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Substrate effects on the optical properties of spheroidal nanoparticles
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We developed a spectral formalism to study the effective polarizability of a spheroidal particle lying over a
substrate, including multipolar effects. With the help of the spectral representation, we can discuss the optical
response in terms of the excitation of the multipolar modes of the system. As an example of applications, we
provide a spectral representation of the differential-reflectance spectra and we perform calculations for specific
systems.

[. INTRODUCTION nanoparticles requires the full solution of the optical re-
sponse problem. Nevertheless, in the SERS literature the ef-
In the last few decades, the study of optical properties ofect of the substrate on the optical response of spheroidal
inhomogeneous thin films has been stimulated by promisinfaﬂoloarticIes has not been fully treated, although one can
applications. The actual and potential applications cover 4nd some papers on the problem of the scattered field of a
wide spectrum of systems and tools ranging from solar engphere above a flat su_bstréte. i
ergy cells and surface-enhanced Raman spectroscoQ%lTh? _optlcal pfrlorgertlbest Otf a syst':erg ?f W_eII-((jjeIrl]ned Fr)]atrh
(SERS to the characterization of self-assembled quantu €s ying on a fiat substrate can be cetermine roug €

TR . esponse of each particle to the local field. The local field at
dots. For example, in thin film growth and nanoparticle tech—, given particle is the sum of the applied field plus the in-

nologies it is c;rqcial to haye an accurate characterization Qauced field. The induced field comes from the charge distri-
systems consisting of particles lying on a substrate. To attaigytions induced at all other particles in the presence of the
this description optical spectroscopies have become eXypstrate. But the interaction with the substrate modifies the
tremely useful tools, due to their nondestructive CharaCtefesponse of even a Sing|e isolated partic|e, and this modifi-
andin situ potentiality. cation can be incorporated by assigning to the particle an

In addition to supported particles, the focus of surfaceeffective polarizability that takes account of the interaction
sensitive optical spectroscopies has concentrated on theith the substrate. This interaction can be regarded as a self-
study of adsorbed molecules. As examples of surfaceinteraction, which in dilute systems becomes the dominant
sensitive optical spectroscopies, one finds, differential reflecene. In the early DR studies on supported particles and ad-
tance(DR), anisotropy reflectance spectrosca@yRS), in-  sorbed molecules on flat substratesan effective or renor-
frared reflectance absorption spectroscopigRAS), and malized polarizability was assigned to each particle or mol-
SERS. Nevertheless, the information contained in the opticg#cule, in which renormalization intended to include the
response of adsorbed molecules and supported particles Bferaction with the particle’s or molecule’s own image di-
nanometric dimensions is actually very different, due, esserR0le. However, it is well known that the image-dipole model
tially, to their difference in size. While the dipolar approxi- fails for particles of nanometric dlmen_5|ons lying very _close
mation (DA) might be sufficient for describing the optical [© the substrate, and extensions of this model had to include
response of a molecule, the inhomogeneities of the substrathgher'o.rdelr muItlp?I%r Interactions. Ihese e>;ten3|on_s|of th?
induced field acting on the ample volume of the particles,'éir;%gr;c:'gﬁae go?r? pa?t\i/ceuIg?e:phwxgresegn%u;r;;tgag%eosblgte
. et L0 sperid | The main esusoftese heories show e

. ' ) i ' the importance of multipolar interactions increases with the

very h|gh. order. Wh'le the 9pt|cal spectra_o_f adsorbed mol, roximity of the particle to the substrate as well as with the
ecules might carry information about specific features of the,,nirast hetween the dielectric functions of the substrate and
molecular electronic structure or charge transfer mechage host matrix that surrounds the particle. The accuracy of
nisms, the information sought in the optical response of supese models has been tested through the comparison of their
ported particles is related more to their shape, substratqantitative results with the available experimental data. Fur-
induced muItipoIar Coupling, or local field effects. In the Casethermore’ recent DR experiments on free-electron metal par-
of the electromagnetic effect in SERSjoth features are ticles on highly polarizable substratéshave stimulated a
combined, because the anomalous enhancement of the optitore systematic study on the effects of multipolar interac-
cal response has been examined by adsorbing molecules tains in the effective polarizability of particles on a substrate.
the surface of nonflat metallic surfaces and nanoparticles of An alternative approach to the optical signature of inho-
different shapes, in particular, spheres and prolate and oblateogeneous thin films is to look at the optical response in
spheroid$:® The calculation of the field at the surface of this terms of the strength of the coupling to the applied field of
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the optically active electromagnetic surface modes of the prolate oblate -
system. The electromagnetic effect in SERS for adsorbed region | X
molecules on discontinuous films can also be understood as i
the enhancement of the scattered electromagnetic field due to
the resonant excitation of these surface mddda. the ex- ¢
isting theories the location of the resonant frequencies of the b i l - 4

d

£

proper modes of the system and the calculation of their cou-
pling strength to the applied field are not immediate. This is
due to the way the theories are constructed, so the location of

the resonant frequencies of the proper modes usually requires \\ \\
taking the nondissipation limit, a procedure that might call

for a vast amount of numerical effort. T & -
In this paper we construct a theory that yields both the )
frequencies of the proper modes and the size of their cou- FIG. 1. The physical model.

