
PHYSICAL REVIEW B 15 APRIL 2000-IVOLUME 61, NUMBER 15
Paired states of fermions in two dimensions with breaking of parity
and time-reversal symmetries and the fractional quantum Hall effect

N. Read and Dmitry Green
Departments of Physics and Applied Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120

~Received 30 June 1999!

We analyze pairing of fermions in two dimensions for fully gapped cases with broken parity~P! and time
reversal~T!, especially cases in which the gap function is an orbital angular momentum~l! eigenstate, in
particularl 521 ~p wave, spinless, or spin triplet! and l 522 ~d wave, spin singlet!. For lÞ0, these fall into
two phases, weak and strong pairing, which may be distinguished topologically. In the cases with conserved
spin, we derive explicitly the Hall conductivity for spin as the corresponding topological invariant. For the
spinlessp-wave case, the weak-pairing phase has a pair wave function that is asympototically the same as that
in the Moore-Read~Pfaffian! quantum Hall state, and we argue that its other properties~edge states, quasihole,
and toroidal ground states! are also the same, indicating that nonabelian statistics is agenericproperty of such
a paired phase. The strong-pairing phase is an abelian state, and the transition between the two phases involves
a bulk Majorana fermion, the mass of which changes sign at the transition. For thed-wave case, we argue that
the Haldane-Rezayi state is not the generic behavior of a phase but describes the asymptotics at the critical
point between weak and strong pairing, and has gapless fermion excitations in the bulk. In this case the
weak-pairing phase is an abelian phase, which has been considered previously. In thep-wave case with an
unbrokenU(1) symmetry, which can be applied to the double layer quantum Hall problem, the weak-pairing
phase has the properties of the 331 state, and with nonzero tunneling there is a transition to the Moore-Read
phase. The effects of disorder on noninteracting quasiparticles are considered. The gapped phases survive, but
there is an intermediate thermally conducting phase in the spinlessp-wave case, in which the quasiparticles are
extended.
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I. INTRODUCTION
Most theories of superconductivity, or more generally

superfluidity in fermion systems, depend on the concept
paired ground state introduced by Bardeen, Cooper,
Schrieffer ~BCS! in 1957.1,2 The ground state may b
thought of loosely as a Bose condensate of pairs of partic
since such a pair can be viewed as a boson. Within B
mean-field theory, such a state forms whenever the inte
tion between the particles is attractive. For weak attrac
interaction the elementary excitations are fermions~BCS
quasiparticles!, which can be created by adding or removi
particles from the system, or in even numbers by break
the pairs in the ground state, and the minimum excitat
energy occurs at fermion wavevector nearkF , the Fermi
surface that would exist in the normal Fermi-liquid state
the same density of particles. There is also a collective mo
which is a gapless phononlike mode in the absence of lo
range interactions between the particles. This mode wo
also be present if one considered the pairs as elemen
bosons, and would be the only elementary low-energy e
tation in that case. If the attractive interaction becom
strong, the energy to break a pair becomes large, and a
lower energies the system behaves like a Bose fluid of pa
In the original BCS treatment, each pair of particles was i
relatives-wave (l 50) state, and the minimum energy for
fermion excitation is then always nonzero. No phase tra
tion occurs as the coupling strength is increased to reach
Bose fluid regime.

Not long after BCS, the theory was generalized to no
zero relative angular momentum~l! pairing, and after a long
search,p-wave pairing was observed in He3.3 It is believed
PRB 610163-1829/2000/61~15!/10267~31!/$15.00
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that d-wave pairing occurs in heavy fermion and high-Tc
superconductors. Some nonzerol-paired states generall
have vanishing energy gap at some points on the Fermi
face ~for weak coupling!, while others do not. While the
absence of a transition is well known in thes-wave case, it
seems to be less well known that in some of these o
cases, there is a phase transition as the coupling beco
more strongly attractive. One reason for this is that
strong-coupling regime must have a gap for all BCS qua
particle excitations. But even when the weak coupling
gime is fully gapped, there may be a transition, and th
will be considered in this paper, in two dimensions.

