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Product Jahn-Teller systems: TheˆT1‹T2‰‹„e¿t2… case

A. Ceulemans and Q. C. Qiu
Department of Chemistry, Catholic University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

~Received 20 October 1999!

The product Jahn-Teller~JT! effect is defined as the combined vibronic instability of two open shells which
both transform according to degenerate irreducible representations. Such effects are of potential relevance for
the study of the excited states in fullerenes and fullerides. We describe here as a prototype the$T1^ T2%
^ (e1t2) product system in cubic symmetry. Stationary points on the potential energy surface are searched
under guidance of the epikernel principle. It is shown that the combined activity of the two shells can lead to
minima with low ranking subgroup symmetries. If the distorting forces in the two shells have opposite signs a
remarkable conflict arises between the epikernel principle and the JT theorem itself, which drives the system in
the direction of further symmetry lowering. The icosahedral limit, where coupling toe andt2 modes becomes
degenerate, is also studied using the method of the isostationary function. In this limit the product system has
rotational symmetry ofSO(3) or SO(3)^ SO(2) type, depending on the relative signs of the force elements
in the two shells.
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I. INTRODUCTION

The Jahn-Teller~JT! effect refers to the vibronic instabil
ity of an electronic level which transforms according to
degenerate irreducible representation of a symmetry gro1

Whenever several electronic levels are energetically clos
may be required to extend the JT treatment to the mani
of all levels involved. Such a case is usually referred to
the pseudo-JT effect, although it might equally well be cal
a sum-JT problem, since the active manifold now transfor
as thedirect sumof irreducible representations.2,3 A further
possibility arises if the electronic space covers thedirect
product of two degenerate irreducible representations.
propose to call such cases product-JT systems. They are
second-generation JT problems, since they combine the
activities of two open shells. Vibronic interactions betwe
shells in a product JT problem take place via coupling t
common phonon system. This coupling has an effective t
particle character, as opposed to sum-JT problems wher
rect one-particle vibronic interaction elements between sh
are allowed. The prime example of a product-JT system
the excited manifold that results from a HOMO→ LUMO
transition, where both the highest occupied molecular or
als ~HOMO! and lowest unoccupied molecular orbita
~LUMO! are degenerate. LetGa and Gb be the symmetry
representations of these levels, andg i be the symmetry of a
normal mode. The product problem is then denoted as$Ga
^ Gb% ^ $(g i%, with

g iP~@Ga^ Ga#ø@Gb^ Gb# !. ~1.1!

Square brackets in this equation denote the symmetr
squares of theG representations. In principle one might a
ticipate that transition-metal chemistry would abound w
product-JT problems, in view of the ubiquitoust2g→eg tran-
sition between the cubic crystal field components of thed
shell. However, in these systems interelectronic repulsion
tween d electrons is usually of the same order
magnitude—if not larger—than the JT stabilization ener
PRB 610163-1829/2000/61~16!/10628~12!/$15.00
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As a result the excited state JT problem often reduces to
isolated subspace of the product space, which can the
treated as a separate JT problem.

This need not be the case in icosahedral fullerenes wh
repelling electrons are smeared out over a spherical surf
As an example for the excited state of neutralC60, with
HOMO and LUMO transforming, respectively, asHu and
T1u , several terms of theHu^ T1u singlet manifold are being
claimed to participate in the JT distorted emitting state.4 This
suggests that theHu^ T1u product problem would be a use
ful starting point to describe the JT activity in this case.

In the present paper we lay the foundations for the ana
sis of this complex product problem by studying the prod
of two T-type shells. This logically precedes the more co
plicated case of the coupling of a five-componentH-tensor
with a three-componentT vector. As a prototype we hav
chosen theT1^ T2 product problem in cubic symmetry. Th
results also apply to such icosahedral problems asT1u
^ T1g , which would correspond to the product problem f
the excited states ofC60

62 .

II. THE HAMILTONIAN

A. The linear Hamiltonian of the T1‹„e¿t2… and T2‹„e¿t2…

JT systems

The threefold degenerateT representation of the cubi
groups couples to doubly degeneratee-type and threefold
degeneratet2-type vibrations. The bases of theT1 and T2
levels are chosen generally as (x,y,z) and (j,h,z), respec-
tively, and the linear JT Hamiltonians of the two separa
systems can be obtained using the appropriate Cleb
Gordan coefficients,5

H l inear
T1^ e

5FT1e~QuL̂u
T1QeL̂e

T!,

H l inear
T2^ e

5FT2e~QuL̂u
T1QeL̂e

T!,

H l inear
T1^ t25FT1t~QjL̂j

T1QhL̂h
T1QzL̂z

T!,
10 628 ©2000 The American Physical Society
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H l inear
T2^ t25FT2t~QjL̂j

T1QhL̂h
T1QzL̂z

T!, ~2.1!

where

L̂u
T5

1

2 S 21 0 0

0 21 0

0 0 2
D , L̂e

T5
A3

2 S 1 0 0

0 21 0

0 0 0
D ,

L̂j
T5

1

A2 S 0 0 0

0 0 21

0 21 0
D , L̂h

T5
1

A2 S 0 0 21

0 0 0

21 0 0
D ,

L̂z
T5

1

A2 S 0 21 0

21 0 0

0 0 0
D .

TheseL̂ quantities are electronic operators in matrix for
FT1e ,FT2e ,FT1t , andFT2t are called the force elements o
vibronic constants for theT1^ e,T2^ e,T1^ t2, and T2^ t2
JT systems, respectively.Qu andQe are the two component
of thee-type vibrational mode andQj ,Qh , andQz the three
components of thet2-type mode. Note that only one activ
mode of each symmetry type is considered. The two sh
are thus coupled to the same phonon part. As the electr
operators forT1 and T2 symmetries have exactly the sam
form, we have takenL̂p

T15L̂p
T25L̂p

T ~p 5 u,e,j,h,z) for
simplicity. Actually, they have been distinguished in the c
culations.L̂u

T1 , for example, operates on the basis ofT1 and
takes the basis ofT2 as constant parameters.