pling strength to the applied field. We do this by building a

spectral representatidSR) of the effective polarizability of placed at a distance above a semi-infinite substrate with

a spheroidal particle, located at an arbitrary distance above @ielectric constant,. The symmetry axis of the particle lies
substrate. In this representation the effective polarizability isyormal to the interface between substrate and matrix, as
expressed as a sum of terms with single poles. The locatioshown in Fig. 1. We also assume that the three media, ma-
of the poles is associated with the frequencies of the normatix, particle, and substrate, are nonmagnetic. In the follow-
modes of the particle-substrate system and their strengtihg we will assume that the particle is a prolate spheroid. In
with the coupling of these modes to the applied field. Thethe case of an oblate spheroid, the calculation procedure will
main advantage of this type of representation is that for ae completely analogous, thus only the main steps of the
given substrate, the location of the poles and their strengtberivations will be given.

are independent of the dielectric properties of the particle Let us consider that the system described above is in the
and depend only on its shape. Obviously, this allows a mor@resence of an applied external electric fieEﬁXt(r’t),
systematic study of the particle-substrate interaction togethgsropagating with wave vectok and oscillating with fre-
with a well-defined physical picture. Furthermore, the SRquencyw, that is, E*{(r,t)=E%' "~V whereE° is the
developed here also has computational advantages, whigfimplitude of the fieldr is the position vector, antidenotes
allows us to calculate the location and strength of the normajime. We also consider that the relevant length scales in the
modes of the SyStem to very |arge mUItipOlar orders. This iﬁ'nodeL such as, b' andd' are much smaller than the wave-
especially important in the case of particles very close to thqaength A=2m/k of the applied field; her&k=|k|. In this
substrate and with a hlgh contrast between the dieleCtrigase, it is well known that the quasista(ifmnretarde)jap_

function Of the substrate and the host m.atriX. Fina”y, one Obroximation is Va||d, thus the app“ed electric field can be
our goals is also to show that the formalism constructed hergescribed by an electric potential given bBY . (r,t)

can be applied to model a system recently characterized by _ gext.yg=iot |5 the presence of this electric field, the

differential reflectance measuremetits. _ charge distribution induced at the interface of an isolated
The paper is organized as follows. In Sec. Il, we describ&pheroidal particle has, in the linear approximation, a dipolar

the physical model and solve for the field induced by anmoment p proportional to the applied field, that ig

applied electromagnetic field. Then we construct the SR of g . gext whereg, is, in general, a complex function of the

the effective polarizability of spheroidal particles above afrequencyw and is known as the polarizability tensor of the
substrate. In Sec. lll, we present systematic results for thﬁarticle.
effective polarizability of these particles as a function of | ihe spheroid is now located above the substrate, the
their geometry, the substrate properties, and the separatifharges induced on the substrate will modify the charge dis-
between the substrate and the particles. In Sec. IV, we appl¥ipytion induced on the spheroid, changing, consequently,
the formalism to provide a SR for differential reflectancene valye of its dipolar component. We now define dfflec-
spectra and we illustrate its merits by performing calculaiye polarizability @ of the spheroid-substrate system as the
tions for a specific system. In Sec. V, we present our concluze|ation between the dipole momamof the charge distribu-
sions. tion induced in the spheroid in the presence of the substrate
and the applied fielE®*", thus we writep= &- E®**. Due to
Il. FORMALISM symmetry, one of the principal axis of the system will be the
symmetry axis of the spheroid, which is perpendicula) o
the substrate, while the other two will lie paralld) (to the
We consider spheroidal particles generated by the rotatiosubstrate. Consequently, in these axésyill have only two
of an ellipse around its major or minor axes; they corresponihdependent components, which will be denoteddqyand
to prolate or oblate spheroids, respectively. The length of they, and they correspond to the dipole moment induced in the
major and minor axes of the ellipse is denoted, correspondparticle when the applied field lies either perpendicular or
ingly, by 2a and 2, while the distance between its foci by parallel to the substrate. The absorption of energy by the
2c=2./a?—b?. The spheroidal particle has a local dielectric particle is proportional to the imaginary part of the compo-
function €, and is embedded within a semi-infinite homoge-nentsa; ande of the polarizability tensor. For example, the
neous matrix with dielectric constarf,. The particle is peaks in Imx, (0) and Imgi(w), as a function of fre-

