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Mesoscopic fluctuations of adiabatic charge pumping in quantum dots
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We consider the adiabatic charge transport through zero-dimensional mesoscopic sample~quantum dot!
caused by two periodically changing external perturbations. Both the magnitude and the sign of the transmitted
charge are extremely sensitive to the configuration of the dot and to the magnetic field. We find the correlation
function characterizing the random value of this pumped charge for arbitrary strength of the perturbation. In
contrast to previous theoretical and experimental claims, the charge is found not to have any symmetry with
respect to the inversion of magnetic field. At strong pumping perturbation, the variance of the charge^Q2& is
found to be proportional to the length of the contour in parametric space.
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I. INTRODUCTION

Adiabatic charge pumping occurs in a system subjecte
a very slow periodic perturbation. Upon the completion
the cycle, the Hamiltonian of the system returns to its init
form; however, the finite charge can be transmitted throug
cross section of the system. If the Hamiltonian depends
only one parameter, which is a strictly periodic function
time t, the value of the charge transfer,Q is zero. This may
not be the case for Hamiltonians, which depend on two
more parameters. The pumped charge may be finite if th
parameters follow a closed curve in the parameter sp
which encompasses a finite area. Such an evolution ma
also characterized by a multivalued variable~angle!; in this
case transmitted charge is proportional to the winding nu
ber for this variable. The value ofQ is not universal.
Thouless1 showed that for certain one-dimensional syste
with a gap in the excitation spectrum in the thermodynam
limit the charge Q is quantized. Such quantized char
pumping could be of practical importance as a standard
electric current.2 The accuracy of charge quantization d
pends on how adiabatic the process is.

The practical attempts of creating a quantized elect
pump are based on the phenomenon of Coulomb blockad3,4

In this kind of devices, several single-electron transist
~SET! are connected in series to increase the accurac
charge quantization. At least two SET’s are necessary to
tain a nonzero charge transfer.

Semiconductor-based quantum dots5 are often used now
as Coulomb blockade devices. The advantage of these
vices is the possibility of changing independently the g
voltage~and thus the average electron number in the dot! and
the conductance of the quantum point contacts~QPC’s! sepa-
rating the dot from the leads. By doing so, one can trave
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from almost classical Coulomb blockade to a complet
open dot where the effects of the charge quantization
diminished. It was shown theoretically,6 that even weak
backscattering in one-channel QPC’s leads to almost qu
tized value of the pumped charge in low-temperature lim
T→0.

With the further opening of the QPC’s the Coulom
blockade-type charging effects become negligible.7 In this
case, the main contribution to the pumped current is ass
ated with the quantum interference within the quantu
dot.8–10 Mechanism related to the inelastic processes w
first considered in Ref. 8. In open systems, this mechani
however, is not effective, as the inelastic scattering timete
can be much larger than the dwell time of the electron in
dot. In this situation, the main mechanism of pumping is n
related to the inelastic processes but rather to change in
phase factors of the corresponding scattering matrix.9,10 Pre-
dictions of Refs. 9 and 10 were apparently in accord with
recent data of Switkeset al.11

However, both papers9,10 are devoted to the weak pump
ing regime, in which the dc current isbilinear in the pump-
ing amplitudes. On the other hand, in the experiments11 the
pumping was not weak. Our purpose here is to constru
theory of the quantum pumping of a finite amplitude. T
ensemble average of the pumping charge^Q& is equal to
zero. We demonstrate that the variance of the pump
charge,^Q2& increases as the square of the area in the
rameter space as long as^Q2&!1. With further increase of
the area,̂ Q2& increases much slower~as the length of the
contour in the parametric space!. These results are obtaine
in Sec. II.

Another important problem to clarify is the sensitivity o
Q to applied magnetic field. Zhouet al.,9 claimed the sym-
metry of the pumped charge, similar to the Onsager rela
10 366 ©2000 The American Physical Society
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PRB 61 10 367MESOSCOPIC FLUCTUATIONS OF ADIABATIC CHARGE . . .
for the conductance.12,13 The direct consequence of suc
symmetry is that the variance of pumped charge is large
the presence of time reversal symmetry,H50 than in its
absence,̂Q2(B→`)&< 1

2 ^Q2(B50)& similarly to the con-
ductance fluctuations.14 Both those statements are support
by the experiment of Switkeset al.11

In our opinion, the statement about such symmetry is
correct. We discuss this problem in detail in Sec. III. B
manipulations with exactS matrix we show that contrary to
the conductance, the pumped charge isnot symmetric with
respect to inversion of magnetic field:Q(B)ÞQ(2B).
Moreover, we show that at large values of the magnetic fi
the Q(B) and Q(2B) are not even correlate
^Q(B)Q(2B)&→0. The variance of the pumped charge
found to be independent of magnetic field in agreement w
the results of Ref. 10 for large number of channels, and
disagreement with Refs. 9 and 11.

Our findings are summarized in Sec. IV. In the same s
tion, we will discuss existing experiment.11

II. MESOSCOPIC FLUCTUATIONS OF PUMPING
IN ZERO-MAGNETIC FIELD

A. General formalism

Our analysis will be based on the general expression
the pumped charge derived by Brouwer10 based on the ap
proach of Ref. 15. Consider the sample connected to
leads, as in Fig. 1. Each lead is characterized by its tra
verse modesa, where 1<a<Nl for the left lead andNl
11<a<Nl1Nr5Nch for the right lead.

