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Particle-in-a-box model of one-dimensional excitons in conjugated polymers
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A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly
computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as
an electron-hole pair interacting via Coulomb forces and confined to the polymer backbone by rigid walls.
Furthermore, by integrating out the transverse part, the two-particle equation is reduced to one-dimensional
form. It is demonstrated how essentially exact solutions are obtained in the cases of short and long conjugation
length, respectively. From a linear combination of these cases an approximate solution for the general case is
obtained. As an application of the model the influence of a static electric field on the electron-hole overlap
integral and exciton energy is considered.

[. INTRODUCTION length (conjugation length This has been demonstrated
for instance, in recent photoconductivity experimérits.
The optical properties of conjugated polymers are of condn these studies, the minimum electric field needed for exci-
siderable interest for basic science as well as application$on dissociation was found to be directly related to the con-
Both electroluminescentand optically pumped lasifdas ~ jugation length(approximately 65 A Hence, the infinite
been demonstrated in these materials. The conjugated polghain assumption cannot be made in the interesting case of
mers owe their unique optical qualities to the existence ofong but finite conjugation lengtitapproximately 50-100
extremely long-ranged electronic excitations extending co’ ). ] ) ) -
herently over several monomer units. The excitation energies. N this paper, we present a highly simplified one-
of these so-called one-dimensional excitons are typically irffimensional model of excitons in finite-length conjugated
the visible range. Moreover, due to their large spatial extent?Clymers. The electron-hole pair is simply assumed to be
these excitations can have extremely large oscillatogPatially confined to a box of dimensioas<bx| as illus-
strengths, which lead to efficient coupling to optical trated in Fig. 1. The charat_:ten;ﬂc _Iength scale of fche
fields. electron-hole Coulomb attraction is given by the effective
Several experimental techniques are available for studie@Othad'USiB’ which in the three-dimensional case is given
of conjugated polymers. The spectrum of excitations is typiby g =4mseoh’/(ne?), wheres is the relative static di-
cally deduced from various spectroscopic measuremenlectric constant ang is the reduced mass. More generally,
such as absorptich, photoluminescenée and  We can defineag as the fulle”! width of the square of the
electro-absorption.In addition, photoconductivifyis used free exciton wavefunction. Hence, the physical meaning of
as a probe of the dynamic properties of electron-hole pairss is clear: When confined to a region of dimensiordg
Theoretically, the level structure of conjugated polymers haghe wave function is severely distorted by the boundaries and
been calculated using the collective electronic oscillatorso Coulomb effects are small perturbations. Conversely, if
(CEO) approach or a Green’s function techniqieTheab  I>ag the wavefunction is essentially that of a free exciton
initio and semiempirical methods that are otherwise freand now boundary effects are small perturbations. Hence,
quently applied in quantum chemistry calculations are noBSsumingag to be significantly larger than the side lengths
suitable for conjugated polymers due to the size of the molandb will allow us completely neglect the influence of Cou-
ecules. In the case of semiempirical methods it is mainly théomb effects on the transverse behavior of the exciton. It
size of the configuration interaction matrix, which sets anfollows that we may integrate out the dependence of the
upper limit on the complexity of the molecule. Hence, suffi- exciton wavefunction on the transverse coordinates. The re-
cient accuracy is only retained for relatively small systems.
Unfortunately, the CEO and Green’s function approaches
also suffer from certain restrictions. The CEO model ne-
glects configuration interaction at the expense of introducing
a “screening” parameter, which reduces the repulsive
electron-electron interaction in order to make calculated en-
ergies agree with experimehiMoreover, this method is still
rather computationally demanding for large structures. The
Green'’s function technique, on the other hand, is well suited
for structures with infinite periodicity, e.g., infinitely long FIG. 1. Geometry of the box potential confining the exciton.
polymer chains. The properties of real polymers, howeverThe actual molecular potential is replaced by infinite barriers at the
may depend on the finite average electron delocalizatiowalls of a box of dimensionaxbX|.
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sulting one-dimensional two-particle equation can be solved W (7, )~ ¢(Xe) dal(Xn) dp(Ve) Po(Yn) ¥(Ze,2), (3)
exactly in the limit of extremely long conjugation length ( _ o

