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Lyapunov exponent for pure and random Fibonacci chains
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Department of Physics and CFMC, University of Lisbon, Lisboa 1649, Portugal

~Received 18 June 1999!

We study the Lyapunov exponent for electron and phonon excitations, in pure and random Fibonacci
quasicrystal chains, using an exact real-space renormalization-group method, which allows the calculation of
the Lyapunov exponent as a function of the energy. It is shown that the Lyapunov exponent on a pure
Fibonacci chain has a self-similar structure, characterized by a scaling index that is independent of the energy
for the electron excitations, ‘‘diagonal’’ or ‘‘off-diagonal’’ quasiperiodic, but is a function of the energy for the
phonon excitations. This scaling behavior implies the vanishing of the Lyapunov exponent for the states on the
spectrum, and hence the absence of localization on the Fibonacci chain, for the various excitations considered.
It is also shown that disordered Fibonacci chains, with random tiling that introduces phason flips at certain sites
on the chain, exhibit the same Lyapunov exponent as the pure Fibonacci chain, and hence this type of disorder
is irrelevant, either in the case of electron or phonon excitations.
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I. INTRODUCTION

The experimental discovery of quasicrystals,1 and also the
building of artificial multilayer structures by molecular-bea
epitaxy,2 have considerably stimulated the theoretical stu
of quasiperiodic systems.3–5 Quasicrystals have a determin
istic aperiodicity that characterizes them as intermed
structures between periodic crystals and disordered ma
als, therefore being expected to display new behavior. Th
has been, in particular, great discussion on the nature o
energy spectrum and eigenstates of electron and phonon
citations on quasicrystals. It is questioned whether the sp
trum is absolutely continuous, pointlike, or singular contin
ous, or correspondingly, if the states are extended, locali
or critical.

The Fibonacci chain is the simplest quasicrystal, a o
dimensional system where the site or bond variables take
of the two valuesA andB, and are arranged in a Fibonac
sequence. The Fibonacci chain can be constructed re
sively by successive applications of a substitution rule,A
→AB andB→A, or alternatively, by successive applicatio
of a concatenation rule,Si5Si 21^ Si 22 , Si being the Fi-
bonacci sequence at iterationi. The quasiperiodicity of the
Fibonacci chain is characterized by the golden meant5(1
1A5)/2, which gives the ratio of the number ofA and B
units. Tight-binding electron and phonon excitations ha
been studied on a Fibonacci chain, using mai
transfer-matrix6–12 and real-space renormalization-grou
techniques.13–15 It has been found that the energy spectru
for these excitations is a Cantor set with zero Lebesgue m
sure, this result having in addition been proven16 for the case
of electronic excitations on a site Fibonacci chain. The sp
tra of the periodic approximants to the Fibonacci chain
hibit self-similarity in the band structure, with a scaling i
dex that for the electronic excitations is independent of
energy, while for the phonon excitations it is a function
the energy.9 The integrated density of states for the vario
excitations presents rich scaling behavior, with indices va
ing from the edge to the center of the bands.10–12,14 The
characterization of the eigenstates on a Fibonacci chain
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more difficult task, and it has usually been restricted to a f
special energies on the spectrum, for which the states
found to be self-similar or chaotic. More generally, eviden
has been found for the states being neither extended no
calized in the usual sense.10–12

The localization properties of the states can be stud
through the calculation of the Lyapunov exponentg, which
characterizes the evolution of a wave function along
chain.17–19 The Lyapunov exponent is zero for an extend
or critical state, but is positive for a localized state represe
ing then the inverse of the localization length. Delyon a
Petritis20 have proved that the Lyapunov exponent for a cla
of binary quasiperiodic tight-binding chains vanishes on
spectrum, which rules out the presence of localized sta
The Fibonacci sequence does not, however, belong to
class of chains, and the characterization of the states in
case remains under discussion. A study on localizat
lengths of tight-binding electrons on a pure Fibonacci ch
has been presented by Capaz, Koiller, and Queiroz21 that
found no evidence for localization of the states.

