»<0, both theD%, and C,y,
2 p_oints_can be_absolute minima depenc_jing on _the relevant
6= =—(—Fry+Fra0), vibronic coupling constants. The possible minima of the
3Kt {T,®T,}®t, problem as a function of the two force ele-
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ments are displayed in Fig. 1. The poun_daries ofbg and B,8, 1 , 1 5
C,p, phases correspond to the straight lines Dy S_KE(FTle+ Frae) _4_KT(FT1t_ Fra)
Friem= =3Fr2,  Fru=-— 1’:th : (3.11 B,B 1 1
3 Ep =~ 8_KE(FT1e+ FT29)2_4_KT(FT1t+ Fra0?.
C. The {T;®T,}®(e+t,) JT system The corresponding eigenvectors and distortions in terms of

he previously defined parametersg, y, and§ are given in
able VII. If both FycF10e>0 and F14;F15:>0 the B,

®B; combination definitely is favored. As in the case of the

1. Day,Dan,Dn(3C?) points separatd ® (e+t,) problem, parameter values for which the -

trigonal and tetragonal wells have the same depth automati-

The trigonal, tetragonal, anBl,,(3C%) points belong en-  cally imply a coexistence of these minima with® B; type
tirely to thee or t, subspaces which implies that the previousorthorhombic points.

We now proceed to the extremal analysis of the combine
(e+t,) space, using the epikernel principle as a guideline.

solutions remain unaltered when th&,®T,} problem is For Fr1eF126>0 andFF1<O0 there is a change of
considered in its full generality. the orthorhombic ground state froB,® B3 to B,®B,. Fi-
5 nally the other combinationB;®B, and B,® A only will
2. Dan(C5:2C) become ground states in cases with dominant coupling to

In this orthorhombic subgroup tHE, and T, states sub- tetragonal modes witR+,cF1,.<0 and the proper values of
duceB,®B,®B; and A®B,®B; components respectively. Frp Or Fry¢. This coupling regime is close to trEEZh(SC4)

For D,n(C%,CY,C¥) one has solution; the energetic distance between the two is given by
2 2
Tl:Bl:|le>, BB, _§ I:T2e_FT2t
EDzh Bo,,= 2Kg 3K/’ 319
1
BZ-E{|T1x>+|T1y>}’ (3.12 oA g 3(F2, |:$1t 316
Dan O 4| 2Kg 3K/ ‘
1
Bs: E{ITM— Ty} 3. Can(C)
Consider aC,,, subgroup based on the twofold rotation
T, AT, axisC}Y, situated in thexy plane between andy directions.
¢ Possible nontrivial eigenvectors of this symmetry operation
1 are
By —={[T20) — T2}, (3.13
\/E ‘ ! ASA 1 1 0 COS¢  COS@ )
X T = ® y VSInQD 3
. V2'\2 V22
Bs: —={[T20) +[T2,)}-
\/E ! COSp  COSe 1 1
_ B®B:| —,— ——=,sin¢ |®| —=,—,0], (3.19
Out of these we can form nine product states. Bhe® A 2 2 2'\2

combination (0,0,1%(0,0,1) is in fact a tetragonal eigen-
vector, which was already considered in Table I. Of the re- Fr,
maining products the interchange Bf and B; labels is an s
equivalence operauon Indeed for each orthorhombic distor- AL :
tion with a glvenC4 principal axis there exists an equivalent g Czh
distortion where the two remainin@, axes, which discrimi- o
nate B, and B3, are swapped. This leaves four nontrivial 2 [
orthorhombic{T,®T,} product statesB,®B,,B,®A,B, E
®B,,B,®Bj. Each of these gives rise to a set of six equiva- , ‘[ AP
lent extremal points, with the following respective energies: | [

T2

1 F
BB 2 T2t Ortthorhombi
E-172= — = E = + |: , 3 rthorhombic
Dy, ZKE( Tie— FrieFr2e foe) — K,
-4
1 F2 5 \\\\\\1;\\\*]\\.~~\\|\\\\l\m\\t"/////4//// 1 I !
BoA 12 2 T1t 5 -4 -3 -2 -1 0 1 2 3 4 5
=— = ( F2 .~ FricFroet F0) — ——,
D,y 2KE ( 4% Tile Tle" T2e T2e) 4KT

FIG. 1. Regions of existence of absolute minima of different
(3.149 symmetries for thd T,® T,}®t, JT system.