>ag) by a separation of relative and center-of-mass motioyVNere #a and ¢, are simple particle-in-a-box wave func-
(quasifree limik. On the other hand, short conjugation length tioNs given by
polymers (<ag) can be accurately treated within the Har- 12 X o\ 112 y

tree approximation since the effect of confinement dominates ¢ _(x)= <_) Cog(_ . dp(y)= (_) cos( _) (4)
over electron-hole interaction. The Hartree approximation a a b b

applied to the two-particle wave function leads to a simplerpe three-dimensional two-particle Sétoger equation can
one-dimensional nonlinear integral Schinger equation, 6w pe reduced to a relatively simple one-dimensional equa-
which can subsequently be solved numerically. Hence, it igion by integrating out the transverse coordinates in analogy
possible to obtain essentially exact solutions in the cases @f similar calculations carried out for excitons in semicon-

short and extremely long conjugation length. Finally, in or-qctor quantum wire&t As a result the electron-hole pair

der to bridge the gap between these cases we form a linegfieracts via an effective one-dimensional Coulomb potential
superposition between the quasifree and the Hartree SO"éﬂven by

tions. The solution obtained by minimizing the exciton en-

ergy then represents a highly accurate approximation for the —e2 rar [a2 (b2 (b2
exciton wave function, which is valid for all values bfwe V(ze,zn)= f

. T Ameeg J-an)-art-br)-br2
apply our theory to study the effects of a static electric field

and, as an example, the exciton energy and electron-hole X X 2
overlap integral are calculated as a function of field strength. | $a(Xe) Pa(Xn) bu(Ye) So(yn)|

V(Xe=Xn)*+ (Vo= Yn)*+(Ze— 2n)?
Il. THEORY X dyedyndXedXp,

Our treatment will be restricted to confinement of exci- —e?
tons in a box of dimensionsX b x| for which the walls are
taken to be infinite barriers. This type of model has previ-
ously been applied to electrons in smaller conjugatedvhereC(z) denotes the Coulomb function given by the in-
moleculed® for which Coulomb effects can be neglected. Integral above. By introducing sum and difference coordinates
the present case of large molecules with dimensions compahe integral may be reduced to
rable to the effective Bohr radius, the Coulomb interaction is,
in fact, essential as will be demonstrated below. The exciton 111 f(x)f(y)
wavefunction is denoteW (f,f},), wherer, andr}, are elec- C(2)= fo fo dxdy,

" . : Vaix?+ b2y2+ 72
tron and hole positions, respectively. We apply a coordinate
system in which thex andy axes coincide with thea andb  with f(w) given as
sides of the box and the axis is directed along, i.e., the
length of the polymer chain. For the region inside the bounds
of the box the Schdinger equation is identical to that of a
free exciton in an infinite medium

Emc(ze—zh), (5

(6

f(w)=(1—w)[2+cos(27rw)]+%sin(wa). @

We have not been able to evaluate the integral (Bgana-

#2 ) s e? 0 lytically. However, it is found that an excellent approxima-
[ ~omr (Vet Vi) teFz—eFz— m+ Ey tion is given by the expression
1
—Eeh]\P(Fe,Fh)zo. (1) C(Z)=H{l—exp(—pIZI)}—QIZIGXD(—DIZI)- (8