In the paired states with nonzerol there are many exotic
pheneomena, especially in thep-wave case, due to the break
ing of spin-rotation and spatial-rotation symmetries. The
include textures in the order parameters for the pairing, s
as domain walls, and quasiparticle excitations of vanish
excitation energy on these textures~zero modes! ~these are
reviewed in Ref. 3!. In transport, there may be Hall-typ
conductivities for conserved quantities, such as spin and
ergy, which are possible because of the breaking of b
parity ~P! and time reversal~T! symmetries. The breaking o
these symmetries, and topological aspects of the paired s
are more crucial for the ocurrence of these effects than is
angular momentum of the pairing; the pairing need not be
a definite angular momentum state. Many of these effe
have been discussed in remarkable papers by Volovik
which a few are Refs. 4–8. These are related to effects
will explore in this paper. We will make an effort to separa
the effects related to breaking continuous symmetries sp
taneously, which leads to familiar Goldstone mode phys
10 267 ©2000 The American Physical Society
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from those connected with topological effects, quasipart
zero modes, and Hall-type responses for unbroken sym
tries.

In this paper, we will make extensive use of the metho
for BCS paired states, and consider the transitions betw
the weak- and strong-coupling regimes in two dimensions
the weak-coupling regime, exotic phenomena are poss
when parity and time reversal are broken. The results
applied to the fractional quantum Hall effect~FQHE! by us-
ing the composite fermion approach, to be reviewed bel
We also consider effects of disorder on the phases and
sitions, also within BCS mean-field theory. In each secti
we try to make the initial discussion general and access
for workers in many-body theory and superconductivity, b
fore specializing to applications to the FQHE. In the rema
der of this Introduction we will give an overview of th
background and of the results of this paper.

We now review some background in the FQHE.9 The
original Laughlin states10 occur at filling factorsn51/q, with
q odd ~the filling factor is defined asn5nF0 /B, wheren is
the density in two dimensions,B is the magnitude of the
magnetic field, andF05hc/e is the flux quantum!. An early
idea of Halperin11 was to generalize the Laughlin states
assuming that under some conditions, the electrons c
form pairs, which as charge-2 bosons could form a Laugh
state. A variety of such states were proposed.11–14 Since the
Laughlin states for bosons occur at filling factors for t
lowest Landau level~LLL ! nb51/m, with m even, and the
filling factor for the electrons is related to that for the boso
by n54nb , the electron filling factor is either of the form
n51/q ~q an integer!, or n52/q, q odd. In particular, these
values includen51/2, 1/4, . . . , which do not correspond
incompressible states in the usual hierarchy scheme,15 be-
cause the filling factors in the latter always have odd
nominators~when common factors have been removed!.

The relation of the paired states in the FQHE to those
superfluidity theory becomes much closer once one in
duces the notion of composite particles.16–30A simple, direct
formal approach is to use a flux attachment or Chern-Sim
transformation~see, e.g., Ref. 25 in particular!, which repre-
sents each particle as~in the case of most interest! a fermion
plus an integer numberf̃ of d-function flux tubes. After the
transformation, the system can be represented by an a
that includes a Chern-Simons term for aU(1) gauge field,
that couples to the Fermi field. We refer to this as the
fermion approach. The net magnetic field seen by the fer
ons is the sum of the external field and thed-function fluxes
on the other particles. In a mean-field treatment, give
uniform density of particles, this produces a net average fi
that vanishes when the filling factor isn51/f̃. In this case,
the fermions can form a Fermi sea,25 or they could form a
BCS paired state. Some of the existing paired FQHE t
wave functions can be interpreted this way, as pointed ou
Ref. 14, and others can be constructed by analogy.14

A more physical way of looking at the formation of th
composite particles, particularly when they are considere
the elementary excitations of the system, is as bound st
of one of the underlying particles~or particles for short!, and
f̃ vortices in the particle wave function.21,26 The bound
states, which correspond to the CS fermions, again behav
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fermions in zero net field if the particles obey Fermi statist
andf̃ is even,~or if the particles obey Bose statistics andf̃

is odd! and n51/f̃. Note that we will consistently use th
term ‘‘particle’’ for the underlying particles, and ‘‘fermion’’
for the CS or composite fermions~bound states!. Some state-
ments apply also when the transformed particles are bos
~obtained by interchanging the words ‘‘even’’ and ‘‘odd’’ i
the preceding definitions!, in which case we refer to compos
ite particles. It is generally more important to keep track
the statistics and net magnetic field seen by the compo
particles than those of the underlying particles. Recent w
has formalized the bound state picture, and improved
understanding.27–30However, the results of the CS approa
remain valid, and because that approach is simple to use,
we will mainly require only a mean field picture here, w
assume that that is the approach we are implicitly using.