10634 A. CEULEMANS AND Q. C. QIU PRB 61
TABLE VII. Orthorhombic extrema of th¢T,®T,}® (e+t,) problem.
Label ®y,2)®(£&,1,0) 11Qll 11Q.ll 11Q:| 11Q,l 11Q.l Conditions  Energy
1 V3 V3
1 (1!0!0)8 E(Ol—"— !+) ‘lla—i_fﬁ _Ta_ %B %(')’"‘ 5) FTleFT2e<O EEE‘:Z
1 V3 3
2 (1,0,0) E(O, %a+73 —ga B —3(y+9) FrieF126<0 Eglzi‘z
1 NE 3 .3
I LRI L L Hr+9) Frifrae<0  EGL
1 V3 3,.3
4 (0,10 5(=.0) fatgp 20T ~3(y+9) FrioFrze<0  EG
1 V3
5 (0019 S(++.0)  —2am5B 3y+)  FrFre<0 ELD
L V3
6 (0.0.1) = \/_ +.0) B %Q_T’B —3(y+8)  FricFrze<0 ngf
1 V3 3
! E(O'iﬂ@(l’o’o) ‘l‘a_Tﬂ _T‘H% —1(y=9) FrieFr2e<0 EEZZ:
1 V3 V3
? E(O'+’+)®(1’O’O) ‘l‘a_T'B _T“+‘3_‘B 1(y—9) FrieFr2e<0 Egi:
1 V3 3 3
° \/_§(+ 0+)e(0.1.0) %aif'g 4 1P HEA) FrieFr2e<0 Egzzl:
1 NE] 3, 3
) FC0Ne0L0)  degs d (r-2) Frifre<0  Egr
1 3
° \/§(+ i O)®(0 . 1) B %a+7’8 43_1(7_ 6) FTleFT2e<0 Egzz:
L LB BLA
° \/E( +0)©(0.0.1) Tzato B —2(y=0)  FrieFr2e<0 ED22h
1 ! (—,+,008 — ! (+,+,0) a 35 FryFra<0  E22%2
\/E \/E 2 TitE T2t Dy,
2 ! (+,+,009 — ! (—,+,0) a 35 FruFra<0  Ep2
\2 V2 2n
3 = (=.0H)e—= : (+.0,+) —sa —éja 26 FruFra<0  Eg2>
\/E \/E 2h
4 ! (+,0H)® —= ! (=,0,+) —1a —\/7501 -35 FryFror<O Engz
\/E \/E 2h
1 1 73, , .
5 0,— 0,+,+ —sa 2 50 FritFr<O 2°2
\/z( \/i( ) 2 _ 2 Tith T2t D,y
1 3
6 (0,+,+)® —=(0,+,— —sa 2¢ — %5 FryFra<O [B)sz
7z 2 2h
1 ! (+,+.00® —= ! (+,+.,0) @ 3y FruFra>0  Ep2
\2 V2 2n
2 ! (+,— ! (+,—.0) @ -3y FrouFra>0  Ep2™
\/5 1 \/5 1 ’ DZh
! 1 1 \/§ 3 B,B3
3 \/§(+ 0+)®\/§(+ ,0,+) —sa o 2Y FritFra>0 EDZh
! 1 1 \/§ 3 B,B3
4 ﬁ(+,o, )® ﬁ“ 0,-) —sa —a -3 FruFra>0 B
1 1 3
5 (0+,4)® —(0+,+)  —ta 24 Sy FruFra>0  Eg2
2 2 i 2h
1 1 V3
° \/E(O - \/E(O ) ~ 2@ 2° —27 FriFra>0 Egzzl:a
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TABLE VIII. Numerical results forB® A minima of C,,(C,) symmetry.
Label 1 2 3 4 5 6
Frie? 2.4 2.4 0.1 0.1 -3.1 1.0
(S 0.1 0.6 3.1 3.1 0.1 -2.0
Fry 2 0.1 -45 25 -25 25 -2.0
(S 5.2 0.2 2.2 2.2 -2.2 2.0
1 88.33° 41.62° 39.77° 41.13° 105.51° 151.12°
X 35.82° 110.80° 69.57° 103.85° 38.70° 68.28°
[1Ql| —2.398 -0.875 —2.545 —2.848 2.759 1.739
[1Q.| 0.0 0.0 0.0 0.0 0.0 0.0
11Q¢l] —2.470 2.301 —1.949 1.750 1.718 -1.533
11Q,l| 2.470 -2.301 1.949 -1.750 -1.718 1.533
1Q.l] —2.418 1.760 —-1.234 0.914 0.821 0.891
HEV(1) 1.0 1.0 1.0 1.0 1.0 1.0
HEV(2) 0.999 0.998 0.956 0.976 0.955 0.988
HEV(3) 0.996 0.905 0.828 0.849 0.896 0.582
HEV(4) 0.675 0.388 0.394 0.577 0.452 0.118
HEV(5) 0.656 0.193 0.348 0.217 0.161 0.099
Energy —11.902 —7.226 —-7.797 —7.537 —7.093 —4.260
e andKy are set equal to 1.
cos¢  COSp cosy cosy an ideal trigonal eigenvectpron the_ othe_r hand, thEe, state
BoA/| —,— ——,sihp |®| ——,— ——=,siny|. is subject to a strong tetragonal distortion due to larger val-
2 2 V2 V2 ues ofF1,.. These two opposing trends are seen to yield a

