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Vibrational properties of a general aperiodic Thue-Morse lattice:
Role of the pseudoinvariant of the trace map
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Using the real-space renormalization grdRSRQG scheme of Ghosh and Karmak&hys. Rev. B8, 2586
(1998], we analytically determine the trace-map relation for a general spring-mass model of the aperiodic
Thue-Morse(TM) lattice, and, interestingly observe that this map has a pseudoinvariant. This pseudoinvariant
has a crucial role on the nature of the eigenmodes of this lattice. When the pseudoinvariant vanishes identi-
cally, as in the case of the on-site, transfer, or mixed model of the TM lattice, all normal modes are found to
be delocalized, whereas the eigenmodes are critical for more general models with nonzero pseudoinvariant.
Our RSRG scheme also gives the average phonon density of gtatdsand Lyapunov exponeny(w)
(= inverse localization lengihof the eigenmodes.

[. INTRODUCTION map. But such trace-map relations are usually not known for

the transfer or other general models, and the determination of

The discovery of quasicrystalline order in rapidly the trace-maps become extremely difficult since the transfer
quenched AlMn alloy stimulated a lot of theoretical interest matrices in general do not have the unimodular property.
in the properties of quasiperiodic systems, specially, in ondérecently wé’ have introduced a real-space renormalization
dimension. Studies of such simple model one-dimensionadroup (RSRG technique for finding the trace-map relation
systems become really meaningful after the recent advanc&0rresponding to a very general model of any quasiperiodic
ments in the fabrication techniques, and it is now possible t&YStém. and explicitly obtained the trace-map relation for a

synthesize high-quality superlattiéesrranging different 9€neral Thue-Mors€TM) chain. Using this trace-map rela-
kind of films in a one-dimensional quasiperiodic order. tion, we have also calculated the electronic energy spectrum

These materials form an intriguing new class of solids in thaforlah?h?;M :gfstg:r?t ur;dirr pvevgogt'ﬁ dboil:lngzgiI(;,Otr]hd(altl\(;ig?étional
their macroscopic properties have unusual features character- P paper, y

istic of the quasiperiodic structure, which may be of grea roperties of a general spring-mass météi for the TM
° quasip ' _may g attice using the RSRG method. We analytically observe that
technological importance. In fact, theoretical works reveal

T : . ~the trace map for this general aperiodic TM chain has a
that q!{as'pe”Od'C sysf(ems have many unique properties, IIkﬁseudoinvariant, and it has an important role on the nature of
the critical wave fur?C'[IOHS., Cantor-set energy spectrum, ety eigenmodes of this system. We see that the models for
and the common wisdom is that these are the signature of thghich the pseudoinvariant vanishes support only delocalized
underlying quasiperiodic structure. eigenmodes, whereas for other cases the states are critical.
The well-studied one-dimensional quasiperiodic system@\s an example, all the eigenmodes are delocalized for the
are the Fibonacdi;® period-doubling, and Thue-Mors&;®  on_site, transfer, and mixed modelsee text belowof the
etc. lattices obtained from the so-called substitutional seTM lattice. Axel et al1® studied the phonon properties of the
quences. The electront¢ phonont? optical® etc. properties  TM lattice only for the on-site model. However, for under-
of these lattices are very conveniently studied with the helgtanding the physical properties of real systems, it is neces-
of the transfer matrix technique or real-space renormalizatiosary to consider much more general models for the system,
group method. Within the transfer matrix formalism, the dy-and it is then possible to verify theoretical predictions about
namical trace-map technique introduced by Kohmett@l®>  the phonon properties of the latti¢gee Ref. 1¥by measur-
turns out to be a very efficient mathematical tool for inves-ing the x-ray or neutron diffraction patterns from the TM
tigating the physical properties of this class of systems. Fosuperlattices. In this work we investigate the nature of the
the on-site model! the transfer matrices form a set of real eigenmodes, phonon spectrum, density of states, and local-
2X2 unimodular matrices, and the nonlinear dynamicalization behavior of the modes for various models of the TM
trace-map relation, corresponding to the quasiperiodic inflatattice.
tion transformations, can be easily obtained from the unimo- This paper has been organized as follows. In the next
dular property of the transfer matrices. The major simplifi-section we describe the general model of the TM lattice, and
cation in the trace-map technique results from the fact that idlso outline the standard transfer matrix formalism for deter-
provides a reduced dynamical system, which contains all inmining the trace-map relation. In Sec. Ill, we briefly intro-
formation of the original physical system. duce the RSRG decimation procedure for finding the trace-
In some cases, the dimensionality of the dynamical sysmap relation for the general model of this system, and show
tem is further reduced due to the existence of invariant othat the dynamical map has a pseudoinvariant. In the follow-
pseudoinvariant!* (constant of motionfor the dynamical ing section we study the phonon spectrum by trace-map
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FIG. 1. Section of a Thue-Morse chain illustrating decimation technique.

