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Lyapunov exponent for pure and random Fibonacci chains
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We study the Lyapunov exponent for electron and phonon excitations, in pure and random Fibonacci
quasicrystal chains, using an exact real-space renormalization-group method, which allows the calculation of
the Lyapunov exponent as a function of the energy. It is shown that the Lyapunov exponent on a pure
Fibonacci chain has a self-similar structure, characterized by a scaling index that is independent of the energy
for the electron excitations, “diagonal” or “off-diagonal” quasiperiodic, but is a function of the energy for the
phonon excitations. This scaling behavior implies the vanishing of the Lyapunov exponent for the states on the
spectrum, and hence the absence of localization on the Fibonacci chain, for the various excitations considered.
It is also shown that disordered Fibonacci chains, with random tiling that introduces phason flips at certain sites
on the chain, exhibit the same Lyapunov exponent as the pure Fibonacci chain, and hence this type of disorder
is irrelevant, either in the case of electron or phonon excitations.

[. INTRODUCTION more difficult task, and it has usually been restricted to a few
special energies on the spectrum, for which the states are
The experimental discovery of quasicrystatmd also the found to be self-similar or chaotic_. More_ generally, evidence
building of artificial multilayer structures by molecular-beam has been found for the states being neither extended nor lo-
epitaxy? have considerably stimulated the theoretical studyc@lized in the usual sense: .
of quasiperiodic systenis® Quasicrystals have a determin- _ 1he localization properties of the states can be studied

istic aperiodicity that characterizes them as intermediatdlrough the calculation of the Lyapunov exponentwhich

structures between periodic crystals and disordered materfaracterizes the evolution of a wave function along the

i~ 17-19 H
als, therefore being expected to display new behavior. Ther&@n: "~ The Lyapunov exponent is zero for an extended
critical state, but is positive for a localized state represent-

g i . X r
has been, in particular, great discussion on the nature of th%g then the inverse of the localization length. Delyon and

energy spectrum_and eigenstates of.electron and phonan CBetriti€® have proved that the Lyapunov exponent for a class
citations on quasmrystgls. Itis qqesyoned whether the SPeGy binary quasiperiodic tight-binding chains vanishes on the
trum is absolutely continuous, pointlike, or singular continu- pectrum, which rules out the presence of localized states.
ous, or correspondingly, if the states are extended, localizeghe Fihonacci sequence does not, however, belong to this
or critical. _ o _ _ class of chains, and the characterization of the states in that
The Fibonacci chain is the simplest quasicrystal, a onecase remains under discussion. A study on localization
dimensional system where the site or bond variables take ongngths of tight-binding electrons on a pure Fibonacci chain
of the two valuesA and B, and are arranged in a Fibonacci has been presented by Capaz, Koiller, and Quéirtzat
sequence. The Fibonacci chain can be constructed recufiound no evidence for localization of the states.
sively by successive applications of a substitution rdle, Real systems have, in general, some disorder. Random
—AB andB— A, or alternatively, by successive applications quasicrystals, in the sense of a random tiling, have been
of a concatenation ruleS=S_,®S_,, S being the Fi- consideredf to explain the properties of quasicrystalline al-
bonacci sequence at iterationThe quasiperiodicity of the loys. It is well known that disorder has pronounced effects
Fibonacci chain is characterized by the golden mear{1 ~ ©on the transport properties of periodic systems, especially in
+1/5)/2, which gives the ratio of the number afandB  ©ne-dimension where all the states turn to localized whatever
units. Tight-binding electron and phonon excitations have® amount of disorder. A striking property of quasicrystals
been studied on a Fibonacci chain, using mainly'S that th_ey exhibit extremely high resistivities, which de-
transfer-matri® 2 and real-space renormalization-group ¢'€85€ with the amount of defecfsThe effects of some

techniqueg3-15 It has been found that the energy Spectrumtypes of disorder on the electronic spectra and wave func-

for these excitations is a Cantor set with zero Lebesgue meé[li-O ns of Fibonacci chains have been considéfed
9 In this work we study the Lyapunov exponent for electron

sure, this result having in addition been prolidor the case and phonon excitations in pure and random Fibonacci quasi-

of electronic excitations on a site Fibonacci chain. The Specc':rystal chains. We consider electrons in a tight-binding

