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We consider the adiabatic charge transport through zero-dimensional mesoscopic @raptam dot
caused by two periodically changing external perturbations. Both the magnitude and the sign of the transmitted
charge are extremely sensitive to the configuration of the dot and to the magnetic field. We find the correlation
function characterizing the random value of this pumped charge for arbitrary strength of the perturbation. In
contrast to previous theoretical and experimental claims, the charge is found not to have any symmetry with
respect to the inversion of magnetic field. At strong pumping perturbation, the variance of the @@arde
found to be proportional to the length of the contour in parametric space.

[. INTRODUCTION from almost classical Coulomb blockade to a completely
open dot where the effects of the charge quantization are
Adiabatic charge pumping occurs in a system subjected tdiminished. It was shown theoreticafiythat even weak
a very slow periodic perturbation. Upon the completion ofbackscattering in one-channel QPC'’s leads to almost quan-
the cycle, the Hamiltonian of the system returns to its initialtized value of the pumped charge in low-temperature limit,
form; however, the finite charge can be transmitted through &—0.
cross section of the system. If the Hamiltonian depends on With the further opening of the QPC’'s the Coulomb
only one parameter, which is a strictly periodic function of blockade-type charging effects become negligible. this
time t, the value of the charge transf&,is zero. This may case, the main contribution to the pumped current is associ-
not be the case for Hamiltonians, which depend on two omted with the quantum interference within the quantum
more parameters. The pumped charge may be finite if thesgot®*° Mechanism related to the inelastic processes was
parameters follow a closed curve in the parameter spacdiyst considered in Ref. 8. In open systems, this mechanism,
which encompasses a finite area. Such an evolution may dwwever, is not effective, as the inelastic scattering time
also characterized by a multivalued varialdagle; in this ~ can be much larger than the dwell time of the electron in the
case transmitted charge is proportional to the winding numelot. In this situation, the main mechanism of pumping is not
ber for this variable. The value o® is not universal. related to the inelastic processes but rather to change in the
Thoules$ showed that for certain one-dimensional systemghase factors of the corresponding scattering mathHere-
with a gap in the excitation spectrum in the thermodynamiddictions of Refs. 9 and 10 were apparently in accord with the
limit the chargeQ is quantized. Such quantized chargerecent data of Switkest al'*
pumping could be of practical importance as a standard of However, both pape?s? are devoted to the weak pump-
electric current. The accuracy of charge quantization de-ing regime, in which the dc current klinear in the pump-
pends on how adiabatic the process is. ing amplitudes. On the other hand, in the experimerttse
The practical attempts of creating a quantized electroppumping was not weak. Our purpose here is to construct a
pump are based on the phenomenon of Coulomb block&de.theory of the quantum pumping of a finite amplitude. The
In this kind of devices, several single-electron transistorensemble average of the pumping cha{@® is equal to
(SET) are connected in series to increase the accuracy afero. We demonstrate that the variance of the pumping
charge quantization. At least two SET’s are necessary to otsharge,(Q?) increases as the square of the area in the pa-
tain a nonzero charge transfer. rameter space as long &492)<1. With further increase of
Semiconductor-based quantum dodse often used now the area(Q?) increases much sloweas the length of the
as Coulomb blockade devices. The advantage of these deentour in the parametric spacdhese results are obtained
vices is the possibility of changing independently the gaten Sec. II.
voltage(and thus the average electron number in the dod Another important problem to clarify is the sensitivity of
the conductance of the quantum point conté@BC'’S sepa-  Q to applied magnetic field. Zhoet al.’ claimed the sym-
rating the dot from the leads. By doing so, one can traversenetry of the pumped charge, similar to the Onsager relation

0163-1829/2000/615)/1036610)/$15.00 PRB 61 10 366 ©2000 The American Physical Society



PRB 61 MESOSCOPIC FLUCTUATIONS OF ADIABATIC CHARGE . .. 10 367

R

FIG. 1. Schematic picture of the sample connected to the leads
“L”and “R".

for the conductancE® The direct consequence of such  FIG. 2. Schematic picture of the quantum dot from Fig. 1 in the
symmetry is that the variance of pumped charge is larger itlosed geometry. Genuine adiabatic approximation corresponds to
the presence of time reversal symmetH=0 than in its ©-L—0, whereas Eq(2.3) assumew-L—c°.
absencdQ?(B—=))=<3(Q?(B=0)) similarly to the con-

ductance fluctuation¥. Both those statements are supported L€t us now assume tha matrix is changing due to two

by the experiment of Switkest all! external parameter,, slowly varying with time. The
In our opinion, the statement about such symmetry is nopumped charg® is given by°

correct. We discuss this problem in detail in Sec. Ill. By ;

manipulations with exact matrix we shew that contrary to Q= Ef dE( _ 07_) f dX,d%I1(E,X), (2.33

the conductance, the pumped chargeds symmetric with ™ JE] Ja

respect to inversion of magnetic field)(B)+ Q(—B).