The sample, therefore, is completely characterized by
unitary Nch3Nch scattering matrix,Ŝ(E), connecting ingo-
ing and outgoing waves, with energyE. For instance, the two
terminal conductance of the systemG can be found from
Landauer-Buttiker formula as

G5
e2

2p\E dES 2
] f

]EDTr$t̂ l Ŝ~E!t̂ r Ŝ†~E!%, ~2.1!

where f (E)51/(11eE/T) is the Fermi distribution function
~energyE is measured from the Fermi level!. Matricest̂ l (r )
are projectors on the states of left~right! lead

@ t̂ l #ab5dab3H 1, 1<a<Nl

0, Nl,a<Nch ,
~2.2!

@ t̂ r #ab5dab2@ t̂ l #ab .

FIG. 1. Schematic picture of the sample connected to the le
‘‘ L ’ ’ and ‘‘ R’ ’ .
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Let us now assume thatS matrix is changing due to two
external parametersX1,2 slowly varying with time. The
pumped chargeQ is given by10

Q5
e

pE dES 2
] f

]ED E
A
dX1dX2P~E,X!, ~2.3a!

P~E,X!5Im TrH t̂ l

]Ŝ~E,X!

]X2

]Ŝ†~E,X!

]X1
J , ~2.3b!

where X5(X1 ,X2), and *A denotes the integration within
the area encompassed by contourA. It follows from the uni-
tarity of theSmatrix ~charge conservation! thatP(E,X) can
also be presented as

P~E,X!52Im TrH t̂ r

]Ŝ~E,X!

]X2

]Ŝ†~E,X!

]X1
J . ~2.3c!

Equations~2.3! are quite general. They assume only t
absence of inelastic processes within the dot. We dem
strate the equivalence between Eq.~2.3! and approach of
Ref. 9 in Appendix A.

Closing this subsection, we discuss an important point
the physical meaning of the adiabatic approximation nec
sary for Eq.~2.3! to be valid. Usually, defining a perturbatio
of a quantum system as an adiabatic one means that
frequencyv of this perturbation is much smaller than th
energy of the lowest excitations in this system. If the syst
were closed as in Fig. 2, the charge distribution after e
period of the perturbation would return to the original dist
bution, and therefore, the pumped charge would beexactly
quantizedin units of the electron charge.

However, for an open system, the spectrum is continuo
and the aforementioned adiabaticity criterium can be ne
satisfied. In this case, the only condition we can impose
smallness of the frequency as compared with the tempera
and the mean level spacingd1 of the dot separated from th
leads. This condition is not sufficient for the qunatization
the charge. Nevertheless, the value of the pumped charge
be still expressed in the form of the adiabatic curvature~2.3!.

To understand better the relation between closed and o
systems, let us consider the gedanken experiment, where
two leads are connected to each other as in Fig. 2. Le
spacing of the whole systemdsys is proportional to 1/L. We
will show now, that the result~2.3! can be decomposed int

ds

FIG. 2. Schematic picture of the quantum dot from Fig. 1 in t
closed geometry. Genuine adiabatic approximation correspond
v•L→0, whereas Eq.~2.3! assumev•L→`.
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10 368 PRB 61T. A. SHUTENKO, I. L. ALEINER, AND B. L. ALTSHULER
two contributions.6 The first contribution isquantizedand is
just a charge that is pumped in truly adiabatic situationv
!dsys. This charge is, therefore, attributed to the dissip
tionless current. The second contribution is associated w
the creation of the real electron-hole pairs in the system
is not quantized. It takes place in such closed system on
provided thatv@dsys. This contribution involves dissipa
tive conductance and it is due to the fact that the electro
system cannot fully adjust itself to the time evolution of t
Hamiltonian: the state of the system at a given time is no
eigenstate of the Hamiltonian. Such retardation of the e
trons from the external field leads to the dissipation.~Debye
losses in closed systems withv@d1 gives a good example o
such a dissipation.!

To illustrate such decomposition, we consider a sim
case where each lead contains only one channel and the
no electron-electron interaction. In this particular case, thS
matrix is a 232 matrix that can be parameterized in terms
the dimensionless conductanceg and the scattering phaseu

Ŝ5S A12geiu iAg

iAg A12ge2 iuD . ~2.4!

In the presence of the pumping perturbation, both parame
g and u are slow functions of timet. With the help of Eq.
~2.4!, Eq. ~2.3! gives

Q5evE
0

2p/v

dt@12g~ t !#
du

dt
. ~2.5!

@This result was obtained by different means in Ref. 6.# One
can see that the first term in brackets of the integrand in
~2.5! gives always the quantized contribution becau
u(1/2pv)5u(0)12pn, with n being an integer. At the
same time, the term proportional tog(t) violates this quan-
tization, and in the case of perfect conductanceg51 cancels
the adiabatic contribution completely.