tra of the periodic approximants to the Fibonacci chain exynoqel with diagonal-site and off-diagonal-bond Fibonacci
hibit self-similarity in the band structure, with a scaling in- grdering, and phonons on a lattice with bond Fibonacci or-
dex that for the electronic excitations is independent of thjering. The disorder introduced is random tiling imposed on
energy, while for the phonon excitations it is a function of the substitution or concatenation rules for construction of the
the energy. The integrated density of states for the variousFibonacci chains. We use a real-space renormalization-group
excitations presents rich scaling behavior, with indices varymethod, which allows the calculation of a wave function
ing from the edge to the center of the ban®s'*The  along the chain, for any given energy, and therefore enables
characterization of the eigenstates on a Fibonacci chain isthe determination of its Lyapunov exponent. This method
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provides a simple and very efficient way of numerically cal-tained from Eq.(1) with the couplingsV,=V, or Vg, ar-
culating the Lyapunov exponent as a function of the energyanged in the Fibonacci sequence.

for large Fibonacci chains. The method has great similarities, The disordered Fibonacci chains are built by introducing
but also important differences, as will be discussed, with thatandom tiling in the substitution rule for construction,

used by Capaz, Koiller, and Queir6zThe method is based

on decimation, which is here applied either to substitdfion B—A,
or concatenatiof® and implemented in the presence of dis- -
order. A—AB, probability p, 2

In order to calculate an eigenstate, one needs to specify an .
energy on the spectrum. Since the spectrum of a Fibonacci A—BA, probability 1-p,
chain is a Cantor set with zero Lebesgue measure, the prokn each iteratiori, starting withB, the two possibilities cor-
ability of numerically specifying an energy on the spectrumresponding respectively to direct and inverse substitution, or
is essentially zero. Hence any chosen energy will almost cetthey are built by introducing random tiling in the concatena-
tainly correspond to a gap, and the calculated Lyapunov exion rule for construction,
ponents are then associated to gap states. It is shown that the

Lyapunov exponent for the gap states of the various excita- Si=S_-1®S_,, probability p, 3
tions has a fractal struture, and we study its scaling proper- -
ties. From these properties we obtain information on the Si=S-2®S_1, probability 1-p,

Lyapunov exponent for the states on the spectrum of thgi,ing withS,=B andS,=A, the two possibilities corre-
Flbonacm'chgm, and therefore on the localization propertlegponding respectively to direct and inverse concatenation.
qf the _exc_ltat|ons. We study the Lyapunov expo_nent for bothRandom tiling on substitution or concatenation generates, at
tight-binding electrons and phonons, remarking that th&ach jteration, an identical set of disordered Fibonacci
Goldstone symmetry present in the Iatte.r and abs_ent in th@hains, though through a different sequence of preceeding
former may lead to important differences in the scaling ProPchains(e.g., A—AB—ABAABABA by substitution, vs
erties of the two systems. A—BA—AAB—ABABA by concatenation

The outline of the paper is as follows. In Sec. Il we de-  1he method that we use to calculate the Lyapunov expo-
scribe the tight-binding electron and phonon systems that ar§ant is based on the fact that the wave functibp at the
studied, and present the renormalization method used to C"’\l—?bonacci sitesn=n(i)=F,,,, given by F,,,=F+F; ,

| ' | I I—

culate the Lyapunov exponent. In Sec. Il we present th%ith F,=Fo=1, can be easily obtained via a real-space

Lyapunoy exppnent for. the various exc[tatlons on a purerenormalization-group transformation, which consists in
Fibonacci chain, study its scaling properties and discuss 10gjiminating appropriated sites on the chain, so that a chain
calization, and finally consider the effects of disorder on th

! N&imilar to the original one is obtained, with a rescaled length
Lyapunov exponent. In Sec. IV we present our conclusions, g renormalized parameters. Under successive decimations
one carries the system through larger length scales separating
Il. RENORMALIZATION APPROACH the sites. For the Fibonacci chain it is possible to deduce an
exact renormalization transformation for the parametgrs
dV,, the rescaling factor, under which the system is self-
imilar, being equal ta. After i iterations, the renormaliza-
tion transformation takes, for examplg, to VX), which
(en—E)¥, =V, 1V, _1+V ¥V, ;1. (1)  represents the renormalized interaction between two sites
) that are a distance apart, measured in units of the original
For the electrons, denotes the amplitude of the wave |5iice spacing. The Fibonacci site€i) become the first
function at siten, corresponing to energf, e, is a site  neighhors of the end site=0 at each iteration Now, writ-
energy, and/,, is the hopping amplitude between siténd  jnqEq. (1) as a recursion relation for the wave function, and
n+ 1. For phononsy , represents the displacement from thefixing the “free-end” boundary conditiov_, =0, one gets
equilibrium position of the atom at site E=mw?, w being ¥, =[(eo—E)/Vo]¥o. The wave function¥, at the con-
the phonon frequency anth the atom massgn=Vn-1  gecutive Fibonacci sites(i) can therefore be obtained in