In the symmetric casea=b the values p=C(0)
=4.758864 andq~2.81A2 (fitted) can be used. A number
gf examples are shown in Fig. 2. Naturally, the effective
otential is considerably softer than the bare one-
dimensional Coulomb potentiat 1/|z|, which is obtained in
ge limit p—oe. It is interesting to note that the bare potential
eads to unphysical results such as delta-function localized
tates and divergent eigenvalues, as shown by Lotflon.
hese problems are eliminated through the use of the softer
effective potential. The resulting one-dimensional two-
W(Fy,F) =0, particle Schrdinger equation is now of the formH(p
—Een) ¥(2¢,2,) =0, where the 1D HamiltoniaHl ;p reads as

In this expressionEey, is the exciton energy-eigenvalug;”

is the bare three-dimension@D) energy gapg is the rela-
tive static dielectric constant and identical effective masse
m* of electrons and holes have been assumed for simplicit
In addition, a static electric field of magnitude directed
along the chain axis has been included. In the presence of t
confinement the motion of the exciton is restricted to the
volume of the box and, hence, the wave function is subject t
the boundary condition

if |X¢lorXx,|=al2,|ydloryn =b/2)|z orz,|=1/2. (2) o2
+ere—erh—m

ﬁ2 d2 d2
Now, in the cas@g>a,b the Coulomb attraction has a neg- Hip== 5+ dZ + dZ
ligible effect on the transverse behavior of the exciton wave-
function. Hence¥ (r,f},) is approximately given by X C(ze—2zp) +Ey. 9
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; . y . T 12 (1 —1/2
A=[§Jlf(|w|)|7p(|w)|2dW] : (13

—
(=

wheref is the function given by Eq.7). Finally, the exciton
energyE., must be calculated as the expectation value of the
1D Hamiltonian{¢(ze,zn)|H1p| ¥(ze,24)) and, henceEgy,

is related to the eigenvall via the relation

—
o

Coulomb‘ function —C(z) [A_l]

* o g=b=2A,p=2.384", 4=0.70A° = hPm hPal 1[
T e Ech=E+ —5+ —|A f 1—|wj|)cog mw
)5 0 g=b=4A, p=1.19A", 4=0.1847 eh m*1? 2m*| | -1 (1—[w]cogmw)
1 1 L 1 i 1
00 02 10 1S 20 + —sin(7-r|W|)]sin(a-rw)’cb’(lw)fo(lw)dWJr Ey.
Distance z [A] W

FIG. 2. Coulomb functions for the soft effective potential in (14)
comparison to the bare one-dimensional potentialz. From left to right the various terms in this expression are the
relative motion part, the envelope contribution, a term repre-
In addition, it is understood that the wavefunction is subjectsenting the mixing of relative motion and envelope parts and,
to the boundary conditions finally, the energy gap.

Y(=11220) = h(ze, £172)=0 (10 B. Short conjugation length

due_ to the inf_inite barriers at t_he chain ends. T_he energy gap |n the casd <ag the Coulomb attraction can be regarded
Eq 'SSDEq- (9) is the “renormalized” 1D value given bfEg 55 a perturbation in comparison to the confinement energy.
=Eg + m*h%/2m* (1/a®+1/b?). We will now turn to the  This allows us to simplify the exciton Schiimger equation
two cases for which the above equation can be solved essegonsiderably by applying the Hartree approximation for the
tially exactly, i.e., the cases of long and short conjugationcoulomb interaction. Physically, this approximation amounts

length, respectively. to treating the electron as if moving within the Coulomb
potential created by the charge density formed by the hole
A. Long conjugation length and vice versa. Hence, the two-particle wave function is