Real systems have, in general, some disorder. Ran
quasicrystals, in the sense of a random tiling, have b
considered22 to explain the properties of quasicrystalline a
loys. It is well known that disorder has pronounced effe
on the transport properties of periodic systems, especiall
one-dimension where all the states turn to localized whate
the amount of disorder. A striking property of quasicrysta
is that they exhibit extremely high resistivities, which d
crease with the amount of defects.23 The effects of some
types of disorder on the electronic spectra and wave fu
tions of Fibonacci chains have been considered.24–26

In this work we study the Lyapunov exponent for electr
and phonon excitations in pure and random Fibonacci qu
crystal chains. We consider electrons in a tight-bindi
model, with diagonal-site and off-diagonal-bond Fibona
ordering, and phonons on a lattice with bond Fibonacci
dering. The disorder introduced is random tiling imposed
the substitution or concatenation rules for construction of
Fibonacci chains. We use a real-space renormalization-gr
method, which allows the calculation of a wave functio
along the chain, for any given energy, and therefore ena
the determination of its Lyapunov exponent. This meth
1043 ©2000 The American Physical Society
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1044 PRB 61M. T. VELHINHO AND I. R. PIMENTEL
provides a simple and very efficient way of numerically c
culating the Lyapunov exponent as a function of the ene
for large Fibonacci chains. The method has great similarit
but also important differences, as will be discussed, with t
used by Capaz, Koiller, and Queiroz.21 The method is based
on decimation, which is here applied either to substitutio14

or concatenation,25 and implemented in the presence of d
order.

In order to calculate an eigenstate, one needs to specif
energy on the spectrum. Since the spectrum of a Fibon
chain is a Cantor set with zero Lebesgue measure, the p
ability of numerically specifying an energy on the spectru
is essentially zero. Hence any chosen energy will almost
tainly correspond to a gap, and the calculated Lyapunov
ponents are then associated to gap states. It is shown tha
Lyapunov exponent for the gap states of the various exc
tions has a fractal struture, and we study its scaling prop
ties. From these properties we obtain information on
Lyapunov exponent for the states on the spectrum of
Fibonacci chain, and therefore on the localization proper
of the excitations. We study the Lyapunov exponent for b
tight-binding electrons and phonons, remarking that
Goldstone symmetry present in the latter and absent in
former may lead to important differences in the scaling pr
erties of the two systems.

The outline of the paper is as follows. In Sec. II we d
scribe the tight-binding electron and phonon systems that
studied, and present the renormalization method used to
culate the Lyapunov exponent. In Sec. III we present
Lyapunov exponent for the various excitations on a p
Fibonacci chain, study its scaling properties and discuss
calization, and finally consider the effects of disorder on
Lyapunov exponent. In Sec. IV we present our conclusio

II. RENORMALIZATION APPROACH

The dynamics of tight-binding electron and phonon ex
tations on a Fibonacci quasicrystal chain can be describe
the generic equation

~«n2E!Cn5Vn21Cn211VnCn11 . ~1!

For the electrons,Cn denotes the amplitude of the wav
function at siten, corresponing to energyE, «n is a site
energy, andVn is the hopping amplitude between siten and
n11. For phonons,Cn represents the displacement from t
equilibrium position of the atom at siten, E5mv2, v being
the phonon frequency andm the atom mass,«n5Vn21
1Vn , andVn is the spring constant connecting sitesn and
n11. This latter model describes equally well spin waves
a Heisenberg ferromagnet at zero temperature, replacing
spring constants by exchange constants, andmv2 by the
spin-wave frequencyv. We note the Goldstone symmetr
present in the phonon system, which imposes a correla
between the site«n and the couplingVn parameters, that is
not present in the electron system.