Moreover, we show that at large values of the magnetic field . dS(E,X) ST(E,X)

the Q(B) and Q(—B) are not even correlated I(EX)=ImTr| 7 —= X

(Q(B)Q(—B))—0. The variance of the pumped charge is 2 !

found to be independent of magnetic field in agreement wittwhere X=(X,X,), and [, denotes the integration within

the results of Ref. 10 for large number of channels, and irthe area encompassed by contduit follows from the uni-

disagreement with Refs. 9 and 11. tarity of the S matrix (charge conservatigrihatI1(E,X) can
Our findings are summarized in Sec. IV. In the same secalso be presented as

tion, we will discuss existing experimeti.

, (2.3D

B . d8(E,X) dS'(E,X)
II(E,X)=—=ImTry 7, 7%, %, . (2.309

II. MESOSCOPIC FLUCTUATIONS OF PUMPING

IN ZERO-MAGNETIC FIELD ) .
Equations(2.3) are quite general. They assume only the

A. General formalism absence of inelastic processes within the dot. We demon-

Our analysis will be based on the general expression fotrate the equivalence between Eg.3 and approach of
the pumped charge derived by BrouWebased on the ap- Ref- 9 in Appendix A. _ _ _
proach of Ref. 15. Consider the sample connected to two Cl0sing this subsection, we discuss an important point —
leads, as in Fig. 1. Each lead is characterized by its trandh€ physical meaning of the adiabatic approximation neces-
verse modesy, where k<a<N, for the left lead andN,  Sary for Eq.(2.3 to be valid. UsuaI_Iy, de_fmmg a perturbation
+1<a<N;+N,=N,, for the right lead. of a quantum system as an adiabatic one means that the

The sample, therefore, is completely characterized by itfféquencyw of this perturbation is much smaller than the
unitary N X N, scattering matrixS(E), connecting ingo- energy of the lowest excitations in this system. If the system

ing and outgoing waves, with ener@y For instance, the two were closed as in F|g: 2, the charge d|str|but|qn.after. ea_ch
terminal conductance of the syste® can be found from period of the perturbation would return to the original distri-

Landauer-Buttiker formula as butlon_, and therefore, the pumped charge wouldekactly
quantizedin units of the electron charge.
‘ However, for an open system, the spectrum is continuous,
— dE( _ ‘?_ Tr{?,S(E)},ST(E)}, (2.2) anq t_he aforementioned adiabaticity .c_riterium can be never
2mh JE satisfied. In this case, the only condition we can impose is
—_ S . smallness of the frequency as compared with the temperature
wheref(E)=1/(1+e"") is the Fermi distribution function and the mean level spacinfj of the dot separated from the
(energyE is measured from the Fermi leyeMatrices 7, leads. This condition is not sufficient for the qunatization of

e?
G

are projectors on the states of Iéfight) lead the charge. Nevertheless, the value of the pumped charge can
be still expressed in the form of the adiabatic curvat@r8).
R 1, 1=sasN\, To understand better the relation between closed and open
[71]ap= SapX { 0, N<a=N (2.2 systems, let us consider the gedanken experiment, where the
’ —WNch»

two leads are connected to each other as in Fig. 2. Level
A A spacing of the whole syste@is proportional to 1. We
[T]ap=Oup—[T]ap- will show now, that the resul2.3) can be decomposed into
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two contributions’ The first contribution isjuantizedand is  where,, is the Hamiltonian of electrons in the dot, mim-
just a charge that is pumped in truly adiabatic situation jcked by aM x M matrix
<Jsys. This charge is, therefore, attributed to the dissipa-
tionless current. The second contribution is associated with .
the creation of the real electron-hole pairs in the system and Hp= WIH ¥ . 2.7
is not quantized It takes place in such closed system only mm=1
provided thatw> &sys. This contribution involves dissipa- We assume the “thermodynamic” limkl ~ggo— . In the
tive conductance and it is due to the fact that the electroniabsence of pumping perturbatioHs,,, can be considered as
system cannot fully adjust itself to the time evolution of thea random(since g4,1) matrix that belongs to the en-
Hamiltonian: the state of the system at a given time is not asemble of real symmetric matricésrthogonal ensembje
eigenstate of the Hamiltonian. Such retardation of the electet the perturbations be represented by two given not neces-
trons from the external field leads to the dissipati@ebye sarily randomcompare with Ref. 10M X M symmetric ma-
losses in closed systems witl® §; gives a good example of tricesvf}nf), so that
such a dissipatioi.