technique, and also determine the phonon density of statesm,=m;=m and K #Kg for transfer model{ii) m,=m,
using the RSRG method. In Sec. V, we analyze the nature of m,, mgz=m,=mg andK, =Kg=K for on-site model, and
the eigenmodes and then calculate the localization lengttiii) m,=m, =m,, mg=ms=mg, andK, #Kg for mixed
é(w) of the eigenmodes. Finally we conclude in Sec. VI.  model.
Now first we briefly describe how the trace-map relation
II. THE MODEL AND TRACE MAP BY TRANSFER for the on-site model can be obtained by transfer matrix
MATRIX FORMALISM method, and then indicate what are the difficulties for finding

. ) o ] the trace-map relation of the general model by this method.
We describe the classical vibrations of the TM lattice byhc M (M) denotes the global transfer matrix for tingh
n n

the usual spring-mass modewith nearest-neighbor cou-

pling, and the equations of motion are given by generation TM sequencg,(S;), then for on-site model
M,’s can be expressed in terms of two basic transfer matri-

€Ui=K; 41U+ Kji—1Ui_q, (1) cesM, and Mg corresponding toA and B atoms in the

lattice. The matricesM, and Mg are unimodular, and we

where €;=K; i 1+ Kiyi,l—miwz, Kiij-1's are spring con-
stants,m;’s are the atomic masses, angds denote ampli-
tudes of vibrationsj being the site index. The transfer model

A_<

have

is obtained when alin;’s are equal and;’s are eithei, or €A ) and Ma= ( ‘B 1)
Kgs arranged in TM sequence. For the well-known on-site 1 0 ® 1 0)
model,K; i+ ’s are all equal, andh;’s take two valuedv 5 or
Mg such that TM aperiodicity is preserved among themWhereeae)=2K—myg o® andK, =Ks=K. So for on-site
Mixed model is a combination of the above two models, inmodel, the global transfer matricesMo=Ma, M,
which both the spring constants and atomic masses are stMgMa, M;=M MgMgM,, etc. are also unimodular,
multaneously arranged according to the TM sequence.  and they satisfy the following recursion relations:

Now we introduce the general model for the TM lattice as
follows. The TM sequence can be constructed from twop ..=M M, and M,.;,=M,M, for n=0.
symbolsA andB by the inflation rulesA—AB andB—BA
starting with the symboA(B). Also we can generate it by 2

the stacking ruless,,1=5,S, andS;,1=S5yS, with So=A The trace-map relation for on-site model can be easily
and So=B. The sequencs, is the complement 0§, ob-  found from the above recursion relations using the unimodu-
tained by interchanging andBin S,,. So according to these |ar property ofM,’s, and it is given by?

rules, the first few generations of the TM sequence &ye
=A, S;=AB, S,=ABBA S;=ABBABAAB etc. Simi-
larly, S,=B, S;=BA, S,=BAAB, S;=BAABABBA etc.
are the complementary sequences. Clearlynthegeneration wherea, =1TrM,=1Tr I\Wn _

sequences,(S,) contains total 2 number of symbols. We  As in the electronic case, the global transfer matrices
can represent the symbofsandB as long(L) and short(S) M, 's for the general spring-mass model of the TM lattice

bonds in a lattice, and build the TM chain by arranging these:an be expressed in terms of the following four basic transfer
two types of bonds L and S in TM order. A portion of the matrices!°