The various Fibonacci quasicrystal models are defined
follows. For electrons, the diagonal model is obtained fr
Eq. ~1! by settingVn51 and«n5«A or «B , according to the
Fibonacci sequence, and the off-diagonal model is obtai
from Eq.~1! by setting«n50 andVn5VA or VB , according
to the Fibonacci sequence. The model for phonons is
-
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tained from Eq.~1! with the couplingsVn5VA or VB , ar-
ranged in the Fibonacci sequence.

The disordered Fibonacci chains are built by introduc
random tiling in the substitution rule for construction,

B→A,

A→AB, probability p, ~2!

A→BA, probability 12p,

in each iterationi, starting withB, the two possibilities cor-
responding respectively to direct and inverse substitution
they are built by introducing random tiling in the concaten
tion rule for construction,

Si5Si 21^ Si 22 , probability p, ~3!

Si5Si 22^ Si 21 , probability 12p,

starting withS05B and S15A, the two possibilities corre-
sponding respectively to direct and inverse concatenat
Random tiling on substitution or concatenation generates
each iteration, an identical set of disordered Fibona
chains, though through a different sequence of preceed
chains~e.g., A→AB→ABA→ABABA, by substitution, vs
A→BA→AAB→ABABA, by concatenation!.

The method that we use to calculate the Lyapunov ex
nent is based on the fact that the wave functionCn at the
Fibonacci sitesn5n( i )5Fi 11, given by Fi 115Fi1Fi 21
with F15F051, can be easily obtained via a real-spa
renormalization-group transformation, which consists
eliminating appropriated sites on the chain, so that a ch
similar to the original one is obtained, with a rescaled len
and renormalized parameters. Under successive decima
one carries the system through larger length scales separ
the sites. For the Fibonacci chain it is possible to deduce
exact renormalization transformation for the parameters«n
andVn , the rescaling factor, under which the system is se
similar, being equal tot. After i iterations, the renormaliza
tion transformation takes, for example,VA to VA

( i ) , which
represents the renormalized interaction between two s
that are a distancet i apart, measured in units of the origin
lattice spacing. The Fibonacci sitesn( i ) become the first
neighbors of the end siten50 at each iterationi. Now, writ-
ing Eq.~1! as a recursion relation for the wave function, a
fixing the ‘‘free-end’’ boundary conditionV2150, one gets
C15@(«02E)/V0#C0. The wave functionCn at the con-
secutive Fibonacci sitesn( i ) can therefore be obtained i
terms of the parameters under successive renormalizatio
erationsi through

Cn( i )5@~«0
( i )2E!/V0

( i )#C0 , ~4!

fixing C0 ~e.g.,C051). The Lyapunov exponentg is then
calculated from the wave function~4!, given that

uCnu;egxn, ~n→`!, ~5!

andxn5t i for n5n( i ). In the work of Capaz, Koiller, and
Queiroz21 the localization of the wave functionC is studied
following the behavior of the couplingV under successive
renormalizations, and not through the evolution of the wa
function ~4!, which also involves the parameter«. Although
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the behavior ofC is mainly determined byV, the complete
expression should be used. Furthermore, in that work a s
imaginary parth is added to the energyE, which produces
an artificial decay of the couplingV, that alters the actua
evolution of the wave function, and consequently interfe
in the study of localization and evaluation of the Lyapun
exponent.

Now we present the decimation techniques used to ob
the renormalization transformation of the parameters«0 and
V0 for chains constructed by substitution or concatenatio

A. Substitution chains

The renormalization transformation of the parameters
obtained by eliminating sites in such a way as to reverse
substitution procedure in Eq.~2!.14 In order to build the
transformation one needs to consider an expanded param
space, for the various excitations, where the bondsVn as-
sume two different values,VA and VB , arranged in a Fi-
bonacci sequence, and the site energies«n may assume three
different values, depending on the local environment ofn, «a
if Vn215Vn5VA , «b if Vn215VA and Vn5VB , «g if
Vn215VB and Vn5VA . A choice of the initial parameter
VA , VB , «a , «b , «g , casts the problem into the model fo
electron excitations, diagonal (VA5VB ,«a5«gÞ«b) or off-
diagonal (VAÞVB ,«a5«b5«g), or phonon excitations
(VAÞVB ,«a52VA ,«b5«g5VA1VB). The reversal of rule
~2! is achieved through the elimination ofb sites, corre-
sponding to direct substitution, org sites, corresponding to
inverse substitution. The resulting renormalization equati
are:
~i! direct substitution,

«a
( i 11)5«g

( i )2~VA
( i )21VB

( i )2!/~«b
( i )2E!,

«b
( i 11)5«g

( i )2VB
( i )2/~«b

( i )2E!, ~6!

