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Particle-in-a-box model of one-dimensional excitons in conjugated polymers
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A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly
computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as
an electron-hole pair interacting via Coulomb forces and confined to the polymer backbone by rigid walls.
Furthermore, by integrating out the transverse part, the two-particle equation is reduced to one-dimensional
form. It is demonstrated how essentially exact solutions are obtained in the cases of short and long conjugation
length, respectively. From a linear combination of these cases an approximate solution for the general case is
obtained. As an application of the model the influence of a static electric field on the electron-hole overlap
integral and exciton energy is considered.
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I. INTRODUCTION

The optical properties of conjugated polymers are of c
siderable interest for basic science as well as applicati
Both electroluminescence1 and optically pumped lasing2 has
been demonstrated in these materials. The conjugated p
mers owe their unique optical qualities to the existence
extremely long-ranged electronic excitations extending
herently over several monomer units. The excitation ener
of these so-called one-dimensional excitons are typically
the visible range. Moreover, due to their large spatial exte
these excitations can have extremely large oscilla
strengths, which lead to efficient coupling to optic
fields.

Several experimental techniques are available for stu
of conjugated polymers. The spectrum of excitations is ty
cally deduced from various spectroscopic measurem
such as absorption,3 photoluminescence4 and
electro-absorption.5 In addition, photoconductivity6 is used
as a probe of the dynamic properties of electron-hole pa
Theoretically, the level structure of conjugated polymers
been calculated using the collective electronic oscilla
~CEO! approach7 or a Green’s function technique.8 The ab
initio and semiempirical methods that are otherwise f
quently applied in quantum chemistry calculations are
suitable for conjugated polymers due to the size of the m
ecules. In the case of semiempirical methods it is mainly
size of the configuration interaction matrix, which sets
upper limit on the complexity of the molecule. Hence, su
cient accuracy is only retained for relatively small system
Unfortunately, the CEO and Green’s function approac
also suffer from certain restrictions. The CEO model n
glects configuration interaction at the expense of introduc
a ‘‘screening’’ parameter, which reduces the repuls
electron-electron interaction in order to make calculated
ergies agree with experiment.7 Moreover, this method is stil
rather computationally demanding for large structures. T
Green’s function technique, on the other hand, is well su
for structures with infinite periodicity, e.g., infinitely lon
polymer chains. The properties of real polymers, howev
may depend on the finite average electron delocaliza
PRB 610163-1829/2000/61~15!/10504~7!/$15.00
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length ~conjugation length!. This has been demonstrate
,for instance, in recent photoconductivity experiments6,9

In these studies, the minimum electric field needed for ex
ton dissociation was found to be directly related to the c
jugation length~approximately 65 Å!. Hence, the infinite
chain assumption cannot be made in the interesting cas
long but finite conjugation length~approximately 50–100
Å!.

In this paper, we present a highly simplified on
dimensional model of excitons in finite-length conjugat
polymers. The electron-hole pair is simply assumed to
spatially confined to a box of dimensionsa3b3 l as illus-
trated in Fig. 1. The characteristic length scale of t
electron-hole Coulomb attraction is given by the effecti
Bohr radiusaB , which in the three-dimensional case is give
by aB

3D54p««0\2/(me2), where« is the relative static di-
electric constant andm is the reduced mass. More general
we can defineaB as the fulle21 width of the square of the
free exciton wavefunction. Hence, the physical meaning
aB is clear: When confined to a region of dimension 1!aB
the wave function is severely distorted by the boundaries
so Coulomb effects are small perturbations. Conversely
l @aB the wavefunction is essentially that of a free excit
and now boundary effects are small perturbations. Hen
assumingaB to be significantly larger than the side lengthsa
andb will allow us completely neglect the influence of Cou
lomb effects on the transverse behavior of the exciton
follows that we may integrate out the dependence of
exciton wavefunction on the transverse coordinates. The