Although theA® A andB® B products are both totally sym- C2n OPtimum, which is the largest common subgroup of te-
metric, they cannot form a linear combination since it takes 4/@gonal and trigonal distortions. Once again this example
two-particle operator to connect these states. ForAted shows that the preference for minima with high epikernel
andB® B cases one finds the trivial solutions with=0 and symmetries is not a characteristic of product-JT systems. We
712 that correspond to the orthorhombic points already con?ill come back to this point in Sec. V.
sidered(see Table VIl. In addition they yield a genuine 4. C,u(C)
C,r(C,) point as well. FOrAQ A it appears for T e
Finally we investigate the alternativ®,, epikernel, based
on a fourfold symmetry direction. For thedirection, three

2 3Fr1eF 12eKT—2F 11tF12(KE . . ’
- possible eigenvectors have to be examined,

coSe=~
3 2(3F%,.K1—2F%,Kg)

(3.18 B®A:(cose,sing,0)®(0,0,1),

and similarly for B®B with the appropriate substitution
Froe/F11e @ndFyo /F1q;. These points of course only ex-
ists if the expression in the right-hand side of the equation
has a value in th€0,1] interval.

The most interesting extrema are found on B®@A  wheree and y are to be determined from extremal condi-
sheet. If we factor out solutions with higher epikernel sym-tions. For theB® A andA® B cases only trivial solutions are
metries, the extremal conditions on tpeand x angles can  found with o=n=/4 (n=0,1,2,3). These solutions have, in
be converted into a single quintic equation in cgs This  fact, orthorhombic symmetry and were already described in
equation cannot be solved in general but numerical testghe foregoing sections. For the third case further trivial solu-
clearly show that one can easily find parameter values fotions are also retrieved witp=y=nw/4 and o= y+ 7/2
which theseC,,(C,) points become absolute minima. In =nz/4 (n=0,1,2,3). However, in this case a genui@g,
Table VIII we list several examples, which were solved by asolution is also found. The extremal conditions that deter-
standard numerical minimization procedure on the hypersurmine this solution can be reduced to
face. In each of these cases ©g,(C,) point corresponds to
the absolute minimum, all Hessian eigenval(¢gV) being
positive. Quite remarkably sign differences between the vi-
bronic parameters are no condition sine qua non for the ex-
istence of a solution with such low epikernel symmetry. A
case in point is the third example: bo#yq; andF,; have
pronounced positive values, which is in favor of a trigonal
minimum. Note that thd'; vector is indeed very close to a
trigonal eigenvector §=239.77° as compared to 35.26° for where

A®B:(0,0,)®(cosg,sing,0), (3.19

B®B:(cose,sing,0)® (cosy,siny,0),

cos 2p(2F15,— 3F13.) — 3 €0 2(F 1 oF e
+2 cot 2psin 2yF14F15:=0,
COS 2((2F 15,— 3F15¢) — 3 €0S 20F 11F 15