+V,, andV, is the spring constant connecting site®nd  terms of the parameters under successive renormalization it-
n+1. This latter model describes equally well spin waves ongrationsi through

a Heisenberg ferromagnet at zero temperature, replacing the _ _
spring constants by exchange constants, amef by the Vi =Ly —E)VE 1w, 4
spin-wave frequency. We note the Goldstone symmetry . )
present in the phonon system, which imposes a correlatiofXiN9 Vo (€.9.,Wo=1). The Lyapunov exponent is then
between the site,, and the couplingv/,, parameters, that is calculated from the wave functioi), given that
not present in the electron system. — a¥n

The various Fibonacci quasicrystal models are defined as _ [Wol~e7,  (n—e), ©
follows. For electrons, the diagonal model is obtained fromandx,= 7' for n=n(i). In the work of Capaz, Kaoiller, and
Eq. (1) by settingV,=1 ande,=&, or g, according to the  QueiroZ* the localization of the wave functioW is studied
Fibonacci sequence, and the off-diagonal model is obtainefbllowing the behavior of the coupliny under successive
from Eq. (1) by settinge,=0 andV,=V, or Vg, according renormalizations, and not through the evolution of the wave
to the Fibonacci sequence. The model for phonons is obfunction (4), which also involves the parameter Although

The dynamics of tight-binding electron and phonon exci-
tations on a Fibonacci quasicrystal chain can be described
the generic equation
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the behavior of¥’ is mainly determined by, the complete ey T V=el)-VP(D-E), ViTI=V{TD,
expression should be used. Furthermore, in that work a small
imaginary party is added to the energy, which produces
an artificial decay of the coupliny, that alters the actual
evolution of the wave function, and consequently interferes

in the study of localization and evaluation of the Lyapunov
exponent. B. Concatenation chains

Now we present the decimation techniques used to obtain The renormalization transformation of the parameters is
the renormalization transformation of the parameteysind  optained by eliminating the central site, after having per-
Vo for chains constructed by substitution or concatenation. formed concatenation, so as to reverse the concatenation pro-
cedure (3).%° This leads to the following renormalization
equations, which are different for bond Fibonacci ordering,

o ) _i.e., off-diagonal electrons and phonons, or site Fibonacci
The renormalization transformation of the parameters igdering, i.e., diagonal electrons.

obtained by eliminating sites in such a way as to reverse the For the bond problem:
substitution procedure in Eq2)." In order to build the (i) direct concatenation,
transformation one needs to consider an expanded parameter

it vi=Vv§,

S tD=s0) | VEFDoVETD i VOV (g)

A. Substitution chains

. - i+1)_ _(i i)2 i+1
space, for the various excitations, where the bovigsas- e§ =6l V(% (el -E),
sume two different vaIues\/A and VB,. arranged in a Fi- 0D -1 \l-D2(+1)_ (10)
bonacci sequence, and the site energiemay assume three Fiqn “Fig 0 cd '

different values, depending on the local environmem,af, VEFD Vi1 0+1) )
if Voo1=Vy=Va, g5 if V1=V, and V,=Vg, &, if 0 070 cd ’
Vh-1=Vg andV,=V,. A choice of the initial parameters with ([ Y=g0+ g0~

Va, Vg, &4, €5, €,, Casts the problem into the model for (i) inverse conlcatenation,

electron excitations, diagonaV/{=Vg,e,=¢&,#&p) or off-

diagonal Y¥a#Vg,e,=&z=¢,), or phonon excitations el =gl D-v{ DTN —F),
(Va#Vg,e,=2Va,e5=£,=Va+Vg). The reversal of rule . . . .

