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Calculations of second-harmonic generation for a jellium metal surface

W. L. Schaich
Physics Department, Indiana University, Bloomington, Indiana 47405

~Received 13 September 1999!

The microscopica parameter, which alone is needed to describe the surface sensitive dependence of second-
harmonic generation from jellium metals, is calculated within a time-dependent local-density-functional ap-
proximation for frequencies between zero and twice the bulk plasmon. The calculations incorporate an extrin-
sic damping and allow for the excitation of bulk plasmons. The results for frequencies up to half the bulk
plasmon are very similar to earlier evaluations, while at higher frequencies only weak spectral structure is
found.
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I. INTRODUCTION

It has been more than ten years since microscopic ca
lations of second-harmonic generation~SHG! at simple
metal surfaces were presented.1,2 Several refinements hav
been made since then, including treatments of overlayers
estimates of crystalline effects; see the monograph
Liebsch for references and a review of this work.3 However,
in all the microscopic calculations on continuum models, o
has kept the applied frequency below half the bulk plasm
frequencyvp , wherevp

254pnbe2/m with nb the bulk den-
sity. This limitation was imposed in order to avoid the n
merical problems caused by plasma waves generated a
surface and propagating into the bulk.

In this paper we show how these difficulties can be ov
come, allowing calculations of SHG at all frequencies. T
basic scheme is the same as in earlier work,1–4 so we focus
on the self-consistent, but nonretarded, dynamic seco
order density response to an imposed electric field oscilla
at frequencyv and directed normal to the surface. The d
pole moment of this density response determines thea pa-
rameter, which in turn is the only surface sensitive quan
needed in a jellium model of a flat, clean surface to evalu
SHG for arbitrary polarizations and angles of incidence. O
results show surprisingly little structure ina(v) for v
.vp/2. Even near the multipole mode (v/vp.0.8) a has
only a modest bump and then quickly settles back to
high-frequency limit ofa522.

In Sec. II we discuss the changes in the numerical an
sis that have allowed us to extend the calculations. The
ning time of the code is only slightly increased forv
.vp/2. Then in Sec. III we present results from a series
calculations over the range 0,v,2vp for jellium models
whose densities extend fromr s52 to r s55.

II. THEORY

Consider first when bulk plasmons can arise in an S
calculation. The bulk plasmon in jellium is a well-define
excitation only over a limited range of frequencies, start
at vp and cut off by the onset of Landau damping atvc . The
ratio vc /vp depends on the bulk density and on the parti
lar approximation used for exchange and correlation,5,6 but
typically lies between 1.3 and 1.5. This general feature le
to the calculation of SHG in different ways for separate f
quency ranges.
PRB 610163-1829/2000/61~15!/10478~6!/$15.00
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For v,vp/2 one can ignore bulk plasmons in both th
linear and quadratic response, as has been done so fa1–3

This freedom is also possible forv.vc and for vc/2,v
,vp . The latter range overlaps the multipole mode in t
linear response; i.e., one can examine the SHG respons
v/vp'0.8 with no change in computer code. Forvp/2,v
,vc/2, the bulk plasmons enter the screening of the q
dratic driving terms, but not into the linear response. On
other hand, forvp,v,vc , the bulk plasmons appear in th
linear response, but may be ignored in the screening of
nonlinear terms. One never needs to account simultaneo
for bulk plasmons in first- and second-order responses.

Our allowance for the bulk plasmon is a straightforwa
extension of the calculational scheme outlined recently.7 We
determine the induced densitiesr j (x, j v) at first and second
order (j 51 and 2! near the left side of a metal slab, whic
lies between capacitor plates that apply the spatially cons
normal fieldEA at frequencyv. The spatial range kept in th
numerical evaluation runs along the normal coordinate fr
xv in vacuum toxc5L well inside the metal. When a bulk
plasmon may be present we assume that the relevant ind
charge density is not negligible nearx5L, but instead varies
as

r j~x, j v!'r j~L, j v!eip j (x2L) ~1!

for x>L.
The complex-valued wave vectorpj5p( j v) of the plas-

mon is a bulk property determined by fitting the imagina
part of the inverse bulk dielectric function (1/eb) to a Lorent-
zian shape. Our motivation here comes from the fact tha
a hydrodynamic model 1/eb has the form8

1

eb
H

215
vp

2/b2

p22q2
, ~2!

as a function of the three-dimensional~3D! momentumq for
a fixed frequencyv. Hereb25 3

5 vF
2 with vF the Fermi veloc-

ity. From the location and width of the peak in2Im(1/eb)
versusq2 for a general dielectric function we can determi
an effective value ofp2. The dielectric functions we use in
this recipe have the form

1

eb
215

xbv
@12xb~v1Vxc!#

, ~3!
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PRB 61 10 479CALCULATIONS OF SECOND-HARMONIC GENERATION . . .
where xb is the bulk Lindhard susceptibility,5,9 v
54pe2/q2, and Vxc5]2/]n2(nexc) evaluated atn5nb .
Hereexc is the average exchange-correlation energy per e
tron in a bulk system of densityn. Equation~3! derives from
a local-density-functional approximation~LDA !, and if one
ignores Vxc it becomes the random-phase approximat
~RPA!.