B. Zero-dimensional model for the quantum dots

In what follows, we will be interested in the statistics
the pumped charge in the ensemble of quantum dots. In o
to determine these statistics, we need to specify the mo
Firstly, we assume that the size of the quantum dotsL is so
small, that the Thouless energyET;\/terg far exceeds othe
energy scales of the problem, such as the dephasing o
cape rates~hereterg is the characteristic time for the class
cal particle to cover all of the available phase space!. In this
limit one can use the random matrix theory~RMT! to study
the conductance of the system, see Ref. 16. All correction
the RMT are small asNch /gdot , wheregdot5ET /d1 andd1
is the mean level spacing. Secondly, we consider the a
batic pumping in the dot with the large numberNch of open
channels. In this approximation the effect of Coulomb int
action among the electrons in the dot turns out to be sma
1/Nch

2 ~see Ref. 7! and can be neglected. The conditionNch

@1 also allows us to use conventional diagramma
technique17 to perform the ensemble average, and to cons
only lowest moments of the distribution ofQ.

The Hamiltonian of the system can be represented as

Ĥ5ĤD1ĤL1ĤLD , ~2.6!
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whereĤD is the Hamiltonian of electrons in the dot, mim
icked by aM3M matrix

ĤD5 (
n,m51

M

Cn
†HnmCm . ~2.7!

We assume the ‘‘thermodynamic’’ limitM;gdot→`. In the
absence of pumping perturbationsHnm can be considered a
a random~since gdot@1) matrix that belongs to the en
semble of real symmetric matrices~orthogonal ensemble!.
Let the perturbations be represented by two given not ne
sarily random~compare with Ref. 19! M3M symmetric ma-
tricesVn,m

(1,2) , so that

Hnm~X!5Hnm1XVnm5Hnm1X1Vnm
(1)1X2Vnm

(2) .
~2.8!

According to RMT, the correlation function of the matri
elements of the unperturbed part of the Hamiltonian,ĤD ,
can be written as

^HnmHn8m8
* &5M S d1

p D 2

~dnn8dmm81dmn8dnm8!. ~2.9!

The coupling between the dot and the leads is

ĤLD5 (
a,n,k

~Wnaca
†~k!Cn1H.c.!, ~2.10!

whereCn correspond to the states of the dot,ca(k) denotes
different electron states in the leads~momentumk labels
continuous spectrum in each channela).

The spectrum of electrons in the leads near Fermi surf
can be linearized. Thus, without losing the generality we c
write ĤL as

ĤL5vF(
a,k

kca
†~k!ca~k!, ~2.11!

wherevF51/2pn is the Fermi velocity andn is the density
of states at the Fermi surface.

The coupling constantsWna in Eq. ~2.10! are defined in
the case of the reflectionless contacts as16

Wna5AMd1

p2n
3H 1, if n5a<Nch ,

0, otherwise.
~2.12!

For the system described above the scattering matriŜ
has the form

Sab~E,X!5122p inWan
† Gnm

R ~E,X!Wmb , ~2.13!

and the retarded~advanced! Green functionGnm
R (Gnm

A ) is to
be determined from the equation

@E2Ĥ~X!6 ipnŴŴ†#ĜR,A~E,X!5 Î . ~2.14!

Here, matricesĤ and Ŵ are comprised by their elemen
~2.8! and ~2.12!, respectively. The factor in Eq.~2.12! is
chosen so that the ensemble average scattering matrix^Sab&
of a dot with fully open channels is zero. More complicat
structure ofŴ can be always reduced to the form~2.12! by
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suitable rotations. We are going to consider the average
different moments ofP given by Eq.~2.3b! with the help of
diagrammatic technique.17 For the technical reasons it i
more convenient to transform Eq.~2.3b! with the help of Eq.
~2.3c!

P~E,X!5Im TrH t̂
]Ŝ~E,X!

]X2

]Ŝ†~E,X!

]X1
J ,

t̂5
Nr t̂ l2Nl t̂ r

Nch
. ~2.15!

Notice that the matrixt̂ is traceless. This fact significantl
simplifies further manipulations. We substitute Eq.~2.13!
into Eq. ~2.15! and obtain

P~E,X!52
i

2
« i j

]2F
]Xi

A]Xj
RUXR5XA5X,

F5s
4M2d1

2

p2
Tr$L̂ĜR~E,XR!ĜĜA~E,XA!%, ~2.16!

where« i j 5@ «̂# i j is the antisymmetric tensor of the seco
rank, and the factors52 takes into account the spin dege
eracy. We have introduced matricesL̂ and Ĝ

@Ĝ#nm5dnm3H 1, 1<n<Nch

0, Nch,n<M
~2.17!

@L̂#nm5dnm35
Nr

Nch
, 1<n<Nl

2
Nl

Nch
, Nl,n<Nch

0, Nch,n<M .

Notice, that

Tr L̂50, Tr~L̂Ĝ !50. ~2.18!

To evaluate correlators of the functions Eq.~2.16!, we
adopted a diagrammatic technique for the ensemble ave
ing. In the thermodynamic limitM→` this technique is
somewhat similar to the one developed for bulk disorde
metals.17 Factor 1/M plays now the same role as the sm
parameter 1/eFt imp with eF andt imp being the Fermi energy
and the elastic mean free time correspondingly. The rules
reading those diagrams are shown in Fig. 3~a!.