B. The linear Hamiltonian of the ˆT1‹T2‰‹„e¿t2… product
system

We now consider the formation of product states, e.g.
a result of a transition from an occupiedT1 into an emptyT2
shell. In this scheme, theT1 andT2 parts can be identified
respectively, as hole and electron states. The coupling
these states gives rise to a product space with nine or
components, which will be expressed
$xj,xh,xz,yj,yh,yz,zj,zh,zz%. The JT activity in this
.

lls
ic

-

s

of
tal

space is readily obtained following the rules for the mat
elements of one-particle operators in a product space.
matrix form of the HamiltonianH l inear

$T1^ T2% ^ e for the $T1

^ T2% ^ e JT system is a nine-dimensional square matrix w
the nonzero matrix elements on the diagonal only:

~H l inear
$T1^ T2% ^ e

!115
1

2
~2Qu1A3Qe!~FT1e1FT2e!,

~H l inear
$T1^ T2% ^ e

!225
1

2
~2Qu1A3Qe!FT1e

2
1

2
~Qu1A3Qe!FT2e ,

~H l inear
$T1^ T2% ^ e

!335
1

2
~2Qu1A3Qe!FT1e1QuFT2e ,

~H l inear
$T1^ T2% ^ e

!4452
1

2
~Qu1A3Qe!FT1e

1
1

2
~2Qu1A3Qe!FT2e ,

~H l inear
$T1^ T2% ^ e

!5552
1

2
~Qu1A3Qe!~FT1e1FT2e!,

~H l inear
$T1^ T2% ^ e

!6652
1

2
~Qu1A3Qe!FT1e1QuFT2e ,

~H l inear
$T1^ T2% ^ e

!775QuFT1e1
1

2
~2Qu1A3Qe!FT2e ,

~H l inear
$T1^ T2% ^ e

!885QuFT1e2
1

2
~Qu1A3Qe!FT2e ,

~H l inear
$T1^ T2% ^ e

!995Qu~FT1e1FT2e!. ~2.2!

The matrix form of the linear Hamiltonian for the$T1
^ T2% ^ t2 JT system is given by
H l inear
$T1^ T2% ^ t251

0 Qz
2t Qh

2t Qz
1t 0 0 Qh

1t 0 0

Qz
2t 0 Qj

2t 0 Qz
1t 0 0 Qh

1t 0

Qh
2t Qj

2t 0 0 0 Qz
1t 0 0 Qh

1t

Qz
1t 0 0 0 Qz

2t Qh
2t Qj

1t 0 0

0 Qz
1t 0 Qz

2t 0 Qj
2t 0 Qj

1t 0

0 0 Qz
1t Qh

2t Qj
2t 0 0 0 Qj

1t

Qh
1t 0 0 Qj

1t 0 0 0 Qz
2t Qh

2t

0 Qh
1t 0 0 Qj

1t 0 Qz
2t 0 Qj

2t

0 0 Qh
1t 0 0 Qj

1t Qh
2t Qj

2t 0

2 , ~2.3!
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with Ql
i t52(1/A2)FTitQl and i is taken as 1 and 2.

C. The total Hamiltonian of the ˆT1‹T2‰‹„e¿t2… JT system

The total Hamiltonian contains the linear JT terms and
totally symmetric elasticity terms contributed by the vibr
tional modes. The latter part is expressed as

H v ib
e1t25H v ib

e 1H v ib
t2 , ~2.4!

with

H v ib
e 5

1

2
KE~Qu

21Qe
2!, H v ib

t2 5
1

2
KT~Qj

21Qh
21Qz

2!.

~2.5!

KE andKT are the harmonic force constants of thee and t2
type vibrational modes, respectively. The total Hamilton
of the$T1^ T2% ^ (e1t2) JT system can then be simply wri
ten as

H5H v ib
e1t21H l inear

$T1^ T2% ^ e
1H l inear

$T1^ T2% ^ t2 . ~2.6!

III. EXTREMA ON THE JT SURFACE

Extrema on the JT surface of the separateT^ (e1t2)
problem can easily be found by the O¨ pik and Pryce method,6

or by the unitary transformation and energy minimizati
procedure.7 The same methods can also be applied to
product problem. Generally, the eigenvalue of the Ham
tonian for the system is a function of the vibrational mod
which can be written as

^E&5
1

2 (
Ll

KLQLl
2 1^xuHl inearux&, ~3.1!

whereux& is the pure electronic state andHl inear is the linear
JT Hamiltonian. In principlex is a nine-dimensional vecto
in the T1^ T2 product space, requiring nine eigenvector c
efficients subject to a normalization condition. Howev
since the present Hamiltonian reduces to a sum of o
particle operators, we can do with a fewer number of co
ficients. Indeed, any eigenvector of this Hamiltonian c
strictly be written as a simple product of aT1 and a T2
component, i.e.,

ux&5~xuT1x&1yuT1y&1zuT1z&)~juT2j&1huT2h&1zuT2z&),

~3.2!
where only six coefficients are needed, subject to sepa
particle and hole normalization conditions,

x21y21z251, j21h21z251. ~3.3!

ux& should further be multiplied by symmetric or antisym
metric spin functions to realize triplet or singlet spin stat
These spin parts will not affect the JT treatment. In contr
if the electron-hole attraction operator is added to the Ham
tonian, the single product nature ofux& is lost, and rotations
in the full nine-dimensional product space become possi
As we have explained in the Introduction we will not explo
such possibility in the present paper.

Minimizing the energy inQ space, positions of the ex
tremal points can be found by the formula
e

e
-
,

-
,
e-
f-
n

te

.
t,
l-

e.

uuQLluu52
1

KL
K xU ]Hl inear

]QLl
Ux L . ~3.4!

For theT1^ T2 system, we have

uuQuuu5
1

2KE
$~x21y222z2!FT1e1~j21h222z2!FT2e%,

uuQeuu52
A3

2KE
$~x22y2!FT1e1~j22h2!FT2e%,

uuQjuu5
A2

KT
~yzFT1t1hzFT2t!, ~3.5!

uuQhuu5
A2

KT
~zxFT1t1zjFT2t!,

uuQzuu5
A2

KT
~xyFT1t1jhFT2t!.