FIG. 1. Geometry of the box potential confining the excito
The actual molecular potential is replaced by infinite barriers at
walls of a box of dimensionsa3b3 l .
10 504 ©2000 The American Physical Society
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sulting one-dimensional two-particle equation can be sol
exactly in the limit of extremely long conjugation lengthl
@aB) by a separation of relative and center-of-mass mot
~quasifree limit!. On the other hand, short conjugation leng
polymers (l<aB) can be accurately treated within the Ha
tree approximation since the effect of confinement domina
over electron-hole interaction. The Hartree approximat
applied to the two-particle wave function leads to a sim
one-dimensional nonlinear integral Schro¨dinger equation,
which can subsequently be solved numerically. Hence,
possible to obtain essentially exact solutions in the case
short and extremely long conjugation length. Finally, in o
der to bridge the gap between these cases we form a li
superposition between the quasifree and the Hartree s
tions. The solution obtained by minimizing the exciton e
ergy then represents a highly accurate approximation for
exciton wave function, which is valid for all values ofl. We
apply our theory to study the effects of a static electric fi
and, as an example, the exciton energy and electron-
overlap integral are calculated as a function of field streng

II. THEORY

Our treatment will be restricted to confinement of ex
tons in a box of dimensionsa3b3 l for which the walls are
taken to be infinite barriers. This type of model has pre
ously been applied to electrons in smaller conjuga
molecules10 for which Coulomb effects can be neglected.
the present case of large molecules with dimensions com
rable to the effective Bohr radius, the Coulomb interaction
in fact, essential as will be demonstrated below. The exc
wavefunction is denotedC(rWe ,rWh), whererWe andrWh are elec-
tron and hole positions, respectively. We apply a coordin
system in which thex andy axes coincide with thea andb
sides of the box and thez axis is directed alongl, i.e., the
length of the polymer chain. For the region inside the bou
of the box the Schro¨dinger equation is identical to that of
free exciton in an infinite medium

H 2
\2

2m* ~¹e
21¹h

2!1eFze2eFzh2
e2

4p««0urWe2rWhu
1Eg

3D

2EehJ C~rWe ,rWh!50. ~1!

In this expression,Eeh is the exciton energy-eigenvalue,Eg
3D

is the bare three-dimensional~3D! energy gap,« is the rela-
tive static dielectric constant and identical effective mas
m* of electrons and holes have been assumed for simplic
In addition, a static electric field of magnitudeF directed
along the chain axis has been included. In the presence o
confinement the motion of the exciton is restricted to
volume of the box and, hence, the wave function is subjec
the boundary condition

C~rWe ,rWh!50,

if uxeuoruxhu5a/2,uyeuoruyhu5b/2,uzeuoruzhu5 l /2. ~2!

Now, in the caseaB@a,b the Coulomb attraction has a ne
ligible effect on the transverse behavior of the exciton wa
function. Hence,C(rWe ,rWh) is approximately given by
d
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C~rWe ,rWh!'fa~xe!fa~xh!fb~ye!fb~yh!c~ze ,zh!, ~3!

where fa and fb are simple particle-in-a-box wave func
tions given by

fa~x!5S 2

aD 1/2

cosS px

a D , fb~y!5S 2

bD 1/2

cosS py

b D . ~4!

The three-dimensional two-particle Schro¨dinger equation can
now be reduced to a relatively simple one-dimensional eq
tion by integrating out the transverse coordinates in anal
to similar calculations carried out for excitons in semico
ductor quantum wires.11 As a result the electron-hole pa
interacts via an effective one-dimensional Coulomb poten
given by

V~ze ,zh!5
2e2

4p««0
E

2a/2

a/2 E
2a/2

a/2 E
2b/2

b/2 E
2b/2

b/2

3
ufa~xe!fa~xh!fb~ye!fb~yh!u2

A~xe2xh!21~ye2yh!21~ze2zh!2

3dyedyhdxedxh

[
2e2

4p««0
C~ze2zh!, ~5!

whereC(z) denotes the Coulomb function given by the i
tegral above. By introducing sum and difference coordina
the integral may be reduced to

C~z!5E
0

1E
0

1 f ~x! f ~y!

Aa2x21b2y21z2
dxdy, ~6!

with f (w) given as

f ~w!5~12w!@21cos~2pw!#1
3

2p
sin~2pw!. ~7!

We have not been able to evaluate the integral Eq.~6! ana-
lytically. However, it is found that an excellent approxim
tion is given by the expression

C~z!5
1

uzu $12exp~2puzu!%2quzuexp~2puzu!. ~8!