In the limit | the two-particle equation can be re- SeParable

expressed in terms of relative and center-of-mass coordinates (Zo.20) = 0o(Z0) @1 (21) (15)
and solved separately for each coordinate. Since the center- ¥(Ze12n) = ¢elZe) on(Zn

of-mass motion is simply a plane wave the problem is themnd the Coulomb potential acting on the electron is given by
reduced to a one-dimensional one-coordinate equation for

the relative motion. In the more general case of finite but —e2 [z
largel, the relative and center-of-mass motions are coupled Ve(Ze) = f
by the boundary conditions E¢L0). However, forl >ag the

localization of the exciton by the Coulomb forces ensuresap aqgitional advantage of the Hartree approximation is that

that the potential barriers at the chain ends are only of minof ensures that the error introduced by the separability as-
importance. Hence, the behavior is that of a quasi-free excigymption Eq.(15) is minimized for the lowest exciton

ton and the wavefunction is taken to be of the form state'® Moreover, due to the symmetry of the problem the
lowest energy electron and hole wave functions are related
TZg Tz
(20,2, =A cos{ I_> cos( 0

C(Ze—2p)|@n(zn)|?dz,. (16)

dmeey )12

P(zo—2z,), (11 by amirror reflection

where the cosines serve as envelope functions satisfying the ¢(2)=¢e(2)= en(=2), (17)
boundary conditions Eq10) and¢(2) is a solution to the  anq the single-particle eigenvalues of electron and hole are
relative-motion part of the Schdinger equation: identical. This finally allows us to reformulate the waveequa-
52 o2 o2 _ tion as a one-dimensional single-particle equation
(—WF‘FGFZ—?‘WC(Z)—E} ?(2)=0. (12 52 g2
. . ) - 2—* d? +eFz
The boundary conditions fop(z) are somewhat arbitrary m

since the form Eq(11) already fulfills the boundary condi-

i : ; . 2 112

tions for the entire exciton wave function. For the truly free __°c f C(z+2")|e(z")|?dZ —E} ¢(z)=0.
exciton the boundary conditions would B¢+ «)=0. How- Ameeg J -1

ever, in the finitd case the bounds for the relative coordinate (18)

is |ze—z,|=<! and, consequently, we use the more natural
choice (*=1)=0. The normalization constar is deter- From the solution to the Hartree equation the exciton energy
mined by eigenvalue is obtained as
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e2 1/2 1/2 | |2 :: 1.2 T T T T T T T T T
Ech=2E+ ©(2) ; i
e Ameeg J-112) ~112 o 1of a=v=4&, |
’ ’ ’ ~_‘ i = A‘]
XC(z+2")|¢(z')|?dZ' dz+E,. (19 p=L19
| | ’ w08 F=6mV/A ¢=0.1887 |
It should be noted that the asymmetry between electron ant . N B
. R . m*=0.07m, £=8
hole wave functions is only due to the presence of the static.2 06 1
electric field and in the case=0 it is found thate.(z) I

0.4 1

= ¢p(2), i.e., both functions are even. F=0

C. General case

o

to
T
1

-100 -80 -60 40 -20 0 20 40 60 80 100

Electron distribution |¢Az)|

By means of Eqgs(11) and (15) we have obtained solu-
tions for long and short conjugation lengths, respectively.

o
=3

These two limiting results suggest a general solution of the Distance from hole z [A]
form FIG. 3. The electron distribution for a polymer of conjugation
- 7z length =100 A. The symmetric and asymmetric curves are ob-
W(Ze,2) = a@(Ze) o( — z;,) + BA c0<|—e cog{ l—h) tained in the absence and presence of a static electric field, respec-
tively.
X@(Ze= 1), (200 rameters are the transverse dimensions of the confiningbox

where @ and 8 should by varied in order to minimize the and b,.the effective massn* and the dielectric constanmt
energy while ensuring the normalization of EQ0). The W& Wish to apply our model to pdlg-phenylene vinyle-
normalization condition reads as ne)(PP\_/) since this is a technolog_lca_llly interesting olymer
and reliable calculations exist for infinite chain lengthhe
a?+ B2+2SaB=1, (21)  bulk static dielectric constant of PPV and other conjugated
polymers is known to be around 3.5 but this value is an
whereSis the inner product between Hartree and quasifreyrientational average. In fact, due to the large mobility along

solutions given by the chain axis the appropriate dielectric constant for this di-
rection is considerably larger and we will use the vaiue