SubstitutinguuQLluu back into^E& yields the extrema of the
JT surface provided the corresponding eigenvector coe
cients are known. The usual recipe to solve this problem i
assume that the JT effect acts in an economic way, remo
only those symmetry elements that are directly respons
for the degeneracy. The tendency of the JT forces to c
serve as many symmetry elements as possible is know
the epikernel principle.8 Epikernels are intermediate sub
groups in the decomposition scheme of the original po
group. In line with this principle the extrema of the line
T^ (e1t2) problem are found along tetragonal (D4h), trigo-
nal (D3d), or orthorhombic (D2h) distortions, which are in-
deed the principal epikernels of the distortion space.9 In ad-
dition the (e1t2) space also contains lower rankingC2h
epikernels, which only become extremal if higher-order co
pling terms are included in the Hamiltonian. Two differe
C2h subgroups have to be considered, corresponding to
two classes of twofold symmetry axes in the cubic group
the twofold axis is along a tetragonal symmetry axis we w
denote the subgroup asC2h(C4

2), if it is in between these
directions we will denote the subgroup asC2h(C2).

Subsequently, we will apply the same recipe to the pr
uct problem and use epikernel symmetries to project
tremal eigenvectors. Later on we will introduce the meth
of the isostationary function to gain a deeper understand
of the structure of the JT surface.

A. The ˆT1‹T2‰‹e JT system

The structure of the JT surface in thee plane is easily
resolved since the corresponding JT Hamiltonian is alre
in diagonal form@cf. Eq. ~2.2!#. Two types of minima may
be found, depending on the relative sign of theFT1e and
FT2e coupling constants. IfFT1e and FT2e have the same
sign the lower part of the surface consists of three poten
wells with absolute minima along the tetragonal directio
The well positions are given in Table I in terms of the p
rameters
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a5
1

2KE
~FT1e1FT2e!,

ED4h
52

1

2KE
~FT1e1FT2e!

2. ~3.6!

The electronic states are denoted as (x,y,z) ^ (j,h,z) forms.
Note that both particle and hole components are only de
mined up to an arbitrary phase. ForFT1eFT2e,0, six
minima are found in between the tetragonal turning poin
These minima have only orthorhombic symmetry. The th
C2 axes of thisD2h subgroup correspond to theC4

2 elements
of the cubic group. We will therefore also denote it
D2h(3C4

2). This D2h subgroup is the lowest symmetry grou
that can be attained by ane-type distortion. It is also referred
to as thekernelof thee space. The results are given in Tab
II and involve two further parameters,

b5
A3

2KE
~FT1e2FT2e!,

ED2h
52

1

2KE
~FT1e

2 2FT1eFT2e1FT2e
2 !. ~3.7!

A new feature of the product-JT system which already sho
up in this $T1^ T2% ^ e problem is the appearance of lo
symmetry absolute minima whenever the JT force eleme
of the component systems have different signs. This re
arises from a conflict between the epikernel principle and
JT theorem itself and will be discussed thoroughly in Sec.

B. The ˆT1‹T2‰‹t2 JT system

As for the previous case the crucial feature of the sys
in t2 space should depend on the relative sign of the hole
particle force elements. IfFT1t andFT2t have the same sign

TABLE I. $T1^ T2% ^ e: FT1eFT2e.0, tetragonal minima.

Label (x,y,z) ^ (j,h,z) uuQuuu uuQeuu Energy

xj (1,0,0)̂ (1,0,0) a 2A3a ED4h

yh (0,1,0)̂ (0,1,0) a A3a ED4h

zz (0,0,1)̂ (0,0,1) 22a ED4h

TABLE II. $T1^ T2% ^ e: FT1eFT2e,0, orthorhombic minima.

Label (x,y,z) ^ (j,h,z) uuQuuu uuQeuu Energy

xh (1,0,0)̂ (0,1,0) a 2b ED2h

yj (0,1,0)̂ (1,0,0) a b ED2h

xz (1,0,0)̂ (0,0,1) 2
1
2a1

A3

2
b 2

A3

2
a2

1
2 b ED2h

yz (0,1,0)̂ (0,0,1) 2
1
2 a1

A3
2

b
A3
2

a1
1
2 b ED2h

zj (0,0,1)̂ (1,0,0) 2
1
2 a2

A3
2

b 2
A3
2

a1
1
2 b ED2h

zh (0,0,1)̂ (0,1,0) 2
1
2 a2

A3
2

b
A3
2

a2
1
2 b ED2h
r-

.
e

s

ts
lt
e
.

m
d

FT1tFT2t.0, the trigonal and orthorhombic extrema of th
separateT^ t2 system are easily retrieved in the produ
problem as well. Using the parameters

g5
A2

3KT
~FT1t1FT2t!,

ED3d
52

1

3KT
~FT1t1FT2t!

2, ~3.8!

ED
2h8

52
1

4KT
~FT1t1FT2t!

2,

one obtains the results in Tables III and IV. The trigon
points in the table are absolute minima for equal signs
FT1t andFT2t . Under aD3d distortion the nine component
of a T1^ T2 product space spanA1% 2A2% 3E representa-
tions. The ground state hasA2 symmetry, as it is formed by

TABLE III. $T1^ T2% ^ t2 : FT1tFT2t.0, trigonal minima.

Label (x,y,z) ^ (j,h,z) uuQjuu uuQhuu uuQzuu Energy

xyz

1

A3
(1,1,1)

^
1

A3
(1,1,1) a

g g g ED3d

x̄yz

1

A3
(2,1,1)

^
1

A3
(2,1,1)

g 2g 2g ED3d

xȳz

1

A3
(1,2,1)

^
1

A3
(1,2,1)

2g g 2g ED3d

xyz̄

1

A3
(1,1,2)

^
1

A3
(1,1,2)

2g 2g g ED3d

aIn this and subsequent tables, the ‘‘1’’ and ‘‘ 2 ’’ signs will be
used in the electronic states to denote ‘‘11’’ and ‘‘ 21,’’ respec-
tively.

TABLE IV. $T1^ T2% ^ t2 : FT1tFT2t.0, orthorhombic saddle
points.

Label (x,y,z) ^ (j,h,z) uuQjuu uuQhuu uuQzuu Energy

xy
1

A2
(1,1,0)^

1

A2
(1,1,0) 3

2 g ED
2h8

xȳ
1

A2
(1,2,0)^

1

A2
(1,2,0) 2

3
2 g ED

2h8

xz
1

A2
(1,0,1) ^

1

A2
(1,0,1) 3

2 g ED
2h8

xz̄
1

A2
(1,0,2) ^

1

A2
(1,0,2) 2

3
2 g ED

2h8

yz
1

A2
(0,1,1) ^

1

A2
(0,1,1) 3

2 g ED
2h8

yz̄
1

A2
(0,1,2) ^

1

A2
(0,1,2) 2

3
2 g ED

2h8
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occupying the orbital singlets of the trigonally splittedT1
and T2 manifolds. The complete set of trigonal energy e
pressions reads

E0~A2!52
1

3KT
~FT1t1FT2t!