A. The model
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guency, will correspond to the absorption due to the excita-
tion of the collective electromagnetic modes in the particle- ‘1’|(f)=‘1’ext(r)+|2 AnZ" )Y, @) + W gy,
substrate system by the long-wavelength applied external " %)
field. These modes are called optically active. As we will
show later, the richness in the absorption spectra comes fromhere W, (r) and¥¢,r) are the potentials produced by
the high multipolar components of the charge density inthe external field and the charges induced in the substrate,
duced in the particle through the substrate. respectively. Here N, u,¢) denotes spheroidal coordinates,
The analysis of the behavior of the functions(w) and  andX"(\), Z"(\), andY{"(u,¢) are the appropriate multi-
a|(w) for a spheroidal particle located above a substrate hasolar functions of the spheroidal basis that depend on
been dont~1% by solving Laplace’s equation in spheroidal whether the spheroidal particles are prolate or oblate. The
coordinates with the appropriate boundary conditions andpecific form of all these functions can be found in Ref. 13,
then identifying the dipolar component of the charge densitytogether with the derivation of the set of coupled equations
induced in the particle. The space is divided in three regionssatisfied by the multipolar-spheroidal expansion coefficients
region |, the space occupied by the host matrix that surA, of the potential in region I. We start from this set of
rounds the particle; region Il, the space occupied by the sukeoupled equations which is given, for eath by

strate; and region Ill, the interior of the particle. Since
Laplace’s equation is separable in the spheroidal coordinate _ K™ (d

R R R Ea ES ’ ||’( )
system, the potential in each of the three regions can be A+ Ta{“ Z (-1 +mmA|rm
written as a spheroidal-multipolar expansion, and the bound- €aT € y'=|m| d

ary conditions provide a closed set of equations to calculate
the spheroidal-multipolar coefficients. Here we start from the

set of equations for the expansion coefficients of the potenyhere —|<m=I and «" are the multipolar polarizabilities

tial in region I, which can be identified as that part of the of the spheroidal particle. These polarizabilities are defined
potential coming from the charges induced in the part'dethrough the relationfy,= — a™yEX", where gy, is the Im

i Im >
Then. WE propose an alternative procedure to cglculate th(':'1°*f'?ul'[ipolar component of the potential induced in an isolated
coefficients, and we show that this procedure yields expre

) h id for the effecti larizabiliti $article embedded in the matrix by the multipolar com-
sions that provide a SR for the effective polariza IItIeSponent of an applied external potential. The coefficients

o, (w) ande(w) analogous to the expression given in Refs'Kﬂ‘,(d) are real and relate the multipolar expansion of the

17-19 for the spectral representation of the effective dielec- rential dthe | i 0.0)2in t  th

tric function of a two-phase composite in three dimensions POt€Ntial around the image position (0.8)2in erms ot tné
multipolar basis functions centered at the particle position

(0,0,0). Hered is the distance between the center of the
B. The spectral representation particle and the substrate, a\dﬂn are the multipolar compo-
nents of the potential generated by the applied f&¢(r,t)
and are simply given by

=—af'Vidi1, &)

We first review briefly the concept of SR as introduced
originally by Bergmart, Stroudet al.*® Fuchs® and then we

derive the SR of the effective polarizability of a spheroid on yp o
a substrate. These authors showed that the effective local v, = — /?Eg, V= — /?(_EQHES)v

dielectric functioney, of any two-phase composite in three
2w o .o
V1,l= - _3 (Ex+|Ey) (4)

dimensions can always be written as
v 1g(n)
e_z_l_fjou__nd”’ oy Explicit expressions for the calculation of" and K,T,(d)
can be found in Ref. 13. Here we will use the closed formu-
_ _ _ las found by Larf' for K},(d) and K ,(d), which are
whereu is a spectral variable defined as=1/(1—€4/€5), quoted in the Appendix.
wheree; ande, are the local dielectric functions of compo-  gjnce the set of numbens,,, correspond to the coeffi-
nents 1 and 2, antlis the filling fraction of component 1. cjents of the multipolar expansion of the potential generated
The main advantage of this representation is that the spectrg&, the particle, Eq(3) can be interpreted as if the spheroidal
functiong(n) does not depend on the dielectric properties ofparticle, in the presence of an external field, acts over itself
the components but only on the geometry of the modelthrough the substrate. Also, the effective dipolar polarizabil-
Moreover,g(n) is a measure of the strength of the couplingity will be given in terms of the coefficient,,, with =1,
to the applied field of the different optically active modesyhich correspond to the dipole-moment component of the
whose frequency is determined by the poles=(1) of the  induced potential generated by the particle. Therefore, the
integrand in Eq(1). effective dipolar polarizability, which is defined as the quo-
In our case, a Cartesian coordinate system is chosen witfient between the induced dipole moment in the particle and

its origin at the center of the spheroid and thexis lying  the magnitude of the external field, can be identified as
along the symmetry axis of the particle and pointing towards

the inward normal of the substrate, as shown in Fig. 1. The —At+A
potential ¥ (r) induced in region | by the spheroid-substrate = 0
system is then written as Ex

, ©)
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for the applied field lying parallel to the substrate, and  H™ is a matrix that dependsnly on the geometrical prop-
A erties of the model and on the dielectric properties of the
@, = _10°, (6)  substrate and the host matrix. It is given by
EZ
Hi =np,+fDy (12

for the applied field perpendicular to the substrate. We are
using cgs units. where f.=(e,—€4)/(e,+ €5 is a parameter related to the

Using the expressions far|" andK,rln, givenin Ref. 13, it  dielectric contrast between substrate and host matrix, and
is possible to solve Eq(3) and calculate the coefficients

Aim. The exact solution requires, in principle, an infinite m " m Cim Cirm
number of multipolar excitationd {~). However, it is al- Dy, =(-1) (2I+ 1K, (21+1) ol +1)
ways possible to truncate the multipolar expansion to a given ( ) (13)
orderl =L, Whenever the contribution of the higher-order
multipoles becomes negligible to a given order of approxi-The set of coefficient&|}, are real; thu®, becomes a real
mation. In this case we shall say that multipolar convergencgngd symmetric matrix. Whefy, is a real number, the matrix
has been attained. _ H) in Eq. (12) is also real and symmetric.