Given the ansatz~1! for the induced density beyondx
5L, we find an additional potential energy

eDw j~x, j v!5er j~L, j v!

35 F4p

pj
2

1Vxc /e2Geip j (x2L), L,x,

4p

pj
2 @11 ip j~x2L !#, x,L.

~4!

FIG. 1. First-order-induced charge density versus normal co
dinate at v/vp51.2. A bulk plasmon with wave vectorp/kF

50.661 i0.014 is responsible for the long-ranged, oscillatory ta

FIG. 2. Complex conjugate of thed parameter versus frequenc
The smooth curves are from the present calculation while the cir
are from data in Ref. 6, which used a different approximation
exc and no damping. A bulk plasmon is present for 1.0,v/vp

,1.36.
c-

n

The contributions toDw j include both the Hartree term an
an LDA estimate of exchange and correlation energies.
simple form of Dw in x.L allows us to analytically do
integrals forx→` of products ofDw and a nonlocal suscep
tibility. There is also no problem with the numerical evalu
tion of such integrals forxv,x,L. Hence the additiona
induced charge density due toDw may be readily determined
and incorporated into the mean-field equations that de
mine the total induced charge density.7

As mentioned above, our basic numerical scheme is
scribed in Ref. 7. Rather than reproduce the various der
tions done there, we only note several ways in which o
procedures differ from those of Liebsch.3 We do not intro-
duce model densities when solving the response equati
but we do allow the frequency to have a significant ima
nary part:v→ṽ5v1 ig, where\g is a few percent of the
Fermi energy. The presence ofg reduces numerical prob
lems because it causes all induced quantities to decayx
moves into the bulk. However,g also smoothes out the fre
quency dependence of the response, so one should not m
g too large. There can be experimental estimates ofg since
2g corresponds to the Drude scattering rate.7 Consideration
of all of these constraints leads to theg values we have
chosen, but we also show how results vary withg.

For SHG one needs thea parameter formally defined by7

a58rbE dx xr2~x,2v!/s1
2 , ~5!

r-

es
r

FIG. 3. Complex conjugate of thed parameter versus frequency
The smooth curves are from the present calculation; the thick l
haveg/vF50.02, while the thin lines haveg/vF50.0001. Aside
from the differentg values, nothing else was changed. The circ
are from data in Ref. 15, which used the same approximation
exc and no extrinsic damping. They are constrained to havev
,vp .

TABLE I. Parameter choices.

r s V/\vp 2kFxv kFL kFDx g/vF

2 0.981 12.8 94.2 0.2 0.02
3 0.997 10.0 92.4 0.2 0.02
4 1.053 12.0 77.55 0.15 0.03
5 1.118 10.5 77.1 0.15 0.04
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FIG. 4. Plots of thea parameter versus frequency. The parameters of the calculations are in Table I and in all panels the solid~dashed!
curves are the real~imaginary! parts of2a.
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with rb5enb , but actually evaluated from

a52218S 12
4ṽ2

vp
2 D 21H E

xv

0

dx xr2~x,2v!

1E
xv

L

dx r2~x,2v!Fext~x!/mvp
2J rb /s1

2 . ~6!

Herex50 is the jellium edge,s15*dx r1(x,v), and in an
LDA calculationFext vanishes. For an RPA calculationFext

52]mxc
(0)/]x with mxc

(0)5]/]n(nexc) evaluated at n
5n0(x), where n0(x) is the ground-state electron energ
profile for the slab. The sum rule that allows one to jum
from Eq.~5! to Eq.~6! corrects the~small! error in Ref. 2 and
agrees with Ref. 3. It is important that one can avoid try
to calculate the integral ofxr2 over all x.