25ED3d
,

E1~E!5
1

3KT
~2FT1t

2 1FT1tFT2t2FT2t
2 !,

E2~E!5
1

3KT
~2FT1t

2 1FT1tFT2t12FT2t
2 !,

E3~A1 ,A2 ,E!5
2

3KT
~FT1t1FT2t!

2522ED3d
. ~3.9!

Note that the third excited state,E3, is fourfold degenerate. I
corresponds to the occupation of the orbital doublets of
trigonally splittedT1 andT2 manifolds.

The orthorhombic extrema obey aD2h symmetry group
based on oneC4

2 axis and two perpendicularC2 elements.
Subsequently, we will use the notationD2h(C4

2,2C2). These
extrema turn out to be saddle points. The Hessian matrix
the xy isomer in thet2 space is given by

H ]2H
]Qi]Qj

J
i , j 5j,h,z

5S 0 2KT 0

2KT 0 0

0 0 KT

D .

The corresponding eigenvalues are27KT ,KT ,KT , indicat-
ing that there is indeed one direction of negative curvatu

If FT1t andFT2t have different signs the energies of trig
nal and orthorhombic points raise and the structure of
surface is completely altered. The lower part of the surfac
now dominated by extrema ofD2h(C4

2,2C2) and C2h(C2)
symmetry. Details of the electronic vectors, well position
and energies of these critical points are given in Table
and VI in terms of the parameters

d5
A2

3KT
~2FT1t1FT2t!,

TABLE V. $T1^ T2% ^ t2 : FT1tFT2t,0, orthorhombic extrema.

Label (x,y,z) ^ (j,h,z) uuQjuu uuQhuu uuQzuu Energy

x̄yjh
1

A2
(2,1,0)^

1

A2
(1,1,0) 3

2 d ED
2h9

xyj̄h
1

A2
(1,1,0)^

1

A2
(2,1,0) 2

3
2 d ED

2h9

x̄zjz
1

A2
(2,0,1) ^

1

A2
(1,0,1) 3

2 d ED
2h9

xzj̄z
1

A2
(1,0,1) ^

1

A2
(2,0,1) 2

3
2 d ED

2h9

ȳzhz
1

A2
(0,2,1) ^

1

A2
(0,1,1) 3

2 d ED
2h9

yzh̄z
1

A2
(0,1,1) ^

1

A2
(0,2,1) 2

3
2 d ED

2h9
-

e

or

.

e
is

,
V

ED
2h9

52
1

4KT
~FT1t2FT2t!

2, ~3.10!

EC2h
52

1

3KT
S FT1t

2 2
2

3
FT1tFT2t1FT2t

2 D .

Note that different orthorhombic eigenstates are used
Tables IV and V. InD2h(C4

2,2C2), T1 subducesB1% B2

% B3 representations versusA% B2% B3 for T2, yielding a
direct product of type 2A% 3B1% 2B2% 2B3. In Table IV,
the orthorhombic ground states, with energyED

2h8
, are ofB

symmetry, while the eigenvectors in Table V with ener
ED

2h9
, are ofA-type symmetry.

To identify the symmetry of the 12 points in Table VI w
consider as an example the point labeledf. To reach this
point the distortion first acts along theQz direction, which
reduces the symmetry already to aD2h subgroup based on

the axes (C4
z)2,C2

xy ,C2
xȳ . The distortion then continues alon

the Qj1Qh direction, thus further destroying the (C4
z)2 and

C2
xy elements. The pointf is thus characterized by aC2h

subgroup, based on theC2
xȳ symmetry element. Note that th

corresponding eigenvector is antisymmetric under this tw
fold rotation axis. ForFT1tFT2t,0, both theD2h9 and C2h

points can be absolute minima depending on the relev
vibronic coupling constants. The possible minima of t
$T2^ T2% ^ t2 problem as a function of the two force ele

TABLE VI. $T1^ T2% ^ t2 : FT1tFT2t,0, C2h(C2) extrema.

Label (x,y,z) ^ (j,h,z) uuQjuu uuQhuu uuQzuu Energy

a
1

A3
(2,1,1) ^

1

A3
(1,1,1) g d d EC2h

b
1

A3
(1,2,1) ^

1

A3
(1,1,1) d g d EC2h

c
1

A3
(1,1,2) ^

1

A3
(1,1,1) d d g EC2h

d
1

A3
(1,1,1) ^

1

A3
(1,2,2) g 2d 2d EC2h

e
1

A3
(1,1,1) ^

1

A3
(2,1,2) 2d g 2d EC2h

f
1

A3
(1,1,1) ^

1

A3
(2,2,1) 2d 2d g EC2h

g
1

A3
(2,2,1) ^

1

A3
(2,1,2) 2g d 2d EC2h

h
1

A3
(2,2,1) ^

1

A3
(2,1,1) d 2g 2d EC2h

i
1

A3
(2,1,2) ^

1

A3
(2,1,1) d 2d 2g EC2h

j
1

A3
(2,1,2) ^

1

A3
(1,1,2) 2g 2d 2d EC2h

k
1

A3
(1,2,2) ^

1

A3
(1,1,2) 2d 2g d EC2h

l
1

A3
(1,2,2) ^

1

A3
(2,1,2) 2d d 2g EC2h
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ments are displayed in Fig. 1. The boundaries of theD2h and
C2h phases correspond to the straight lines

FT1t523FT2t , FT1t52
1

3
FT2t . ~3.11!

C. The ˆT1‹T2‰‹„e¿t2… JT system

We now proceed to the extremal analysis of the combi
(e1t2) space, using the epikernel principle as a guidelin

1. D3d ,D4h ,D2h(3C4
2) points

The trigonal, tetragonal, andD2h(3C4
2) points belong en-

tirely to thee or t2 subspaces which implies that the previo
solutions remain unaltered when the$T1^ T2% problem is
considered in its full generality.

2. D2h(C4
2,2C2)

In this orthorhombic subgroup theT1 andT2 states sub-
duceB1% B2% B3 andA% B2% B3 components respectively

For D2h(C2
z ,C2

xy ,C2
xȳ) one has

T1 :B1 :uT1z&,

B2 :
1

A2
$uT1x&1uT1y&%, ~3.12!