TM chain is displayed in Fig. 1. In the Thue-Morse chain we
can identify four types of sites, B3, v, andé corresponding

ans3=4a2, ,(a,.,—1)+1 for n=0, ©)

to the lattice points flanked blyL, LS, SL, andSSbonds, Sa -1 8 _ ﬁ
respectively(see Fig. L Now we define the general spring- =] Kc ,Is=| Ks Ks|,

mass model for the TM lattice by four types of masees, 1 0 1 0

mg, m,, andm; corresponding tav, B, y, andé sites of

the lattice, respectively, and by two spring constaftsand 6 K E

K for the long and short bonds, respectively. The on-site, —r S 2 1

transfer, and mixed models are the special cases of this gen- sl={ ki K|, ss=| Ks , 4

eral models, and can be obtained by settingm,=mj 1 0 1 0
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where €,=2K, —m,w? ez=K +Ks—mgw?, €,=K_  where €,=2K —m,0? €;=K +Ks—mgo? €,=K_
+Ks—m,w?, andes=2Ks—msw?. Under Born—von Kar-  +Kg—m,w?, €5=2Ks—msw?, andw;= 1/ with i=a, B,
man boundary conditions, the first few global transfer matri-y or é.

ces for the general model are Now we introduce five quantitieaV,=eM/K™, X,
=K, Y,=eKM, Z,=e/K™, and R,
=KK™, where the superscript denotes the stage of
renormalization witm=0 as the initial system. Then we can
recast the above recursion relations into the following form:

M0:|| y
M;=sl.Is,

M,=Il.sl.ssls,
2 Wi 1=(XaYa=1=RA/R,,

Ms=sl.Is.ll .sl.Is.sl.ssls, (5) ) 5
Xn+1:(XnYnZn_Xan_Yan)/(Yan)y
o= . . . Yni1= (WpXoYn= Y= X))/ (R, Yn),
while M, can be obtained frorm,, by interchanging andl.

In Ref. 10 we have shown that for general model of the TM

Zn+1=Rny Wi,
lattice, the global transfer matrices satisfy the following n e

complex recursion relations: Ros1=Xn /Y, (9)
Mn+1=NoNp,  Nppa=MgN,, In Ref. 10 we have shown thaw,=TrM,, and using
_ _ _ _ Egs.(9) the trace-map relation for the general model of the
Mp+1=NpNp,  Nppa=MpNg, (6)  TM lattice can be written as
for n=0. The auxn!ary transfer matrices,, andl\ln can be Wn+3=Wﬁ+1(Wn+z—2)+2+|n+1, (10)
generated successively starting fridg=Is andNy=sl ap-
plying the matrix transformations where
ll—slls, Is—ssls, (1+Rns D)Wiia[Whi1(1+Rp 1) = X 1— Yiga]
n+1= ’
R
sl—ll.sl, ss—ls.sl. 7 i (11)

The matricesM,, andM,, are unimodular, bul, andN, are  for n=0. The trace-map relation E¢LO) is equivalent to the
not unimodular. Now it is not known how one should pro- original relation(8) or (9), and it contains all the information
ceed from the recursion relatiori§) in order to find the about the dynamics of the general TM lattice. Interestingly,
trace-map relation for the general model of the TM lattice.we see that this map has a pseudoinvatfagiven by

One faces the same difficulty also for the transfer and mixed

modpls as the glot_)al tran;fer matrices for these systems - Whi1(1+Ry1) = Xnr1— Yo
again satisfy recursion relations of the fof®). Jni1= Roos , (12
. TRACE MAP BY RSRG METHOD: PRESENCE as it transforms likeJ, ;= —Y,J, under renormalization.
OF PSEUDOINVARIANT Thus if J,, vanishes at some stage of iteration, it will remain

) ) ] zero in all subsequent higher generations. This tells us that if
In this section we calculate the trace-map relation for thqnzo for some value of. then it will remain zero for all

general spring-mass model of the TM lattice using RSRGhigher values oh. As an example, the pseudoinvaridnt ;
technique already developed in Ref. 10. Our RSRG decimazapishes fon=0 in the case of transfer, on-site, and mixed
tion scheme corresponds to the deflation transformations,qqels. so we havk,.,=0 (n=0) for these three models
LS—L, SL—S, and it ensures that the renormalized lattice ot 1o TM lattice, and putting,,=W,/2 in Eq. (10) we get

also has the TM symmetry. We illustrate this decimationgq () as the trace-map relation for them, the initial condi-
scheme in Fig. 1. Under decimation E¢$) get renormal- }ions being different in each case.