To illustrate such decomposition, we consider a simple Hm(X) = Hom+ XVam= Ham+ X1 VEI+X,VE) .
case where each lead contains only one channel and there is (2.9
no electron-electron interaction. In this particular case&he . . . .
matrix is a 2< 2 matrix that can be parameterized in terms of According to RMT, the correlation function O_f thejAmatnx
the dimensionless conductangend the scattering phage  €lements of the unperturbed part of the Hamiltonigi, ,

can be written as
. 1—ge'’ iVg
=5

M

_ e (2.4) Rk
ivg  Ji-ge? (HomHe ) =M (Sun Sy + Sy Oy ) (2.9)
In the presence of the pumping perturbation, both parameters ) .
g and ¢ are slow functions of time. With the help of Eq. The coupling between the dot and the leads is
(2.4), Eq. (2.3 gives
2l do Hio= 2 (Waatrg(WotHe), (210
Q=ewf0 df1-g(t)] - (2.5 o

whereW , correspond to the states of the det,(k) denotes

[This result was obtained by different means in Ref.@ne  different electron states in the leadmomentumk labels

can see that the first term in brackets of the integrand in E¢continuous spectrum in each chanagl

(2.5 gives always the quantized contribution because The spectrum of electrons in the leads near Fermi surface
6(1/2mw) = 6(0)+2mn, with n being an integer. At the can be linearized. Thus, without losing the generality we can
same time, the term proportional ¢fft) violates this quan- write H, as
tization, and in the case of perfect conductageel cancels

the adiabatic contribution completely.

: =vF2k kil (K) (K, (2.1

B. Zero-dimensional model for the ntum dot . . . . .
ro-dimens ' quant . wherev=1/27v is the Fermi velocity and is the density

In what follows, we will be interested in the statistics of of states at the Fermi surface.
the pumped charge in the ensemble of quantum dots. In order The coupling constant#/,,, in Eq. (2.10 are defined in
to determine these statistics, we need to specify the modethe case of the reflectionless contact® as
Firstly, we assume that the size of the quantum dois so

small, that the Thouless energy~7/ 7,4 far exceeds other MS, (1, if n=asNg,,

energy scales of the problem, such as the dephasing or es- Whoe=\—— {0 otherwise (2.12
cape rateshere 74 is the characteristic time for the classi- mv k '

cal particle to cover all of the available phase spatrethis , . .
limit one can use the random matrix thed®MT) to study For the system described above the scattering matrix

the conductance of the system, see Ref. 16. All corrections B82S the form
the RMT are small adl.y/gq0t, Wheregqyoi=E+1/8; and d; _ -t ~R
is the mean level spacing. Secondly, we consider the adia- Sup(BX) =1 =21 v WG B, X)Wing, - (2.13
batic pumping in the dot with the large numleg, of open  and the retarde¢advancell Green functionGR (G4.,) is to
channels. In this approximation the effect of Coulomb inter-pe determined from the equation
action among the electrons in the dot turns out to be small as
1/NZ, (see Ref. Yand can be neglected. The conditing;, [E-H(X)=imvWWTIGRAE,X)=1.  (2.14
>1 also allows us to use conventional diagrammatic
techniqué’ to perform the ensemble average, and to consideHere, matricesH and W are comprised by their elements
only lowest moments of the distribution 6. (2.8) and (2.12, respectively. The factor in Eq2.12) is

The Hamiltonian of the system can be represented as chosen so that the ensemble average scattering ndatyj»

of a dot with fully open channels is zero. More complicated

H=Hp+H_ +H.p, (2.6 structure ofW can be always reduced to the fof®12) by
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suitable rotations. We are going to consider the averages of = L

different moments ofI given by Eq.(2.3b with the help of 2) - E+imW'W
diagrammatic techniqu¥. For the technical reasons it is
ient to transf E®.3b with the help of Eq. ,
more convenient to transform E@.3b) wi e help of Eq n Yo ot S = XV
(2.309 m m €
b)

~IS(E,X) aST(E,X)

H(E,X) = Im Tr| 7= == =_+_@_+i_

- - d
~ Nr’T|_N|Tr (2 15
TE———. . -
NCh ," * ,”,’ s
A~ = 1 1 + Lo AN
Notice that the matrixr is traceless. This fact significantly @ T o % Im 5 oo
simplifies further manipulations. We substitute E&.13 e)

into EqQ.(2.195 and obtain
FIG. 3. Elements of the diagram technique) bare electron

i o PPF R A retarded Green functioiib) correlator of the matrix elements of the
T(EX)=- 2° J IXPaxR =X"=X, Hamiltonian; (c) pumping perturbation(d) renormalized electron
e Green function;(e) selfenergy3. The second term in the selfen-
22 ergy, which includes an intersection of the dashed lines, is smaller
Fes - lTr{AéR(E,XR)fGA(E,XA)}, (2.16 compared to the first term asM/
T

the width of the band of the random matrix eigenvalues. Self

wheree'l =[] is the antisymmetric tensor of the second energy?. includes, as usual, all of the one-particle irreduc-
rank, and the factos=2 takes into account the spin degen- jple graphs. In the leading in I¥ approximation it is given