In the symmetric casea5b the values p5C(0)
54.75886/a andq'2.81/a2 ~fitted! can be used. A numbe
of examples are shown in Fig. 2. Naturally, the effecti
potential is considerably softer than the bare on
dimensional Coulomb potential;1/uzu, which is obtained in
the limit p→`. It is interesting to note that the bare potent
leads to unphysical results such as delta-function locali
states and divergent eigenvalues, as shown by Loudo12

These problems are eliminated through the use of the so
effective potential. The resulting one-dimensional tw
particle Schro¨dinger equation is now of the form (H1D
2Eeh)c(ze ,zh)50, where the 1D HamiltonianH1D reads as

H1D52
\2

2m* S d2

dze
2 1

d2

dzh
2D 1eFze2eFzh2

e2

4p««0

3C~ze2zh!1Eg . ~9!
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10 506 PRB 61PEDERSEN, JOHANSEN, AND PEDERSEN
In addition, it is understood that the wavefunction is subj
to the boundary conditions

c~6 l /2,zh!5c~ze ,6 l /2!50 ~10!

due to the infinite barriers at the chain ends. The energy
Eg is Eq. ~9! is the ‘‘renormalized’’ 1D value given byEg

5Eg
3D1p2\2/2m* (1/a211/b2). We will now turn to the

two cases for which the above equation can be solved es
tially exactly, i.e., the cases of long and short conjugat
length, respectively.

A. Long conjugation length

In the limit l→` the two-particle equation can be re
expressed in terms of relative and center-of-mass coordin
and solved separately for each coordinate. Since the ce
of-mass motion is simply a plane wave the problem is th
reduced to a one-dimensional one-coordinate equation
the relative motion. In the more general case of finite
large l, the relative and center-of-mass motions are coup
by the boundary conditions Eq.~10!. However, forl @aB the
localization of the exciton by the Coulomb forces ensu
that the potential barriers at the chain ends are only of m
importance. Hence, the behavior is that of a quasi-free e
ton and the wavefunction is taken to be of the form

c~ze ,zh!5A cosS pze

l D cosS pzh

l D w̃~ze2zh!, ~11!

where the cosines serve as envelope functions satisfying
boundary conditions Eq.~10! and w̃(z) is a solution to the
relative-motion part of the Schro¨dinger equation:

H 2
\2

m*
d2

dz2 1eFz2
e2

4p««0
C~z!2ẼJ w̃~z!50. ~12!

The boundary conditions forw̃(z) are somewhat arbitrary
since the form Eq.~11! already fulfills the boundary condi
tions for the entire exciton wave function. For the truly fr
exciton the boundary conditions would bew̃(6`)50. How-
ever, in the finitel case the bounds for the relative coordina
is uze2zhu< l and, consequently, we use the more natu
choice w̃(6 l )50. The normalization constantA is deter-
mined by

FIG. 2. Coulomb functions for the soft effective potential
comparison to the bare one-dimensional potential21/z.
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A5H l 2

8 E
21

1

f ~ uwu!uw̃~ lw !u2dwJ 21/2

, ~13!

wheref is the function given by Eq.~7!. Finally, the exciton
energyEeh must be calculated as the expectation value of
1D Hamiltonian^c(ze ,zh)uH1Duc(ze ,zh)& and, hence,Eeh

is related to the eigenvalueẼ via the relation

Eeh5Ẽ1
\2p2

m* l 2 1
\2p l

2m*
uAu2E

21

1 H ~12uwu!cos~pw!

1
1

p
sin~puwu!J sin~pw!w̃8~ lw !w̃~ lw !dw1Eg .

~14!

From left to right the various terms in this expression are
relative motion part, the envelope contribution, a term rep
senting the mixing of relative motion and envelope parts a
finally, the energy gap.

B. Short conjugation length

In the casel<aB the Coulomb attraction can be regard
as a perturbation in comparison to the confinement ene
This allows us to simplify the exciton Schro¨dinger equation
considerably by applying the Hartree approximation for t
Coulomb interaction. Physically, this approximation amou
to treating the electron as if moving within the Coulom
potential created by the charge density formed by the h
and vice versa. Hence, the two-particle wave function
separable

c~ze ,zh!5we~ze!wh~zh! ~15!

and the Coulomb potential acting on the electron is given

Ve~ze!5
2e2

4p««0
E

2 l /2

l /2

C~ze2zh!uwh~zh!u2dzh . ~16!