ized and the parameters of the general model satisfy the fol- | ot s now study the behavior of the pseudoinvariant Eq.

lowing recursion relations: (12). The notion of the pseudoinvariant used here is not simi-
lar to that of Kolar and Al* They introduced the notion of
pseudoinvariant as a recurrent expression that transforms as
Jn+1=4Y§Jn, so that non-negativé, remains non-negative
and nonpositivel,, remains nonpositive, while its magnitude
may vary withn. On the other hand, we have taken the
transformation relatiot,, . ; =1, corresponding to an invari-
ant quantityl (=1,) of a map as our starting poi(see Refs.

3 and 1) and termed it as pseudoinvariant when the right-
hand side of this equation is multiplied by somelependent
K{=KKswg, Kg=K Ksw,, (8)  quantity. In this sense Eq12) defines a pseudoinvariant for

€,=€,— wu(KE+K)),

2

6'232 e~ Ki(wgtw,),
_ 2

€, =€, Ki(w,+twp),

€5=€g— wy(KE-I— K2),
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the map Eq.9). Thus unlike the invariant, the pseudoin- system, and these values afi¢ for transfer model:a;
variantJ, is not a constant of motion for the map. It implies = (&5, —K?~K%)/(2K Ks) and a,=[e, e5e;— 255K}
t_hatJn= const defines a manifold, which evolves w_|th itera- —26a65K§]/(2KfK§) +1, whereeg=e, =K, +Kg— Mw?,
tion, excepting the casé,=0. The trace-map relation Eq. ¢ —oK, —mw?, e;=2Ks—ma?, (ii) for on-site modela,
(9) of TM Iattlc_:e is a fOl_Jr-dlmensmnaI Tap, and from the = (epeg—2K?)/(2K2)  and a2=[e§e§—K2(eA+ e)?]/
recursion relation fod,, it follows thatJ,,=0 determines a 4 o 2 o 2

; . . . : ; X (2KM)+1, where ea=2K—mpw*, eg=2K—mgw~, and
three-dimensional invariant manifold in this space. The or-.. ¢ ived del a.— T K2 K2Y/(2K. K
bits of the map remain on this manifold and nonescaping("') or mixed modet: ""1—(67632 s—KD/(2K, 2s)
orbits determine the eigenvalues of the system. Now we eﬁ”dzazzz[fafﬁfyfé_(61366+ fyfé)KL_(,faEBJr €q€,)Ksl/
amine what are the situations for whidp vanishes. We see (2K{Kg+1, where €,=2K —muo®, €es=K +Ks

that —mgw?, €,=K_+Ks—muw?, es=2Ks—mgw?. The equa-
tion a,—1=0 actually determines the global band edges.
w?*(mMg—m,)/K for on-site model For some specific choice of the parameters, the global band
Jo={ mMo2(1/Ks—1/K,) for transfer model edges are situated &) w?=0, 2.43845, 3.0, and 6.56155

for transfer model with parametems,=mg=1, K, =1,
Ks=2, (i) w?=0,1.21922,1.5, and 3.28078 for on-site
and the above expressions for the pseudoinvariant are vemodel with my=2, mg=1, K =Ks=1, and (i) o?
similar to those for the invariant of the quasiperiodic Fi- =0, 1.37966, 2.20591, and 5.91443 for mixed model with
bonacci lattice! Like the invariantl for the Fibonacci lat- m,=2, mg=1, K =1, Ks=2. Itis apparent from Eq$13)