seal” J”Z (2)0(—2,)c0 TZe) cod TP =8 of Ref. 13. The distance between two opposite sites on a
“12 _|,2(P A h I I phenyl ring in the polymer chain is 2.8 A. Hence, allow-

ing for a certain delocalization of the electrons we take the
X@(ze—12)dz,07, . (22)  transverse dimensions as=b=4 A. This leaves the effec-
tive mass as the only undetermined parameter. However, ad-
justing the spatial extent of the free exciton wavefunction,
i.e., the solution in the Iimit—éloc, to the value obtained by
_ .2 2 the Green’s function technigti@llows us to fix this param-
Een=a’Hut B7Hoot 2aBH1,, @3 cter as well. As mentionet;1 in the introduction, tr?e spatial
whereH,; andH,, are given by Eqs(19) and(14), respec- extent of the free exciton is, in fact, the effective Bohr radius,
tively, andH,, is the coupling matrix element that can be more accurately given as the fidl ! width of the electron

Similarly, the expectation value for the exciton energy is
calculated from

written as distribution. By fitting the results of Ref. 8 to a smooth en-
velope, ag can be estimated as approximately 35 A and,
- h%m? h2m (V2 (2 hence, we will adjust the effective mass in accordance with

Hi= 1 B+ 2 7By St 7 A i 7|/2‘P(Ze) this value.

In order to obtain the wave function for general values of
~ the conjugation length we must first solve the one-coordinate
¢'(ze—2p)dzdZ,. equations Eqs(12) and (18) corresponding to the cases of

long and short conjugation length, respectively. Among these

(24 cases, the former is especially simple since this is an ordi-
Once the matrix elements,;, H,,, andH,, are computed, nary linear equation. To solve this equation numericallyzhe
the final step in our calculation consists in minimizing Eq.interval —lI<z=<l is divided into a large number of subinter-
(23) under the normalization condition E¢1). This pro-  Vvals (typically several hundrédand the smooth potential is

vides us with the exciton energy as well as the approximatéeplaced by its average within each subinterval. The wave-

m(Ze—2p)

X @(—2z,)sin I

wave function. function is subsequently propagated fram —1 to z=1 by
matching the function and its derivative at each boundary.
IIl. PARAMETERS AND NUMERICAL RESULTS The acceptable eigenvalues are finally identified as those for

which the boundary conditiog(=1)=0 is met. The same
The main advantage of the present model is its mathmethod is, in fact, applicable to E¢L8) as well provided an
ematical and physical simplicity. This advantage has beeiterative procedure is used. One simply starts from the cosine
achieved, however, at the expense of limited accuracy anstanding-wave solution for a single particle and through re-
the introduction of additional parameters that should be adpeated iteration the self-consistent solution is obtained. As
justed to fit the behavior of a particular polymer. These pamentioned above, the effective mass can be determined by
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5.0