In this work we will use an alternative procedure to cal- Now, the solution of the system of equations given in Eq.

culate the coefficientd,,,. This procedure will yield an ex- (12) can be obtained by using the Green'’s operator me?hod.

pression for theéA,, analogous to the expression given in 1, s the solution can be written in the following form,
Refs. 17—19 for the SR of the effective dielectric function of

a two-phase composite in three dimensions. As mentioned
above, the advantage of this representation is that its main X|m=2 Xﬂ‘,f,”?, (14)
parameters depend only on the shape of the particle. "

We follow a procedure similar to that proposed by FuchSyhere x is the Green's operator, which can be expressed
and Claré®for a random system of spheres in order to derive,q .
a SR of the type given in Refs. 17-19 for the effective po-

larizabilities @, (w) and a(w). First, we rewrite the polar- umu-YHm
izabilities " given in Ref. 13, in terms of the spectral vari- Xh=-> JIs T s (15)
ableu in the form s u—-nd

o Hereng are the eigenvalues of the mattik], , which are
o =uT N, () real numbers, and|t is the orthogonal matrix that diagonal-

izesH|', , that is,
whereu=[1—e./e,] %, I

X"(No) d (UTHSH U =nSdss (16)
Cim= — X" (M) x=nr» 8 . . .
™ W(No) dn (M=, @® and is formed by the eigenvectorsldf], . Finally, the solu-
" tion of the system of equations in E() can be written in
o Zi'(No) ixm | (9  terms of the Green's operator as
nlm_W()\O) d\ | ( ))\:)\01
3
W(\o)=(2l+1)/c(\5—1), and A=\, corresponds to the A= — \/Clmclmlen?ngm- (17)

actual shape of the spheroidal particle. The poleg gfare

given, from Eq.(7), by u(wim)=niy, and the frequencies  rharefore, in terms of the Green's operator the effective
iy correspond to the frequencies of the proper modes of thBoIarizabiIities of the particle, as defined in E¢s). and(6),
electric field in the isolated spheroid. The quantitis are  can be written in the following form:

called the depolarization factors of the spheroid, and it can

also be shown that,,, andn{), are real numbers. _ 47 a) 1 Gl(l)
Now, with the help of Eq(7) we rewrite Eq.(3) as Y=gz T, ~ 3= m (18
2 (s, — HI’F,)X{T): —f", (10) Herewv is the volume of the spheroidal particle, and
|/
where Gy=|Ud? Gl=|uiy? (19
215 1) are the spectral functionG{' for m=0 andm=1, respec-
X= /( Ay fM=— 21+ e 1)C|mV|0m5I1- tively. BothG{' are pogitive real quan.tities. that represent the
Cim strength of the coupling to the applied field of the normal

(11) modes of the system whose eigenfrequencigsare deter-
The first term on left-hand side of E@L0) is a diagonal, mined by the polesj(ws)=ng', in Eq.(18). The eigenvalues
complex matrix that depends on the dielectric properties of<ng'<1 are known as the depolarization factors and can be
the spheroidal particle and the host matrix. The second termsed to label the modes.
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It is important to notice that the information about the DlrI“, are required. From Eq$9) and the expressions for the
dielectric properties of the spheroidal particle are containegynctionsx"(\) andz[(\), the depolarization factors for an
only in the spectral variabla. On the other hand, the infor- 5q)ated prolate spheriod are given by
mation about the geometry of the model, as well as the di-

electric properties of the host and substrate, is contained in (1—m)! d
ny' and G_'. Therefore, it is now possible to carry out an n?mzim()\g—l)ﬁgm()\o)a Pim(M)x=xy
analysis of the optically active modes fany spheroidal par- (I+m)! (20)
ticle.
The first thing to do is to write down the matrid,.  where P, and Q,,, are the Legendre and the associate
From Eq.(12) one sees that explicit expressions fi, and  Legendre functions, respectively, wik>1, and
|
B 1mc()\3—1) (2111 —m)! o aad e o1
Clm_( ) (2|+1) (2|)| |I’Tl( O)J Im( )|)\:)\O‘ ( )

In the limiting case of a sphere the depolarization factuﬁ;s become independent @h and are equal toy,=1/[2]+1].
Explicit expressions for the multipolar-coupling matﬂ){), and Dlll, are obtained from Eq13) and the expressions for the
coefficientsKﬂ, and Kﬁ, found by Lam?! which are given in the Appendix. One gets for prolate spheroidsnan®

[ ¢t I+0)12I'+1)! & & (L+L")!
Dﬂ’: 1+ 1ol +1732 2 QG DT (22)
(21+1)(2I'+1)d (212 &) 2 2 LIL"!