B3 :
1

A2
$uT1x&2uT1y&%;

T2 :A:uT2z&,

B2 :
1

A2
$uT2j&2uT2h&%, ~3.13!

B3 :
1

A2
$uT2j&1uT2h&%.

Out of these we can form nine product states. TheB1^ A
combination (0,0,1)̂ (0,0,1) is in fact a tetragonal eigen
vector, which was already considered in Table I. Of the
maining products the interchange ofB2 andB3 labels is an
equivalence operation. Indeed for each orthorhombic dis
tion with a givenC4

2 principal axis there exists an equivale
distortion where the two remainingC2 axes, which discrimi-
nate B2 and B3, are swapped. This leaves four nontrivi
orthorhombic $T1^ T2% product states:B1^ B2 ,B2^ A,B2
^ B2 ,B2^ B3. Each of these gives rise to a set of six equiv
lent extremal points, with the following respective energi

ED2h

B1B252
1

2KE
~FT1e

2 2FT1eFT2e1 1
4 FT2e

2 !2
FT2t

2

4KT
,

ED2h

B2A
52

1

2KE
~ 1

4 FT1e
2 2FT1eFT2e1FT2e

2 !2
FT1t

2

4KT
,

~3.14!
d

-

r-

-
:

ED2h

B2B252
1

8KE
~FT1e1FT2e!

22
1

4KT
~FT1t2FT2t!

2,

ED2h

B2B352
1

8KE
~FT1e1FT2e!

22
1

4KT
~FT1t1FT2t!

2.

The corresponding eigenvectors and distortions in terms
the previously defined parametersa,b,g, andd are given in
Table VII. If both FT1eFT2e.0 and FT1tFT2t.0 the B2
^B3 combination definitely is favored. As in the case of t
separateT^ (e1t2) problem, parameter values for which th
trigonal and tetragonal wells have the same depth autom
cally imply a coexistence of these minima withB2^ B3 type
orthorhombic points.

For FT1eFT2e.0 and FT1tFT2t,0 there is a change o
the orthorhombic ground state fromB2^ B3 to B2^ B2. Fi-
nally the other combinationsB1^ B2 and B2^ A only will
become ground states in cases with dominant coupling
tetragonal modes withFT1eFT2e,0 and the proper values o
FT2t or FT1t . This coupling regime is close to theD2h(3C4

2)
solution; the energetic distance between the two is given

ED2h

B1B22ED2h
5

3

4 S FT2e
2

2KE
2

FT2t
2

3KT
D , ~3.15!

ED2h

B2A
2ED2h

5
3

4 S FT1e
2

2KE
2

FT1t
2

3KT
D . ~3.16!

3. C2h(C2)

Consider aC2h subgroup based on the twofold rotatio
axisC2

xy , situated in thexy plane betweenx andy directions.
Possible nontrivial eigenvectors of this symmetry operat
are

A^ A:S 1

A2
,

1

A2
,0D ^ S cosw

A2
,2

cosw

A2
,sinw D ,

B^ B:S cosw

A2
,2

cosw

A2
,sinw D ^ S 1

A2
,

1

A2
,0D , ~3.17!

FIG. 1. Regions of existence of absolute minima of differe
symmetries for the$T1^ T2% ^ t2 JT system.
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TABLE VII. Orthorhombic extrema of the$T1^ T2% ^ (e1t2) problem.

Label (x,y,z) ^ (j,h,z) uuQuuu uuQeuu uuQjuu uuQhuu uuQzuu Conditions Energy

1 (1,0,0)̂
1

A2
(0,1,1)

1
4 a1

A3
4

b 2
A3
4

a2
3
4 b 3

4 (g1d) FT1eFT2e,0 ED2h

B1B2

2 (1,0,0)̂
1

A2
(0,2,1)

1
4 a1

A3
4

b 2
A3
4

a2
3
4 b 2

3
4 (g1d) FT1eFT2e,0 ED2h

B1B2

3 (0,1,0)̂
1

A2
(1,0,1)

1
4 a1

A3
4

b
A3
4

a1
3
4 b 3

4 (g1d) FT1eFT2e,0 ED2h

B1B2

4 (0,1,0)̂
1

A2
(2,0,1)

1
4 a1

A3
4

b
A3
4

a1
3
4 b

2
3
4 (g1d) FT1eFT2e,0 ED2h

B1B2

5 (0,0,1)̂
1

A2
(1,1,0) 2

1
2 a2

A3
2

b 3
4 (g1d) FT1eFT2e,0 ED2h

B1B2

6 (0,0,1)̂
1

A2
(2,1,0) 2

1
2 a2

A3
2

b 2
3
4 (g1d) FT1eFT2e,0 ED2h

B1B2

1
1

A2
(0,2,1) ^ (1,0,0)

1
4 a2

A3
4

b 2
A3
4

a1
3
4 b 2

3
4 (g2d) FT1eFT2e,0 ED2h

B2A

2
1

A2
(0,1,1) ^ (1,0,0)

1
4 a2

A3
4

b 2
A3
4

a1
3
4 b 3

4 (g2d) FT1eFT2e,0 ED2h

B2A

3
1

A2
(1,0,1) ^ (0,1,0)

1
4 a2

A3
4

b
A3
4

a2
3
4 b 3

4 (g2d) FT1eFT2e,0 ED2h

B2A

4
1

A2
(2,0,1) ^ (0,1,0)