eracy. We have introduced matricdsand i’ by the sum of the rainbow diagrams, FighB
. 1, 1=<n=Ng CRA (51){ .
= SpmX A=M|—=]| T Tr{GRAL 2.2
(o= 30w} o Ny <nm N —) TG (220
N (2.17) Let us now expand thensemble average@reen function up
L 1<n=<N, to the second order in parametric perturbation. The final re-
Neh sults are not necessarily quadratic in perturbation strength,
Alo=5. % N see, e.g., Eq2.25. All higher order terms can be neglected
LA Jom= dnm —N—I, Nj<n=<N¢j, provided that
ch
0, N.p<n<M. . )
ch |v§;2n|<|v|(—l), nm=12,... M. (2.20)
Notice, that m
R o Inequality (2.21) is nothing but the condition of the central
TrA=0, Tr(AT")=0. (2.18  |imit theorem. Solving Eqs2.19 and(2.20, we find that at

E<€&
To evaluate correlators of the functions HG.16), we

adopted a diagrammatic technique for the ensemble averag-_ 1. 1. Ng*ie] 1 1

ing. In the thermodynamic limiM —c this technique is QR'A=:—[I——F+ ) ——Z(XV)(I:—XV +
somewhat similar to the one developed for bulk disordered 2 2 aM e
metalst’ Factor 1M plays now the same role as the small -

parameter ¥ iy, with e and 7, , being the Fermi energy + —Tr[XVti(XV)(XV) , (2.22
and the elastic mean free time correspondingly. The rules for £22M i&

reading those diagrams are shown in Fig)3 n . . ]
The ensemble averaged retarded Green function is giveyjherel is defined in Eq.(2.17. Here, we introduced the
dimensionless energy measured in units of mean level spac-

ing

by

@R,A: 1 —
E-H(X) =il E-H(X)

= — 2mE
ire—3SRA’ =5 (2.23

2.1
19 We can also expand these Green functions up to the first
M S, order ine/M andN.,/M and restrict ourselves by zero- and
T first-order terms, since the higher order terms vanish in the
“thermodynamic” limit M —oo,
where averaging is performed over realizations of random |et us now turn to the analysis of the statistical properties
matrix H from Eq.(2.8), and energy is of the same order as of the functionF from Eq.(2.16). All the relevant averages

1
*

&

ks
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FIG. 4. Diffuson diagrams. Cooperon diagrams differ from the
ones for diffuson only in the direction of the arrow of the retarded
Green function line.

will be expressed in terms of the certain products of the
Green functions—diffuso® and Cooperort (Ref. 18

D(e,X)=Tr{GR(e1+€,X+Y)GA(e;,Y)) (2.243

A~ ~ a
C(e,X)=Tr{GR(e;+ &, X+Y)G(e1,V)T), (2.24h @
where we express energy in dimensionless u@i23).
The leading aM —~ andN.,>1 approximation for the
diffuson is a series of ladder diagrams. As usual, summation k A
of this series can be performed by solving the equations pre- ‘HB - . .
sented graphically on Fig. 4. The solution of this diagram- 2 d d
matic equation is M Y
27\ ? 1
D=C=|—4+| — - —. (2.29 R(A) R(A)
01) —ie+Ngy+iZ-X+XCoX ' X
= [] +
The diffuson has the universal form E.25 under the '
condition of Eq.(2.21). The structure and the strength of the R(A) R(A)
perturbation potential/ from Eq. (2.8) is encoded in two
parameters: vectaf and tensof:o. In terms of the original (b)

Hamiltonian they are given by FIG. 5. (a) Diagrammatic representation for the correlation

functionZ from Eq. (2.29; (b) Hikami box.

2 .
7= "1y (2.263
Mé i A
1 tions of the same parametéfsTherefore.Z; and[Co];; can
be in principle determined from independent measure-
2
(ol =TTy, =12, @260 o -
ij (Mo,)? v b 15 ' The ensemble average of the pumped charge vanishes and

the sign ofQ is random. To evaluate the typical value of this
We used the fact that the matfikis symmetric. Parameters Charge we consider the averag@,Qs) for two different
(2.26) are also related to the typical value of the level veloci-CONtoOUrsA and B on the parameter planes. To accomplish

ties, which characterizes the evolution of energy levels of thdDiS task, we need to average the product of functi@6
closed systenz,(X) under the action of an external pertur-

N _ R wA R VA
bation X-V, see Ref. 19our definition is different by a nu- I=(Flert e XEXD F e, YY), (2.28
merical factoy: where functionF is defined by Eq(2.16).
5 Diagrammatic expression fd@ris shown on Fig. 5. Due to
Z=(—7T> < &EV> (2.273 the relationg2.18), there is no need to renormalize the ver-
o1/ \ X tex A by the dashed lines. For the same reason, vertices

and I' cannot appear in the same cell and, therefore, the

de, de, de,\ [ de, Cooperon Eq(2.24h does not contribute t@ (2.28. We
<(9X- ax-> —<(7X_><(9X_>) (2.270  demonstrate in Sec. Ill, that this implies the difference in
R ! J how the change of sign of magnetic field affects the pumped