The ensemble averaged retarded Green function is g
by

ĜR,A5K 1

E2Ĥ~X!6 i ĜEL 5
1

E2Ĥ~X!6 i ĜE2ŜR,A
,

~2.19!

E5
Md1

p
,

where averaging is performed over realizations of rand
matrix Ĥ from Eq.~2.8!, and energyE is of the same order a
of

g-

d
l

or

en

the width of the band of the random matrix eigenvalues. S
energyŜ includes, as usual, all of the one-particle irredu
ible graphs. In the leading in 1/M approximation it is given
by the sum of the rainbow diagrams, Fig. 3~b!,

ŜR,A5M S d1

p D 2

Î Tr$ĜR,A%. ~2.20!

Let us now expand theensemble averagedGreen function up
to the second order in parametric perturbation. The final
sults are not necessarily quadratic in perturbation stren
see, e.g., Eq.~2.25!. All higher order terms can be neglecte
provided that

uVnm
( i ) u!M S d1

p D , n,m51,2, . . . ,M . ~2.21!

Inequality ~2.21! is nothing but the condition of the centra
limit theorem. Solving Eqs.~2.19! and~2.20!, we find that at
E!E

ĜR,A56
1

iE F Î 2
1

2
Ĝ1

Nch6 i e

4M
Î G2

1

E 2
~XV!S Î 6

1

iE XVD1

1
1

E 2

Î

2M
TrFXV6

1

iE ~XV!~XV!G , ~2.22!

where Ĝ is defined in Eq.~2.17!. Here, we introduced the
dimensionless energy measured in units of mean level s
ing

e5
2pE

d1
. ~2.23!

We can also expand these Green functions up to the
order ine/M andNch /M and restrict ourselves by zero- an
first-order terms, since the higher order terms vanish in
‘‘thermodynamic’’ limit M→`.

Let us now turn to the analysis of the statistical propert
of the functionF from Eq. ~2.16!. All the relevant averages

FIG. 3. Elements of the diagram technique:~a! bare electron
retarded Green function;~b! correlator of the matrix elements of th
Hamiltonian; ~c! pumping perturbation;~d! renormalized electron

Green function;~e! selfenergyŜ. The second term in the selfen
ergy, which includes an intersection of the dashed lines, is sma
compared to the first term as 1/M .
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will be expressed in terms of the certain products of
Green functions—diffusonD and CooperonC ~Ref. 18!

D~e,X!5Tr^ĜR~e11e,X1Y!ĜA~e1 ,Y!& ~2.24a!

C~e,X!5Tr^ĜR~e11e,X1Y!ĜA~e1 ,Y!T&, ~2.24b!

where we express energy in dimensionless units~2.23!.
The leading atM→` andNch@1 approximation for the

diffuson is a series of ladder diagrams. As usual, summa
of this series can be performed by solving the equations
sented graphically on Fig. 4. The solution of this diagra
matic equation is

D5C5S 2p

d1
D 2 1

2 i e1Nch1 iZ•X1XĈ0X
. ~2.25!

The diffuson has the universal form Eq.~2.25! under the
condition of Eq.~2.21!. The structure and the strength of th
perturbation potentialV̂ from Eq. ~2.8! is encoded in two
parameters: vectorZ and tensorĈ0. In terms of the original
Hamiltonian they are given by

Z5
2p

Md1
Tr V̂ ~2.26a!

@Ĉ0# i j 5
2p2

~Md1!2
Tr$V̂( i )V̂( j )%, i , j 51,2, ~2.26b!

We used the fact that the matrixV̂ is symmetric. Parameter
~2.26! are also related to the typical value of the level velo
ties, which characterizes the evolution of energy levels of
closed systemen(X) under the action of an external pertu
bationX•V̂, see Ref. 19~our definition is different by a nu-
merical factor!:

Z5S 2p

d1
D K ]en

]X L , ~2.27a!

@Ĉ0# i j 5
p2

d1
2 S K ]en

]Xi

]en

]Xj
L 2 K ]en

]Xi
L K ]en

]Xj
L D . ~2.27b!

Now we are in a state to evaluate the statistics of the pum
charge. It should be noted that the specifics of the sys
enteronly through the parametersZi and @Ĉ0# i j . Moreover,
all other responses of the system~e.g., parametric depen
dence of the conductance of the dot! are also universal func

FIG. 4. Diffuson diagrams. Cooperon diagrams differ from t
ones for diffuson only in the direction of the arrow of the retard
Green function line.
e

n
e-
-

-
e

ed
m

tions of the same parameters.19 Therefore,Zi and@Ĉ0# i j can
be in principle determined from independent measu
ments.

The ensemble average of the pumped charge vanishes
the sign ofQ is random. To evaluate the typical value of th
charge we consider the average^QAQB& for two different
contoursA and B on the parameter planes. To accompli
this task, we need to average the product of functions~2.16!

I5^F~e11e,XR,XA!F~e1 ,YR,YA!&, ~2.28!

where functionF is defined by Eq.~2.16!.
Diagrammatic expression forI is shown on Fig. 5. Due to

the relations~2.18!, there is no need to renormalize the ve
tex L by the dashed lines. For the same reason, verticeL
and G cannot appear in the same cell and, therefore,
Cooperon Eq.~2.24b! does not contribute toI ~2.28!. We
demonstrate in Sec. III, that this implies the difference
how the change of sign of magnetic field affects the pump
charge and the conductance.12,13,20

The analytic expression for the diagram, Fig. 5, is

I5
NlNr

Nch
BD~e;XR2YA!D~2e;YR2XA!, ~2.29!