+ 2 cot 2ysin 2¢pF 1,,F1,,=0,
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TABLE IX. Analytical results forB® B extrema ofC,,(C3) symmetry.
Label 1 2 3 4 5 6
Frie? 1.6 1.6 1.0 1.0 0.4 0.1
Froe 0.2 0.6 2.0 2.0 3.2 1.2
Fry? -1.7 -05 3.0 0.5 4.0 2.1
Fro? 0.5 15 0.5 3.0 -05 0.1
® ~72.05° ~87.17° 33.97° 83.21° —48.41° 43.84°
X 60.21° 77.79° 5.81° 72.04° 86.28° 2.79°
Q| 0.900 1.100 1.500 1.500 1.800 0.650
11Q.| 1.210 1.786 —2.022 2.245 2.790 —1.038
11Qll 0.0 0.0 0.0 0.0 0.0 0.0
11Q,ll 0.0 0.0 0.0 0.0 0.0 0.0
11Ql 1.010 0.694 2.037 1.327 —2.854 1.491
HEV(1) 1.0 1.0 1.0 1.0 1.0 1.0
HEV(2) 1.0 1.0 1.0 1.0 1.0 1.0
HEV(3) 0.847 0.993 0.993 0.998 0.992 0.998
HEV(4) 0.104 0.272 0.658 0.090 0.939 0.981
HEV(5) 0.092 -0.077 ~0.326 ~0.024 ~0.745 ~0.909
Ec,c? —1.647 —2.441 —5.244 —4.525 —9.583 —1.861
Ec,(c,)” * —2.447 ~5.482 ~4.532 ~10.592 ~2.197
Ke=Kr=1.

bEnergies given in this row were obtained by numerical minimization of the total Hamiltonian, using a wide
range of starting coordinates. The asterisk denotes that no minimum energwitG,) symmetry is

found.

I:',I'is: I:Tis/\/K—S (i=1,2s=e,t). (3.20

This remarkable system of equations can be solved analyti-
cally. The results can be written in terms of the parameters

found to

It is found that these two sets of values@fand y give the

2

12 ’
l:TltFTZe l:TleFTZI'

3FT|e 2F',I'izt
Ps=

0o

be

(cos2qo,0052,\/)=< -

(cos 2p,cos 2y) =

FTls‘Tz FTzs(Tl

(i=1,2,

!
Frie
o1

!
Frie
g1

(3.2)

(s=e,t).

+ F!|-26> \/p—,

02

FTZG) . (322

g2

same energy. Substituting the solutions back into E8}%)

and (3.1), the energy expression for thi&® B symmetry is

obtained

1
Ec2h(c§): ( FTlt( 2FT2t

Pe

0102

_ I:Tltp
o2 "

3FTle< FTle 2FT2e)
+pt
201 \ oq o
Fise| .2
+ = = +Fr—Ep,, (- (3.23

Physical solutions exist only on the condition thgt-0. In
order to illustrate the details of these extrema, a sample is
listed in Table IX. Parameteks and y are restricted between

— /2 and 7/2 and match numerical tests properly. It is
found that usually these extrema are coexistent @ith(C,)
minima on the potential energy surface. In all such examples
After much algebra, the meaningful sets of solutions ardhe minima of the latter type were found to be a little bit
lower. In contrast the first set of parameters in Table IX
refers to a case where tlﬁgh(C‘l) minimum is the absolute
minimum and where no coexistefit,,(C,) minimum was
found. It should be noted that each of tig,(C3) points in

Table IX has 12 copies in the space of the distortion param-
eters.