3,20
Now we are in a state to evaluate the statistics of the pumpegharge and the conductante . _ .
charge. It should be noted that the specifics of the system The analytic expression for the diagram, Fig. 5, is
enteronly through the paramete and[éo]ij . Moreover,

all other responses of the systdieg., parametric depen- T= NiN
dence of the conductance of the date also universal func- N¢h

A~ 772
[Co]ijzﬁ_i

'BD(e;XR—YAD(— €, YR=XA), (2.29
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where diffuson propagatoP is given by Eq.(2.25. The of the point in the parameter space. The correlation length
factor B in Eq. (2.29 is given by the set of diagrams Fig. R=|R| of this random function can be estimated from the
5(b), which is analogous to the Hikami box for the disor- equation

dered systems. It equals to

The first term in the left hand side of E(.33 describes a
homogeneous shift of the spectrum, while the second term
represents random parametric oscillatibhEquation(2.33

B=BW+B@+BO);

51 .
8(1)28_1[(XR_ XA)Co(YA_YR)],

v can be rewritten in terms of the new variables Ej32) as
, rz+r~1, (2.39
1) ~ ~
B@=—0 _1 IRV where r=(Cy/Ng)Y?R. As a result,r~min(1Z2™1). It
4m"D(&;X"=Y7) means that in terms of the new variableyg, zthe pumping is
weak (i.e., bilineay provided thar <min(1z1). Finally,
&1
B®= : (2.30 2NN
2 VR_ wA |
4m°D(= Y =XT) (QaQe)=—— rf dxldxzf dyidy,
Ng, Ja b

Substitution of the expression f&#? into Eq. (2.29 gives
no contribution tdZ due to the relationship betwe&randIl, g \? [2aT
Eq.(2.16). Indeed, the part of, which depends oB3®) does x_] "\ Nendy
not containXR. The contribution proportional t& ) van-

ishes in a similar way. Substituting*) into Eq.(2.16), and X_=X—Y, (2.39
the result into Eq(2.29, we find

ZX_ ,x2_>,

where [, , denotes the integration within the area encom-
(TI1(€1, X+ Y)II(€,Y)) passed by contoura andb, see Eq(2.32, and dimension-
’ ' less correlation functioC is given by

C 8NN, .. .
T N [eCoel;j 8 (= f(h)
¢ K(u,v,w =—f dh ,
2 . (o= N 2uhto)2+ (14 w)?]
X ~ .
IXidX (€1— €y~ Z-X)?+ (Ngp+XCoX)?, ()= (h cotanhh—1) (2.36
(2.31) (sinhh)? '

Here, we used the explicit form of the diffus¢29, intro- ~ Low-temperature regime correspondsutetmax(1y,w). In
duced dimensionless energi€s26 and took the spin de- this limit,
generacy into account.

Now, we are in a state to evaluate the correlation function K 8 1 537
of charges pumped in a course of motion along contdurs (uv,w)= ? 02+ (1+w)?’ (2.373
andB on the parameter plane. The result becomes compact if
we choose new variables while at high temperaturas>max(1ly,w)
1 K B 2.37
x==(C) (2323 (o W)=l 1w/ 2319
ch

Therefore, heating suppression of the mesoscopic fluctua-
tions of Q is similar to that of the conductance fluctuations.

y= (Co)Y?Y; (2.32h Equations(2.35—(2.36 are the main results of this sec-
\/N_ch tion. They describe the correlation between the charge
pumped due to the motion in the parameter space along the
1 . different contours at arbitrary temperature. Now, we are go-
z= \/N_(Co)’l’zz. (2.320 ing to apply Eq.(2.395 to analyze the variance of the charge
ch (QR)-

Let us discuss why,y,z are natural dimensionless vari-
ables. Recall that we are dealing with open systems. Elec-
tronic escape time can be estimatedrag~ (N¢,d1) 1. All If the characteristic magnitude of the potentials is so small
the energy levels have a finite width~1/7oqc~Nepdy > 8. that x2 <1x_-z<max{1,T/(N¢y8;) ], then the system is in
It means that even ai=0 the pumping current is deter- bilinear response regime discussed in Refs. 9 and 10. In this
mined by the energy strip with a finite width>&;. The  case one can put=0, w=0 in Eq. (2.36 after the differ-
number of the levels,, in such a strip is a random function entiation. As a result

C. Weak pumping
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e’N|N,S2
Qh) =
< A) N(Z;h

27T
Ncho1

+221c2(ﬂ”,

[IC1< Nch51
(2.38

wheresS, is the area enclosed by the contaiin the param-
eter spacex=(xy,Xp). Functionsk’; (x) can be expressed
throughf(h) from Eq.(2.36) in the following way