tice, the pseudoinvariady also vanishes for the simple pe- that apart from the global band edges, all other eigenfrequen-
riodic model, and solutions are extended states which can beles are doubly degenerate. The hierarchical nature of the
obtained rather trivially. There are some stutflehat show trace-map relation Eq(3) also suggests that the eigenfre-
that if the invariant vanishes for any quasiperiodic model,quencies of theth generation chain remain as eigenfrequen-
then the system may support delocalized states. For on-sitgjes in all the succeeding higher generation chains, and con-
transfer, and mixed models of the TM lattice, we observesequently they also belong to the spectrum of the infinite TM
that though the pseudc_)lnva_rladbio, all otherJ,’s (n lattice. In Figs. 2a), 2(b) and Zc), we have plotted the al-
=1,2,3, ...,etc) are identically zero. So we expect that |5 eq frequencies for transfer, on-site, and mixed models,
these systems may support delocalized modes, and in S(:"C'rgspectively, for various generations of the TM lattice. These

we actually prove that all eigenmodes are delocalized fo?igures clearly show that for any given model, the positions

transfer, on-site, a’?d mixed qu_els Of_ the TM lattice. of the global band edges remain unaltered with system size,
From an extensive search, it is evident that most of the

choices of the parameters,, m,, m,, m,, K., andKs and also higher generation chains contain all the frequencies

give Jo#0, J;=J,=---=0, and these models of the TM of every lower generatlon chams.

lattice also support delocalized modes. However, there are The aboye Kind of analysis about the frequency spectrum
some models for which the pseudoinvariants do not vanisi? n'ot possible for more general model of the TM Iattpe

and we numerically observe that the eigenmodes are critic£|avIng nonzero pse_udomvarlant._ The aIIo_wed frequenmgs
in these cases. For these cases, the trace dynamics are qL?i?@ be found numerically by solving the eigenvalue condi-

| f that th f th iginal RSRGAON W,=2, and th'e presence of non—tri\{igl tetm, ; in the
complex, and we found that the use of the original RS trace map Eq(10) indicates that the positions of the global

Egs.(8) is much more convenient for characterizing the na- ) ; . :

ture of the states. which we shall discuss in Sec. V. band edges for any arbitrary generation chain are different
' from those of other generation chains. Also there is in gen-

eral no normal mode frequency that is common to every

IV. PHONON SPECTRUM AND DENSITY OF STATES generation TM lattice. The spectrum for the general model
A. Phonon spectrum do not contain any degenerate level. To illustrate all these

behaviors of the phonon spectrum of general model, we take

the parameters as,=2, mg=1, m, =1.77,ms;=1.33,K_

=1, andKs=1.7, in which casd,#0, and in Fig. 2d) we

plot the allowed frequencies with generation indexThus

. . . . . we see that the nature of the phonon spectrum for the general

obtained fr_om the equapoan= 1. This relatpn dete.rmlnes model of the TM lattice is quite different from the spectra for

all the ' eigenfrequencies of theth generation chain con- . ncfer on-site, and mixed models. In fact, the spectral be-

sislting of 2 a_torlrlls, l_aind in gePeraI thi? equatign has to bdG‘navior of the general model of the TM lattice is somewhat
solved numerically. However, for transfer, on-site, or Mixedg;nijar to those of other quasiperiodic systems, like the Fi-

model, the trace-map relation has a simple form @By.and bonacci chain.
it gives a lot of information about the phonon spectrum. It

can be shown that the eigenvalue conditr= 1 is equiva-

lent to the set of equatior§,

w?(mg/Kg—m,/K) for mixed model,

Let us now describe how the allowed frequentie$ of
the TM lattice can be determined from the trace-map rela
tion. For Born—von Karman boundary condition, the allowed
eigenfrequencies for theth generation TM lattice can be

B. Phonon density of states

aj=a5=---=0 and a,—1=0. (13) We now cglculate the density of phonor_w modes for the
TM lattice using RSRG scheme presented in Sec. Ill. For a
We have to set the initial values, and a, appropriately system corresponding to E@L), the equations of motion for
corresponding to transfer, on-site, and mixed models of théhe single-particle Green’s functions are given by
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FIG. 2. Plot of allowed frequencies for various generations for (a) transfer modelm,=mg=m,=m;=1, Ks/K =2, (b) on-site
model, m,=m,=2, mz=m;=1, K =Kg=1, (c) mixed model,m,=m,=2, mg=m;=1, Kg/K =2, and(d) general modelm,=2,
mg=1,m,=1.77,m;=1.33,K =1, Kg=1.7.