where
0, L—1 is odd or negative
gu=14 [c\t7" 22L1(L2+172)! , (23
= L—1 otherwise.
(d) L= 121 (L+1+ D1 W
|
The corresponding expression for=1 is obtained by using [ll. RESULTS AND DISCUSSION

the relations between the coefficierh(ﬁ, given in the Ap-

. L Here we present results for the spectral function of the
pendix, and it is given by

effective polarizability of spheroidal and spherical particles
located at a distance from a flat substrate. The results will
N R be presented and discussed for different sets of the param-
\/ 11¥'150 (24)  eters{a/b,d,f:}. The analysis will be done for different val-
ues of these parameters in order to perform systematic analy-
sis of the particle-substrate system. The calculation

Analogous expressions for oblate spheroids are readily Odgrogedure Is as follows. Cm .

tained from the corresponding prolate spheroidal functions First: we construct the matrid,, by combining Eq(12)

by substituting the variable by c/i. These expressions for With Eqs.(20—(25) depending whether the particle is a pro-

D™ (m=0,1) converge only foc/d<1. While this condi- late or oblate spheroid or a sphere. One also chooses the
1 ' :

tion restricts the eccentricity of the oblate spheroids one caff2lué ofm asm=0 or 1, depending whether the applied
deal with, there is no corresponding restriction in the case o xternal f|e|d_||es perpendicular or parallel .to 'Fhe sub;trate.
prolate spheroids. For example, for an oblate spheroid touch—hen’ a maX|mgm yalue of multucr)nolar e>I<C|tat|qI1$nax IS

ing the substrate, the restrictiaid<1 impliesa<2b. In  chosen, and this yields a matri,, of dimensionL nax

the limit c/d—0 the spheroid becomes a spherical particle,X Lmax- T diagonalize the matriki I » we employed a nu-
and the corresponding expressions for the multipolarmerical algorithm described in Ref. 25. The indideznd|’

coupling matrixD|/, can be obtained using the asymptotic 'un from 1 toL zy. The parametet n,, is chosen in order
properties of the functionX[" andZ". One gets to ensure multipolar convergence in the eigenvalues and

eigenvectors 01H|T,. Its actual value will depend on the
values ofa/b, f., andd. One then calculateG' as defined
o I+ [nn,]¥? in Eq. (19). Let us recall that thes&_' give, for a particular
n= H1 [2d/a]'+"+1 ' (29) system, the strength of the coupling to the applied field of the
o optically active modes labeled by.'. Finally, the effective
polarizabilities for a given spheroidal particle characterized
The corresponding expression fbﬁ, is given by Eq.(24). by a dielectric functiore are found using Eq(18).

1 _
DII’_

(+1)(1"+1) coCrro
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02 03 (L) 03 04

(d") 0.1, and(e)-(e') 0.5. The dotted lines correspond to DA.
depolarization factors n_

example, wherd/a=1.1 one only needs to take, .= 10,
while for d/a=1.01 andd/a=1.001, one required
=80 and 700, respectively. When the particle gets very close
to the substrate, one needs to include a very large number of
multipolar interactions. In Figs.(d) and 2Zb) we plot the

First we start analyzingsy' in the limiting case of a strengths of two sets of modes corresponding Ligax
spherical particle, because, as we will see below, the multi=1800 andL ,,,,=2000. Here, multipolar convergence has
polar effects are more important for a nanoparticle with thisbeen partly reached. This means that only part of the modes
particular geometry. In this case the matHﬂ", is given by  have reached convergence, and as we observe they corre-

Egs.(12), (24), and(25), andG{' can be calculated following
the computational procedure described above. In Fig. 2 we
showGY' as a function of the eigenvalueg for a sphere of
radiusa embedded in air,=1) and located at a distancde
from a substrate of sapphire with dielectric constagt
=3.132, thud .= —0.516. In Figs. 2-5, the panels in the left
(right) side of the figure showg? (G?), corresponding to an
applied electric field perpendiculgoaralle) to the substrate.
In Fig. 2 we show the behavior &' as the distancd varies
from d/a=1 to d/a=1.1, with d/a=1 the case when the
sphere is touching the substrate. Figureésa)-a’) corre-
spond tod/a=1, 2b)-(b") to d/a=1.0001, Zc)-(c') to
1.001, Zd)-(d") to 1.01, and &)-(¢') to 1.1.

Since the modes can be labeledry these figures tell us
both the modes in the system that are excited by the applied
external field(optically active, and also the strength of their
coupling to the applied field. We observe that more modes 0.1
are excited as the particle gets closer to the substrate, inde-
pendently of the direction of the external field. The coupling o
between the different modes and the applied fieldltipolar 0.
interaction$ is through the substrate. As expected, these
multipolar interactions become more and more important as
the particle gets closer to the substrate. This means that the FIG. 4. GI(n,) for a prolate spheroid with,=—0.773 at a
values ofL .y required to achieve multipolar convergence distance §—a)/b=0.001 and witha/b equal to(a)-(a’) 5.0, (b)-
become larger as the particle gets closer to the substrate. F@r') 2.0, and(c)-(c’) 1.2. The dotted line corresponds to DA.