IV. THE ISOSTATIONARY FUNCTION AND THE EQUAL
COUPLING CASE

Substituting the stationary coordinatg® ,,|| back into
the energy expressio(E) yields a function(||E||) which
was shown to have the same extremal points as the actual JT
surface and was therefore called the isostationary funétion.
The proof of isostationary properties was later extended to
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bilinear terms and multimode effects.The isostationary forces of the hole and particle act in the same sense—the
function not only provides the theoretical foundation for theisostationary function becomes minimal fer=0
Opik and Pryce procedure but it also offers a compact view

of the structure of the hypersurface. For thegp T, system it 1 5
consists of separatandt, parts and is given by (IEIMw=0=~ Z_KE(FT1e+ Froe)” (4.7)
1 The two vectors are then aligned and this pair can freely
(IIE[)=- F{[1—3(y222+ 2%+ x2y?) |F 54, rotate. This corresponds to the motion of the JT system in a
E two-dimensional trough. This trough contains the tetragonal
+[—1+3(Z2%+ y? p?+ X2£%) |F116F 120 and trigonal points described, respectively, in Tables | and
242 1 4282 1 53 Frqe I, as well as the orthorhombic points of tyfB ® B5 listed
+[1=3(n°L"+ 76+ € n°) JF 12} in Table VII. Note that under equal coupling conditions the
1 corresponding energieSp, ,Ep, , and EEZB3 [Egs. (3.6),
— o {3(y?22+ X+ Xy Fy, i :
3K+ (3.8), and(3.14)] are indeed degenerate.
On the other hand, iF+. andF+,, have opposite signs
+6(yznl+XxzEL+XyEn) FriFra the JT energy becomes minimal for= /2
+3( 2%+ P82+ E277)F3,). (4.2) 1 ,
This expression is a fourth rank tensor of the eigenvector 1B o= mrz= Z_KE(FTle_ FrieFraet Frae)-
coefficients. For the parerf®(e+t,) system it is well (4.9

known that the tensorial part in the isostationary funct|on|\IOW the hole and particle vectors are at right angles of each

vanishes when the tetragonal and trigonal minima have thg : .

) . ther. The free rotation of the pair h&&(3)® SOQ(2) sym-
same de_pt_h. In this equal Coupll_ng case, the JT surfac_e e)r(netry, which yields a three-dimensional trough. Hence when
hibit a minimal energy trough which allows for free rotation

of the distortion mode around the high symmetry pdmt. the JT forces of the hole and particle components act in
opposite senses the corresponding wave vectors cannot rotate

This is the standard behavior of an orbital triplet in icosahe—in hase but are kept perpendicular to each other. Special
dral symmetry where the andt, modes are degenerate. If P P peTp - 9P

: o oints on this trough correspond to the lower ranking epik-
we transpose the equal coupling conditions to our produ .
; ernelsD,y, andC,;,. We have encountered them in the pre-
system, we must require

vious section in Tables Il and VII. Note that the correspond-

. . BB, =ByA B,B,
F2,, - F2. F2, - F2,, » ing energ|esED2h,ED2h 'EDzh’ and ED2h [Egs. (3.7) and .
3Ky 2Kg' 3Ky 2Kg' (4.2) (3.14)] all reduce to the same form under equal coupling
o _ _ conditions.
This implies that the cross terms will be equal in absolute
value V. DISCUSSION
FruFrar | FrieFree 3 As the present survey of a model product system shows,
3Kt T 2Kg ' the physics of the coupled system is quite varied. If the two

, , . ) ._shells have similar sets of coupling parameters the classical
We will further assume that in this equation the plus signpigh symmetry solutions of the separate open shells are eas-
applies. This corresponds to the assumption of |cosahedrﬂ£, retrieved. However, if the two shells develop pronounced

symmetry. The isostationary function then becomes distortions towards different epikernels, lower symmetry so-
1 lutions may be found that correspond to the intersection of
(|El|)=— 5o—{F2,.+F2,, the epikernels involved. Suph a case is exemplified in ex-

2Kg ample 1 of Table VIII: the trigonal force elemeft,, pulls

T =1+ 3(2E AV P+ XEV2TE~ Feo L (4.4 this system intngd- symmetry, but the strong tetragonal
[ 28y n X6 FrieFrael. (4.4 force elemenf,, simultaneously exerts a strong force to-