An additional advantage of the Hartree approximation is t
it ensures that the error introduced by the separability
sumption Eq. ~15! is minimized for the lowest exciton
state.10 Moreover, due to the symmetry of the problem t
lowest energy electron and hole wave functions are rela
by a mirror reflection

w~z![we~z!5wh~2z!, ~17!

and the single-particle eigenvalues of electron and hole
identical. This finally allows us to reformulate the waveequ
tion as a one-dimensional single-particle equation

H 2
\2

2m*
d2

dz2 1eFz

2
e2

4p««0
E

2 l /2

l /2

C~z1z8!uw~z8!u2dz82EJ w~z!50.

~18!

From the solution to the Hartree equation the exciton ene
eigenvalue is obtained as
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Eeh52E1
e2

4p««0
E

2 l /2

l /2 E
2 l /2

l /2

uw~z!u2

3C~z1z8!uw~z8!u2dz8dz1Eg . ~19!

It should be noted that the asymmetry between electron
hole wave functions is only due to the presence of the st
electric field and in the caseF50 it is found thatwe(z)
5wh(z), i.e., both functions are even.

C. General case

By means of Eqs.~11! and ~15! we have obtained solu
tions for long and short conjugation lengths, respective
These two limiting results suggest a general solution of
form

c~ze ,zh!5aw~ze!w~2zh!1bA cosS pze

l D cosS pzh

l D
3w̃~ze2zh!, ~20!

where a and b should by varied in order to minimize th
energy while ensuring the normalization of Eq.~20!. The
normalization condition reads as

a21b212Sab51, ~21!

whereS is the inner product between Hartree and quasif
solutions given by

S5AE
2 l /2

l /2 E
2 l /2

l /2

w~ze!w~2zh!cosS pze

l D cosS pzh

l D
3w̃~ze2zh!dzedzh . ~22!

Similarly, the expectation value for the exciton energy
calculated from

Eeh5a2H111b2H2212abH12, ~23!

whereH11 andH22 are given by Eqs.~19! and ~14!, respec-
tively, and H12 is the coupling matrix element that can b
written as

H125H Ẽ1
\2p2

m* l 2 1EgJ S1
\2p

m* l
AE

2 l /2

l /2 E
2 l /2

l /2

w~ze!

3w~2zh!sinFp~ze2zh!

l G w̃8~ze2zh!dzedzh .

~24!

Once the matrix elementsH11, H22, andH12 are computed,
the final step in our calculation consists in minimizing E
~23! under the normalization condition Eq.~21!. This pro-
vides us with the exciton energy as well as the approxim
wave function.

III. PARAMETERS AND NUMERICAL RESULTS

The main advantage of the present model is its ma
ematical and physical simplicity. This advantage has b
achieved, however, at the expense of limited accuracy
the introduction of additional parameters that should be
justed to fit the behavior of a particular polymer. These
nd
ic

.
e

e

.

te

-
n
d
-
-

rameters are the transverse dimensions of the confining ba
and b, the effective massm* and the dielectric constant«.
We wish to apply our model to poly~p-phenylene vinyle-
ne!~PPV! since this is a technologically interesting polym
and reliable calculations exist for infinite chain length.8 The
bulk static dielectric constant of PPV and other conjuga
polymers is known to be around 3.5 but this value is
orientational average. In fact, due to the large mobility alo
the chain axis the appropriate dielectric constant for this
rection is considerably larger and we will use the value«
58 of Ref. 13. The distance between two opposite sites o
phenyl ring in the polymer chain is; 2.8 Å. Hence, allow-
ing for a certain delocalization of thep electrons we take the
transverse dimensions asa5b54 Å. This leaves the effec-
tive mass as the only undetermined parameter. However
justing the spatial extent of the free exciton wavefunctio
i.e., the solution in the limitl→`, to the value obtained by
the Green’s function technique8 allows us to fix this param-
eter as well. As mentioned in the introduction, the spa
extent of the free exciton is, in fact, the effective Bohr radiu
more accurately given as the fulle21 width of the electron
distribution. By fitting the results of Ref. 8 to a smooth e
velope, aB can be estimated as approximately 35 Å an
hence, we will adjust the effective mass in accordance w
this value.