FIG. 2. G'(ny) for a sphere withf .= —0.516 andd/a equal to
(®@-(a') 1.0,(b)-(b") 1.0001,(c)-(c") 1.001,(d)-(d") 1.01, and(e)-
(€') 1.1. The dotted lines ife)-(e’) correspond to DA.
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06 . field lies normal to it, the behavior of the spectral function
(a) (a) GO .
04l <(ng) is analogous to that found for a system of two
spheres and an external field along the line that joining their
0.2+ |‘ | centers. The simplest case, when the spheres are identical,
0.0 11 | | il . [y corresponds in our model tb.=—1, or a substrate with
w 0.4+

(b) 4 (b" infinite dielectric constant. This case has been already dis-
cussed by Claré®
Although the general behavior Gg(ns) when the exter-
| | | | || | L nal field is parallel to the substrate is very similar to that
' N ' ' discussed above, there are some differences. From Fig. 2,
one can see that the eigenvalugsof the modes that are
excited cover a more extended region of values when the
applied field is normal to the substrate than when is parallel.
N T I . T t We can also observe th&{'(ns) is more asymmetric when
(d) () the applied field is normalnj=0) to the substrate.
Now we calculateGy' for a spheroidal particle. The ma-
’ trix H,’ln, given in Eg.(12) has two terms, the diagonal terms
Al nlom and the multipolar-coupling matriﬂ)ﬂ‘,. To calculate
o4 the diagonal terms\" for prolate spheroids, given by Eq.
(20), it is necessary to evalua€®,(\o), anddP,,,/d\. The
FIG. 5. G™(ny) for an oblate spheroid witlf,=—0.65 at a numerical evaluation ol P, /d\ was done using the recur-
distance @—b)/b=0.01 and witha/b equal to(a)-(a’) 1.4, (b)-  rence relations of Legendre’s polynomials given in

spectral function G
N}

0.2

0.0 T T
0.0 0.2 0.2

depolarization factor n_

||II
0.4

(b') 1.3, (0)-(c') 1.2, and(d)-(d') 1.1. Refs. 22—-24, while for the numerical evaluation@f,(\g)
we used a series representaffon inverse powers ok. For
spond to modes with a low indes oblate spheroid€Q,,(i\) turns out to be an alternating se-

Now, as the particle is lifted away from the substrate, ondi€s that converges so slowly that it hampers the calculations
observes that the spectra are dominated by the excitation §r large values oL .. In our actual calculations we per-
only a few modes. At/a=1.1 only two modes are excited. formed this sum using Euler's method, as described in Ref.
Looking at the eigenvectors corresponding to the eigenvalue3. For the evaluation of the elements of the multipolar-
associated to these modes, one can verify that the one withaupling matrixDﬂ“, for prolate and oblate spheroids, we
larger strength has mostly a dipolar character, while the mulused the explicit expressions found by L%rand given in
tipolar character of the other is mostly quadrupolar. The mulEgs.(22)—(24). The calculation ot,, andc;; was done us-
tipolar identity of the excited modes is lost d& decreases ing a procedure similar to that used to calculafe.
and a larger number of modes is excited. But if the particle \we start our analysis oB!" for the case of prolate sphe-
were placed at infinity, only the mode with dipolar characterygids. First, we analyze the dependence of the modes
would be excited. This can be easily checked from E#8.  strength as a function of the distance of the particle to the
and (25),Owhere in the ”mgtd_’w’ the multipole coupling  sypstrate. In Fig. 3, we sho@? for a prolate spheroid with
matrix D, vanishes, andH,=n, &, becomes the diagonal a/b=2 and contrasf,=—0.773, as a function of the depo-
matrix given by the multipolar-polarization factors of an iso- |arization factorsn,. The distance {—a)/a, between par-
lated sphere. In this case, the only mode with strength difticle and substrate in panels FiggaB(a'), 3(b)-(b’), 3(c)-
ferent from zero is that corresponding to the dipolar interaC(C'), 3(d)-(d"), and 3e)-(e') is equal to 0.0001, 0.001,
tion. It is well known that a sphere under the action of ag.01, 0.1, and 0.5, respectively. We also shaletted ling
constant electric field acquires only a dipolar moment. WhenRhe |ocation of the mode obtained in DA. One can see that
the distance of the particle to the substrate issldba<<«,  multipolar effects become more evident as the particle gets
the termDY; of the multipole coupling matrix is dominant closer to the substrate, like in the case of the sphere dis-
and DA becomes sufficient to describe the system. At theseussed above. When the particle is far from the substrate, as
distances, the mode with dipolar character shifts to smallein Figs. 3e)-(€’), one sees that the dominant mode is very
values ofng as the particle gets closer to the substrate. Wherlose to the mode found in the Délotted-ling, this being
d/a<1.5, the coupling between multipolar modes with more evident when the applied field is perpendicular to the
>1 becomes more important; thus more modes are excitesubstrate. As the distance between particle and substrate de-
and their individual multipolar identity starts to disappear.creases, the location of the mode calculated in the DA shifts
As a matter of comparison, we have also shown, with a dotto a smaller eigenvalues, independently of the direction of
ted line in Figs. 2d)-(d") and Ze)-(e’), the mode obtained the applied field. When the multipolar coupling is included,
at that distance in DA. In the case of a metallic sphere defor an applied field perpendicular to the substrate, as the
scribed by a Drude dielectric function in an air matrig,(  particle gets closer to the substrate the dominant mode shifts
=1), it can be shown that the spectral variablecomes to smaller eigenvalues, while the spectra broadens and ex-
proportional tow?; thus a shift to lower values aig is ac-  tends towards larger eigenvalues. The same type of behavior
tually a redshift when the particle approaches the substrateof the mode spectra, as the distance from the substrate is