FIG. 5. ~a! Diagrammatic representation for the correlatio
function I from Eq. ~2.28!; ~b! Hikami box.
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where diffuson propagatorD is given by Eq.~2.25!. The
factor B in Eq. ~2.29! is given by the set of diagrams Fig
5~b!, which is analogous to the Hikami box for the diso
dered systems. It equals to

B5B (1)1B (2)1B (3);

B (1)5
d1

4

8p4
@~XR2XA!Ĉ0~YA2YR!#;

B (2)5
d1

2

4p2D~e;XR2YA!
;

B (3)5
d1

2

4p2D~2e;YR2XA!
. ~2.30!

Substitution of the expression forB (2) into Eq. ~2.29! gives
no contribution toI due to the relationship betweenI andP,
Eq. ~2.16!. Indeed, the part ofI, which depends onB (2) does
not containXR. The contribution proportional toB (3) van-
ishes in a similar way. SubstitutingB (1) into Eq. ~2.16!, and
the result into Eq.~2.29!, we find

^P~e1 ,X1Y!P~e2 ,Y!&

5
8NlNr

Nch
@ «̂Ĉ0«̂ # i j

3
]2

]Xi]Xj

1

~e12e22Z•X!21~Nch1XĈ0X!2,
.

~2.31!

Here, we used the explicit form of the diffuson~2.25!, intro-
duced dimensionless energies~2.26! and took the spin de
generacy into account.

Now, we are in a state to evaluate the correlation funct
of charges pumped in a course of motion along contourA
andB on the parameter plane. The result becomes compa
we choose new variables

x5
1

ANch

~Ĉ0!1/2X; ~2.32a!

y5
1

ANch

~Ĉ0!1/2Y; ~2.32b!

z5
1

ANch

~Ĉ0!21/2Z. ~2.32c!

Let us discuss whyx,y,z are natural dimensionless var
ables. Recall that we are dealing with open systems. E
tronic escape time can be estimated astesc;(Nchd1)21. All
the energy levels have a finite widthg;1/tesc;Nchd1.d1.
It means that even atT50 the pumping current is deter
mined by the energy strip with a finite widthg.d1. The
number of the levelsng in such a strip is a random functio
n

t if

c-

of the point in the parameter space. The correlation len
R5uRu of this random function can be estimated from t
equation

RZ1Ri@Ĉ0# i j Rj;g. ~2.33!

The first term in the left hand side of Eq.~2.33! describes a
homogeneous shift of the spectrum, while the second t
represents random parametric oscillations.19 Equation~2.33!
can be rewritten in terms of the new variables Eq.~2.32! as

rz1r2;1, ~2.34!

where r5(Ĉ0 /Nch)
1/2R. As a result, r;min(1,Z̃21). It

means that in terms of the new variablesx,y,z the pumping is
weak ~i.e., bilinear! provided thatr ,min(1,z21). Finally,

^QAQB&52
e2NlNr

Nch
2 E

a
dx1dx2E

b
dy1dy2

3S ]

]x2
D 2

KS 2pT

Nchd1
,z•x2 ,x2

2 D ,

x25x2y, ~2.35!

where *a,b denotes the integration within the area enco
passed by contoursa andb, see Eq.~2.32!, and dimension-
less correlation functionK is given by

K~u,v,w!5
8

p2E2`

`

dh
f ~h!

@~2uh1v !21~11w!2#
,

f ~h!5
~h cotanhh21!

~sinhh!2
. ~2.36!

Low-temperature regime corresponds tou!max(1,v,w). In
this limit,

K~u,v,w!5
8

p2

1

v21~11w!2
, ~2.37a!

while at high temperaturesu@max(1,v,w)

K~u,v,w!5
4

3pu S 1

11wD . ~2.37b!

Therefore, heating suppression of the mesoscopic fluc
tions of Q is similar to that of the conductance fluctuation

Equations~2.35!–~2.36! are the main results of this sec
tion. They describe the correlation between the cha
pumped due to the motion in the parameter space along
different contours at arbitrary temperature. Now, we are
ing to apply Eq.~2.35! to analyze the variance of the charg
^QA

2&.

C. Weak pumping

If the characteristic magnitude of the potentials is so sm
that x2

2 !1,x2•z!max@1,T/(Nchd1)#, then the system is in
bilinear response regime discussed in Refs. 9 and 10. In
case one can putv50, w50 in Eq. ~2.36! after the differ-
entiation. As a result
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^QA
2&5

e2NlNrSa
2

Nch
2 FK1S 2pT

Nchd1
D1z2K2S 2pT

Nchd1
D G ,

~2.38!

whereSa is the area enclosed by the contoura, in the param-
eter spacex5(x1 ,x2). FunctionsK1,2(x) can be expresse
through f (h) from Eq. ~2.36! in the following way

K1~u!5
32

p2E2`

`

dh
f ~h!

@4u2h211#2

55
32

p2
, u!1;

8

3pu
, u@1,

~2.39a!

and

K2~u!5
16

p2E2`

`

dh
f ~h!~1212u2h2!