1
4 a2

A3
4

b
A3
4

a2
3
4 b

2
3
4 (g2d) FT1eFT2e,0 ED2h

B2A

5
1

A2
(1,1,0)^ (0,0,1) 2

1
2 a1

A3
2

b 3
4 (g2d) FT1eFT2e,0 ED2h

B2A

6
1

A2
(2,1,0)^ (0,0,1) 2

1
2 a1

A3
2

b 2
3
4 (g2d) FT1eFT2e,0 ED2h

B2A

1
1

A2
(2,1,0)^

1

A2
(1,1,0) a 3

2 d FT1tFT2t,0 ED2h

B2B2

2
1

A2
(1,1,0)^

1

A2
(2,1,0) a 2

3
2 d FT1tFT2t,0 ED2h

B2B2

3
1

A2
(2,0,1) ^

1

A2
(1,0,1) 2

1
2 a 2

A3
2

a 3
2 d FT1tFT2t,0 ED2h

B2B2

4
1

A2
(1,0,1) ^

1

A2
(2,0,1) 2

1
2 a 2

A3
2

a 2
3
2 d FT1tFT2t,0 ED2h

B2B2

5
1

A2
(0,2,1) ^

1

A2
(0,1,1) 2

1
2 a

A3
2

a 3
2 d FT1tFT2t,0 ED2h

B2B2

6
1

A2
(0,1,1) ^

1

A2
(0,1,2) 2

1
2 a

A3
2

a
2

3
2 d FT1tFT2t,0 ED2h

B2B2

1
1

A2
(1,1,0)^

1

A2
(1,1,0) a 3

2 g FT1tFT2t.0 ED2h

B2B3

2
1

A2
(1,2,0)^

1

A2
(1,2,0) a 2

3
2 g FT1tFT2t.0 ED2h

B2B3

3
1

A2
(1,0,1) ^

1

A2
(1,0,1) 2

1
2 a 2

A3
2

a 3
2 g FT1tFT2t.0 ED2h

B2B3

4
1

A2
(1,0,2) ^

1

A2
(1,0,2) 2

1
2 a 2

A3
2

a 2
3
2 g FT1tFT2t.0 ED2h

B2B3

5
1

A2
(0,1,1) ^

1

A2
(0,1,1) 2

1
2 a

A3
2

a 3
2 g FT1tFT2t.0 ED2h

B2B3

6
1

A2
(0,1,2) ^

1

A2
(0,1,2) 2

1
2 a

A3
2

a
2

3
2 g FT1tFT2t.0 ED2h

B2B3
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TABLE VIII. Numerical results forB^ A minima of C2h(C2) symmetry.

Label 1 2 3 4 5 6

FT1e
a 2.4 2.4 0.1 0.1 23.1 1.0

FT2e
a 0.1 0.6 3.1 3.1 0.1 22.0

FT1t
a 0.1 24.5 2.5 22.5 2.5 22.0

FT2t
a 5.2 0.2 2.2 2.2 22.2 2.0

w 88.33° 41.62° 39.77° 41.13° 105.51° 151.12
x 35.82° 110.80° 69.57° 103.85° 38.70° 68.28°
uuQuuu 22.398 20.875 22.545 22.848 2.759 1.739
uuQeuu 0.0 0.0 0.0 0.0 0.0 0.0
uuQjuu 22.470 2.301 21.949 1.750 1.718 21.533
uuQhuu 2.470 22.301 1.949 21.750 21.718 1.533
uuQzuu 22.418 1.760 21.234 0.914 0.821 0.891
HEV~1! 1.0 1.0 1.0 1.0 1.0 1.0
HEV~2! 0.999 0.998 0.956 0.976 0.955 0.988
HEV~3! 0.996 0.905 0.828 0.849 0.896 0.582
HEV~4! 0.675 0.388 0.394 0.577 0.452 0.118
HEV~5! 0.656 0.193 0.348 0.217 0.161 0.099
Energy 211.902 27.226 27.797 27.537 27.093 24.260

aKE andKT are set equal to 1.
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B^ A:S cosw

A2
,2

cosw

A2
,sinw D ^ S cosx

A2
,2

cosx

A2
,sinx D .

Although theA^ A andB^ B products are both totally sym
metric, they cannot form a linear combination since it take
two-particle operator to connect these states. For theA^ A
andB^ B cases one finds the trivial solutions withw50 and
p/2 that correspond to the orthorhombic points already c
sidered~see Table VII!. In addition they yield a genuine
C2h(C2) point as well. ForA^ A it appears for

cos2w5
2

3 S 12
3FT1eFT2eKT22FT1tFT2tKE

2~3FT2e
2 KT22FT2t

2 KE!
D ,

~3.18!

and similarly for B^ B with the appropriate substitutio
FT2e /FT1e and FT2t /FT1t . These points of course only ex
ists if the expression in the right-hand side of the equat
has a value in the@0,1# interval.

The most interesting extrema are found on theB^ A
sheet. If we factor out solutions with higher epikernel sy
metries, the extremal conditions on thew andx angles can
be converted into a single quintic equation in cos 2w. This
equation cannot be solved in general but numerical t
clearly show that one can easily find parameter values
which theseC2h(C2) points become absolute minima. I
Table VIII we list several examples, which were solved by
standard numerical minimization procedure on the hyper
face. In each of these cases theC2h(C2) point corresponds to
the absolute minimum, all Hessian eigenvalues~HEV! being
positive. Quite remarkably sign differences between the
bronic parameters are no condition sine qua non for the
istence of a solution with such low epikernel symmetry.
case in point is the third example: bothFT1t andFT2t have
pronounced positive values, which is in favor of a trigon
minimum. Note that theT1 vector is indeed very close to
trigonal eigenvector (w539.77° as compared to 35.26° fo
a

-

n

-

ts
r

r-

i-
x-

l

an ideal trigonal eigenvector!. On the other hand, theT2 state
is subject to a strong tetragonal distortion due to larger v
ues ofFT2e . These two opposing trends are seen to yiel
C2h optimum, which is the largest common subgroup of
tragonal and trigonal distortions. Once again this exam
shows that the preference for minima with high epikern
symmetries is not a characteristic of product-JT systems.
will come back to this point in Sec. V.

4. C2h(C4
2)

Finally we investigate the alternativeC2h epikernel, based
on a fourfold symmetry direction. For thez direction, three
possible eigenvectors have to be examined,

B^ A:~cosw,sinw,0! ^ ~0,0,1!,

A^ B:~0,0,1! ^ ~cosw,sinw,0!, ~3.19!

B^ B:~cosw,sinw,0! ^ ~cosx,sinx,0!,

wherew and x are to be determined from extremal cond
tions. For theB^ A andA^ B cases only trivial solutions are
found with w5np/4 (n50,1,2,3). These solutions have,
fact, orthorhombic symmetry and were already described
the foregoing sections. For the third case further trivial so
tions are also retrieved withw5x5np/4 and w5x1p/2
5np/4 (n50,1,2,3). However, in this case a genuineC2h
solution is also found. The extremal conditions that det
mine this solution can be reduced to

cos 2w~2FT1t82 23FT1e82 !23 cos 2xFT1e8 FT2e8

12 cot 2wsin 2xFT1t8 FT2t8 50,

cos 2x~2FT2t82 23FT2e82 !23 cos 2wFT1e8 FT2e8

12 cot 2xsin 2wFT1t8 FT2t8 50,

where
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TABLE IX. Analytical results forB^ B extrema ofC2h(C4
2) symmetry.