T T ' 0.10 this high value, however, has recently been traced by van der
‘g E Horstet al* who concluded that interchain screening of the
\ quasifree ch 50.08 Coulomb interaction is essential to describe the properties of
e bulk polymers. Hence, the value 0.9 eV is only representa-
tive of the binding energy for excitons isolated polymer
chains. In Ref. 14 the binding energy of excitons in bulk
polymers was shown to be dramatically reduced by the in-
clusion of interchain screening via an appropriate dielectric
constant. In addition, is was found that relaxation of the
chain geometry(polaronic effects only produces a small
, correction. In the present paper, screening is taken into ac-
30 60 90 120 150 count by the presence of a large dielectric constant §),
Conjugation length [A] which is appropriate for bulk PPYRef. 13 and, hence, in-
FIG. 4. Exciton energyE., (solid line versus conjugation _Cludes _contribgtions fro_m both intra- and interchain screen-
len th..TH dashed curv elﬂ trate the “error” introduced by M9" Thl_s explains the difference between t_he value obtained
g e dashed curves 1ius yby Rolfing et al. and the present result. It is noted that the
adopting either the quasifree or the Hartree resul. present value compares f%vorably with the experimental re-
requiring that the width of the electron distribution of the sult 0.2 eV for'MEH-EF"\/l. The experlmental exciton ;en-
free exciton(in practicel =100 A) be approximately 35 A. igy;‘;&eﬁiﬂi"yt'ﬂgn'teeng’;\; Cg:;)”sif Zt;%‘:;fi;‘]ﬁg
In this way, a valuem* =0.07m is found and the resulting ' S g .
electron wave function obtained by solving Ej2) numeri- e?(\/\ssje?]\/th;gfc:tso;hgn\glue ui/?eilt? Egﬁ)"’am?hce“ffifg?es
cally using the procedure described above is shown in Fig. S?ree and Hartree results g?/e Eihown ):/as the dashed qcurves As
Since the exact solution in the limlt—c« is simply the
relative-motion parfp(z) only this function is shown. For expected, | the quasi- f;]ee and I;I’cllrtree rﬁsurl]ts approach the
comparison, the solution in the presence of a non-zero ele eanr 'iﬂg”ie‘;”g::%{/e':‘ t Fergf‘nseth% ﬁ”grg‘”l t .Ss Osréecr?”tlk‘]’gf‘tt'ﬁg
tric fle|dAIS shown in the same figure. The field strength sh%rt conjugatlon Ié’ngth range” |sgapprOX|mateII$ 30 A
=6 mV/A is chosen so that the Coulomb attraction is ap- ~. : e
proximately balanced by the field-induced splitting of thell;j‘sr'lng &r;e‘fllgggy S:)f;eﬂeg?iir?flgﬁojt-he\r/aiseup?serrgrslthlilml-
exciton. Thus, two maxima are seen@(z). Obviously the 63(/),& The cgrossmjlegr] oint, W%ICh mgrks the trgnsmon
finite conjugation length has a dramatic influence on the ex?Orn confinement dommgted to Coulomb dominated behav-
citon behavior in the presence of the field. The finite Iengthor is approximately at 40 A. This value is close to the
leads to a finite lowering of the potential equal toeFl. effectlveplgohr radlu)s/a ~35A. as was to be expected. In
Hence, the competition between the field-induced m|n|mumF 5 h B 4 th lculated tp i
which tries to dissociate the electron-hole pair, and the Cou- Ig. > we have compare € calculated exciton energy 1o
lomb attraction holding the pair together is strongly depen gon;ﬁéeju:st;?ggpfrrf;ylggeq\.g;ﬁlseer})eggfggr§$a| guli-
dent on field strength and conjugation length. A simple estiz tions using single-excited state configuration |gterac(©h
mate for the critical field strength., i.e., the field strength PP Thg 9 it g” i ¢ with
at which Coulomb attraction is balanced by field-induced P. ese results are in excellent agreement wi

xperiments® The length of the repeating unit of PPV is
Slosr;st(r)ft:)lﬁtt:ggs |tso ?ﬁéagw;(:nt:élequatmg the corresponding twg approx. 6.4 A and, hence, the length of theligomer is 6.4

A (n+ny), wheren, is added in order to account for elec-

45r

40

301

Exciton energy [eV]
Energy difference [eV]

251

20
0

e? e tron delocalization at the chain ends. The points in Fig. 5
eIFczm:Ffm. (25 have been plotted usingy=2.0. It is noted that the two

calculations are in excellent agreement. This confirms that
Thus, the critical field approximately varies as the inversehe present model is, in fact, able to reproduce the chain
square of the conjugation length. In the c&eF,., a sec- length dependence of the exciton energy.

ond minimum in the potential appears. The mere presence of The optical absorption by the exciton is proportional to
this minimum does not necessarily produce any significanthe square of the one dimensional electron-hole overlap in-
splitting of the exciton wavefunction, however. In fact, split- tegralD given by’

ting is only observed when the depths of the two minima are

comparable. In the case considered in Fig. 3, ile., (v (e I _
—100A, one findsF,~0.18mV/A. This value should be D= | ¥(z2dz=a |  ¢(2)e(=2)dzt+BAZS(0),
contrasted with the value 6 mV/A, which is actually needed (26)

to produce the splitting shown in Fig. 3.