K1(u) 32foc dh f(h)
u e — R —
B p2) T authi 1)
32
— u<i,
=7 (2.393
—8 us>1
37u’ ’
and
16 (= f(h)(1—12u%h?)
ICZ(U):_Z 212 3
o) —e [4u“he+1]
16
—, u<l,
77_2
= (2.39H
4
, o u>1.
157u®

In terms of the original pumping streng Eq. (2.38 ac-

|:’C( c )

- 27T
ZIC "2k | (2.40

o NN S} .
(Qa) =5 (defCo])
Nch
1
Nch
Note that the specifics of the system ertety through the

vector Z and the tensof:o defined in Eq.(2.26. In high-
temperature regim&,<</C;. It means that the simultaneous
shift of all levels(determined by) is not relevant for pump-
ing. On the other hand, @— 0, this simultaneous shift of all
levels may be important.

+

D. Strong pumping

Let us now turn to the discussion of the opposite limit,
x2>1, where pumping is strong. In this regime, it is more

convenient to transform Eq2.35 to the contour integrals.
Using Stokes theorem, we find

fon o 2
(2.41

e’N|N, )
—,ZX_ X2
Nch51
We notice from Eq(2.36 that the kernekC decreases rap-

(Qa)= 2

ch

X_=X—Y.
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e’N|N
2\ (R
<QA>_ N2

ch

27T zZXX
Nend1' [X|

. (2.42

§ oxc|

The kernell can be expressed in terms/offrom Eq.(2.36)
as

o

[,(u,v)=f_ dwK (u,ow,w?). (2.43

If the averaged level velocity is smajl<1, we find from
Egs.(2.36 and(2.42
27T )
Nch‘Sl ,

wherel , is thelengthof the contoura. Function£, in Eq.
(2.49 is given by

NN,
<Qi>=ezla|\'|—2h£1( (2.44

e > dhf(h)
(=) L autes (11 4uze) e
4
—, u<l
w
REE (2.45
3u’ '

In terms of the original pumping strengiy the dimension-
less length of the contody, [Eq. (2.44)] acquires the form

1 —
|a:N_ \/dX,CHdX]
ch JA

It is important to emphasize that in the case of the strong
perturbation, the pumped charge is determined by the length
of the contour rather than by its area, and it is not sensitive to
the contour shapgrovided that the contour is smooth on the
scale of the order of unijy It has to be contrasted with the
naive expectatiofQ3)=S,, which follows from indepen-
dent addition of areas.

If zis not small, the value of the pumped charge depends
not only on the length of the contour but also on its shape. At
low temperatures, we obtain from EqR.42), (2.43, and
(2.37

g

wherezx is an angle between the vectarsind x. At high
temperature{Q?) does not depend on on the shape of the
contour and is determined by Eq&.44) and(2.45.

(2.46

1
4+ ZsiA (20 ]Y2'

8e?N|N,

2
7TNch

(QA)= (2.47

Ill. MAGNETIC FIELD EFFECTS
ON ADIABATIC PUMPING

This section is devoted to the effect of the magnetic field
on the pumped charge. In Sec. Il B, we present a general
discussion of the symmetries with respect to the time inver-

idly at x> =1. Since the characteristic scale of the field itselfsion. We demonstrate that, unlike the conductance, the

is largex?>1, we can perform the integration over lo-
cally along the direction of the contoud. It gives

pumped charge does not possess such a symmetry. This gen-
eral conclusion is illustrated in Sec. Il B by the model cal-
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culation of the second moment of the charge pumped

through the quantum dot.

A. Symmetry with respect to the reversal of the magnetic field

Let us now consider the pumping through the mesoscopic

sample subjected to a magnetic fi@dThe general formal-
ism of Sec. Il A remains valid. One can infer from E¢2.3)

that the sign of the pumped charge changes together with the

direction of the contour in the parameter space

Q_(B)=-Q._(B), (3.9
where s— () denote opposite direction of motion in the
parameter space along the same contour. Indeed, curvat
(2.3b), is a single valued function of its parametetsg, X,.

Therefore, the only effect of reversal of the contour direction

is to change the sign of the directed ard&;dX,—
—dX;dX, without changing the integration domain. This
immediately yields identity3.1). Note that Eq(3.1) relates
the charges ahe same magnetic fieltt is also important to
emphasize that E3.2) is valid for arbitrary strengthof the
pumping potential. It is not restricted by the bilinear re-
sponse regime. Eq23) of Ref. 9Q_(B)=—-Q_(—B) to-
gether with Eq.(3.1) yield

Q(B)=Q(-B),
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B . a8'(B) a8(B)|
—ImTr[ X X, J—H(B)
. a@T(B)_&g‘(B)}
+ImTry 7 15'—)(11&—)(2 . (3.3
From Eg.(3.3) one obtains,
i |.[a8T(B) a5(B)
H(B)—H(—B)ZESIITY T T; X . (3.4)
[ i

Commutator in right-hand side of EB.4) vanishes only ifS
matrix is symmetric. This is not the case in the presence of a
finite magnetic field. Therefore, there is no fundamental

u§§?mmetry guarding the relatidd(B)=II(—B) as it was in

the case for the two-terminal conductance, and the(Eg).
of Ref. 9does nothold.