In order to obtain the wave function for general values
the conjugation length we must first solve the one-coordin
equations Eqs.~12! and ~18! corresponding to the cases o
long and short conjugation length, respectively. Among th
cases, the former is especially simple since this is an o
nary linear equation. To solve this equation numerically thz
interval2 l<z< l is divided into a large number of subinte
vals ~typically several hundred! and the smooth potential i
replaced by its average within each subinterval. The wa
function is subsequently propagated fromz52 l to z5 l by
matching the function and its derivative at each bounda
The acceptable eigenvalues are finally identified as those
which the boundary conditionw̃(6 l )50 is met. The same
method is, in fact, applicable to Eq.~18! as well provided an
iterative procedure is used. One simply starts from the cos
standing-wave solution for a single particle and through
peated iteration the self-consistent solution is obtained.
mentioned above, the effective mass can be determined

FIG. 3. The electron distribution for a polymer of conjugatio
length l 5100 Å. The symmetric and asymmetric curves are o
tained in the absence and presence of a static electric field, res
tively.
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requiring that the width of the electron distribution of th
free exciton~in practicel 5100 Å! be approximately 35 Å.
In this way, a valuem* 50.07m is found and the resulting
electron wave function obtained by solving Eq.~12! numeri-
cally using the procedure described above is shown in Fig
Since the exact solution in the limitl→` is simply the
relative-motion partw̃(z) only this function is shown. For
comparison, the solution in the presence of a non-zero e
tric field is shown in the same figure. The field strengthF
56 mV/Å is chosen so that the Coulomb attraction is a
proximately balanced by the field-induced splitting of t
exciton. Thus, two maxima are seen inw̃(z). Obviously the
finite conjugation length has a dramatic influence on the
citon behavior in the presence of the field. The finite len
leads to a finite lowering of the potential equal to2eFl.
Hence, the competition between the field-induced minimu
which tries to dissociate the electron-hole pair, and the C
lomb attraction holding the pair together is strongly dep
dent on field strength and conjugation length. A simple e
mate for the critical field strengthFc , i.e., the field strength
at which Coulomb attraction is balanced by field-induc
dissociation, is obtained by equating the corresponding
contributions to the potential9

elFc5
e2

4p««0l
⇒Fc5

e

4p««0l 2 . ~25!

Thus, the critical field approximately varies as the inve
square of the conjugation length. In the caseF.Fc , a sec-
ond minimum in the potential appears. The mere presenc
this minimum does not necessarily produce any signific
splitting of the exciton wavefunction, however. In fact, spl
ting is only observed when the depths of the two minima
comparable. In the case considered in Fig. 3, i.e.l
5100 Å, one findsFc'0.18 mV/Å. This value should be
contrasted with the value 6 mV/Å, which is actually need
to produce the splitting shown in Fig. 3.

We may now turn to the chain length dependence of
exciton energy. Using the above parameters leads to
curves shown in Fig. 4. The calculations yield an excit
binding energyEg2Eeh of 0.25 eV in the limit l→`. A
binding energy of 0.25 eV might seem surprisingly sm
considering the fact that the Green’s function technique u
by Rohlfing et al.8 yields a value of 0.9 eV. The origin o

