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Calculations of second-harmonic generation for a jellium metal surface
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The microscopi@ parameter, which alone is needed to describe the surface sensitive dependence of second-
harmonic generation from jellium metals, is calculated within a time-dependent local-density-functional ap-
proximation for frequencies between zero and twice the bulk plasmon. The calculations incorporate an extrin-
sic damping and allow for the excitation of bulk plasmons. The results for frequencies up to half the bulk
plasmon are very similar to earlier evaluations, while at higher frequencies only weak spectral structure is
found.

[. INTRODUCTION For o<w,/2 one can ignore bulk plasmons in both the
linear and quadratic response, as has been done $o°far.

It has been more than ten years since microscopic calcuFhis freedom is also possible fas>w. and for v /2<w
lations of second-harmonic generatid8HG) at simple <w,. The latter range overlaps the multipole mode in the
metal surfaces were presenfedSeveral refinements have linear response; i.e., one can examine the SHG response for
been made since then, including treatments of overlayers and/ w,~0.8 with no change in computer code. Fog/2<w
estimates of crystalline effects; see the monograph by w./2, the bulk plasmons enter the screening of the qua-
Liebsch for references and a review of this wotdowever,  dratic driving terms, but not into the linear response. On the
in all the microscopic calculations on continuum models, oneother hand, fow,<w<w,, the bulk plasmons appear in the
has kept the applied frequency below half the bulk plasmoriinear response, but may be ignored in the screening of the
frequencyw,, wherew,23=47-rnbe2/m with ny, the bulk den-  nonlinear terms. One never needs to account simultaneously
sity. This limitation was imposed in order to avoid the nu-for bulk plasmons in first- and second-order responses.
merical problems caused by plasma waves generated at the Our allowance for the bulk plasmon is a straightforward
surface and propagating into the bulk. extension of the calculational scheme outlined recentye

In this paper we show how these difficulties can be overdetermine the induced densitipgx,j ) at first and second
come, allowing calculations of SHG at all frequencies. Theorder (=1 and 2 near the left side of a metal slab, which
basic scheme is the same as in earlier wofkso we focus  lies between capacitor plates that apply the spatially constant
on the self-consistent, but nonretarded, dynamic secondiormal fieldE, at frequencyw. The spatial range kept in the
order density response to an imposed electric field oscillatingumerical evaluation runs along the normal coordinate from
at frequencyw and directed normal to the surface. The di- x, in vacuum tox,=L well inside the metal. When a bulk
pole moment of this density response determinesatipa-  plasmon may be present we assume that the relevant induced
rameter, which in turn is the only surface sensitive quantitycharge density is not negligible nearL, but instead varies
needed in a jellium model of a flat, clean surface to evaluatas
SHG for arbitrary polarizations and angles of incidence. Our _
results show surprisingly little structure ia(w) for pj(X,jw)=pj(L,] w)e'Pix—b) D
>w,/2. Even near the multipole modev(w,=0.8) a has
only a modest bump and then quickly settles back to itfor x=L.
high-frequency limit ofa= —2. The complex-valued wave vectpr=p(jw) of the plas-

In Sec. Il we discuss the changes in the numerical analymon is a bulk property determined by fitting the imaginary
sis that have allowed us to extend the calculations. The rurart of the inverse bulk dielectric function ) to a Lorent-
ning t|me of the Code iS on|y S||ght|y increased fm Zian Shape. Our motivation hel’e comes from the faCt that in
>w,/2. Then in Sec. Il we present results from a series of® hydrodynamic model & has the forrf
calculations over the range<Qw<2w, for jellium models
whose densities extend from=2 tor,=5. 1 wrz)/,B2
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Il. THEORY

. . L as a function of the three-dimensior{dD) momentumq for
Consider first when bulk plasmons can arise in an SHG. .. 2_3.2. - . i
calculation. The bulk plasmon in jellium is a well-defined a fixed frequencyo. Here5"= vz with v the Fermi veloc

o _ : -~ ity. From the location and width of the peak inlm(1/e
excitation only over a limited range of frequencies, Startmgv)e/rsusqz for a general dielectric functior?we can o(lete?gnine
atw, and cut off by the onset of Landau damping«t The

. 2 . . . .
ratio w,/w, depends on the bulk density and on the particu—an effective value op~. The dielectric functions we use in

lar approximation used for exchange and correlatibbut this recipe have the form

typically lies between 1.3 and 1.5. This general feature leads 1

to the calculation of SHG in different ways for separate fre- g X (3)
quency ranges. €b [1—xp(v+Vy)]’
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FIG. 1. First-order-induced charge density versus normal coor-
dinate atw/w,=1.2. A bulk plasmon with wave vectop/kg
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FIG. 3. Complex conjugate of theeparameter versus frequency.
The smooth curves are from the present calculation; the thick lines