At several places in the calculation one does analytic
integrals that are slowly convergent. One example is
driving term in second order due to the potential energy
sociated with the bulk electric field,EA /(12vp

2/ṽ2). The
potential energy associated with the outside electric field a
grows linearly in magnitude with distance from the surfa
but usually this causes no problem because the suscepti
it multiplies is decaying exponentially as one moves t
coordinate out into vacuum. However, in one part of t
y
e
s-

o
,
ity
t

second-order response there can be difficulties when\v ex-
ceeds the work function. In that case part of the susceptib
@A2 in Eq. ~23! of Ref. 7# can be nondecaying in a coordina
(xa) that is to be multiplied by the first-order potential e
ergy and integrated to2` in vacuum. Liebsch suppresse
this difficulty by cutting off the integral atxv .10 We go one
step farther to integrate analytically with the Hartree part
the potential energy, which is a linear function ofx. How-
ever, like Liebsch, we truncate the integral with th
exchange-correlation contributions atxv . This term is not
present in RPA and the difficulties it implies in LDA see
unphysical. The total potential energy in first order, outs
the metal, is to within a constant

ew1~x,xv ,v!52exEA1mxc8 ~x!r1~x,v!/e, ~7!

wheremxc8 5]2/]n2(nexc) evaluated atn5n0(x). As a rough
estimateexc;n1/3, so mxc8 ;n0

22/3, while r1;n0
1/2. Thus the

exchange-correlation contribution toew1 outside eventually
diverges asn0

21/6 asx moves far away. However, this forma
divergence does not become apparent untilx is tens of Ang-
stroms outside11 and in a domain where an LDA is not rel
able. Hence thead hoc truncation of this part ofw1 is not
unreasonable. We did check that movingxv around by a few
Angstroms does not significantly change our results.
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III. RESULTS

We begin with some linear response properties. Figur
shows the first-order LDA charge density whenv/vp51.2.
The bulk density hasr s53 andg/vF50.02, wherevF is the
Fermi frequency. The dimensionless ordinate isdn1(x,v)

FIG. 5. Second-order-induced charge density versus norma
ordinate for several frequencies. The scale for the ordinate cha
between the panels. See Table I for the parameters used in
r s53 calculations.
1

5r1(x,v)/kFs1, with kF the Fermi wave vector, and is nor
malized so its integral overkFx equals one. The bulk cutof
is atkFL562.4 and Eq.~1! is used to plot beyondx5L. This
ansatz looks very reasonable here.

In Fig. 2 we plot thed parameter defined by

d5E dx xr1~x,v!/s1 ~8!

but actually evaluated from

d5~12ṽ2/vp
2!21H E

xv

0

dx xr1~x,v!

1E
xv

L

dx r1~x,v!Fext~x!/mvp
2J /s1 . ~9!

The equivalence of these two expressions is based on an
sum rule,12,3 and for the LDA results shownFext[0. We are

o-
es

ese

FIG. 6. Comparison of plots ofa parameter versus frequency
The curves~circles! are from an LDA~RPA! calculation. The LDA
results extend the plot in Fig. 4.

FIG. 7. Dependence of thea parameter on the choice of damp
ing. The curves~circles! use g/vF50.02(0.001) with no other
changes from ther s53 line of Table I. The factor multiplyinga
suppresses sharp structure near 0.5vp .
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10 482 PRB 61W. L. SCHAICH
using the Wigner interpolation formula for the correlatio
part ofexc ~Ref. 13! and again takeg/vF50.02 but push the
cutoff out to kFL592.4. The curves compare reasonab
with the data from Ref. 6 which used a momentum-sp
evaluation withg501 and a different approximation for th
correlation energy.14

To show that most of the slight differences in Fig. 2 c
be removed, we compare in Fig. 3 our same calculation w
Liebsch’s results,12,15which used the Wigner form ofexc and
setg501. There are clear differences only near regions
sharp variation, and these essentially go away if we red
our damping tog/vF50.001. It is remarkable that fo
v/vp,0.6 and v/vp.1.1 that thed parameter is only
weakly dependent ong. This eventually ceases to be true f
larger values ofg, such as theg/vp50.05 used by Gies and
Gerhardts.6,15,16

Turning now to the nonlinear response we show in Fig
the a parameter versus frequency for jellium surfaces w
different bulk densities. Parameter choices for the differ
cases are listed in Table I. The step size for the real-sp
mesh isDx, and the ground-state barrier heights for the co
fining potential energy areV. It is remarkable thatV is nearly
\vp for all r s . We used a smaller step size~relative to the
Fermi wavelength! at largerr s since the barrier becomes
sharper structure on this scale asr s increases.3,13

The spectral variation ofa for v,vp/2 has been amply
discussed by Liebsch.1–3 Even with the various difference
in calculation noted in Sec. II, we still obtain the same qua
tative behavior. At the higher bulk densities~smaller r s),
structures due to 2v matching the work function or the mul
tipole ~near 0.8vp) are well separated. Asr s increases and
the work function becomes a larger fraction of the total b
rier height, the emission threshold structure shifts upward
merge into the multipole structure.

