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Vibrational properties of a general aperiodic Thue-Morse lattice:
Role of the pseudoinvariant of the trace map

Anathnath Ghosh* and S. N. Karmakar†

Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700064, India
~Received 11 May 1999!

Using the real-space renormalization group~RSRG! scheme of Ghosh and Karmakar@Phys. Rev. B58, 2586
~1998!#, we analytically determine the trace-map relation for a general spring-mass model of the aperiodic
Thue-Morse~TM! lattice, and, interestingly observe that this map has a pseudoinvariant. This pseudoinvariant
has a crucial role on the nature of the eigenmodes of this lattice. When the pseudoinvariant vanishes identi-
cally, as in the case of the on-site, transfer, or mixed model of the TM lattice, all normal modes are found to
be delocalized, whereas the eigenmodes are critical for more general models with nonzero pseudoinvariant.
Our RSRG scheme also gives the average phonon density of statesr(v) and Lyapunov exponentg(v)
~5 inverse localization length! of the eigenmodes.
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I. INTRODUCTION

The discovery of quasicrystalline order in rapid
quenched AlMn alloy1 stimulated a lot of theoretical interes
in the properties of quasiperiodic systems, specially, in
dimension. Studies of such simple model one-dimensio
systems become really meaningful after the recent adva
ments in the fabrication techniques, and it is now possible
synthesize high-quality superlattices2 arranging different
kind of films in a one-dimensional quasiperiodic orde
These materials form an intriguing new class of solids in t
their macroscopic properties have unusual features chara
istic of the quasiperiodic structure, which may be of gre
technological importance. In fact, theoretical works rev
that quasiperiodic systems have many unique properties,
the critical wave functions, Cantor-set energy spectrum, e
and the common wisdom is that these are the signature o
underlying quasiperiodic structure.

The well-studied one-dimensional quasiperiodic syste
are the Fibonacci,3–6 period-doubling,7 and Thue-Morse,8–10

etc. lattices obtained from the so-called substitutional
quences. The electronic,11 phonon,12 optical,13 etc. properties
of these lattices are very conveniently studied with the h
of the transfer matrix technique or real-space renormaliza
group method. Within the transfer matrix formalism, the d
namical trace-map technique introduced by Kohmotoet al.3

turns out to be a very efficient mathematical tool for inve
tigating the physical properties of this class of systems.
the on-site model,11 the transfer matrices form a set of re
232 unimodular matrices, and the nonlinear dynami
trace-map relation, corresponding to the quasiperiodic in
tion transformations, can be easily obtained from the unim
dular property of the transfer matrices. The major simpl
cation in the trace-map technique results from the fact th
provides a reduced dynamical system, which contains al
formation of the original physical system.

In some cases, the dimensionality of the dynamical s
tem is further reduced due to the existence of invariant
pseudoinvariant11,14 ~constant of motion! for the dynamical
PRB 610163-1829/2000/61~2!/1051~8!/$15.00
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map. But such trace-map relations are usually not known
the transfer or other general models, and the determinatio
the trace-maps become extremely difficult since the tran
matrices in general do not have the unimodular prope
Recently we10 have introduced a real-space renormalizat
group ~RSRG! technique for finding the trace-map relatio
corresponding to a very general model of any quasiperio
system, and explicitly obtained the trace-map relation fo
general Thue-Morse~TM! chain. Using this trace-map rela
tion, we have also calculated the electronic energy spect
for the TM lattice under periodic boundary conditions.

In this present paper, we study in details the vibratio
properties of a general spring-mass model12,15 for the TM
lattice using the RSRG method. We analytically observe t
the trace map for this general aperiodic TM chain has
pseudoinvariant, and it has an important role on the natur
the eigenmodes of this system. We see that the models
which the pseudoinvariant vanishes support only delocali
eigenmodes, whereas for other cases the states are cr
As an example, all the eigenmodes are delocalized for
on-site, transfer, and mixed models~see text below! of the
TM lattice. Axel et al.16 studied the phonon properties of th
TM lattice only for the on-site model. However, for unde
standing the physical properties of real systems, it is nec
sary to consider much more general models for the syst
and it is then possible to verify theoretical predictions ab
the phonon properties of the lattice~see Ref. 17! by measur-
ing the x-ray or neutron diffraction patterns from the T
superlattices. In this work we investigate the nature of
eigenmodes, phonon spectrum, density of states, and lo
ization behavior of the modes for various models of the T
lattice.