The Laughlin states can be viewed as Bose condensat
composite bosons in zero net magnetic field.18,20,21Because
the bosons are coupled to a gauge field~in the CS approach
the CS gauge field!, vortex excitations cost only a finite en
ergy, but there is still an effective Meissner effect for the C
gauge field. Because the flux of the CS gauge field is rela
to the particle density, a vortex carries a fractional cha
and corresponds to Laughlin’s fractionally-charg
quasiparticles10 ~we refer to such excitations as FQHE qu
siparticles!. Hence the Meissner effect in the superfluid b
comes the incompressiblity of the FQHE state~there is of
course no Meissner effect or superfluidity in the response
the electromagnetic field!. Similarly, when pairing of com-
posite fermions occurs in zero net magnetic field, the s
becomes incompressible.14 In contrast, the Fermi liquid state
of Halperin, Lee and one of the authors25 has no Meissner
effect for the CS field and is compressible.25

The wave function proposed by Haldane and Rezayi~HR!
in Ref. 13 is a spin-singlet paired state, which can be in
preted as ad-wave paired state of composite fermions14

Moore and Read14 ~MR! proposed ap-wave paired state~the
‘‘Pfaffian state’’! of spinless electrons with a structure ana
gous to the HR state. Both states can occur for filling fact
n51/2,1/4,. . . . The HRstate was proposed as an explan
tion for the observedn55/2 QH state31, which collapses
when a parallel component of the magnetic field is appli
suggesting that it is a spin singlet. However, it was a
proposed later that the 5/2 state is the MR state.32 In both
proposals, the LLL is filled with electrons of both spins, a
the paired FQHE state describes only the electrons in the
excited LL. The latter proposal is supported by recent n
merical work.33,34 The collapse of the state under a paral
magnetic field must then be due to another mechanism,
volving the effects of the finite thickness of the singl
particle wave functions in the direction perpendicular to t
two-dimensional layer, which is poorly understood
present. Another paired state with a similar interpretation
the 331 state,11 which can be viewed as ap wave-paired state
of two-component composite fermions.13,35,36It is likely that
this is closely related to a FQHE state observed in doub
layer and single-thick-layer systems atn51/2.37,38

Moore and Read14 suggested that nonabelian statisti
might occur in QH states, and the Pfaffian state was p
posed as an example. Nonabelian statistics means tha
space of states for a collection of quasiparticles at fixed
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PRB 61 10 269PAIRED STATES OF FERMIONS IN TWO DIMENSIONS. . .
sitions and quantum numbers is degenerate, and when
siparticles are exchanged adiabatically~for which we need
the system to have an energy gap for all excitations!, the
effect is a matrix operation on this space of degenerate st
This generalizes the idea of fractional statistics, in which
effect of an exchange is a phase factor and the state
specified are nondegenerate; when the phase for an ele
tary exchange is61, one has bosons or fermions. The arg
ments in MR that this would occur were based heavily on
identification of the many-particle wave functions in th
FQHE as chiral correlators~conformal blocks! in two-
dimensional conformal field theory, which possess sim
properties under monodromy~analytic continuation in their
arguments!. It was expected that an effective field theo
description of these effects would be based on nonabe
Chern-Simons theories, which are known to be connec
with conformal field theory, and to lead to nonabeli
statistics.39 In the MR state, and other paired states, there
apart from the usual Laughlin quasiparticles which contai
single-flux quantum, also finite energy vortex excitatio
containing a half-flux quantum,14 and it is these which, in the
MR state, are supposed to possess nonabelian statistics
erties.

Evidence for nonabelian statistics in the MR~Pfaffian!
state accumulated in later work,40–44 which investigated the
spectrum of edge states, quasihole states, and ground s
on the torus~periodic boundary conditions!, all of which
were obtained as the zero-energy states for the three-b
Hamiltonian of Greiteret al., for which the MR state is the
exact unique ground state.32 The states found agreed pr
cisely with the expectations based on conformal field theo
There was also evidence for similar effects in the H
state,41,42,44 however the interpretation was problematic b
cause the natural conformal field theory for the bulk wa
functions is nonunitary and therefore cannot directly desc
the edge excitations, as it does in other cases such as the
state. Some solutions to this were proposed.42,45 Explicit
derivations of nonabelian statistics and of effective theo
have been obtained later for the MR state.46,47 The 331
state11 is an abelian state, which can be viewed as a ge
alized hierarchy state,48,49as is evident from the plasma form
of the state, and these two descriptions are related b
bosonization mapping.42,44 The hierarchy states and the
generalizations possess abelian statistics properties, w
can be characterized by a~Bravais! lattice.48,49 Thus, incom-
pressible FQHE states in general can be divided into
classes, termed abelian and nonabelian. It is clear tha
Halperin’s picture11 of boundelectronpairs, which form a
Laughlin state of charge-2 bosons, the properties will be a
lian and are simply described by a one-dimensional lattice
the language of Ref. 48~they are the simplest examples of
class of abelian states in which the objects that Bose c
dense contain more than one electron plus some vorti
while the hierarchy states, and all generalizations conside
in Ref. 48, have condensates involving single electrons!.