€Gij(0)=—8;+K;+1Gi+1j(@) +K;i_1Gi_3(w), becomes a smooth function of the frequercyFor the sake
of comparison, we have also plotted the phonon density of
(14 i mo—m —

_ states(dotted curvg for periodic systenm,=mg=m,=m;
where =K; 1+ Ki,i—l—miw+2 and o' =w+i0". The =1, K. =Kgs=1. However, in other frequency regions, the
local density of states can be obtained from the relation  cuyrves have very spiky structures, and the spectra are highly

fragmented. Thus the vibrational properties of the TM lattice
1 are similar to other quasiperiodic systems, and in this sense
pi(w)=——=IM[Gji(w™)]. (150  the aperiodic TM lattice behaves normally. On the other
™ hand, we see that the eigenmodes are extended rather than
critical for transfer, on-site, and mixed models, while in case
f general model with nonvanishing pseudoinvariant the
eigenmodes are critical.

If we renormalize the set of Eq€14) using the RSRG
scheme of Sec. lll, the recursion relations for the paramete
again satisfy Eqs(8) provided we replacav—w?*. The
imaginary part ofw ™ ensures that the coupling constalis
and Kg flow to zero under renormalization ands attain V. NATURE OF THE EIGENMODES FOR TRANSFER,
fixed point values*’s. Then the site-diagonal Green’s func- ON-SITE, AND MIXED MODELS

tions can be easily computed from Hd44) and the average

density of states can be expressed as In order to study the nature of the eigenmodes for trans-

fer, on-site, and mixed models of the TM lattice in details, let
us first start from the global transfer matricels, and M,,,

p(w)= ilm Xa  Xp Xy %o , (16) and the auxiliary matriceN, andN,,. These matrices can be
T & € & & written as
@ B y S5
wherex , is concentration ofith-type site in the TM lattice,
)% beingﬂeithera, B, yor 5.u P Nn=anll+ Baosct yaoy+ Shoz,
In Figs. 3a), 3(b), 3(c), and 3d), we have plottegh(w) as _ _ — —
a function ofw, respectively, for transfer, on-site, mixed and Np= apll+ Bhoy+ yhoy+ 6o,
general models of the TM lattice. For numerical calculations,
we choose the parameter as those in Fig. 2. It is apparent M,=a,ll+b,o,+choy+d,0,
from Figs. 3a), 3(b), and 3c) that the global bands for trans-
fer, on-site, and mixed models are confined within the region M, =a,Il +Hngx+gngy+anaz, (17)

as determined by the conditicm,=1. We see from Figs.

3(a), 3(b), 3(c), and 3d) that the low-frequency regions of where oy, o, o, are 2<2 Pauli matrices]I is a 2x2
these curves are almost identical. This is due to the fact thatlentity matrix. The parametel®,'s (O=«,8,v,5,a,b,c,
the low-frequency region corresponds to long-wavelengtrand d) satisfy, respectively, the following recursion rela-
continuum limit, and in this region phonon density of statestions:
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FIG. 3. Plot ofp(w) vs w for (a) transfer,(b) on-site,(c) mixed, and(d) general models with parameters as those in Fig. 2.

ap1=anay+d 8, +b,Bn+Chyn,

Bni1= b, an+an:8n+|(c On— dn')’n)

Ynr1=anYnt Chant+i(dyBr—byéy),

5n+l:gn5n+anan+ [ (En'ynfgnﬁn):

Any1= An@nt 00t BnfBnt Yn¥ns

bn+1::8n;n+ﬁnan+i(;n§n_ ’yngn)y

Cns 1= Y@+ Yn@nti(Bndy— Bndy),
dn 1= annt Snatn T (Bavn= ). (18)
with
ao( ag) = 8o(8p) = €4/2K o( €,/2K ),
Bo(Bo)=(Ks—K)/2K{ (K| —Kg)/2K ],
yo(%):f(i/2)(KL+KS)/KS[f(iIZ)(KﬁKS)/KL],

ap(ag) =do(do) = €, /2K (€5/2Ks),

bo(bo)=0 and co(co)=—i.

The recursion relations for the parameté)ss can be ob-

tained from Eqs.(18) by replacmgOHO and 0—O0 in
these equations.