This paper has been organized as follows. In the n
section we describe the general model of the TM lattice, a
also outline the standard transfer matrix formalism for det
mining the trace-map relation. In Sec. III, we briefly intro
duce the RSRG decimation procedure for finding the tra
map relation for the general model of this system, and sh
that the dynamical map has a pseudoinvariant. In the follo
ing section we study the phonon spectrum by trace-m
1051 ©2000 The American Physical Society
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FIG. 1. Section of a Thue-Morse chain illustrating decimation technique.
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technique, and also determine the phonon density of st
using the RSRG method. In Sec. V, we analyze the natur
the eigenmodes and then calculate the localization len
j(v) of the eigenmodes. Finally we conclude in Sec. VI.

II. THE MODEL AND TRACE MAP BY TRANSFER
MATRIX FORMALISM

We describe the classical vibrations of the TM lattice
the usual spring-mass model15 with nearest-neighbor cou
pling, and the equations of motion are given by

e iui5Ki ,i 11ui 111Ki ,i 21ui 21 , ~1!

where e i5Ki ,i 111Ki ,i 212miv
2, Ki ,i 61’s are spring con-

stants,mi ’s are the atomic masses, andui ’s denote ampli-
tudes of vibrations,i being the site index. The transfer mod
is obtained when allmi ’s are equal andKi ’s are eitherKL or
KS arranged in TM sequence. For the well-known on-s
model,Ki ,i 61’s are all equal, andmi ’s take two valuesMA or
MB such that TM aperiodicity is preserved among the
Mixed model is a combination of the above two models,
which both the spring constants and atomic masses ar
multaneously arranged according to the TM sequence.

Now we introduce the general model for the TM lattice
follows. The TM sequence can be constructed from t
symbolsA andB by the inflation rulesA→AB andB→BA
starting with the symbolA(B). Also we can generate it by
the stacking rulesSn115SnS̄n and S̄n115S̄nSn with S05A

and S̄05B. The sequenceS̄n is the complement ofSn ob-
tained by interchangingA andB in Sn . So according to these
rules, the first few generations of the TM sequence areS0
5A, S15AB, S25ABBA, S35ABBABAAB, etc. Simi-
larly, S̄05B, S̄15BA, S̄25BAAB, S̄35BAABABBA, etc.
are the complementary sequences. Clearly thenth generation
sequenceSn(S̄n) contains total 2n number of symbols. We
can represent the symbolsA andB as long~L! and short~S!
bonds in a lattice, and build the TM chain by arranging the
two types of bonds L and S in TM order. A portion of th
TM chain is displayed in Fig. 1. In the Thue-Morse chain w
can identify four types of sitesa, b, g, andd corresponding
to the lattice points flanked byLL, LS, SL, andSSbonds,
respectively~see Fig. 1!. Now we define the general spring
mass model for the TM lattice by four types of massesma ,
mb , mg , andmd corresponding toa, b, g, andd sites of
the lattice, respectively, and by two spring constantsKL and
KS for the long and short bonds, respectively. The on-s
transfer, and mixed models are the special cases of this
eral models, and can be obtained by setting~i! ma5mb
es
of
th

e

.

si-

o

e

,
n-

5mg5md5m and KLÞKS for transfer model,~ii ! ma5mg
5mA , mb5md5mB andKL5KS5K for on-site model, and
~iii ! ma5mg5mA , mb5md5mB , and KLÞKS for mixed
model.

Now first we briefly describe how the trace-map relati
for the on-site model can be obtained by transfer ma
method, and then indicate what are the difficulties for findi
the trace-map relation of the general model by this meth
If Mn(M̄n) denotes the global transfer matrix for thenth
generation TM sequenceSn(S̄n), then for on-site model
Mn’s can be expressed in terms of two basic transfer ma
ces MA and MB corresponding toA and B atoms in the
lattice. The matricesMA and MB are unimodular, and we
have

MA5S eA 21

1 0 D and MB5S eB 21

1 0 D ,

whereeA(B)52K2mA(B)v
2 andKL5KS5K. So for on-site

model, the global transfer matricesM05MA , M1
5MBMA , M25MAMBMBMA , etc. are also unimodular
and they satisfy the following recursion relations:

Mn115M̄nMn and M̄n115MnM̄n for n>0.