In spite of the work that has been done, one may still
questions such as what is the microscopic mechanism
terms of composite fermions, for the degeneracies of FQ
quasiparticle states that is the basis for nonabelian statis
and whether it is robust against changes in the Hamilton
A similar question is about the effects of disorder. These w
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be addressed in this paper, by a direct and simple analys
the paired states using BCS mean field theory, and deve
ments such as the Bogoliubov-de Gennes equations.50 We
find that the nontrivial paired FQHE states are related to
weak-coupling regime~or more accurately, the weak-pairin
phase!; in particular the MR and 331 states have wavefun
tions that contain the generic long-distance behavior in sp
less and spin-tripletp-wave weak-pairing phases, respe
tively. In contrast, the strong-coupling regimes, or stron
pairing phases, lead in the FQHE to the Halperin ty
behavior. There is a similar picture in the spin-sing
d-wave case, except that the HR state, which might h
been expected to represent the weak-pairing phase, is in
at the phase transition, and therefore is gapless in the b
The weak-pairing phases are topologically nontrivial, a
possess edge states and nontrivial quantum numbers o
vortices ~FQHE quasiparticles!; the spinlessp-wave case
~MR phase! is nonabelian, while the spinfulp-wave case
@with unbroken U~1! symmetry!, and the spin-singletd-wave
case are abelian states, which we characterize. We also
sider the effect of tunneling on the double layer syst
which is the best candidate for realizing the 331 state,
show that the phase diagram includes a MR phase.
theory also leads to a description of the critical theories at
transitions, at least within a mean-field picture. The role
fluctuations, and the full effective field theories at these tr
sitions, remain to be understood.

We also consider disorder within the same approximati
making use of recent results on noninteracting BCS qu
particles with disorder,51–58 and in particular we find that in
the spinlessp-wave case, there can be an intermediate ph
with the thermal properties of a metal, between the two
calized phases that correspond to the weak~MR! and strong-
pairing phases of the pure case. A disordered version of
MR phase still exists in the presence of disorder, though
properties, including nonabelian statistics, may become m
subtle.

One further issue that we discuss is the transport coe
cients of Hall type for various conserved quantities, es
cially spin and energy. Concentrating on the quantities t
are related to unbroken symmetries, we derive explicitly
values of these conductivities in the spin case, for sp
singlet and triplet states, and show that they are quantize
the sense of being given by topological invariants~in the
disordered cases, we do not prove this directly!. There have
been claims that, in some sense or other, the ordinary
conductivity for charge~particle number! transport takes
a nonzero quantized value in a He3 film in the A phase4,8

and in a dx22y21 idxy ~i.e., P and T violatingd wave!
superconductor.59,60 It seems unlikely to us that these claim
are correct, if the Hall conductivity is defined in the usu
way, as the current response to an external~or better, to the
total! electric field, taking the wavevector to zero before t
frequency. While one can set up a detailed calculation, us
a conserving approximation as in the Appendix, which du
includes the collective mode effect in this case where
symmetry corresponding to the transported quantity is b
ken, we prefer to give here a more direct and appealing
gument. This works in the case where pairing is assume
occur in a system of interacting fermions of massm with
Galilean invariance in zero-magnetic field, as in most mod
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10 270 PRB 61N. READ AND DMITRY GREEN
of pairing. If one considers the linear response to an impo
uniform but finite frequency (v) electric field, then there are
well-known arguments that the conductivity is simp
smn(v)5ne2dmn /(mv1 ih) (m,n5x, y, andh is a positive
infinitesimal!. This arises from the so-called diamagne
term, and the contribution of the two-point current-curre
function vanishes in this limit. This is independent of inte
actions, and hence also of whether the interactions prod
pairing or not. The result can be understood as the contr
tion of the center of mass, which is accelerated by the
plied uniform electric field, while the relative motion of th
particles is unaffected, as a consequence of Galilean inv
ance. There is clearly no Hall conductivity.~However, the
similar calculation in a magnetic field produces the stand
Hall conductivity, and is an aspect of Kohn’s theorem.! We
may be curious about non-Galilean invariant models, a
whether a paired state could have a quantized Hall cond
tivity as claimed. But if it were quantized, it would be in
variant under any continuous change in the Hamiltonian
preserves the gap. Hence, in the ground state of any m
that can be continuously connected to the Galilean-invar
models, the Hall conductivity must either, if quantized, va
ish, or else vary continuously and not be quantized. Re
ence 60 agrees that the Hall conductivity vanishes in
q/v→0 limit, but finds a nonzero result asq/v→` ~with
q,v small!.