. @ L2 B (i+1)_ () )2y (i+1)_
(2) is achieved through the elimination ¢ sites, corre- ek, —¢F Vo I(egi E), 1D

sponding to direct substitution, or sites, corresponding to
inverse substitution. The resulting renormalization equations
are: with (" D=g{"Y1¢0) and the initial valuesy{’=Vg,

i) direct substitution, v i1 .
® V=V, eP=eP=gM=¢ for off-diagonal elec-

trons, ande )= P=v{=vy, N=cM=v=v,, for
phonons.

_ _ _ _ For the site problem:

ey =0V -E), (6) (i) direct concatenation,

ef V=6l = VOU[(sf)-E)-T?(sf V-E)],

VEI=VOVE Drel - ),

el M=) = (V24 VP (e - B),

o=V - ), 1 o)l ~

ef ) =el Ve Y- E) - TR - ),

VED=vOV0 (D), VETD=v, (12)
VIFD=TVEOVE /[ (e§ D -E) (e —E)-T2],

and for the end site=0, '

(ii) direct concatenation,

el M=V (P -E), ViTI=V{TD, (@) sl V=gl D VIV (el T V-E)-TU(e{)~ E)],
(ii) inverse substitution, el D=el-VE[(s)—E)-TY(sf V-E)], (13
D= 0 (VD24 v012)( 00— ), VEED=TVOVE 1 () - E) (el D-E) -T2,
_ o _ with the initial values, V=T, ¢P=e{=5,—T?(eg
1)_ 2 L
ey =0V -E), ®  —E), VO=T(s5—E), and in (i) eP=zn, eP=¢5,
while in (i) eP=¢eg, eP=¢,.

8$+1):82)_Vg)2/(8(yi)_|5), Considering the general case of a random Fibonacci

chain, for a given probability of disordgy, we start with a
specific disordered configuration, generated by Eg@g.or

(3), respectively, for substitution or concatenation chains,
and then iterate Eq$6)—(9), (10) and(11), or (12) and(13),

and for the end site=0, depending on the system studied, according to that configu-

Vﬂ*l)IVX)V(Bi)/(S(yi)— E), Vngl):Vg‘) ,
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FIG. 1. Inverse of the phonon wave functidfy, at the Fibonacci sites=F, , ;, for energyE=0.4, on a pure Fibonacci chain, and the
associated Lyapunov exponent

ration, in order to obtain the successive vaIues\I@? and of the energy. The exponent exhibits a rather nontrivial de-
gg)_ This allows us to calculate the wave functidn,, pro-  pendence on the energy, which has a clear correspondence
vided by Eg.(4), at the successive Fibonacci sites, for awith the associated density of states obtained by Ashraff and
given energyE. For each probabilityp, we average the ob- Stinchcomb&"*® for the various cases, the finite values of
tained wave function foE over many different disorder con- the Lyapunov exponent corresponding to gap states, with the
figurations. It is important to remark that when dealing withfurther a state is inside a gap the larger is its Lyapunov
random chains, one should first calculate the wave functio§xponent. The Lyapunov exponent exhibits a fractal struc-
for a specific disordered configuration and then average ovdkre, i.e., under dilation the same structure is revealed in a
configurations, instead of averaging the parameters over digmaller scale, as can be seen by comparing the Lyapunov
order at each step of the renormalization and then calculatelots in Fig. 2 with those in Fig. 3. This structure is observed
the wave function with the averaged parameters. This lattegven in the very low-energy range of the magnetic excita-
proceduré® will wash out important correlations in the sys- tions, wherey takes particularly small values, most probably
tem, and leads to different results depending on how th&ue to the Goldstone symmetry.

average is performed. The first procedure describes the phys- The scaling behavior of the Lyapunov exponent is studied
ics more accurately. through the variation of the maximum exponent in a gap

Ymax VErsus the gap widtAE, .21 We find that
IIl. LYAPUNOV EXPONENT FOR FIBONACCI CHAINS