~2!

The trace-map relation for on-site model can be ea
found from the above recursion relations using the unimo
lar property ofMn’s, and it is given by18

an1354an11
2 ~an1221!11 for n>0, ~3!

wherean5 1
2 Tr Mn5 1

2 Tr M̄n .
As in the electronic case, the global transfer matric

Mn’s for the general spring-mass model of the TM latti
can be expressed in terms of the following four basic trans
matrices,10

l l 5S ea

KL
21

1 0
D , ls5S eb

KS
2

KL

KS

1 0
D ,

sl5S eg

KL
2

KS

KL

1 0
D , ss5S ed

KS
21

1 0
D , ~4!
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PRB 61 1053VIBRATIONAL PROPERTIES OF A GENERAL . . .
where ea52KL2mav2, eb5KL1KS2mbv2, eg5KL
1KS2mgv2, anded52KS2mdv2. Under Born–von Kar-
man boundary conditions, the first few global transfer ma
ces for the general model are

M05 l l ,

M15sl.ls,

M25 l l .sl.ss.ls,

M35sl.ls.l l .sl.ls.sl.ss.ls, ~5!

A,

while M̄n can be obtained fromMn by interchangings andl.
In Ref. 10 we have shown that for general model of the T
lattice, the global transfer matrices satisfy the followi
complex recursion relations:

Mn115N̄nNn , Nn115M̄nNn ,

M̄n115NnN̄n , N̄n115MnN̄n , ~6!

for n>0. The auxiliary transfer matricesNn and N̄n can be
generated successively starting fromN05 ls andN̄05sl ap-
plying the matrix transformations

l l →sl.ls, ls→ss.ls,

sl→ l l .sl, ss→ ls.sl. ~7!

The matricesMn andM̄n are unimodular, butNn andN̄n are
not unimodular. Now it is not known how one should pr
ceed from the recursion relations~6! in order to find the
trace-map relation for the general model of the TM lattic
One faces the same difficulty also for the transfer and mi
models as the global transfer matrices for these syst
again satisfy recursion relations of the form~6!.

III. TRACE MAP BY RSRG METHOD: PRESENCE
OF PSEUDOINVARIANT

In this section we calculate the trace-map relation for
general spring-mass model of the TM lattice using RS
technique already developed in Ref. 10. Our RSRG deci
tion scheme corresponds to the deflation transformat
LS→L, SL→S, and it ensures that the renormalized latti
also has the TM symmetry. We illustrate this decimati
scheme in Fig. 1. Under decimation Eqs.~1! get renormal-
ized and the parameters of the general model satisfy the
lowing recursion relations:

ea85eg2vb~KL
21KS

2!,

eb85ed2KS
2~vb1vg!,

eg85ea2KL
2~vg1vb!,

ed85eb2vg~KL
21KS

2!,

KL85KLKSvb , KS85KLKSvg , ~8!
i-

.
d
s

e

a-
s

l-

where ea52KL2mav2, eb5KL1KS2mbv2, eg5KL
1KS2mgv2, ed52KS2mdv2, andv i51/e i with i 5a, b,
g or d.

Now we introduce five quantitiesWn5ea
(n)/KL

(n) , Xn

5eb
(n)/KL

(n) , Yn5eg
(n)/KL

(n) , Zn5ed
(n)/KL

(n) , and Rn

5KS
(n)/KL

(n) , where the superscriptn denotes the stage o
renormalization withn50 as the initial system. Then we ca
recast the above recursion relations into the following for

Wn115~XnYn212Rn
2!/Rn ,

Xn115~XnYnZn2XnRn
22YnRn

2!/~YnRn!,

Yn115~WnXnYn2Yn2Xn!/~RnYn!,

Zn115Rn11Wn11 ,

Rn115Xn /Yn . ~9!