«g
( i 11)5«a

( i )2VA
( i )2/~«b

( i )2E!,

VA
( i 11)5VA

( i )VB
( i )/~«b

( i )2E!, VB
( i 11)5VA

( i ) ,

and for the end siten50,

«0
( i 11)5«0

( i )2VA
( i )2/~«b

( i )2E!, V0
( i 11)5VA

( i 11) , ~7!

~ii ! inverse substitution,

«a
( i 11)5«b

( i )2~VA
( i )21VB

( i )2!/~«g
( i )2E!,

«b
( i 11)5«a

( i )2VA
( i )2/~«g

( i )2E!, ~8!

«g
( i 11)5«b

( i )2VB
( i )2/~«g

( i )2E!,

VA
( i 11)5VA

( i )VB
( i )/~«g

( i )2E!, VB
( i 11)5VA

( i ) ,

and for the end siten50,
all

s

in

is
e

ter

s

«0
( i 11)5«0

( i )2VB
( i )2/~«g

( i )2E!, V0
( i 11)5VA

( i 11) ,

if V0
( i )5VB

( i ) ,

«0
( i 11)5«0

( i ) , V0
( i 11)5VB

( i 11) , if V0
( i )5VA

( i ) . ~9!

B. Concatenation chains

The renormalization transformation of the parameters
obtained by eliminating the central site, after having p
formed concatenation, so as to reverse the concatenation
cedure ~3!.25 This leads to the following renormalizatio
equations, which are different for bond Fibonacci orderin
i.e., off-diagonal electrons and phonons, or site Fibona
ordering, i.e., diagonal electrons.

For the bond problem:
~i! direct concatenation,

«0
( i 11)5«0

( i )2V0
( i )2/~«cd

( i 11)2E!,

«Fi 11

( i 11)5«Fi 21

( i 21)2V0
( i 21)2/~«cd

( i 11)2E!, ~10!

V0
( i 11)5V0

( i )V0
( i 21)/~«cd

( i 11)2E!,

with «cd
( i 11)5«Fi

( i )1«0
( i 21) ,

~ii ! inverse concatenation,

«0
( i 11)5«0

( i 21)2V0
( i 21)2/~«ci

( i 11)2E!,

«Fi 11

( i 11)5«Fi

( i )2V0
( i )2/~«ci

( i 11)2E!, ~11!

V0
( i 11)5V0

( i )V0
( i 21)/~«ci

( i 11)2E!,

with «ci
( i 11)5«Fi 21

( i 21)1«0
( i ) , and the initial values,V0

(0)5VB ,

V0
(1)5VA , «0

(0)5«1
(0)5«0

(1)5«1
(1) , for off-diagonal elec-

trons, and«0
(0)5«1

(0)5V0
(0)5VB , «0

(1)5«1
(1)5V(1)5VA , for

phonons.
For the site problem:

~i! direct concatenation,

«0
( i 11)5«0

( i )2V0
( i )2/@~«Fi

( i )2E!2T2/~«0
( i 21)2E!#,

«Fi 11

( i 11)5«Fi 21

( i 21)2V0
( i 21)2/@~«0

( i 21)2E!2T2/~«Fi

( i )2E!#,

~12!