As the sphere gets closer to the substrate and the externaried, was found above for the case of a sphere and was
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(a) (b)

also found for oblate spheroids and will not be reported here 7 E— | H]'

in detail. .
Let us now analyze the behavior of the mode strength as a &

function of the eccentricity of the spheroid, given by the ratio &

a/b. In Figs. 4a)-(a’'), 4(b)-(b"), and 4c)-(c’), we show 06

GJ(ng) for a prolate spheroid with a contrast factég

=—0.773 at a distancal(— a)/b=0.001 and witha/b equal 0.0 ‘ : ‘ |

to 5.0, 2.0, and 1.2, respectively. We also show, with a dot- -0.2+
ted line, the mode found using DA. One can see that as the
particle becomes more asymmetric. This means that as the 06
ratio a/b increasesGI'(ng) becomes narrower and a domi- — 7 — A
nant mode appears. This dominant mode turns out to lie very photon energy (eV)

close to the dipolar mode of the isolated spheroid. This

means that as the rat@’b increases the spheroid actually FIG. 6. DR at#=60° for a sphere on a substrate of silicon at
decouples from the substrate. In contrast,ads—1 the different distancesi/b= (g 1.0005,(b), 1.01,(c) 1.035, and(d)
dominant mode merges down and the mode-strength distri--12- Experimental data in black dots.
bution becomes broader and equal to that found above for . .
the sphere. In conclusion, we olgserve that multipolar effects ARy — Ro[K/Si] — Re[ Si]
become more important as the ragitb of a prolate spheroid R Rp[ Si] '

tends to the unity, that is, when the actual shape tends to l:WhereRp[K/Si] andR,[ Si] correspond to the reflectance of
;phgncal. The location of the mode in the DA is also Shownp-polarized light for a system with and without potassium
in Fig. 4, and one can see that as the spheroid becomes masgticles, respectively. We now assume that the optical re-
elongated, its location shifts to lowehighen eigenvalues sponse of the supported potassium particles can be regarded
when the applied field is perpendiculgraralle) to the sub-  as the response a homogeneous layer of thickness equal to
strate. d’=d+a ord’=d+b, depending on whether the spheroids
Now, we will analyzeGl'(ng) for an oblate spheroid. As are prolate or oblate. i’ is much less than the wavelength
mentioned above, the dependence of the spectral function of the applied field, and the system is dilute, that is, the
with the distance between particle and substrate is similar fofilling fraction f of potassium particles in the volume occu-
prolate and oblate spheroids. This means that the multipolgried by the fictitious layer is smalAR,/R can be written
effects due to the substrate acting on the particle are morker prolates as
important when particle and substrate are in contact, and

DR(%)

0.4

(26)

their importance decreases as the particle recedes from the AR, léwfa (es— sinze)au—ei sirf a,
substrate. In Fig. 5 we sho®(n,) for an oblate spheroid R~ ¢ cosfim (1— e (SiPO—c,c020) |’
placed at a distanced{b)/b=0.01, with a contrast factor (27)

f.=—0.65 and eccentricitiea/b=1.4, 1.3, 1.2, and 1.1. g

One can see that as the eccentricity increases the centroid where ¢ is the angle of incidence of light and; = a; /ab?
spectra for the field paralldlperpendiculdr shifts towards with j=| or L anda; are the effective polarizabilities of the
larger (smalley eigenvalues. Also, as the eccentricity in- supported patrticles.

creases a tendency towards the appearance of a dominantWe are now ready to provide a SR of the differential
mode is stronger for the field parallel to the substrate than foreflectance by substituting in E¢R7) the spectral represen-

the field perpendicular to it. tation of the effective polarizabilities; anda, given by Eq.
(18). The main advantage of this representation is that it
allows, in a straightforward way, an analysis of the
IV. APPLICATION: DIFFERENTIAL REFLECTANCE differential-reflectance spectra in terms of the optical excita-
SPECTROSCOPY tion of the multipolar modes of the system. The strength of
fthe coupling of the modes to the applied field in a

Recently, the characterization of the growth of particles o di ; : i
’ . . ifferential-reflectance experiment is given through the spec-
free-electron metals on dielectric substrates has attracted the P 9 9 P

attention of some experimental grodsFor example, in tral functions ofa) and a, in Eq. (27). According to this
some of these experiments potassium is evaporated over a @juation the contributions afy and«, have opposite signs.
substraté? in such a way that potassium particles are formedT herefore, one can see how the shape of the spectrum de-
during evaporation over a thin layer of SiOThis layer —Pends on the relative location and relative size of these mode
serves as a barrier that prevents chemical contact betweétengths.