In Ref. 10 we have shown thatWn5TrMn , and using
Eqs. ~9! the trace-map relation for the general model of t
TM lattice can be written as

Wn135Wn11
2 ~Wn1222!121I n11 , ~10!

where

I n115
~11Rn11!Wn11@Wn11~11Rn11!2Xn112Yn11#

Rn11
,

~11!

for n>0. The trace-map relation Eq.~10! is equivalent to the
original relation~8! or ~9!, and it contains all the information
about the dynamics of the general TM lattice. Interesting
we see that this map has a pseudoinvariant14 given by

Jn115
Wn11~11Rn11!2Xn112Yn11

Rn11
, ~12!

as it transforms likeJn1152YnJn under renormalization.
Thus if Jn vanishes at some stage of iteration, it will rema
zero in all subsequent higher generations. This tells us th
I n50 for some value ofn, then it will remain zero for all
higher values ofn. As an example, the pseudoinvariantJn11
vanishes forn>0 in the case of transfer, on-site, and mix
models. So we haveI n1150 (n>0) for these three model
of the TM lattice, and puttingan5Wn/2 in Eq. ~10! we get
Eq. ~3! as the trace-map relation for them, the initial cond
tions being different in each case.

Let us now study the behavior of the pseudoinvariant E
~12!. The notion of the pseudoinvariant used here is not si
lar to that of Kolar and Ali.14 They introduced the notion o
pseudoinvariant as a recurrent expression that transform
Jn1154Yn

2Jn , so that non-negativeJn remains non-negative
and nonpositiveJn remains nonpositive, while its magnitud
may vary with n. On the other hand, we have taken t
transformation relationI n115I n corresponding to an invari
ant quantityI ([I n) of a map as our starting point~see Refs.
3 and 11! and termed it as pseudoinvariant when the rig
hand side of this equation is multiplied by somen-dependent
quantity. In this sense Eq.~12! defines a pseudoinvariant fo
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the map Eq.~9!. Thus unlike the invariantI, the pseudoin-
variantJn is not a constant of motion for the map. It implie
thatJn5 const defines a manifold, which evolves with iter
tion, excepting the caseJn50. The trace-map relation Eq
~9! of TM lattice is a four-dimensional map, and from th
recursion relation forJn , it follows thatJn50 determines a
three-dimensional invariant manifold in this space. The
bits of the map remain on this manifold and nonescap
orbits determine the eigenvalues of the system. Now we
amine what are the situations for whichJn vanishes. We see
that

J05H v2~mB2mA!/K for on-site model

mv2~1/KS21/KL! for transfer model

v2~mB /KS2mA /KL! for mixed model,

and the above expressions for the pseudoinvariant are
similar to those for the invariantI of the quasiperiodic Fi-
bonacci lattice.11 Like the invariantI for the Fibonacci lat-
tice, the pseudoinvariantJ0 also vanishes for the simple pe
riodic model, and solutions are extended states which ca
obtained rather trivially. There are some studies19 that show
that if the invariant vanishes for any quasiperiodic mod
then the system may support delocalized states. For on-
transfer, and mixed models of the TM lattice, we obse
that though the pseudoinvariantJ0Þ0, all other Jn’s (n
51, 2, 3, . . . ,etc.! are identically zero. So we expect th
these systems may support delocalized modes, and in Se
we actually prove that all eigenmodes are delocalized
transfer, on-site, and mixed models of the TM lattice.

From an extensive search, it is evident that most of
choices of the parametersma , mb , mg , md , KL , and KS
give J0Þ0, J15J25•••50, and these models of the TM
lattice also support delocalized modes. However, there
some models for which the pseudoinvariants do not van
and we numerically observe that the eigenmodes are cri
in these cases. For these cases, the trace dynamics are
complex, and we found that the use of the original RSR
Eqs.~8! is much more convenient for characterizing the n
ture of the states, which we shall discuss in Sec. V.

IV. PHONON SPECTRUM AND DENSITY OF STATES

A. Phonon spectrum

Let us now describe how the allowed frequencies10,16 of
the TM lattice can be determined from the trace-map re
tion. For Born–von Karman boundary condition, the allow
eigenfrequencies for thenth generation TM lattice can b
obtained from the equationan51. This relation determines
all the 2n eigenfrequencies of thenth generation chain con
sisting of 2n atoms, and in general this equation has to
solved numerically. However, for transfer, on-site, or mix
model, the trace-map relation has a simple form Eq.~3!, and
it gives a lot of information about the phonon spectrum.
can be shown that the eigenvalue conditionan51 is equiva-
lent to the set of equations,10

a1
25a2

25•••50 and a22150. ~13!