Finite difference betweerQ(B) and Q(—B) follows
from the fact that the time inversion involves not only
change of the magnetic field sign and of the direction of the
motion in the parametric space, but also the interchange of
the ingoing and outgoing channels in tBamatrix. It can be
shown that the dissipative contribution to the pumping cur-
rent is not invariant with respect to the latter interchange.

The absence of the symmetry with respect to the reversal
of the magnetic field, suggests that the correlation function
(Q(B1)Q(B,)) depends on the differendg, — B, only and
vanishes atB;—B,|—= (as it does in generic parametric

where the pumping is performed along the same contour iRtatistic3. Model calculation of the following subsection
the parameter space. We intend to prove that, unlike for theonfirms this expectation.

two-terminal conductanc¥;'® such symmetry is not valid
The exact(not-averagedS matrix of the system changes
with reversal of the magnetic fiel®, a$!

S(E,B)=[S(E,—B)]". (3.2

Symmetry relation for the two terminal conductan@:?1)
follows directly from Eq.(3.2) (Ref. 13

G(—B)=Tr{78(—B)7,.S'(—B)}
=Tr{78"(B)7,5*(B)}
=Tr{7,5(B)7,S"(B)}
=Tr{7,8(B)7,S"(B)}.

We omitted factors independent of the magnetic field in the

intermediate steps and used the unitarity of Senatrix.
Therefore, the relation

G(B)=G(—B)

is exact.

Now let us turn to the pumped charge. Substituting Eq.

(3.2 into Eq. (2.3b), we find

. dS"(B) 95*(B)
70X, Xy

H(—B)=ImTr{

B. Model calculation of the second moment

In order to include the magnetic field into our description
we have to lift the condition that matrig{,,, from Egs.
(2.8—(2.9) is symmetric

Hon— Hmnt aHﬁwni

where H &, is the random realization of antisymmeti¢

X M matrix anda is the parameter proportional to the mag-
netic field. The resulting correlation function of two Hamil-
tonians at different values of the magnetic fi#@¢, can be
conveniently presented in a form similar to Eg.9) as

* 01 ? D
<Hnm(Bl)H (BZ)>= Z [5nn’5mm’(4M_Nh)

n’'m’

(3.5

QuantitiesNP© characterize the effect of the magnetic field
on the wave functions of the closed dot and can be estimated
as

+ S Oy (AM —NE) 1.

)
Do

2
1 2

2 O+ P
v Ny =0dol| ——

Ty , (3.6

NE = gdot(

where gq,2>1 is the dimensionless conductance of the
closed dot,®, ) is the magnetic flux through the dot that
corresponds to the magnetic fie8d ), and®,=hc/e is the
flux quantum.
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For the Green functions in Eq2.24) taken at different

4e®N\N, S\ [ Ngps N
magnetic fieldsB;,B,, the diffuson, Eq(2.25, is modified (Q2)= ! R ( ch 1) ch | . (311
as 37Ngh 7T J\ Nept+ N
2\ 2 1 In the strong pumping regime the high temperature
:(_> . (3.7 asymptotic behavior instead of E@.44) is given by
81] —ie+NgptNP+iZ- X+ XCoX
| | o | , 2NN, | (Nendy| [ Nen |
Diagrammatic representation, Fig. 5, and the expression (Qay=¢€?, > T 5l - (312
for Hikami box(2.30 remain intact. Instead of E¢2.35 we 3Ngh / VT Nent Np
obtain
IV. DISCUSSION AND CONCLUSIONS
|
<QA(51)QB(|32)>:—N—2rf dx;dx; Our main results include dependence on the pumping
ch -2 strength, temperature, and magnetic field.
9 \2 Dependence of the pumping strengiih.the small pump-
xf dY1dY2(aT) ing potential, we essentially reproduced the results for bilin-
b _

ear respons#® that (Q?)«S3 with S, area being tharea
enclosed by the contour in the parametric space, see Eq.
(2.38. This bilinear response regime, however, is valid only
as long as the pumped charge is smaller than unity. The
regime of strong pumping is analyzed for the first time in the
X-=X=Y. (38 present paper, see Eq®.42—(2.47). This regime is hall-

Here, the variables,y,z are determined by Eq2.32 and marked by the dependend®?)xl,, with |, being the
the functionk is given by Eq.(2.36). lengthof the contour, which is substantially slower than na-