The recursion relations for the parameters have a quite 1) @n

restrictions on the parameters corresponding to transfer, on-
site, or mixed models of the TM lattices. These restrictions
are (i) m,=m,=m,, mg=mz=mg, andK, =Kg for on-

site model,(ii) m,=mg=m,=m; andK #Kg for transfer
model, and (i) m,=m,=m,, mg=ms=mg, and K.

# Kg for mixed model. Then we can treat these three cases
on a common footing, and the recursion relations for the

parameters of the global transfer matridds and I\Wn be-
come identical in form. After some lengthy algebra, we can
express them into the following compact form:

an+2:1+aﬁf$1a) J

grwz: 1+52n?r(1a) ’
by o=anf .

EW'FZ:EHTI(“P) ’

Cht2= anf(C)
Cn+2: a’ﬂﬂ]C) ’

dyio=a,f@  for n=1, (19

where fI(f), fP(FP), fO(F1), and fO(F1Y) are
functions of O,'s and 6n’s (O=a,B,y,6,a,b,c, andd).
The explicit expression fof (Y and f® are f{@=4(a,,,
d_(a) 4(an+1 1), and the analytic expression for

complex structure for the general case. Interestingly, we obotherf’s can be easily calculated. Now we can identify the

serve that these relations get simplified when we impose thparameters,, and a,, in Eq. (19 as the traces,,=

$TrM,,
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4 Ks=2 at w=2. These figures clearly indicate the delocal-
(a) ized nature of the vibrational modes for the transfer, on-site,

3 L and mixed models of the TM lattice. But at the global band
] | | edges we have,—1=0, and at these frequencies the ma-

trices M,, and M, no longer become identity matrix. We
‘ observe numerically that at the global band edges, the am-
‘ il plitudesuy behaves as-N (N being the system size
| ‘ ! Alternatively, the study of the localization behavior of the
Ll i 0l ] a8 AR modes also gives information about the nature of the states.
20 40 60 80 100 120 The Lyapunov exponeng(w), being the inverse of the lo-

1 calization lengthé(w), can be easily calculated from our
RSRG scheme, and it can be expresséf as

12

(n)
10 Ks

Y(w)=Lty . ; (20

1
—In
2n

where K is the nth renormalized value of the spring-
constanKs. It is to be noted that the value of w) is quite
independent of the choice &£" or K, since both of them
attain fixed point values in the limit—o> and hence they
carry the same information about the system.
We notice that the Lyapunov exponent always vanishes
20 40 60 80 100 120 precisely at all allowed normal mode frequencies of the sys-
i tem corresponding to any model of the TM lattice. So the
localization length is infinity for any arbitrary model of the
TM lattice. It means that the vibrations are not confined
20 (c) within any finite region of the lattice, and the modes should
have extended character. However, a careful study of the

| vy |

N B O @

15

flow pattern of the effective coupling constants with renor-
malization shows that the models with zero pseudoinvariant

| us | 10 behave quite differently from those having nonzero pseudo-
invariant. We see that the effective coupling constants al-

5 ways flow to zero under renormalization for systems with

nonzero pseudoinvariant. But from a physical point of view,

the effective coupling constants should never flow to zero on

20 40 60 80 100 120 renormalization for delocalized modes. This clearly shows

i that the states are neither localized nor extended for models

) with nonzero pseudoinvariant, and obviously the eigenmodes

FIG. 4. Plot of|uj| vsi at(a) ®=2.28825 for transferb) @ are critical in these cases. On the other hand, when the

=1.618 03 for on-site, an(t) w=2.0 for mixed models with pa-  e\,doinvariant vanishes identically as in the case of trans-
rameters as those in Figsal, 2(b), and 2c), respectively. fer, on-site, or mixed models, the effective coupling con-
stants never flow to zero with renormalization at all allowed

and a,=3TrM, and we have the equality,=a, (since frequencies of the system. It implies that the models of the

TrM,=TrM, for n=1). So we can insert the eigenvalue T.M lattice having zero pseudomvangnt support delocahze@
eigenmodes. From the above analysis we see that the vanish-

i 272\ — 22(A2Y — . . . — A2(A2) —
conditions aj(ay) =a5(ag)=---=ay(a;)=0 [see Egs. ing of the pseudoinvariant has an important role on the na-
(13)] into the Eq. (19), and geta,.,=an.,=1 and ture of the eigenmodes of the TM lattice.
Pnso(bnr2) =Chia(Cnio)=dnio(dnso) =0, giving M., At this point we would like to make the following com-