@4u2h211#3

55
16

p2
, u!1;

4

15pu3
, u@1.

~2.39b!

In terms of the original pumping strengthX Eq. ~2.38! ac-
quires the form

^QA
2&5

e2NlNrSA
2

Nch
4 ~det@Ĉ0# !2FK1S 2pT

Nchd1
D

1
1

Nch
Zi@Ĉ0

21# i j ZjK2S 2pT

Nchd1
D G . ~2.40!

Note that the specifics of the system enteronly through the
vector Z and the tensorĈ0 defined in Eq.~2.26!. In high-
temperature regimeK2!K1. It means that the simultaneou
shift of all levels~determined byz) is not relevant for pump-
ing. On the other hand, atT→0, this simultaneous shift of al
levels may be important.

D. Strong pumping

Let us now turn to the discussion of the opposite lim
x2

2 @1, where pumping is strong. In this regime, it is mo
convenient to transform Eq.~2.35! to the contour integrals
Using Stokes theorem, we find

^QA
2&5

e2NlNr

Nch
2 R

a
dxi R

a
dyiKS 2pT

Nchd1
,zx2 ,x2

2 D ,

x25x2y. ~2.41!

We notice from Eq.~2.36! that the kernelK decreases rap
idly at x2

2 *1. Since the characteristic scale of the field its
is largex2@1, we can perform the integration overx2 lo-
cally along the direction of the contourdx. It gives
,

f

^QA
2&5

e2NlNr

Nch
2 R

a
dxLS 2pT

Nchd1
,
z3x

uxu D . ~2.42!

The kernelL can be expressed in terms ofK from Eq.~2.36!
as

L~u,v !5E
2`

`

dwK~u,vw,w2!. ~2.43!

If the averaged level velocity is small,y!1, we find from
Eqs.~2.36! and ~2.42!

^QA
2&5e2l a

NlNr

Nch
2

L1S 2pT

Nchd1
D , ~2.44!

where l a is the lengthof the contoura. FunctionL1 in Eq.
~2.44! is given by

L1~u!5
25/2

p E dh f~h!

@114u2h21~114u2h2!3/2#1/2

5H 4

p
, u!1

4

3u
, u@1.

~2.45!

In terms of the original pumping strengthX, the dimension-
less length of the contourl a @Eq. ~2.44!# acquires the form

l a5
1

Nch
R

A
AdXiĈ0

i j dXj . ~2.46!

It is important to emphasize that in the case of the stro
perturbation, the pumped charge is determined by the len
of the contour rather than by its area, and it is not sensitiv
the contour shape~provided that the contour is smooth on th
scale of the order of unity!. It has to be contrasted with th
naive expectation̂QA

2&}Sa , which follows from indepen-
dent addition of areas.

If z is not small, the value of the pumped charge depe
not only on the length of the contour but also on its shape
low temperatures, we obtain from Eqs.~2.42!, ~2.43!, and
~2.37a!

^QA
2&5

8e2NlNr

pNch
2 R

a
dx

1

@41z2sin2~zx̂!#1/2
, ~2.47!

wherezx̂ is an angle between the vectorsz and x. At high
temperature,̂ Q2& does not depend on on the shape of t
contour and is determined by Eqs.~2.44! and ~2.45!.

III. MAGNETIC FIELD EFFECTS
ON ADIABATIC PUMPING

This section is devoted to the effect of the magnetic fi
on the pumped charge. In Sec. III B, we present a gen
discussion of the symmetries with respect to the time inv
sion. We demonstrate that, unlike the conductance,
pumped charge does not possess such a symmetry. This
eral conclusion is illustrated in Sec. III B by the model ca
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culation of the second moment of the charge pump
through the quantum dot.

A. Symmetry with respect to the reversal of the magnetic field

Let us now consider the pumping through the mesosco
sample subjected to a magnetic fieldB. The general formal-
ism of Sec. II A remains valid. One can infer from Eqs.~2.3!
that the sign of the pumped charge changes together with
direction of the contour in the parameter space

Q
�

~B!52Q
‚

~B!, ~3.1!

where s�(‚) denote opposite direction of motion in th
parameter space along the same contour. Indeed, curv
~2.3b!, is a single valued function of its parametersX1 ,X2.
Therefore, the only effect of reversal of the contour direct
is to change the sign of the directed areadX1dX2→
2dX1dX2 without changing the integration domain. Th
immediately yields identity~3.1!. Note that Eq.~3.1! relates
the charges atthe same magnetic field. It is also important to
emphasize that Eq.~3.1! is valid for arbitrary strengthof the
pumping potential. It is not restricted by the bilinear r
sponse regime. Eq.~23! of Ref. 9 Q

�
(B)52Q

‚
(2B) to-

gether with Eq.~3.1! yield

Q~B!5Q~2B!,

where the pumping is performed along the same contou
the parameter space. We intend to prove that, unlike for
two-terminal conductance,12,13 such symmetry is not valid.

The exact~not-averaged! S matrix of the system change
with reversal of the magnetic field,B, as21

S~E,B!5@S~E,2B!#T. ~3.2!