We now present the results concerning the Lyapunov ex- VmaXN(AEQ)ﬁ’ (14)
ponent, calculated as a function of the energy, for the tight-
binding electron, diagonal and off-diagonal, and phonon exwhere the scaling inde¥ is independent of the energy for
citations on the pure and random Fibonacci chains. Wéhe electron excitations, diagonal and off-diagonal, as shown
consider first the case of pure chains, for which we study thén Fig. 4, but depends on the energy for the phonon excita-
scaling properties of the Lyapunov exponent and their implitions, as Fig. 5 reveals, and it is shown in Fig. 6. We also
cations for the localization of states on the spectrum, andind that the scaling index for the electron excitations de-
analyze afterwards the effects of disorder, of the kind ofpends on the quasicrystal site(,eg) or bond (/A,Vg)
random tiling, on the Lyapunov exponent. parameters, decreasing as the difference between the param-

As mentioned above, the wave functions that we numerieters increases, while the scaling index for the phonon exci-
cally calculate correspond to gap states. Figure 1 shows thHations, varying with energy, also depends on the quasicrys-
typical behavior of a wave functioW,, at any chosen en- tal parameters \(,,Vg). Our results for the electron
ergy E, either for the electron or the phonon excitations on aexcitations are in agreement with those obtained by Capaz,
pure Fibonacci chain. One observes that the wave functioioiller, and QueiroZ' though their scaling indices differ
first oscillates over a certain length, and then grows exponerfrom ours, probably due to the fact that they have calculated
tially. This behavior has mixed characteristics of an extendedhe Lyapunov exponent from the behavior of the coupkhg
(oscillating state and a localizedexponential state. The alone and not from the evolution of the wave functién in
length over which a wave function oscillates is a “memory” Eg.(4), and, moreover, have introduced an imaginary part in
length2%in the sense that beyond this length it loses memorythe energy which influences the Lyapunov exponent, as dis-
of its initial phase. The exponential growth of the wave func-cussed earlier.
tion is characterized by the Lyapunov exponent, which mea- From the scaling expressiof14), one obtains, for the
sures the inverse of a “localization length.” We find that the various excitations, thaym,—0 whenAE;— 0, implying
memory lengthé and the Lyapunov exponent are simply  that the Lyapunov exponent for wave functions on the spec-
related,é~1/y. In Fig. 2 we present the Lyapunov exponenttrum vanishes. We therefore have that the electron, diagonal
for the electron, diagonal and off-diagonal, and phonon exer nondiagonal, and phonon excitations on a Fibonacci chain
citations on the pure Fiboncci chain, calculated as a functiomre nonlocalized.
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FIG. 2. Lyapunov exponeny for (a) electronic diagonal ,,
=—gg=¢,=1), (b) electronic off-diagonal{,=1, Vg=2), and
(c) phonon ¥,=1, Vg=2) excitations on a pure Fibonacci chain.

FIG. 3. Self-similar structure of: (a) electronic diagonal €,
=—gg=¢,=1), (b) electronic off-diagonal{,=1, Vg=2), and
(c) phonon ¥,=1, Vg=2) excitations, to compare with Fig. 2.

Let us now study the effects of disorder on the Lyapunov
exponent. Disorder has drastic effects on the wave functionglingsV, andVg, as a function of the probability of dis-
of one-dimensional periodic systems, localizing all the statesorder, for various energies. One sees that the Lyapunov ex-
Figure 7 illustrates this fact, showing the Lyapunov exponenponent increases with disorder, being also an increasing
for phonon excitations on a random periodic chain, with coufunction of the energy.
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FIG. 6. Power-law exponend of yn. vs AEg, for phonon
excitations(a) V=1, Vg=2, (b) Vo=2, Vg=1 on a pure Fi-
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FIG. 4. Maximumy in a gap vs gap widtiAE,, for (a) elec-
tronic diagonal, &) (e,=—¢ez=¢,=1, 6=0.62), @) (&,=
—eg=¢g,=2, 6=0.47); (b) electronic off-diagonal, ®) (Va
=1Vg=2, 6=0.75), (¢) (Vo=3Vz=1, §=0.53) excitations
on a pure Fibonacci chain.

rearrangement of tiles on the quasiperiodic structure, corre-
sponding to a switch of the site, andeg, or the bondV,

and Vg, parameterd® Using the cyclic property of the trace
one can see that all those random tiling chains have the same
spectrum, for the electron and the phonon excitations, as the
pure Fibonacci chain. In the work of pez, Naumis, and

~~25 . .
For the random Fibonacci chains we considered disordef"agon” on the effects of that kind of random tiling on the
of the kind of random tiling, introduced in the substitution or €/€Ctronic excitations of a Fibonacci chain, it has, however,

concatenation rule for construction of the chains. The resultP€en found that the disorder affects the spectrum of the ex-

ing disordered chains differ from the pure Fibonacci chain incit@tions. We think that this result is a consequence of the

having a varying number of phason flips, located at certaifV€raging of the parameters over disorder taken at each step
points on that chain. By a phason flip it is meant a IocaIOf the renormalization in that work, which as already men-

tioned, loses important correlations in the system and intro-
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FIG. 5. Maximumy in a gap vs gap widthAEg for phonon
excitations ¥,=1, Vg=2) on a pure Fibonacci chain.