=0.66+10.014 is responsible for the long-ranged, oscillatory tail. phayve ¥l wg=0.02, while the thin lines have/wg=0.0001. Aside

where xp, is the bulk Lindhard susceptibility? v

=47e?/q?, and V,.=d%/dn*(ne,.) evaluated atn=n,.

from the differenty values, nothing else was changed. The circles
are from data in Ref. 15, which used the same approximation for
€. and no extrinsic damping. They are constrained to have

Heree,. is the average exchange-correlation energy per elecs @p-

tron in a bulk system of density. Equation(3) derives from
a local-density-functional approximatiqghDA), and if one
ignores V, . it becomes the random-phase approximation,

(RPA).

Given the ansatzl) for the induced density beyonx

=L, we find an additional potential energy

eAoj(x,jw)=epj(L,jw)

4 )
—2+VXC/e

i

eiPj(x-L),

J

4 .
F[lﬂpj(x—L)], x<L.

L<X,

(4)

real

o ——— imaginary

The contributions ta\ ¢; include both the Hartree term and
an LDA estimate of exchange and correlation energies. The
simple form of Ap in x>L allows us to analytically do
integrals forx— oo of products ofA ¢ and a nonlocal suscep-
tibility. There is also no problem with the numerical evalua-
tion of such integrals fox,<x<L. Hence the additional
induced charge density due Aap may be readily determined
and incorporated into the mean-field equations that deter-
mine the total induced charge density.

As mentioned above, our basic nhumerical scheme is de-
scribed in Ref. 7. Rather than reproduce the various deriva-
tions done there, we only note several ways in which our
procedures differ from those of Liebsétwe do not intro-
duce model densities when solving the response equations,
but we do allow the frequency to have a significant imagi-

nary part:w— o= w+ivy, wherefiy is a few percent of the
Fermi energy. The presence ¢freduces numerical prob-
lems because it causes all induced quantities to decay as
moves into the bulk. However also smoothes out the fre-
quency dependence of the response, so one should not make
v too large. There can be experimental estimateg eince
2y corresponds to the Drude scattering rat@onsideration
of all of these constraints leads to thevalues we have
chosen, but we also show how results vary wyth

For SHG one needs theparameter formally defined By

a= 8pr’ dx Xpo(x,20)/ o2, (5)

TABLE I. Parameter choices.

FIG. 2. Complex conjugate of thieparameter versus frequency. 2
The smooth curves are from the present calculation while the circle8
are from data in Ref. 6, which used a different approximation for4
€ and no damping. A bulk plasmon is present for 1/ w, 5
<1.36.

rs V/h(l)p - kFXU kFL kFAX 'y/(l)F
0.981 12.8 94.2 0.2 0.02
0.997 10.0 92.4 0.2 0.02
1.053 12.0 77.55 0.15 0.03
1.118 10.5 77.1 0.15 0.04
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FIG. 4. Plots of thea parameter versus frequency. The parameters of the calculations are in Table | and in all panels tdastwitl
curves are the redlmaginary parts of —a.

with pp=eny, but actually evaluated from second-order response there can be difficulties wherex-
ceeds the work function. In that case part of the susceptibility
22\ 7 o [A, in Eq. (23) of Ref. 7] can be nondecaying in a coordinate
a=—-2+8 1—?) [L dx Xpy(X,2w) (x,) that is to be multiplied by the first-order potential en-
p U

ergy and integrated te-« in vacuum. Liebsch suppresses

L this difficulty by cutting off the integral ax, .1° We go one
+f prz(x,Zw)Fext(x)/mwg} pb/ai. (6) step farther to integrate analytically with the Hartree part of

o the potential energy, which is a linear functionofHow-
ever, like Liebsch, we truncate the integral with the
exchange-correlation contributions ®f. This term is not
present in RPA and the difficulties it implies in LDA seem
unphysical. The total potential energy in first order, outside
the metal, is to within a constant

Herex=0 is the jellium edge¢g;= [dX p;(X,®), and in an
LDA calculationF ¢, vanishes. For an RPA calculati¢ty,,
=—ouQlox with wQ=d/on(ne,) evaluated atn
=ng(X), wherenyg(x) is the ground-state electron energy
profile for the slab. The sum rule that allows one to jump
from Eq.(5) to Eq.(6) corrects thésmall error in Ref. 2 and
agrees with Ref. 3. It is important that one can avoid trying ep1(X<X,,0)=—exEx+ u, (X)p1(x,w)le,  (7)
to calculate the integral ofp, over all x.