FIG. 4. Exciton energyEeh ~solid line! versus conjugation
length. The dashed curves illustrate the ‘‘error’’ introduced
adopting either the quasifree or the Hartree result.
3.
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this high value, however, has recently been traced by van
Horstet al.14 who concluded that interchain screening of t
Coulomb interaction is essential to describe the propertie
bulk polymers. Hence, the value 0.9 eV is only represen
tive of the binding energy for excitons inisolatedpolymer
chains. In Ref. 14 the binding energy of excitons in bu
polymers was shown to be dramatically reduced by the
clusion of interchain screening via an appropriate dielec
constant. In addition, is was found that relaxation of t
chain geometry~polaronic effects! only produces a smal
correction. In the present paper, screening is taken into
count by the presence of a large dielectric constant («58),
which is appropriate for bulk PPV~Ref. 13! and, hence, in-
cludes contributions from both intra- and interchain scre
ing. This explains the difference between the value obtai
by Rolfing et al. and the present result. It is noted that t
present value compares favorably with the experimental
sult 0.2 eV for MEH-PPV.15 The experimental exciton en
ergy for essentially infinite PPV chains is about 2.4 eV~Ref.
16! and, hence, the energy gap is approximatelyEg
52.65 eV. This is the value used in Fig. 4. The differenc
between the exciton energy, given by Eq.~23!, and the quasi-
free and Hartree results are shown as the dashed curve
expected, the quasi-free and Hartree results approach
variational energy in the case of long and short conjugat
lengths, respectively. From the figure it is seen that
‘‘short conjugation length range’’ is approximatelyl<30 Å
using an energy difference of 0.01 eV as upper limit. Sim
larly, the ‘‘long conjugation length range’’ is roughlyl
>60 Å. The crossover point, which marks the transiti
from confinement dominated to Coulomb dominated beh
ior, is approximately at 40 Å. This value is close to th
effective Bohr radiusaB'35 Å, as was to be expected. I
Fig. 5 we have compared the calculated exciton energy
some results forn~p-phenylene vinylene! oligomers~n51, 2,
3, and 4! obtained from PPP~Pariser-Parr-Pople! calcula-
tions using single-excited state configuration interaction~CI-
PPP!. These results are in excellent agreement w
experiments.16 The length of the repeating unit of PPV
approx. 6.4 Å and, hence, the length of then oligomer is 6.4
Å (n1n0), wheren0 is added in order to account for elec
tron delocalization at the chain ends. The points in Fig
have been plotted usingn052.0. It is noted that the two
calculations are in excellent agreement. This confirms t
the present model is, in fact, able to reproduce the ch
length dependence of the exciton energy.

The optical absorption by the exciton is proportional
the square of the one-dimensional electron-hole overlap
tegralD given by17

D5E
2 l /2

l /2

c~z,z!dz5aE
2 l /2

l /2

w~z!w~2z!dz1bA
l

2
w̃~0!,

~26!

which expresses the amplitude for the electron and hole to
located in coinciding positions. In Fig. 6, results for th
squared overlap integral are shown as a function of fi
strength along with results for the exciton energy. As e
pected, the overlap integral decreases upon applying
electric field. Physically, this decrease is due to the spa
separation of electron and hole induced by the applied fi
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A comparison of graphs a, b, and c in Fig. 6 shows that
conjugation length is of critical importance for these ph
nomena. Again, this is explained by the fact that the fi
needed in order to produce a substantial separation of e
trons and holes is strongly dependent on conjugation len
c.f. Eq. ~25!. It is thus concluded that models in which th
conjugation length is taken to be infinite will lead to inacc
rate result for the behavior of excitons in electric fields.
the absence of electric fields, however, these models
still be valid due to the localized character of the exciton

IV. SUMMARY

In summary, a highly simplified particle-in-a-box mod
of excitons in conjugated polymers has been presented
this model the exciton is treated as an electron-hole pair
teracting via Coulomb forces and confined to the polym
backbone by means of infinite barriers defined by the ge
etry of the polymer chain. In this manner, the original man
body Schro¨dinger equation is reduced to a one-dimensio
two-particle equation. From this relatively simple equati
exciton states may be obtained for polymers of arbitra
long conjugation length in contrast to usual quantum che
istry calculations that are limited by the complexity of lar
molecular systems. The disadvantage of the particle-in-a-
model is reduced accuracy and the introduction of syst
dependent parameters such as dielectric constants and e
tive masses. The solutions to the two-particle equation
found to be especially simple in the cases of long and s
conjugation length. Hence, the approximate translational
variance in the former case and the Hartree approximatio
the latter reduce the problem to single-coordinate form

FIG. 5. Comparison between the results of the present m
and those of a standard Cl-PPP calculation forn~p-phenylene vi-
nylene! (nPPV) with n51, 2, 3, or 4. For the Cl-PPP calculation
the conjugation length of then-oligomer is taken as (n12.0)
36.4 Å.
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which accurate numerical solutions for the exciton wav
function are easily obtained. By forming a linear combin
tion of these two cases and minimizing the expectation va
for the exciton energy, the general case is subseque
treated. As an example of its applicability, the propos
model is used to illustrate the influence of a static elec
field on exciton energies and electron-hole overlap integ
for different values of the conjugation length using para
eters appropriate for PPV.

el

FIG. 6. Illustration of the squared electron-hole overlap integ
and exciton energy as a function of field strength for three differ
values of the conjugation lengthl.
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