V( i 11)5TV0
( i )V0

( i 21)/@~«0
( i 21)2E!~«Fi

( i )2E!2T2#,

~ii ! direct concatenation,

«0
( i 11)5«0

( i 21)2V0
( i 21)2/@~«Fi 21

( i 21)2E!2T2/~«0
( i )2E!#,

«Fi 11

( i 11)5«Fi

( i )2V0
( i )2/@~«0

( i )2E!2T2/~«Fi 21

( i 21)2E!#, ~13!

V( i 11)5TV0
( i )V0

( i 21)/@~«0
( i )2E!~«Fi 21

( i 21)2E!2T2#,

with the initial values, V0
(2)5T, «0

(3)5«2
(3)5«A2T2/(«B

2E), V0
(3)5T2/(«B2E), and in ~i! «0

(2)5«A , «1
(2)5«B ,

while in ~ii ! «0
(2)5«B , «1

(2)5«A .
Considering the general case of a random Fibona

chain, for a given probability of disorderp, we start with a
specific disordered configuration, generated by Eqs.~2! or
~3!, respectively, for substitution or concatenation chai
and then iterate Eqs.~6!–~9!, ~10! and~11!, or ~12! and~13!,
depending on the system studied, according to that confi
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FIG. 1. Inverse of the phonon wave functionCn at the Fibonacci sitesn5Fi 11, for energyE50.4, on a pure Fibonacci chain, and th
associated Lyapunov exponentg.
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ration, in order to obtain the successive values forV0
( i ) and

«0
( i ) . This allows us to calculate the wave functionCn , pro-

vided by Eq. ~4!, at the successive Fibonacci sites, for
given energyE. For each probabilityp, we average the ob
tained wave function forE over many different disorder con
figurations. It is important to remark that when dealing w
random chains, one should first calculate the wave func
for a specific disordered configuration and then average o
configurations, instead of averaging the parameters over
order at each step of the renormalization and then calcu
the wave function with the averaged parameters. This la
procedure25 will wash out important correlations in the sy
tem, and leads to different results depending on how
average is performed. The first procedure describes the p
ics more accurately.

III. LYAPUNOV EXPONENT FOR FIBONACCI CHAINS

We now present the results concerning the Lyapunov
ponent, calculated as a function of the energy, for the tig
binding electron, diagonal and off-diagonal, and phonon
citations on the pure and random Fibonacci chains.
consider first the case of pure chains, for which we study
scaling properties of the Lyapunov exponent and their im
cations for the localization of states on the spectrum,
analyze afterwards the effects of disorder, of the kind
random tiling, on the Lyapunov exponent.

As mentioned above, the wave functions that we num
cally calculate correspond to gap states. Figure 1 shows
typical behavior of a wave functionCn , at any chosen en
ergyE, either for the electron or the phonon excitations o
pure Fibonacci chain. One observes that the wave func
first oscillates over a certain length, and then grows expon
tially. This behavior has mixed characteristics of an exten
~oscillating! state and a localized~exponential! state. The
length over which a wave function oscillates is a ‘‘memory
length,10 in the sense that beyond this length it loses mem
of its initial phase. The exponential growth of the wave fun
tion is characterized by the Lyapunov exponent, which m
sures the inverse of a ‘‘localization length.’’ We find that th
memory lengthj and the Lyapunov exponentg are simply
related,j'1/g. In Fig. 2 we present the Lyapunov expone
for the electron, diagonal and off-diagonal, and phonon
citations on the pure Fiboncci chain, calculated as a func
n
er
is-
te
er

e
ys-
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t-
-
e
e

i-
d
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i-
he

a
n
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t
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of the energy. The exponent exhibits a rather nontrivial
pendence on the energy, which has a clear correspond
with the associated density of states obtained by Ashraff
Stinchcombe14,15 for the various cases, the finite values
the Lyapunov exponent corresponding to gap states, with
further a state is inside a gap the larger is its Lyapun
exponent. The Lyapunov exponent exhibits a fractal str
ture, i.e., under dilation the same structure is revealed
smaller scale, as can be seen by comparing the Lyapu
plots in Fig. 2 with those in Fig. 3. This structure is observ
even in the very low-energy range of the magnetic exc
tions, whereg takes particularly small values, most probab
due to the Goldstone symmetry.