The completely new results are forv.vp/2, which for all
r s show rather little structure. There is a small bump wh
the first harmonic frequency crosses the multipole resona
near 0.8vp . This structure is stronger for largerr s , but it is
never dominant as predicted by recent hydrodynamic mo
calculations.17 These authors used equilibrium surface de

FIG. 8. Second-harmonic radiation efficiency for differe
angles of incidence. The only microscopic quantity used is thea for
r s53 of Fig. 4.
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sity profiles that were either linear or quadratic in shape w
parameters chosen to fit the multipole location in linear
sponse. Their predicteda’s near 0.8vp are several orders o
magnitude larger than our results in Fig. 4. The older hyd
dynamic calculations4,18 which used a two-step surface de
sity profile do predict a structure ina comparable to that
shown in Fig. 4 near 0.8vp , but also predict further struc
tures at higher frequency, which do not appear here.
high-frequency limit ofa is 22,19 which requires that the
integrals withr2 in Eq. ~6! become negligible. It is surpris
ing that this happens even beforev.vp .

To provide more insight we show in Fig. 5 plots of th
second-order-induced density at various frequencies fo
system withr s53 and corresponding parameters from Tab
I. The dimensionless variabledn25rbr2(x,2v)/kF

2s1
2 . Al-

though to finda from Eq.~6! one needs in LDA the profile o
r2(x,2v) only for x,0, the calculation of the whole profile
must be self-consistent. As Fig. 5 illustrates, there is con
erable evolution of these profiles asv changes. The penetra
tion of dn2 into the bulk varies with frequency and a com
plicated pattern of Friedel oscillations appears. Although o
can easily identify at low frequencies the dominant Frie
period,2,3 we have not been able to do this over the midran
of frequencies.20 At the lowest frequencies the domina
Friedel wave vector is near 2kF . As v/vp increases through
0.2 to 0.4,dn2 extends farther into the bulk and develops
new oscillation pattern with a smaller wave vector. The
fective wave vector of these Friedel oscillations increa
linearly with frequency,

q/kF'0.8~v/vF!, ~10!

an empirical relation that roughly holds for 2<r s<5 but for
which we have noa priori justification. There are severa
candidate wave vectors that might be important,2,15,21 and
these can be combined in various ways from the driv
terms and screening processes of the nonlinear respo
This perhaps explains why it is sometimes difficult to ide
tify a single wave vector in the ‘‘tail’’ ofdn2.

For instance atv/vp50.6, there appear to be beats in t
oscillation pattern. The bulk plasmon which can be exci
in the screening of the nonlinear terms at 2v has a wave
vector p/kF'0.66, but its influence is not obvious. Our a
satz of Eq.~1! does not seem appropriate for this case. F
tunately the oscillations, although very long ranged,
fairly rapid. This implies thatdn2 for x,0 is not very sen-
sitive to what is happening near the bulk cutoff. We fou
similar results fora upon changingL or even switching to a
code that ignores anydn2 ~due to a bulk plasmon or what
ever! beyondx5L.

Oncev exceedsvp the variation ofdn2 simplifies. The
Friedel oscillations are then controlled by the plasmon wa
vector, or beyondvc , by the wave vector at the edge of th
particle-hole continuum into which the plasmon h
merged.6 Furthermore,dn2 does not exceed 0.1 in either it
real or imaginary part, which partially explains whya'
22. This limiting behavior holds for both LDA and RPA
evaluations, as shown in Fig. 6. The differences betw
LDA and RPA results occur mostly belowv/vp50.5 and
are very similar to the earlier evaluations.2 The qualitative
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appearance of the spectrum ofa does not depend on th
treatment of exchange and correlation.

The structures we have found ina are generally much
broader than the value ofg we have used. The only excep
tion is near 0.5vp , but this is misleading. In the equation fo
the intensity of second-harmonic radiation,2–4 a is multiplied
by the dielectric constant at 2v, which nearly vanishes at 0.
vp . Hence in Fig. 7, which illustrates howa depends on the
damping parameter, we have multiplieda by @1
2(2ṽ/vp)2# to suppress the rapid variation ofa near 0.5
vp . The results are then qualitatively similar to those in F
3. The plots depend noticeably ong only near regions of
sharp structure, at least forg/vF smaller than a few percen
We remark that the various rescaling improvements d
cussed in Ref. 7 are important for producing stable numer
results wheng/vF is reduced to 0.001.

Finally, we close with Fig. 8 which shows the radiatio
efficiency predicted by our calculateda. Both the incident
n

.

-
al

beam atv and the exiting beam at 2v are presumed to bep
polarized. To evaluate the standard equations2–4 as a func-
tion of the angle of incidence and driving frequency one o
needsa(v). Below 0.5vp there are two strong structure
associated with the photoemission threshold and the m
pole mode.1–3 Above 0.5 vp there is only a single bump
which arises from the excitation of the multipole mode
the first harmonic. The existence of this ‘‘peak’’ is no su
prise but its relative strength is. The electron gas seem
quickly lose its nonlinearity as the frequency grows past
vp .
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