Label 1 2 3 4 5 6

FT1e
a 1.6 1.6 1.0 1.0 0.4 0.1

FT2e
a 0.2 0.6 2.0 2.0 3.2 1.2

FT1t
a 21.7 20.5 3.0 0.5 4.0 2.1

FT2t
a 0.5 1.5 0.5 3.0 20.5 0.1

w 272.05° 287.17° 33.97° 83.21° 248.41° 43.84°
x 60.21° 77.79° 5.81° 72.04° 86.28° 2.79°
uuQuuu 0.900 1.100 1.500 1.500 1.800 0.650
uuQeuu 1.210 1.786 22.022 2.245 2.790 21.038
uuQjuu 0.0 0.0 0.0 0.0 0.0 0.0
uuQhuu 0.0 0.0 0.0 0.0 0.0 0.0
uuQzuu 1.010 0.694 2.037 1.327 22.854 1.491
HEV~1! 1.0 1.0 1.0 1.0 1.0 1.0
HEV~2! 1.0 1.0 1.0 1.0 1.0 1.0
HEV~3! 0.847 0.993 0.993 0.998 0.992 0.998
HEV~4! 0.104 0.272 0.658 0.090 0.939 0.981
HEV~5! 0.092 20.077 20.326 20.024 20.745 20.909
EC2h(C

4
2) 21.647 22.441 25.244 24.525 29.583 21.861

EC2h(C2)
b * 22.447 25.482 24.532 210.592 22.197

aKE5KT51.
bEnergies given in this row were obtained by numerical minimization of the total Hamiltonian, using a
range of starting coordinates. The asterisk denotes that no minimum energy withC2h(C2) symmetry is
found.
ly
er

ar

e is

is

les
it
IX

m-

al JT
n.

to
FTis8 5FTis /AKS ~ i 51,2;s5e,t !. ~3.20!

This remarkable system of equations can be solved ana
cally. The results can be written in terms of the paramet

s05FT1t82 FT2e82 2FT1e82 FT2t82 ,

s i53FTie82 22FTit82 ~ i 51,2!, ~3.21!

rs5
FT1s82 s2

22FT2s82 s1
2

s0
~s5e,t !.

After much algebra, the meaningful sets of solutions
found to be

~cos 2w,cos 2x!5S 2
FT1e8

s1
,1

FT2e8

s2
DAr t,

~cos 2w,cos 2x!5S 1
FT1e8

s1
,2

FT2e8

s2
DAr t. ~3.22!

It is found that these two sets of values ofw andx give the
same energy. Substituting the solutions back into Eqs.~3.5!
and ~3.1!, the energy expression for theB^ B symmetry is
obtained
ti-
s

e

EC2h(C
4
2)52

1

4 H FT1t82 S 2FT2t82 U re

s1s2
U2 FT1t82

s1
2

reD
1r tF3FT1e82

2s1
S FT1e82

s1
2

2FT2e82

s2
D

1
FT2e82

2s2
G1FT2t82 2ED4hJ . ~3.23!

Physical solutions exist only on the condition thatr t.0. In
order to illustrate the details of these extrema, a sampl
listed in Table IX. Parametersw andx are restricted between
2p/2 and p/2 and match numerical tests properly. It
found that usually these extrema are coexistent withC2h(C2)
minima on the potential energy surface. In all such examp
the minima of the latter type were found to be a little b
lower. In contrast the first set of parameters in Table
refers to a case where theC2h(C4

2) minimum is the absolute
minimum and where no coexistentC2h(C2) minimum was
found. It should be noted that each of theC2h(C4

2) points in
Table IX has 12 copies in the space of the distortion para
eters.

IV. THE ISOSTATIONARY FUNCTION AND THE EQUAL
COUPLING CASE

Substituting the stationary coordinatesuuQLluu back into
the energy expression̂E& yields a function^uuEuu& which
was shown to have the same extremal points as the actu
surface and was therefore called the isostationary functio10

The proof of isostationary properties was later extended
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bilinear terms and multimode effects.11 The isostationary
function not only provides the theoretical foundation for t
Öpik and Pryce procedure but it also offers a compact v
of the structure of the hypersurface. For theT1^ T2 system it
consists of separatee and t2 parts and is given by

^uuEuu&52
1

2KE
$@123~y2z21z2x21x2y2!#FT1e

2

1@2113~z2z21y2h21x2j2!#FT1eFT2e

1@123~h2z21z2j21j2h2!#FT2e
2 %

2
1

3KT
$3~y2z21z2x21x2y2!FT1t

2

16~yzhz1xzjz1xyjh!FT1tFT2t

13~h2z21z2j21j2h2!FT2t
2 %. ~4.1!

This expression is a fourth rank tensor of the eigenvec
coefficients. For the parentT^ (e1t2) system it is well
known that the tensorial part in the isostationary funct
vanishes when the tetragonal and trigonal minima have
same depth. In this equal coupling case, the JT surface
hibit a minimal energy trough which allows for free rotatio
of the distortion mode around the high symmetry poin12

This is the standard behavior of an orbital triplet in icosa
dral symmetry where thee and t2 modes are degenerate.
we transpose the equal coupling conditions to our prod
system, we must require

FT1t
2

3KT
5

FT1e
2

2KE
,

FT2t
2

3KT
5

FT2e
2

2KE
. ~4.2!

This implies that the cross terms will be equal in absol
value

FT1tFT2t

3KT
56

FT1eFT2e

2KE
. ~4.3!

We will further assume that in this equation the plus s
applies. This corresponds to the assumption of icosahe
symmetry. The isostationary function then becomes

^uuEuu&52
1

2KE
$FT1e

2 1FT2e
2

1@2113~zz1yh1xj!2#FT1eFT2e%. ~4.4!

Consider the hole and particle functions to be vectors i
common three-dimensional space. Since both are norma
one has

zz1yh1xj5cosv, ~4.5!

wherev is the angle between them. The function then
duces to

^uuEuu&52
1

2KE
$FT1e

2 1FT2e
2 1~2113 cos2v!FT1eFT2e%.