FIG. 7. Lyapunov exponeny vs probability of disordep, for
phonon excitations, with energies®@j E=1.2, () E=2.3,
(A) E=3.4, on random periodic chains.
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FIG. 8. Lyapunov exponeny vs probability of disordep, for
various energiesE, of (a) electronic diagonal, ®) E=-1.9,
(¢) E=0.15, (A) E=1.1; (b) electronic off-diagonal, ®) E
=0.5, (#) E=15, (A) E=2.05, (c) phonon, @) E=1.4,
(¢) E=3.1, (A) E=5.29 excitations on random Fibonacci
chains.

off-diagonal, or the phonon excitations. The same result is
obtained for disordered Fibonacci chains with random tiling
either in the substitution or the concatenation rule for con-
struction of chains. The irrelevance of disorder found for the
Lyapunov exponent of excitations on a Fibonacci chain is
surprising, knowing the drastic effects that disorder has on
the excitations on periodic chains. However, it should be
noted that random tiling introduces a kind of bounded disor-
der, which has also correlations, and therefore might not be
sufficient to produce localization of states. Furthermore, in
contrast to the general case, it has been reported that there
exist particular random potentials in one dimension that al-
low for extended states, those being described by an iterative
procedure of constructiof:?8Liu and Riklund* have found

that other types of disorder, different from the one consid-
ered by us, produce localization of electronic excitations on a
Fibonacci chain.

IV. CONCLUSIONS

We have studied the Lyapunov exponent for tight-binding
electron, diagonal and off-diagonal, and phonon excitations
in pure and random Fibonacci quasicrystal chains, using a
real-space renormalization-group method. This method al-
lows the calculation of a wave function along the chain, and
the determination of the associated Lyapunov exponent, as a
function of the energy, in a very efficient way for very long
chains. We have found that the Lyapunov exponent for the
pure Fibonacci chain has a self-similar structure, being char-
acterized by a scaling index that is independent of the energy
for the electronic excitations, but depends on the energy for
the phonon excitations. The scaling properties of the
Lyapunov exponent imply that it vanishes on the spectrum
for the various excitations. We therefore have that the elec-
tronic and phonon excitations are nonlocalized on the Fi-
bonacci chain. Considering random Fibonacci chains, we
calculated the Lyapunov exponent as a function of the prob-
ability of disorder, and found that the disorder introduced, of
the kind of random tiling, does not affect the Lyapunov ex-
ponent, which takes the same value as for the pure Fibonacci
chain whatever the degree of disorder, either for the electron
or for the phonon excitations. The random tiling considered
generates in fact chains that are locally isomorphic to the
pure Fibonacci chain, and therefore our results imply that
locally isomorphic chains, besides having the same energy
spectrunt® also have the same Lyapunov exponent, and
hence their eigenstates have the same nature as the ones of
the pure Fibonacci chain. We are now investigating the ef-
fects of random tiling on the Lyapunov exponent, of electron
and phonon excitations, on other aperiodic chains, such as

duces effects that depend on the averaging procedure usdtie Thue-Morse, the period-doubling, and binary non-Pisot
corresponding in fact to different systems. On the other handequences. Other types of disorder are also being considered

Naumis and Arago?® considering electronic excitations,

on the Fibonacci chain, as well as on the other aperiodic

have also noted that phason flips located at certain points achains mentioned, in order to understand the relevance/
the Fibonacci chain do not alter the spectrum of the excitairelevance of disorder on the Lyapunov exponent, and con-

tions.

sequently on the localization properties of those systems.

We calculated the Lyapunov exponent for the electronThe results of this work will be reported elsewhere.
and phonon excitations on Fibonacci chains with random

tiling, as a function of the probability of disorder, for differ-
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