Consider the hole and particle functions to be vectors in avardsD,,. As a result neitheb ,, nor D34 symmetry is a
common three-dimensional space. Since both are normalizesblution and not even thB ., epikernel which is at the bor-
one has derline of trigonal and tetragonal phases for the separate
shells. Instead it is found that the absolute minimum has only
z{+ymn+x§{=cosw, (4.5 C,,(C,) symmetry, which is the intersection Bf,, andD a4
where w is the angle between them. The function then re_subgroups. . . .
duces to Pronounced symmetry lowering will also result if the two
shells tend to distort the system along the same epikernel but
1 in opposite directions. This occurs if the signs of the force
(||E|])=— F{F%g— F2,e+(—1+3codw)FrieFroe}. elements are different. The equal coupling limit, presented in
E the previous section, presents a clear example of the impor-
(4.6 e .
tance of this sign difference. The appearance of low symme-
Two extrema are possible, depending on the sign of the crogsy minima when adding equisymmetric forces is quite dis-
term. If Fr. and F, have the same sign—i.e., if the JT turbing because it violates the epikernel principle. We will
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— hole

+ electron

)
= N -------- » resultant

Q

Compressed Elongated

L= =<7

\

FIG. 2. Two-shell system of typgt}. Thet; shell induces a
tetragonal compression while theshell favors the tetragonal elon-
gation.

now analyze more closely how a breaking of symmetry may g, 3. The orthorhombic distortions in th@, and Q, plane

arise from a sign change. Consider the simple case of thg,ysed by the dominant JT forces of the hole and particle. The

{T.®Ty}@e problem with FricFre<0. Both separate resultant vectors are the sums of the hole and particle vectors with

shells will have a preference for By, epikernel, but—  the choice of the smallest angle between them.

because of the sign difference—along opposite directions. In

Fig. 2 we depict as an example an excitédz configuration

in which the hole component has a strong tendency to distofhombic distortions which give rise to six equivalent minima.

the system in the negati\@e direction(tetragona| compres- By Combining distortions along different tetragonal direc-

sion) versus a weak tendency towards a posi@@distor- tions the system benefits from stabilization of both its hole

tion (tetragona| e|ongati()rf0r the partic]e component. and particle component, which is worth the sacrifice of a few
The force element$ ;. and Frp thus have opposite Symmetry elements.

signs. The remarkable consequence of this difference is that

no matter in whichQ, direction the system will distort the VI. CONCLUSION

ground state will remain degenerate; if the system is tetrago-

ne}lly compressed, the degeneracy is due tatedectron; if composed of two triply degenerate shells. It is designed for

Itis tetragonally elongated the degeneracy stems fromlthe_ cubic systems but can also be applied to icosahedral ones by

201?;5.;28 (r)i||atl¥r]eecg_ul;“sngarztri?g(t)frlt:l&eslnnO'Felnfhé?r]{ﬁz t\?ffmposing equal coupling conditions. The most interesting re-
u ! y '9 'mp y view sult is that opposite signs for the JT force elements in the

X ) . - L Separate shells lead to resultant distortions in the direction of
symmetry in which this degeneracy is lifted. This is 'ndeEdlovSer ranking epikernels ! IStort ! rect

what happens, the compromise being a superposition of a It is the purpose of this paper to extend the analysis to the

tetragonal compression induced by the hole along Gge icosahedralT®H product problem which occurs in the ex-

direction and a small tetrggon_al elongation, due to the elecéited manifold ofCgj. Interestingly, existing model calcula-
tron, along a differenC, direction.

. 2 _ tions for the excited state d€g, point to relaxation along
Th_e resultant symmetry group is orBn(3C5), Wh'Ch 'S Jow ranking epikernel coordinatéd Whether or not this can
the highest common subgroup of tvidy,;, groups with dif-

oo ! : X be explained by a product-JT effect will be the subject of
ferent principal axes. The stationary coordinates for this casg, her investigation.

are found in Table Il. They indeed correspond to sums of
tetragonal distortion vectors pointing along different tetrago-
nal directions. In Fig. 3 we illustrate this result in a sche-
matic way. The figure represents the distortion vector in the We especially thank Dr. L. Chibotaru for many helpful
(Qy.Q,) plane for the dominant JT forces of the hole anddiscussions. This research was supported by the Belgian Na-
the particle. Because of the sign differences these vectors atienal Science Foundation and the Belgian Government un-
antiparallel. The dotted vectors denote the resultant orthoder the concerted action scheme.

The paper presents an analysis of a product-JT system
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