Equation (3.8 is the main result of this section. It de- ive expectation(Q?eS,. This slow dependence was al-
scribes the sensitivity of the pumped charge to the magnetitcady observed in Ref. 11. We think that our conclusion
field. One immediately realizes that the correlation functionabout independence of the pumped charge variance on the
depends only on the difference of the magnetic fields in acshape of the contour deserves a careful chéck.
cord with the discussion in the previous subsection. More- Temperature dependenc®ur results for the high tem-
over, the variance of the charge does not depend on the magerature regimé@ =N.,6; indicate that the variance of the
netic field (for bilinear response this result was obtained bycharge (Q?) is inversly proportional to the temperature
Brouwer)). In terms of the diagrams, the absence of the{Q?)=1/T. Experiment’ demonstrategQ?)«1/T? in the
symmetry with respect to the magnetic field reversal is rehigh-temperature regime. This discrepancy was attributed to
vealed in the fact that the Cooperon does not contribute tthe presence of the temperature-dependent dephasing, ig-
the second moment even in the orthogonal caBes ). nored in our treatment. In the simplistic mod&lg; the

We conclude this section by the discussion of the asympdephasing is described by adding an extra fabtpiinto the
totics of the correlation functioiQa(B;)Qa(B,)) at finite ~ mass of diffuson and Cooperd8.?). If such a questionable
magnetic field. We start with the weak pumping at low tem-procedure is adopted, the effect of dephasing would be de-

X]C( 27T 2, NP
VX X — |,
Nch51 Nch

peraturesT<;N¢,. Instead of Eq(2.38 one obtains scribed by replacemerNEHNE+ N, in formulas of Sec.
[l B. We can see from Eqg3.11)—(3.12 that the samé\,,
16e2N|NrS§ 2N§h produces different temperature dependences for the different
(Qa(B1)Qa(B2))= N2 N ND)? regimes. Use of experimentaifyknown dependencll T,
mNeh L (NenNp) would produce the resultéQ?)«1/T3 and<Q2>oclfr3702 for
N4 weak and strong pumping, respectively. We believe that the
e , (3.9 available experimental information is not sufficient yet for
(Nept+Np)* making detailed comparison with our theory.

D . o Effect of the magnetic fieltlVe have demonstrated in Sec.
whereNy, is related to the magnetic fields by HG.6). If the Il A that there is no fundamental reason for the pumped

- : ; ol 2 D
dimensionless pumping potential is larg&">(Ny/Nch  cyrrent to be symmetric with respect to the magnetic field
+1)] and the average level velocity is smal=0, we 0b-  eyersal, in a sharp contrast with the dependence of conduc-

tain instead of Eq(2.44 tance on the magnetic field. The corresponding correlation
32 functions were calculated in Sec. Ill B. It is demonstrated

<Q2)=e2I AN N, Nen (3.10 there that(Q(B)Q(—B))=B~° at largeB. These conclu-
A a WNgh Nent NE sions contradict to Ref. 12 where the symmetry with respect

_ o _ to magnetic-field reversal was reported. We cannot explain
At high magnetic field{Qa(B)Qa(—B)) rapidly decreases this symmetry within the framework of our theory.
asB %, and one can use E¢(3.9 for the bilinear response.

Finally, we discuss the variance of the pumped charge in
the magnetic field in the limit of high temperaturé¥
>maX 6;(Nyt+ NE)/ZW,XZ]}. For the weak pumping, assum-  We are grateful to B. Spivak, C. Marcus, and F. Zhou for
ing the average level velocity is small, we find interesting discussions. I.A. was supported by the A.P. Sloan
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The work at Princeton University was supported by AROpose Eq(2.14 for GR and post-multiply it byGA. Subtract-

MURI DAAG 55-98-1-0270. ing the results, we find
APPENDIX A 2i mvGR(E, XR)WWTGA(E, X"
We demonstrate the equivalence betweed{ZE8 and the =GAE, X" - GRE,XR)
approach of Ref. 9. The demonstration will be based on . R R R
equation of motion for the Green functiof.14) related to + GR(E,XR)[H(XR) = H(X*) ]GA(E,XA).

the S matrices by Eq(2.13. First, we substitute Eq2.13

into EqQ.(2.15, and obtain (A2)
Substituting Eq(A2) into (A1), we obtain
2
I1(E,X)=2i m2p?el ——— d AH(X)
(EX)=2imre IXPIXE II(E,X)=¢€l —Tr WVWTWTGR(E,X)LGA(E,X) :
X aX;
(A3)

X THWrWIGR(E, XR)WWTGA(E, X*)}.
(A1) If we recall thatm »W7W' is an operator of the current from
o the dot through the left contact, we obtain Ef0) of Ref. 9,
We will show now that matribxGRWW'G* can be simplified  which proves that the physical mechanisms considered in
significantly using the equations for the Green functionsRefs. 10 and 9 are identical.
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