The scaling behavior of the Lyapunov exponent is stud
through the variation of the maximum exponent in a g
gmax versus the gap widthDEg .21 We find that

gmax;~DEg!d, ~14!

where the scaling indexd is independent of the energy fo
the electron excitations, diagonal and off-diagonal, as sho
in Fig. 4, but depends on the energy for the phonon exc
tions, as Fig. 5 reveals, and it is shown in Fig. 6. We a
find that the scaling index for the electron excitations d
pends on the quasicrystal site («A ,«B) or bond (VA ,VB)
parameters, decreasing as the difference between the pa
eters increases, while the scaling index for the phonon e
tations, varying with energy, also depends on the quasic
tal parameters (VA ,VB). Our results for the electron
excitations are in agreement with those obtained by Cap
Koiller, and Queiroz21 though their scaling indices diffe
from ours, probably due to the fact that they have calcula
the Lyapunov exponent from the behavior of the couplingV
alone and not from the evolution of the wave functionC, in
Eq. ~4!, and, moreover, have introduced an imaginary par
the energy which influences the Lyapunov exponent, as
cussed earlier.

From the scaling expression~14!, one obtains, for the
various excitations, thatgmax→0 when DEg→0, implying
that the Lyapunov exponent for wave functions on the sp
trum vanishes. We therefore have that the electron, diag
or nondiagonal, and phonon excitations on a Fibonacci ch
are nonlocalized.
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Let us now study the effects of disorder on the Lyapun
exponent. Disorder has drastic effects on the wave funct
of one-dimensional periodic systems, localizing all the sta
Figure 7 illustrates this fact, showing the Lyapunov expon
for phonon excitations on a random periodic chain, with co

FIG. 2. Lyapunov exponentg for ~a! electronic diagonal («a

52«b5«g51), ~b! electronic off-diagonal (VA51, VB52), and
~c! phonon (VA51, VB52) excitations on a pure Fibonacci chai
v
ns
s.
t
-

plings VA andVB , as a function of the probabilityp of dis-
order, for various energies. One sees that the Lyapunov
ponent increases with disorder, being also an increas
function of the energy.

FIG. 3. Self-similar structure ofg: ~a! electronic diagonal («a

52«b5«g51), ~b! electronic off-diagonal (VA51, VB52), and
~c! phonon (VA51, VB52) excitations, to compare with Fig. 2.
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For the random Fibonacci chains we considered diso
of the kind of random tiling, introduced in the substitution
concatenation rule for construction of the chains. The res
ing disordered chains differ from the pure Fibonacci chain
having a varying number of phason flips, located at cert
points on that chain. By a phason flip it is meant a lo

FIG. 4. Maximumg in a gap vs gap widthDEg , for ~a! elec-
tronic diagonal, (m) («a52«b5«g51, d50.62), (j) («a5
2«b5«g52, d50.47); ~b! electronic off-diagonal, (d) (VA

51,VB52, d50.75), (l) (VA53,VB51, d50.53) excitations
on a pure Fibonacci chain.

FIG. 5. Maximumg in a gap vs gap widthDEg for phonon
excitations (VA51, VB52) on a pure Fibonacci chain.
er

lt-
n
in
l

rearrangement of tiles on the quasiperiodic structure, co
sponding to a switch of the site,«A and«B , or the bond,VA
andVB, parameters.26 Using the cyclic property of the trac
one can see that all those random tiling chains have the s
spectrum, for the electron and the phonon excitations, as
pure Fibonacci chain. In the work of Lo´pez, Naumis, and
Aragón25 on the effects of that kind of random tiling on th
electronic excitations of a Fibonacci chain, it has, howev
been found that the disorder affects the spectrum of the
citations. We think that this result is a consequence of
averaging of the parameters over disorder taken at each
of the renormalization in that work, which as already me
tioned, loses important correlations in the system and in

FIG. 6. Power-law exponentd of gmax vs DEg , for phonon
excitations~a! VA51, VB52, ~b! VA52, VB51 on a pure Fi-
bonacci chain.