We have to set the initial valuesa1 and a2 appropriately
corresponding to transfer, on-site, and mixed models of
-
g
x-

ry

be

l,
te,
e
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e
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h
al
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-

-

e
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e

system, and these values are~i! for transfer model:a1

5(eb(g)
2 2KL

22KS
2)/(2KLKS) and a25@eaeb

2ed22ebedKL
2

22eaebKS
2#/(2KL

2KS
2)11, whereeb5eg5KL1KS2mv2,

ea52KL2mv2, ed52KS2mv2, ~ii ! for on-site model:a1

5(eAeB22K2)/(2K2) and a25@eA
2eB

22K2(eA1eB)2#/
(2K4)11, where eA52K2mAv2 , eB52K2mBv2 , and
~iii ! for mixed model: a15(egeb2KS

22KL
2)/(2KLKS)

and a25@eaebeged2(ebed1eged)KL
22(eaeb1eaeg)KS

2#/
(2KL

2KS
2)11, where ea52KL2mAv2, eb5KL1KS

2mBv2, eg5KL1KS2mAv2, ed52KS2mBv2. The equa-
tion a22150 actually determines the global band edg
For some specific choice of the parameters, the global b
edges are situated at~i! v250, 2.438 45, 3.0, and 6.561 5
for transfer model with parametersmA5mB51, KL51,
KS52, ~ii ! v250, 1.219 22, 1.5, and 3.280 78 for on-si
model with mA52, mB51, KL5KS51, and ~iii ! v2

50, 1.379 66, 2.205 91, and 5.91443 for mixed model w
mA52, mB51, KL51, KS52. It is apparent from Eqs.~13!
that apart from the global band edges, all other eigenfrequ
cies are doubly degenerate. The hierarchical nature of
trace-map relation Eq.~3! also suggests that the eigenfr
quencies of thenth generation chain remain as eigenfreque
cies in all the succeeding higher generation chains, and c
sequently they also belong to the spectrum of the infinite T
lattice. In Figs. 2~a!, 2~b! and 2~c!, we have plotted the al-
lowed frequencies for transfer, on-site, and mixed mod
respectively, for various generations of the TM lattice. The
figures clearly show that for any given model, the positio
of the global band edges remain unaltered with system s
and also higher generation chains contain all the frequen
of every lower generation chains.

The above kind of analysis about the frequency spectr
is not possible for more general model of the TM latti
having nonzero pseudoinvariant. The allowed frequenc
can be found numerically by solving the eigenvalue con
tion Wn52, and the presence of non-trivial termI n11 in the
trace map Eq.~10! indicates that the positions of the glob
band edges for any arbitrary generation chain are differ
from those of other generation chains. Also there is in g
eral no normal mode frequency that is common to ev
generation TM lattice. The spectrum for the general mo
do not contain any degenerate level. To illustrate all th
behaviors of the phonon spectrum of general model, we t
the parameters asma52, mb51, mg51.77,md51.33,KL
51, andKS51.7, in which caseJnÞ0, and in Fig. 2~d! we
plot the allowed frequencies with generation indexn. Thus
we see that the nature of the phonon spectrum for the gen
model of the TM lattice is quite different from the spectra f
transfer, on-site, and mixed models. In fact, the spectral
havior of the general model of the TM lattice is somewh
similar to those of other quasiperiodic systems, like the
bonacci chain.

B. Phonon density of states

We now calculate the density of phonon modes for
TM lattice using RSRG scheme presented in Sec. III. Fo
system corresponding to Eq.~1!, the equations of motion for
the single-particle Green’s functions are given by
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FIG. 2. Plot of allowed frequenciesv for various generationsn for ~a! transfer model,ma5mb5mg5md51, KS /KL52, ~b! on-site
model,ma5mg52, mb5md51, KL5KS51, ~c! mixed model,ma5mg52, mb5md51, KS /KL52, and~d! general model,ma52,
mb51, mg51.77, md51.33, KL51, KS51.7.
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e iGi j ~v!52d i j 1Ki ,i 11Gi 11 j~v!1Ki ,i 21Gi 21 j~v!,

~14!

where e i5Ki ,i 111Ki ,i 212miv
12 and v15v1 i01. The

local density of states can be obtained from the relation

r i~v!52
1

p
Im@Gii ~v1!#. ~15!