At several places in the calculation one does analyticallywhereu, .= 3%/ 9n*(ne,.) evaluated ah=ny(x). As a rough
integrals that are slowly convergent. One example is thestimatee,.~n*3 so u..~ngy 2?3 while p;~ni?. Thus the
driving term in second order due to the potential energy asexchange-correlation contribution &, outside eventually
sociated with the bulk electric fieI(EA/(l—wf,/Zoz). The diverges a$151’6 asx moves far away. However, this formal
potential energy associated with the outside electric field alsdivergence does not become apparent unisl tens of Ang-
grows linearly in magnitude with distance from the surface,stroms outsid® and in a domain where an LDA is not reli-
but usually this causes no problem because the susceptibiligble. Hence thed hoctruncation of this part ofp; is not
it multiplies is decaying exponentially as one moves thatunreasonable. We did check that moviggaround by a few
coordinate out into vacuum. However, in one part of theAngstroms does not significantly change our results.
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FIG. 6. Comparison of plots od parameter versus frequency.
The curvedcircles are from an LDA(RPA) calculation. The LDA
results extend the plot in Fig. 4.

=pi(X,w)/keo 1, with ke the Fermi wave vector, and is nor-
5 T 0 e e _mallzed so its integral ovngx equals one. The bulk cu.toff
(a) kex is atkeL = 62.4 and Eq(1) is used to plot beyong= L. This
ansatz looks very reasonable here.

In Fig. 2 we plot thed parameter defined by

0.0 d=J' dX Xp1(X,w)/ oy (8

but actually evaluated from

_ 0
d—(l—wzlwg)l( f dX Xp1(X,w)
XU

Im(n,)

+ JXLprl(x,w)Fext(x)/mwf,]/Ul. (9)

v

The equivalence of these two expressions is based on another

sum rulet?>2and for the LDA results showR¢=0. We are
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() Kex

FIG. 5. Second-order-induced charge density versus normal co
ordinate for several frequencies. The scale for the ordinate change
between the panels. See Table | for the parameters used in thes
r,s=3 calculations.
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ll. RESULTS /0

We begin with some linear response properties. Figure 1 FiG. 7. Dependence of theparameter on the choice of damp-
shows the first-order LDA charge density whehw,=1.2.  ing. The curves(circles use y/wg=0.02(0.001) with no other
The bulk density has,=3 andy/wg=0.02, wherewg is the  changes from the,=3 line of Table I. The factor multiplying
Fermi frequency. The dimensionless ordinatesis; (X, w) suppresses sharp structure neaw.5
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20 T y g g sity profiles that were either linear or quadratic in shape with
parameters chosen to fit the multipole location in linear re-
sponse. Their predicteals near 0.8, are several orders of
magnitude larger than our results in Fig. 4. The older hydro-
dynamic calculatiorfs'® which used a two-step surface den-
sity profile do predict a structure in comparable to that
shown in Fig. 4 near 0.8, but also predict further struc-
tures at higher frequency, which do not appear here. The
high-frequency limit ofa is —2,!° which requires that the
integrals withp, in Eq. (6) become negligible. It is surpris-
ing that this happens even befare> w, .

To provide more insight we show in Fig. 5 plots of the
second-order-induced density at various frequencies for a
system withr ;=3 and corresponding parameters from Table
I. The dimensionless variablén,= p,p,(x,20)/k2a5 . Al-
though to finda from Eq.(6) one needs in LDA the profile of
p2(X,2w) only for x<0, the calculation of the whole profile

FIG. 8. Second-harmonic radiation efficiency for different myst be self-consistent. As Fig. 5 illustrates, there is consid-
angles of i_ncidence. The only microscopic quantity used isitfoe erable evolution of these profiles aschanges. The penetra-
rs=3 of Fig. 4. tion of &n, into the bulk varies with frequency and a com-

plicated pattern of Friedel oscillations appears. Although one
using the Wigner interpolation formula for the correlation can easily identify at low frequencies the dominant Friedel
part of e, (Ref. 13 and again take/wg=0.02 but push the period?2we have not been able to do this over the midrange
cutoff out to keL=92.4. The curves compare reasonablyof frequencie$’ At the lowest frequencies the dominant
with the data from Ref. 6 which used a momentum-space-riedel wave vector is neak2. As w/w, increases through
evaluation withy=0" and a different approximation for the 0.2 to 0.4,6n, extends farther into the bulk and develops a
correlation energy? new oscillation pattern with a smaller wave vector. The ef-

To show that most of the slight differences in Fig. 2 canfective wave vector of these Friedel oscillations increases
be removed, we compare in Fig. 3 our same calculation withinearly with frequency,