FIG. 7. Lyapunov exponentg vs probability of disorderp, for
phonon excitations, with energies: (d) E51.2, (l) E52.3,
(m) E53.4, on random periodic chains.
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duces effects that depend on the averaging procedure u
corresponding in fact to different systems. On the other h
Naumis and Arago´n,26 considering electronic excitations
have also noted that phason flips located at certain point
the Fibonacci chain do not alter the spectrum of the exc
tions.

We calculated the Lyapunov exponent for the elect
and phonon excitations on Fibonacci chains with rand
tiling, as a function of the probability of disorder, for diffe
ent values of energy. The results obtained are illustrate
Fig. 8. We find that the disorder considered does not af
the Lyapunov exponent either for the electron, diagona

FIG. 8. Lyapunov exponentg vs probability of disorderp, for
various energiesE, of ~a! electronic diagonal, (d) E521.9,
(l) E50.15, (m) E51.1; ~b! electronic off-diagonal, (d) E
50.5, (l) E51.5, (m) E52.05, ~c! phonon, (d) E51.4,
(l) E53.1, (m) E55.29 excitations on random Fibonac
chains.
ed,
d

on
-

n

in
ct
r

off-diagonal, or the phonon excitations. The same resul
obtained for disordered Fibonacci chains with random tili
either in the substitution or the concatenation rule for co
struction of chains. The irrelevance of disorder found for t
Lyapunov exponent of excitations on a Fibonacci chain
surprising, knowing the drastic effects that disorder has
the excitations on periodic chains. However, it should
noted that random tiling introduces a kind of bounded dis
der, which has also correlations, and therefore might no
sufficient to produce localization of states. Furthermore,
contrast to the general case, it has been reported that t
exist particular random potentials in one dimension that
low for extended states, those being described by an itera
procedure of construction.27,28Liu and Riklund24 have found
that other types of disorder, different from the one cons
ered by us, produce localization of electronic excitations o
Fibonacci chain.

IV. CONCLUSIONS

We have studied the Lyapunov exponent for tight-bindi
electron, diagonal and off-diagonal, and phonon excitati
in pure and random Fibonacci quasicrystal chains, usin
real-space renormalization-group method. This method
lows the calculation of a wave function along the chain, a
the determination of the associated Lyapunov exponent,
function of the energy, in a very efficient way for very lon
chains. We have found that the Lyapunov exponent for
pure Fibonacci chain has a self-similar structure, being ch
acterized by a scaling index that is independent of the ene
for the electronic excitations, but depends on the energy
the phonon excitations. The scaling properties of
Lyapunov exponent imply that it vanishes on the spectr
for the various excitations. We therefore have that the e
tronic and phonon excitations are nonlocalized on the
bonacci chain. Considering random Fibonacci chains,
calculated the Lyapunov exponent as a function of the pr
ability of disorder, and found that the disorder introduced,
the kind of random tiling, does not affect the Lyapunov e
ponent, which takes the same value as for the pure Fibon
chain whatever the degree of disorder, either for the elec
or for the phonon excitations. The random tiling consider
generates in fact chains that are locally isomorphic to
pure Fibonacci chain, and therefore our results imply t
locally isomorphic chains, besides having the same ene
spectrum,29 also have the same Lyapunov exponent, a
hence their eigenstates have the same nature as the on
the pure Fibonacci chain. We are now investigating the
fects of random tiling on the Lyapunov exponent, of electr
and phonon excitations, on other aperiodic chains, such
the Thue-Morse, the period-doubling, and binary non-Pi
sequences. Other types of disorder are also being consid
on the Fibonacci chain, as well as on the other aperio
chains mentioned, in order to understand the relevan
irrelevance of disorder on the Lyapunov exponent, and c
sequently on the localization properties of those syste
The results of this work will be reported elsewhere.
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