=M., ,=TI for all n=1. The transfer matriceld , andM , ments. T_hgre are s.e.veral weII—estapIished approachgs fpr
correspond to the sequenc&sandg and we can consider chgractenzmg the critical nature of eigenstates in quasiperi-
— - n T ) odic systems. One way of understanding the critical wave
Sy and S, as the building blocks for the infinite TM lattice. ynctions is the demonstration that their amplitudes do not
Thus the global transfer matrix for the infinite TM lattice tgnqg to zero at infinity, but are bounded below through the
becomes identity at the frequencies obtained from the rootgystend’. There are some approaches for characterizing the
of the equationsa(a?)=a3(a3)=---=a2(a?)=0, and extend critical eigenstaté&?? The multifractal method pro-
consequently the systems support delocalized eigenmodes.Vides  another  tool for  characterizing  critical
Fig. 4 we have plotted the amplitudes of the phonon modesigenfunctions! Now the crucial point is that in these meth-
as a function of the site indeixfor (a) transfer modelm,  ods, we need a prior knowledge about the amplitudes of the
=mg=m,=ms=1 andK =1, Ks=2 atw=2.28825,(b) wave function. But for TM lattice we have a four-
on-site model, my=2, mg=1, and K, =Ks=1 at w dimensional nonlinear trace-map relation when pseudoin-
=1.61803, andc) mixed model,my=2, mg=1, K, =1, variant does not vanish, and we have to determine the normal
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mode frequencies numerically from this trace-map relationproperties of the pseudoinvariant. In this sense, the present
This introduces error in the computation of normal modemethod is in line with the recent work by Naunfisshere the
frequencies, and consequently the normal mode amplitudesudy of Lyapunov exponents is introduced as a suitable tool

cannot be calculated with sufficient accuracy. Actually theto classify the corresponding eigenstates as extended, local-
calculations of the amplitudes become quite unstable due tRed, or critical ones.

the Cantor-set nature of the spectrum, and also due to the fact
that the error magnifies very rapidly in the case of TM lattice
as its trace map has higher dimensionality than that of the
Fibonacci lattice. So it is not possible to characterize the
critical nature of the states of TM lattice using the above- In this paper, we study in details the vibrational properties
mentioned approaches. For this reason we have characterizetithe aperiodic TM lattice using various models for the sys-
the critical nature of the modes of TM lattice in an alterna-tem. Using RSRG method we determine the trace-map rela-
tive way as discussed in the previous paragraph on the badi®n for a general model of the TM chain, and show that this
RSRG method. dynamical map has a pseudoinvariant. We observe that the

The absence of a well-suited mathematical framework t@seudoinvariant plays a key role in characterizing the nature
obtain analytical results on the behavior of random, quasipef the normal modes of the system. When pseudoinvariant
eriodic, and incommensurate systems has led to the introduganishes identically as in transfer, on-site, and mixed mod-
tion of what has been referred to as diagnostic tools byels, all eigenmodes except those corresponding to the global
Sanchezt al?® These include transmission coefficient, Lan- band edges have delocalized character. While for models
dauer resistance, Lyapunov coefficient, integrated density ofith nonzero pseudoinvariant, the eigenmodes are all critical
states, inverse participation ratio, and the multifractal analyin nature. Interestingly, we observe that the transfer, on-site,
sis of the wave-function measure. Although the informationand mixed models satisfy the same trace-map relation, and
that any one of these tools can provide isolately is not conanalysis of the trace-map relation shows that for these sys-
clusive as rigorous proof, when grouped together they catems, all eigenfrequencies are doubly degenerate except
produce quite compelling evidence about the nature of th¢hose corresponding to the global band edges. Using the
considered states. In this context our method provides arpresent RSRG procedure, the phonon density of states and
other such diagnostic tool, namely, the study of the recurrernthe Lyapunov exponents can also be calculated easily.

VI. CONCLUSIONS
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