We may now turn to the chain length dependence of thavhich expresses the amplitude for the electron and hole to be
exciton energy. Using the above parameters leads to thecated in coinciding positions. In Fig. 6, results for the
curves shown in Fig. 4. The calculations yield an excitonsquared overlap integral are shown as a function of field
binding energyEy—Egp, of 0.25 eV in the limitl—c. A strength along with results for the exciton energy. As ex-
binding energy of 0.25 eV might seem surprisingly smallpected, the overlap integral decreases upon applying the
considering the fact that the Green’s function technique usedlectric field. Physically, this decrease is due to the spatial
by Rohlfinget al® yields a value of 0.9 eV. The origin of separation of electron and hole induced by the applied field.
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FIG. 5. Comparison between the results of the present model
and those of a standard CI-PPP calculation rigpg-phenylene vi-
nylene (nPPV) withn=1, 2, 3, or 4. For the CI-PPP calculations
the conjugation length of the-oligomer is taken asn(+2.0)
X6.4A.

Exciton energy [eV]

A comparison of graphs a, b, and c in Fig. 6 shows that the
conjugation length is of critical importance for these phe-
nomena. Again, this is explained by the fact that the field

Squared overlap integral

0.0 . t : : 1.8
needed in order to produce a substantial separation of elec- 0.00 001 0.02 0.3 0.04 0.05
trons and holes is strongly dependent on conjugation length, Field strength [V/A]
c.f. EqQ. (25). It is thus concluded that models in which the - . . , . 250

conjugation length is taken to be infinite will lead to inaccu-
rate result for the behavior of excitons in electric fields. In
the absence of electric fields, however, these models may
still be valid due to the localized character of the exciton.

~
e
oo

N
'S
(=%

IV. SUMMARY

I
'S
>

Exciton energy [eV]

In summary, a highly simplified particle-in-a-box model

Squared overlap integral
N
S

of excitons in conjugated polymers has been presented. In 08 ¢

this model the exciton is treated as an electron-hole pair in- 0.6 . . s s 240
teracting via Coulomb forces and confined to the polymer 0.000 0.002 0.004 0.006 0.008 0.010
backbone by means of infinite barriers defined by the geom- Field strength [V/A]

etry of the polymer chain. In this manner, the original many- . .

body Schrdinger equation is reduced to a one-dimensional FIG. 6 Illustration of the squared_electron—hole overlap mtegral
two-particle equation. From this relatively simple equationand exciton energy as a function of field strength for three different
exciton states may be obtained for polymers of arbitrarily’2/ues Of the conjugation length

long conjugation length in contrast to usual quantum chem-

istry calculations that are limited by the complexity of large which accurate numerical solutions for the exciton wave-
molecular systems. The disadvantage of the particle-in-a-bofunction are easily obtained. By forming a linear combina-
model is reduced accuracy and the introduction of systemtion of these two cases and minimizing the expectation value
dependent parameters such as dielectric constants and efféor the exciton energy, the general case is subsequently
tive masses. The solutions to the two-particle equation artreated. As an example of its applicability, the proposed
found to be especially simple in the cases of long and shomnodel is used to illustrate the influence of a static electric
conjugation length. Hence, the approximate translational infield on exciton energies and electron-hole overlap integrals
variance in the former case and the Hartree approximation ifor different values of the conjugation length using param-
the latter reduce the problem to single-coordinate form foreters appropriate for PPV.
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