the potassium particles and the silicon substrate and also In Fig. 6 we showAR,/R as a function of the photon
keeps the particles at a certain distad@bove the substrate. energy for a potassium sphere located at different distances
This system has been characterized through differentiaffom a silicon substrate with a real dielectric constagt
reflectancg DR) measurements, and here we will apply the =15, and therf .= —0.875. The dielectric function of potas-
formalism developed above to the calculation of DR spectrgium was modeled by the Drude model, that d§w)=1

in this particular system. The differential reflectant®,/R ~ — wj/(w’+iw/7) with the following parameters: w,=3.8

is defined by eV andl'=%/7 =0.4 eV. We also show, with straight lines,
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the strength and location of the modes that contribute to theolar features require that the particles should lie at a certain
differential reflectance. It is evident that for a sphere almostlistance above the substrate. We have also found that at low
touching the substrate, Fig.(8, the spectrum becomes filling fractions of potassium particles, the substrate effects
broad due to the frequency span and density of the excitedn the particles are more important than the interaction
multipolar modes, something one could catiultipolar ~ among them.
broadening But as the sphere is lifted from the substrate this
broadening effect transforms into a spectrum with well- ACKNOWLEDGMENTS
defined peaks and/or shoulders. In this case, the appearance _
of the shoulders is due, not only because the excited modes This work has been supported in part by Grant Nos.
are more separated in energy, but also to the fact of havinfONACYT-27646E and UNAM-DGAPA-IN104297. We
two neighboring modes, one with a positive and the othef ank Professor Y. Borensztein, who provided us the experi-
with a negative strength. mental data.

In Fig. 6(d) we also show the experimental measurements
made by Beitizet al,'® where excellent agreement with our APPENDIX: MULTIPOLAR COUPLING MATRIX
calculations is found. Here, we can see that the main features . . m
of the spectra are reproduced, and the main multipolar con- The_mul.t|po_lar coupling terrﬁ)l_l, of Eq._(13) for_p_rolates
tributions from the effective polarizabilities and their SPheroids is given by the following matr|3< coefficients. For
strengths are plotted. For energies above 1.9 eV, the expefi>C Lan’* found explicit expression foK,,, given by
mental and calculated data fit very well, and the shoulder in
2.2 eV is well reproduced. For energies below 1.9 eV, the KO — (1) @2nterr+un!
experimental and calculated data have a small redshift be- = (1117121+1)2
tween them. This shift could be due to small differences of
the average ratio between the experimental particle and the c - (L+L")!
calculated one, or due to differences of their shapes. Further- x> 2 QuOL ST oy
more, we can conclude that the interaction among particles L=t 2 LI
are less important compared with the effect of the substratgynere g, is given by Eq.(23), and Kﬁ, is related to the
wh|ch domln_ates the proflle and intensity of the spectra. It isygye expression by
also interesting to notice that the distinct multipolar structure
in the DR spectra of Beitiat al'® arises from the presence | |’
of the SiQ layer which “lifts” the particles from the silicon Ki, ==\ —K], (A2)
substrate. If the particles would have been allowed to touch (I+1) (7 +1)

with the substrate, the distinct multipolar structure of the DR\we see that contributions from different multipoles are given

spectra would have been “washed out,” giving rise to Apy the termc/d, which determines the convergence of Egs.
broad peak whose broadness would be the result of an “TAl) and (A3). In the limit for c/d—0 the interaction be-

_raveled comb|r_1at|o_n of dissipation and multipolar broaOIen'tween spheroidal multipoles has the form of an interaction
ing, as shown in Fig. &.

between spherical multipoles, which is expected due to the

asymptotic properties of the functiong§” and Z|". Analo-

gous expressions for oblate spheroids can be obtained from
We developed a spectral representation to calculate th&€ corresponding prolate spheroidal expressions by substi-

effective polarizability of a spheroidal particle lying on a flat tuting the variablec by c/i.

substrate, including high-order multipolar effects. The Bedeaux and collaboratdfsalso found a complete set of

method is quite general and allows a systematic study of theelations the for coefficieri [, (d) that satifies the following

spheroid-substrate system. We showed that the spectral repglations:

resentation can be very helpful to understand accurately and

. (A

V. CONCLUSIONS

simultaneously the strengths and location of all optically ex- KO (d)=(—1)'+" 2I'+1 KO (d)

cited multipolar modes. Then, we systematically studied the I 20+1 | s
spheroid-substrate system as a function of the dielectric

properties of the substrate and ambient, the distance of the L ' 0

particle to the substrate, and the specific shape and material Ky (d)=—| ——————|K;.(d), (A3)
properties of the particle. The method was applied to under- (I+1"+1)

stand DR spectra of potassium particles over different sub- 1 1

strates. We found that DR spectra with well-defined multi- Kji (d)=K;;(d).
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