~4.6!

Two extrema are possible, depending on the sign of the c
term. If FT1e and FT2e have the same sign—i.e., if the J
r

e
x-

-

ct

e

ral

a
ed

-

ss

forces of the hole and particle act in the same sense—
isostationary function becomes minimal forv50

^uuEuu&uv5052
1

2KE
~FT1e1FT2e!

2. ~4.7!

The two vectors are then aligned and this pair can fre
rotate. This corresponds to the motion of the JT system
two-dimensional trough. This trough contains the tetrago
and trigonal points described, respectively, in Tables I a
III, as well as the orthorhombic points of typeB2^ B3 listed
in Table VII. Note that under equal coupling conditions t
corresponding energiesED4h

,ED3d
, and ED2h

B2B3 @Eqs. ~3.6!,

~3.8!, and~3.14!# are indeed degenerate.
On the other hand, ifFT1e andFT2e have opposite signs

the JT energy becomes minimal forv5p/2

^uuEuu&uv5p/252
1

2KE
~FT1e

2 2FT1eFT2e1FT2e
2 !.

~4.8!

Now the hole and particle vectors are at right angles of e
other. The free rotation of the pair hasSO(3)^ SO(2) sym-
metry, which yields a three-dimensional trough. Hence wh
the JT forces of the hole and particle components ac
opposite senses the corresponding wave vectors cannot r
in phase but are kept perpendicular to each other. Spe
points on this trough correspond to the lower ranking ep
ernelsD2h andC2h . We have encountered them in the pr
vious section in Tables II and VII. Note that the correspon
ing energiesED2h

,ED2h

B1B2,ED2h

B2A , and ED2h

B2B2 @Eqs. ~3.7! and

~3.14!# all reduce to the same form under equal coupli
conditions.

V. DISCUSSION

As the present survey of a model product system sho
the physics of the coupled system is quite varied. If the t
shells have similar sets of coupling parameters the class
high symmetry solutions of the separate open shells are
ily retrieved. However, if the two shells develop pronounc
distortions towards different epikernels, lower symmetry s
lutions may be found that correspond to the intersection
the epikernels involved. Such a case is exemplified in
ample 1 of Table VIII: the trigonal force elementFT2t pulls
this system intoD3d symmetry, but the strong tetragon
force elementFT1e simultaneously exerts a strong force t
wardsD4h . As a result neitherD4h nor D3d symmetry is a
solution and not even theD2h epikernel which is at the bor
derline of trigonal and tetragonal phases for the sepa
shells. Instead it is found that the absolute minimum has o
C2h(C2) symmetry, which is the intersection ofD4h andD3d
subgroups.

Pronounced symmetry lowering will also result if the tw
shells tend to distort the system along the same epikerne
in opposite directions. This occurs if the signs of the for
elements are different. The equal coupling limit, presented
the previous section, presents a clear example of the im
tance of this sign difference. The appearance of low symm
try minima when adding equisymmetric forces is quite d
turbing because it violates the epikernel principle. We w



a
t

.

to
-

th

g

e
th
JT
e

ed
of

le

a
o
o
e
th
nd

a
th

a.
c-
ole
ew

tem
for
s by
re-
the
n of

the
-
-

of

ul
Na-
un-

-

The
with

10 638 PRB 61A. CEULEMANS AND Q. C. QIU
now analyze more closely how a breaking of symmetry m
arise from a sign change. Consider the simple case of
$T1^ T2% ^ e problem with FT1eFT2e,0. Both separate
shells will have a preference for aD4h epikernel, but—
because of the sign difference—along opposite directions
Fig. 2 we depict as an example an excitedt1

5t2 configuration
in which the hole component has a strong tendency to dis
the system in the negativeQu direction~tetragonal compres
sion! versus a weak tendency towards a positiveQu distor-
tion ~tetragonal elongation! for the particle component.

The force elementsFT1e and FT2e thus have opposite
signs. The remarkable consequence of this difference is
no matter in whichQu direction the system will distort the
ground state will remain degenerate; if the system is tetra
nally compressed, the degeneracy is due to thet2 electron; if
it is tetragonally elongated the degeneracy stems from tht1
hole. The relative coupling strength does not influence
outcome, only the signs are important. In view of the
theorem itself the system thus must further distort to a low
symmetry in which this degeneracy is lifted. This is inde
what happens, the compromise being a superposition
tetragonal compression induced by the hole along oneC4
direction and a small tetragonal elongation, due to the e
tron, along a differentC4 direction.

The resultant symmetry group is onlyD2h(3C4
2), which is

the highest common subgroup of twoD4h groups with dif-
ferent principal axes. The stationary coordinates for this c
are found in Table II. They indeed correspond to sums
tetragonal distortion vectors pointing along different tetrag
nal directions. In Fig. 3 we illustrate this result in a sch
matic way. The figure represents the distortion vector in
(Qu ,Qe) plane for the dominant JT forces of the hole a
the particle. Because of the sign differences these vectors
antiparallel. The dotted vectors denote the resultant or

FIG. 2. Two-shell system of typet1
5t2

1. The t1 shell induces a
tetragonal compression while thet2 shell favors the tetragonal elon
gation.
y
he

In

rt

at

o-

is

r

a

c-

se
f
-
-
e

re
o-

rhombic distortions which give rise to six equivalent minim
By combining distortions along different tetragonal dire
tions the system benefits from stabilization of both its h
and particle component, which is worth the sacrifice of a f
symmetry elements.

VI. CONCLUSION

The paper presents an analysis of a product-JT sys
composed of two triply degenerate shells. It is designed
cubic systems but can also be applied to icosahedral one
imposing equal coupling conditions. The most interesting
sult is that opposite signs for the JT force elements in
separate shells lead to resultant distortions in the directio
lower ranking epikernels.

It is the purpose of this paper to extend the analysis to
icosahedralT^ H product problem which occurs in the ex
cited manifold ofC60. Interestingly, existing model calcula
tions for the excited state ofC60 point to relaxation along
low ranking epikernel coordinates.13 Whether or not this can
be explained by a product-JT effect will be the subject
further investigation.
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FIG. 3. The orthorhombic distortions in theQu and Qe plane
caused by the dominant JT forces of the hole and particle.
resultant vectors are the sums of the hole and particle vectors
the choice of the smallest angle between them.
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