If we renormalize the set of Eqs.~14! using the RSRG
scheme of Sec. III, the recursion relations for the parame
again satisfy Eqs.~8! provided we replacev→v1. The
imaginary part ofv1 ensures that the coupling constantsKL
and KS flow to zero under renormalization ande ’s attain
fixed point valuese* ’s. Then the site-diagonal Green’s fun
tions can be easily computed from Eq.~14! and the average
density of states can be expressed as

r~v!5
1

p
Im F xa

ea*
1

xb

eb*
1

xg

eg*
1

xd

ed*
G , ~16!

wherexm is concentration ofmth-type site in the TM lattice,
m being eithera, b, g or d.

In Figs. 3~a!, 3~b!, 3~c!, and 3~d!, we have plottedr(v) as
a function ofv, respectively, for transfer, on-site, mixed an
general models of the TM lattice. For numerical calculatio
we choose the parameter as those in Fig. 2. It is appa
from Figs. 3~a!, 3~b!, and 3~c! that the global bands for trans
fer, on-site, and mixed models are confined within the reg
as determined by the conditiona251. We see from Figs
3~a!, 3~b!, 3~c!, and 3~d! that the low-frequency regions o
these curves are almost identical. This is due to the fact
the low-frequency region corresponds to long-wavelen
continuum limit, and in this region phonon density of sta
rs

,
nt

n

at
h
s

becomes a smooth function of the frequencyv. For the sake
of comparison, we have also plotted the phonon density
states~dotted curve! for periodic systemma5mb5mg5md
51, KL5KS51. However, in other frequency regions, th
curves have very spiky structures, and the spectra are hi
fragmented. Thus the vibrational properties of the TM latt
are similar to other quasiperiodic systems, and in this se
the aperiodic TM lattice behaves normally. On the oth
hand, we see that the eigenmodes are extended rather
critical for transfer, on-site, and mixed models, while in ca
of general model with nonvanishing pseudoinvariant
eigenmodes are critical.

V. NATURE OF THE EIGENMODES FOR TRANSFER,
ON-SITE, AND MIXED MODELS

In order to study the nature of the eigenmodes for tra
fer, on-site, and mixed models of the TM lattice in details,
us first start from the global transfer matricesMn and M̄n ,
and the auxiliary matricesNn andN̄n . These matrices can b
written as

Nn5anP1bnsx1gnsy1dnsz ,

N̄n5ānP1b̄nsx1ḡnsy1 d̄nsz ,

Mn5anP1bnsx1cnsy1dnsz ,

M̄n5ānP1b̄nsx1 c̄nsy1d̄nsz , ~17!

where sx , sy , sz are 232 Pauli matrices,P is a 232
identity matrix. The parametersOn’s (O5a,b,g,d,a,b,c,
and d) satisfy, respectively, the following recursion rel
tions:
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FIG. 3. Plot ofr(v) vs v for ~a! transfer,~b! on-site,~c! mixed, and~d! general models with parameters as those in Fig. 2.
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an115ānan1d̄ndn1b̄nbn1 c̄ngn ,

bn115b̄nan1ānbn1 i ~ c̄ndn2d̄ngn!,

gn115āngn1 c̄nan1 i ~ d̄nbn2b̄ndn!,

dn115āndn1d̄nan1 i ~ b̄ngn2 c̄nbn!,

an115ānan1 d̄ndn1b̄nbn1ḡngn ,

bn115bnān1b̄nan1 i ~ ḡndn2gnd̄n!,

cn115gnān1ḡnan1 i ~bnd̄n2b̄ndn!,

dn115āndn1 d̄nan1 i ~ b̄ngn2ḡnbn!, ~18!

with

a0~ ā0!5d0~ d̄0!5eb/2KS~eg/2KL!,

b0~ b̄0!5~KS2KL!/2KS@~KL2KS!/2KL#,

g0~ ḡ0!52~ i /2!~KL1KS!/KS@2~ i /2!~KL1KS!/KL#,

a0~ ā0!5d0~ d̄0!5ea /2KL~ed/2KS!,

b0~ b̄0!50 and c0~ c̄0!52 i .