Symmetry relation for the two terminal conductance~2.1!
follows directly from Eq.~3.2! ~Ref. 13!

G~2B!}Tr$t̂ l Ŝ~2B!t̂ r Ŝ†~2B!%

5Tr$t̂ l ŜT~B!t̂ r Ŝ* ~B!%

5Tr$t̂ r Ŝ~B!t̂ l Ŝ†~B!%

5Tr$t̂ l Ŝ~B!t̂ r Ŝ†~B!%.

We omitted factors independent of the magnetic field in
intermediate steps and used the unitarity of theS matrix.
Therefore, the relation

G~B!5G~2B!

is exact.
Now let us turn to the pumped charge. Substituting E

~3.2! into Eq. ~2.3b!, we find

P~2B!5Im TrH t̂ l

]ŜT~B!

]X2

]Ŝ* ~B!

]X1
J

d

ic

he

ure

n

in
e

e

.

5Im TrH t̂ l

]Ŝ†~B!

]X1

]Ŝ~B!

]X2
J 5P~B!

1Im TrH t̂ lF ]Ŝ†~B!

]X1
;
]Ŝ~B!

]X2
G J . ~3.3!

From Eq.~3.3! one obtains,

P~B!2P~2B!5
i

2
« i j TrH t̂ lF ]Ŝ†~B!

]Xi
;
]Ŝ~B!

]Xj
G J . ~3.4!

Commutator in right-hand side of Eq.~3.4! vanishes only ifS
matrix is symmetric. This is not the case in the presence
finite magnetic field. Therefore, there is no fundamen
symmetry guarding the relationP(B)5P(2B) as it was in
the case for the two-terminal conductance, and the Eq.~23!
of Ref. 9does nothold.

Finite difference betweenQ(B) and Q(2B) follows
from the fact that the time inversion involves not on
change of the magnetic field sign and of the direction of
motion in the parametric space, but also the interchange
the ingoing and outgoing channels in theS matrix. It can be
shown that the dissipative contribution to the pumping c
rent is not invariant with respect to the latter interchange

The absence of the symmetry with respect to the reve
of the magnetic field, suggests that the correlation funct
^Q(B1)Q(B2)& depends on the differenceB12B2 only and
vanishes atuB12B2u→` ~as it does in generic parametr
statistics!. Model calculation of the following subsectio
confirms this expectation.

B. Model calculation of the second moment

In order to include the magnetic field into our descripti
we have to lift the condition that matrixHmn from Eqs.
~2.8!–~2.9! is symmetric

Hmn→Hmn1aH mn
a ,

where H mn
a is the random realization of antisymmetricM

3M matrix anda is the parameter proportional to the ma
netic field. The resulting correlation function of two Hami
tonians at different values of the magnetic fieldB1,2 can be
conveniently presented in a form similar to Eq.~2.9! as

^Hnm~B1!Hn8m8
* ~B2!&5S d1

2p D 2

@dnn8dmm8~4M2Nh
D!

1dmn8dnm8~4M2Nh
C!#. ~3.5!

QuantitiesNh
D,C characterize the effect of the magnetic fie

on the wave functions of the closed dot and can be estim
as

Nh
D5gdotS F12F2

F0
D 2

, Nh
C5gdotS F11F2

F0
D 2

, ~3.6!

where gdot@1 is the dimensionless conductance of t
closed dot,F1(2) is the magnetic flux through the dot tha
corresponds to the magnetic fieldB1(2) , andF05hc/e is the
flux quantum.
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For the Green functions in Eq.~2.24! taken at different
magnetic fieldsB1 ,B2, the diffuson, Eq.~2.25!, is modified
as

D5S 2p

d1
D 2 1

2 i e1Nch1Nh
D1 iZ•X1XĈ0X

. ~3.7!

Diagrammatic representation, Fig. 5, and the express
for Hikami box~2.30! remain intact. Instead of Eq.~2.35! we
obtain

^QA~B1!QB~B2!&52
e2NlNr

Nch
2 E

a
dx1dx2

3E
b
dy1dy2S ]

]x2
D 2

3KS 2pT

Nchd1
,z•x2 ,x2

2 1
Nh

D

Nch
D ,

x25x2y. ~3.8!

Here, the variablesx,y,z are determined by Eq.~2.32! and
the functionK is given by Eq.~2.36!.

Equation ~3.8! is the main result of this section. It de
scribes the sensitivity of the pumped charge to the magn
field. One immediately realizes that the correlation funct
depends only on the difference of the magnetic fields in
cord with the discussion in the previous subsection. Mo
over, the variance of the charge does not depend on the m
netic field ~for bilinear response this result was obtained
Brouwer11!. In terms of the diagrams, the absence of
symmetry with respect to the magnetic field reversal is
vealed in the fact that the Cooperon does not contribute
the second moment even in the orthogonal case, (B50).

We conclude this section by the discussion of the asym
totics of the correlation function̂QA(B1)QA(B2)& at finite
magnetic field. We start with the weak pumping at low te
peraturesT!d1Nch . Instead of Eq.~2.38! one obtains

^QA~B1!QA~B2!&5
16e2NlNrSa

2

p2Nch
2 F 2Nch

3

~Nch1Nh
D!3

1
Nch

4 z2

~Nch1Nh
D!4G , ~3.9!

whereNh
D is related to the magnetic fields by Eq.~3.6!. If the

dimensionless pumping potential is large@x2@(Nh
D/Nch

11)# and the average level velocity is small,Z50, we ob-
tain instead of Eq.~2.44!