Liebsch’s resulté2 Bwhich used the Wigner form o, and
sety=0". There are clear differences only near regions of
sharp variation, and these essentially go away if we reduce
our damping toy/wg=0.001. It is remarkable that for
0/ w,<0.6 and w/w,>1.1 that thed parameter is only an empirical relation that roughly holds for ;<5 but for
weakly dependent ofy. This eventually ceases to be true for which we have noa priori justification. There are several
larger values ofy, such as they/w,=0.05 used by Gies and candidate wave vectors that might be importaitt?* and
Gerhardt$:1%16 these can be combined in various ways from the driving

Turning now to the nonlinear response we show in Fig. 4erms and screening processes of the nonlinear response.
the a parameter versus frequency for jellium surfaces withThis perhaps explains why it is sometimes difficult to iden-
different bulk densities. Parameter choices for the differentify a single wave vector in the “tail” ofén,.
cases are listed in Table I. The step size for the real-space For instance ab/w,=0.6, there appear to be beats in the
mesh isAx, and the ground-state barrier heights for the con-oscillation pattern. The bulk plasmon which can be excited
fining potential energy are. It is remarkable that is nearly  in the screening of the nonlinear terms ab has a wave
fiw, for all rg. We used a smaller step sigelative to the  vector p/kg=~0.66, but its influence is not obvious. Our an-
Fermi wavelengthat largerrg since the barrier becomes a satz of Eq.(1) does not seem appropriate for this case. For-
sharper structure on this scalerasncreases:*® tunately the oscillations, although very long ranged, are

The spectral variation ok for o<w,/2 has been amply fairly rapid. This implies thain, for x<<0 is not very sen-
discussed by Liebsch2 Even with the various differences sitive to what is happening near the bulk cutoff. We found
in calculation noted in Sec. Il, we still obtain the same quali-similar results fora upon changind- or even switching to a
tative behavior. At the higher bulk densitiésmallerry), code that ignores anyn, (due to a bulk plasmon or what-
structures due to @ matching the work function or the mul- even beyondx=L.
tipole (near 0.8w,) are well separated. As; increases and Oncew exceedsw, the variation ofén, simplifies. The
the work function becomes a larger fraction of the total bar-Friedel oscillations are then controlled by the plasmon wave
rier height, the emission threshold structure shifts upward towector, or beyondv., by the wave vector at the edge of the
merge into the multipole structure. particle-hole continuum into which the plasmon has

The completely new results are fer> w,/2, which for all merged® Furthermoresn, does not exceed 0.1 in either its
r show rather little structure. There is a small bump whenreal or imaginary part, which partially explains wtas
the first harmonic frequency crosses the multipole resonance 2. This limiting behavior holds for both LDA and RPA
near 0.8w,. This structure is stronger for largey, butitis  evaluations, as shown in Fig. 6. The differences between
never dominant as predicted by recent hydrodynamic moddlDA and RPA results occur mostly below/w,=0.5 and
calculations-” These authors used equilibrium surface den-are very similar to the earlier evaluatiohdhe qualitative
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appearance of the spectrum afdoes not depend on the
treatment of exchange and correlation.

The structures we have found @ are generally much
broader than the value of we have used. The only excep-
tion is near 0.50,, but this is misleading. In the equation for
the intensity of second-harmonic radiatioi,a is multiplied
by the dielectric constant at® which nearly vanishes at 0.5
o, . Hence in Fig. 7, which illustrates howdepends on the

beam atw and the exiting beam ate2 are presumed to be

polarized. To evaluate the standard equatichas a func-
tion of the angle of incidence and driving frequency one only
needsa(w). Below 0.5w, there are two strong structures,
associated with the photoemission threshold and the multi-
pole mode:—3 Above 0.5 o, there is only a single bump
which arises from the excitation of the multipole mode by
damping parameter, we have multiplieds by [1 th_e first hgrmonic_. The existence of this “peak” is no sur-

' prise but its relative strength is. The electron gas seems to

—(2w/wy)?] to suppress the rapid variation afnear 0.5  qguickly lose its nonlinearity as the frequency grows past 0.5
o, . The results are then qualitatively similar to those in Fig.,

3. The plots depend noticeably ononly near regions of
sharp structure, at least fof o smaller than a few percent.
We remark that the various rescaling improvements dis-
cussed in Ref. 7 are important for producing stable numerical
results wheny/ wg is reduced to 0.001. We are grateful to Eric Goff and Ansgar Liebsch for help-
Finally, we close with Fig. 8 which shows the radiation ful discussions. Part of the calculations were done on the
efficiency predicted by our calculaterl Both the incident Cray Research Inc. T90 system at NPACI in San Diego, CA.
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