The recursion relations for the parametersŌn’s can be ob-
tained from Eqs.~18! by replacingO→Ō and Ō→O in
these equations.

The recursion relations for the parameters have a q
complex structure for the general case. Interestingly, we
serve that these relations get simplified when we impose
te
b-
e

restrictions on the parameters corresponding to transfer,
site, or mixed models of the TM lattices. These restrictio
are ~i! ma5mg5mA , mb5md5mB , and KL5KS for on-
site model,~ii ! ma5mb5mg5md and KLÞKS for transfer
model, and ~iii ! ma5mg5mA , mb5md5mB , and KL
ÞKS for mixed model. Then we can treat these three ca
on a common footing, and the recursion relations for
parameters of the global transfer matricesMn and M̄n be-
come identical in form. After some lengthy algebra, we c
express them into the following compact form:

an12511an
2f n

(a) ,

ān12511ān
2 f̄ n

(a) ,

bn125anf n
(b) ,

b̄n125ān f̄ n
(b) ,

cn125anf n
(c) ,

c̄n125ān f̄ n
(c) ,

dn125anf n
(d) ,

d̄n125ān f̄ n
(d) for n>1, ~19!

where f n
(a)( f̄ n

(a)), f n
(b)( f̄ n

(b)), f n
(c)( f̄ n

(c)), and f n
(d)( f̄ n

(d)) are

functions of On’s and Ōn’s (O5a,b,g,d,a,b,c, and d).
The explicit expression forf n

(a) and f̄ n
(a) are f n

(a)54(an11

21) and f̄ n
(a)54(ān1121), and the analytic expression fo

other f ’s can be easily calculated. Now we can identify t
parametersan and ān in Eq. ~19! as the tracesan5 1

2 TrMn
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and ān5 1
2 TrM̄n and we have the equalityan5ān ~since

TrMn5TrM̄n for n>1). So we can insert the eigenvalu
conditions a1

2(ā1
2)5a2

2(ā2
2)5•••5an

2(ān
2)50 @see Eqs.

~13!# into the Eq. ~19!, and get an125ān1251 and
bn12(b̄n12)5cn12( c̄n12)5dn12(d̄n12)50, giving Mn12

5M̄n125P for all n>1. The transfer matricesMn andM̄n

correspond to the sequencesSn andS̄n , and we can conside
Sn and S̄n as the building blocks for the infinite TM lattice
Thus the global transfer matrix for the infinite TM lattic
becomes identity at the frequencies obtained from the ro
of the equationsa1

2(ā1
2)5a2

2(ā2
2)5•••5an

2(ān
2)50, and

consequently the systems support delocalized eigenmode
Fig. 4 we have plotted the amplitudes of the phonon mo
as a function of the site indexi for ~a! transfer model,ma
5mb5mg5md51 andKL51, KS52 at v52.288 25,~b!
on-site model, mA52, mB51, and KL5KS51 at v
51.618 03, and~c! mixed model,mA52, mB51, KL51,

FIG. 4. Plot of uui u vs i at ~a! v52.288 25 for transfer,~b! v
51.618 03 for on-site, and~c! v52.0 for mixed models with pa-
rameters as those in Figs. 2~a!, 2~b!, and 2~c!, respectively.
ts

. In
s

KS52 at v52. These figures clearly indicate the deloca
ized nature of the vibrational modes for the transfer, on-s
and mixed models of the TM lattice. But at the global ba
edges we havea22150, and at these frequencies the m
trices Mn and M̄n no longer become identity matrix. W
observe numerically that at the global band edges, the
plitudesuN behaves as;N (N being the system size!.

Alternatively, the study of the localization behavior of th
modes also gives information about the nature of the sta
The Lyapunov exponentg(v), being the inverse of the lo
calization lengthj(v), can be easily calculated from ou
RSRG scheme, and it can be expressed as20

g~v!5Ltn→`F 1

2n
lnUKS

(n)UG , ~20!

where KS
(n) is the nth renormalized value of the spring

constantKS . It is to be noted that the value ofg(v) is quite
independent of the choice ofKL

(n) or KS
(n) , since both of them

attain fixed point values in the limitn→` and hence they
carry the same information about the system.