^QA
2&5e2l aS 4NlNr

pNch
2 D S Nch

Nch1Nh
DD 3/2

. ~3.10!

At high magnetic field,̂ QA(B)QA(2B)& rapidly decreases
asB26, and one can use Eq.~3.9! for the bilinear response

Finally, we discuss the variance of the pumped charge
the magnetic field in the limit of high temperatures$T
@max@d1(Nch1Nh

D)/2p,X2#%. For the weak pumping, assum
ing the average level velocity is small, we find
n

tic
n
-
-
g-

e
-
to

-

-

in

^QA
2&5S 4e2NlNrSa

2

3pNch
2 D S Nchd1

pT D S Nch

Nch1Nh
DD 2

. ~3.11!

In the strong pumping regime the high temperatu
asymptotic behavior instead of Eq.~2.44! is given by

^QA
2&5e2l aS 2NlNr

3Nch
2 D S Nchd1

pT D S Nch

Nch1Nh
DD 1/2

. ~3.12!

IV. DISCUSSION AND CONCLUSIONS

Our main results include dependence on the pump
strength, temperature, and magnetic field.

Dependence of the pumping strength.At the small pump-
ing potential, we essentially reproduced the results for bi
ear response,10,9 that ^Q2&}SA

2 with SA area being thearea
enclosed by the contour in the parametric space, see
~2.38!. This bilinear response regime, however, is valid on
as long as the pumped charge is smaller than unity.
regime of strong pumping is analyzed for the first time in t
present paper, see Eqs.~2.42!–~2.47!. This regime is hall-
marked by the dependencêQ2&} l A , with l A being the
lengthof the contour, which is substantially slower than n
ive expectation^Q2&}SA . This slow dependence was a
ready observed in Ref. 11. We think that our conclus
about independence of the pumped charge variance on
shape of the contour deserves a careful check.22

Temperature dependence.Our results for the high tem
perature regimeT*Nchd1 indicate that the variance of th
charge ^Q2& is inversly proportional to the temperatur
^Q2&}1/T. Experiment11 demonstrateŝ Q2&}1/T2 in the
high-temperature regime. This discrepancy was attribute
the presence of the temperature-dependent dephasing
nored in our treatment. In the simplistic models,23,24 the
dephasing is described by adding an extra factorNw into the
mass of diffuson and Cooperon~3.7!. If such a questionable
procedure is adopted, the effect of dephasing would be
scribed by replacementNh

D→Nh
D1Nw in formulas of Sec.

III B. We can see from Eqs.~3.11!–~3.12! that the sameNw

produces different temperature dependences for the diffe
regimes. Use of experimentally24 known dependenceNw}T,
would produce the resultŝQ2&}1/T3 and ^Q2&}1/T3/2 for
weak and strong pumping, respectively. We believe that
available experimental information is not sufficient yet f
making detailed comparison with our theory.

Effect of the magnetic field.We have demonstrated in Se
III A that there is no fundamental reason for the pump
current to be symmetric with respect to the magnetic fi
reversal, in a sharp contrast with the dependence of con
tance on the magnetic field. The corresponding correla
functions were calculated in Sec. III B. It is demonstrat
there that^Q(B)Q(2B)&}B26 at largeB. These conclu-
sions contradict to Ref. 12 where the symmetry with resp
to magnetic-field reversal was reported. We cannot exp
this symmetry within the framework of our theory.
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APPENDIX A

We demonstrate the equivalence between Eq~2.3! and the
approach of Ref. 9. The demonstration will be based
equation of motion for the Green functions~2.14! related to
the S matrices by Eq.~2.13!. First, we substitute Eq.~2.13!
into Eq. ~2.15!, and obtain

P~E,X!52ip2n2e i j
]2

]Xi
A]Xj

R

3Tr$Ŵt̂Ŵ†ĜR~E,XR!ŴŴ†ĜA~E,XA!%.

~A1!

We will show now that matrixĜRŴŴ†ĜA can be simplified
significantly using the equations for the Green functio
n
b

G

, R
-

pe
ev

c

ion.

n

s

~2.14!. We pre-multiply Eq.~2.14! for ĜA by ĜR, we trans-
pose Eq.~2.14! for ĜR and post-multiply it byĜA. Subtract-
ing the results, we find

2ipnĜR~E,XR!ŴŴ†ĜA~E,XA!

5ĜA~E,XA!2ĜR~E,XR!

1ĜR~E,XR!@Ĥ~XR!2Ĥ~XA!#ĜA~E,XA!.

~A2!

Substituting Eq.~A2! into ~A1!, we obtain

P~E,X!5e i j
]

]Xi
TrH pnŴt̂Ŵ†ĜR~E,X!

]Ĥ~X!

]Xj
ĜA~E,X!J .

~A3!

If we recall thatpnŴt̂Ŵ† is an operator of the current from
the dot through the left contact, we obtain Eq.~10! of Ref. 9,
which proves that the physical mechanisms considered
Refs. 10 and 9 are identical.
ns.
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