We notice that the Lyapunov exponent always vanis
precisely at all allowed normal mode frequencies of the s
tem corresponding to any model of the TM lattice. So t
localization length is infinity for any arbitrary model of th
TM lattice. It means that the vibrations are not confin
within any finite region of the lattice, and the modes shou
have extended character. However, a careful study of
flow pattern of the effective coupling constants with reno
malization shows that the models with zero pseudoinvar
behave quite differently from those having nonzero pseu
invariant. We see that the effective coupling constants
ways flow to zero under renormalization for systems w
nonzero pseudoinvariant. But from a physical point of vie
the effective coupling constants should never flow to zero
renormalization for delocalized modes. This clearly sho
that the states are neither localized nor extended for mo
with nonzero pseudoinvariant, and obviously the eigenmo
are critical in these cases. On the other hand, when
pseudoinvariant vanishes identically as in the case of tra
fer, on-site, or mixed models, the effective coupling co
stants never flow to zero with renormalization at all allow
frequencies of the system. It implies that the models of
TM lattice having zero pseudoinvariant support delocaliz
eigenmodes. From the above analysis we see that the va
ing of the pseudoinvariant has an important role on the
ture of the eigenmodes of the TM lattice.

At this point we would like to make the following com
ments. There are several well-established approaches
characterizing the critical nature of eigenstates in quasip
odic systems. One way of understanding the critical wa
functions is the demonstration that their amplitudes do
tend to zero at infinity, but are bounded below through
system21. There are some approaches for characterizing
extend critical eigenstates.19,22 The multifractal method pro-
vides another tool for characterizing critica
eigenfunctions.11 Now the crucial point is that in these meth
ods, we need a prior knowledge about the amplitudes of
wave function. But for TM lattice we have a four
dimensional nonlinear trace-map relation when pseudo
variant does not vanish, and we have to determine the nor
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mode frequencies numerically from this trace-map relatio
This introduces error in the computation of normal mod
frequencies, and consequently the normal mode amplitu
cannot be calculated with sufficient accuracy. Actually th
calculations of the amplitudes become quite unstable due
the Cantor-set nature of the spectrum, and also due to the
that the error magnifies very rapidly in the case of TM lattic
as its trace map has higher dimensionality than that of t
Fibonacci lattice. So it is not possible to characterize t
critical nature of the states of TM lattice using the abov
mentioned approaches. For this reason we have character
the critical nature of the modes of TM lattice in an alterna
tive way as discussed in the previous paragraph on the b
RSRG method.

The absence of a well-suited mathematical framework
obtain analytical results on the behavior of random, quas
eriodic, and incommensurate systems has led to the introd
tion of what has been referred to as diagnostic tools
Sanchezet al.23 These include transmission coefficient, Lan
dauer resistance, Lyapunov coefficient, integrated density
states, inverse participation ratio, and the multifractal ana
sis of the wave-function measure. Although the informatio
that any one of these tools can provide isolately is not co
clusive as rigorous proof, when grouped together they c
produce quite compelling evidence about the nature of t
considered states. In this context our method provides
other such diagnostic tool, namely, the study of the recurre
t
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properties of the pseudoinvariant. In this sense, the pres
method is in line with the recent work by Naumis,6 where the
study of Lyapunov exponents is introduced as a suitable t
to classify the corresponding eigenstates as extended, lo
ized, or critical ones.

VI. CONCLUSIONS

In this paper, we study in details the vibrational properti
of the aperiodic TM lattice using various models for the sy
tem. Using RSRG method we determine the trace-map re
tion for a general model of the TM chain, and show that th
dynamical map has a pseudoinvariant. We observe that
pseudoinvariant plays a key role in characterizing the natu
of the normal modes of the system. When pseudoinvari
vanishes identically as in transfer, on-site, and mixed mo
els, all eigenmodes except those corresponding to the glo
band edges have delocalized character. While for mod
with nonzero pseudoinvariant, the eigenmodes are all criti
in nature. Interestingly, we observe that the transfer, on-s
and mixed models satisfy the same trace-map relation, a
analysis of the trace-map relation shows that for these s
tems, all eigenfrequencies are doubly degenerate exc
those corresponding to the global band edges. Using
present RSRG procedure, the phonon density of states
the Lyapunov exponents can also be calculated easily.
B
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