The plan of the remainder of this paper is as follows.
Sec. II, we first consider the ground state in a system
spinless fermions withp-wave pairing, for the infinite plane
and for periodic boundary conditions~a torus!. We show that
a transition occurs between weak and strong-pairing pha
which can be distinguished topologically in momentu
space, or by the number of ground states on the torus
even and odd particle number. In Sec. II B, we consider
system in the presence of edges and vortices. We argue
there are chiral fermions on an edge, and degeneracies d
zero modes on vortices, when these occur in the we
pairing phase. In Sec. II C, we show how the results
ground states can be extended to other geometries, suc
the sphere. Section II as a whole shows that the propertie
the weak-pairing phase, the ground-state degeneracies, c
edge states, and degeneracies of vortices agree with t
expected in the MR phase in the FQHE. The strong-pair
phase has the properties expected in the Halperin pa
states. In Sec. III, we consider the case of spin-triplet pair
with applications to the double-layer FQHE system. There
a weak-pairing phase with the properties of the 331 state,
also a distinct phase with the properties of the MR state
Sec. IV, we consider spin-singletd-wave pairing. In Sec.
IV A, we argue that the HR state corresponds to the tra
tion point between weak- and strong-pairing, and so has g
less fermions in the bulk. Then, we analyze the gene
weak-pairingd-wave phase, and argue that it corresponds
an abelian FQHE state, with a spin-1/2 doublet of chi
Dirac fermions on the edge, which has also been constru
previously. We also discuss here~in Sec. IV C! general ar-
guments for the existence of the edge states and other eff
based on Hall-type conductivities and induced CS action
the bulk, for all the paired states. In Sec. V, we discuss
effects of disorder on all the transitions and phases. The
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plicit calculations of the Hall spin conductivity, in the pur
systems, are given in the Appendix.

A brief announcement of our results for pure systems w
made in Ref. 61. Some of the results have also been fo
independently by others.62

II. COMPLEX p-WAVE PAIRING OF SPINLESS
OR SPIN-POLARIZED FERMIONS

In this section, we first set up the BCS effective quasip
ticle Hamiltonian, and review its solution by Bogoliubo
transformation. We show that this leads to the existence
transition between distinct phases, which we label weak
strong pairing. They are distinguished topologically. T
weak-pairing phase is tentatively identified with the M
phase because of its behavior in position space. This is
tended to the torus~periodic boundary conditions!, where we
find three ground states forN even, one forN odd, in the
weak-pairing phase, in agreement with the MR state. In S
II B, we show that the BCS quasiparticles at long wav
lengths near the transition are relativistic Majorana fermio
and use this to analyze the Bogoliubov-de Gennes equat
for domain walls~edges! and vortices, again arguing that th
results agree with those obtained for the MR state. In S
II C, which may be omitted on a first reading, we show ho
p-wave pairing on a general curved surface can be han
mathematically, and that the ground states agree with c
formal blocks, as expected from MR.

A. Weak- and strong-pairing phases

First, we recall the relevant parts of BCS mean fie
theory.2 The effective Hamiltonian for the quasiparticles is

Keff5(
k

Fjkck
†ck1

1

2
~Dk* c2kck1Dkck

†c2k
† !G , ~1!

wherejk5«k2m and«k is the single-particle kinetic energ
andDk is the gap function. For the usual fermion problem
m is the chemical potential, but may not have this meaning
the FQHE applications. At smallk, we assume«k
.k2/2m* where m* is an effective mass, and so2m is
simply the smallk limit of jk . For complexp-wave pairing,
we takeDk to be an eigenfunction of rotations ink of eigen-
value ~two-dimensional angular momentum! l 521, and
thus at smallk it generically takes the form

Dk.D̂~kx2 iky!, ~2!

whereD̂ is a constant. For largek, Dk will go to zero. Theck

obey$ck ,ck8
† %5dkk8 ; we work in a square box of sideL, and

consider the role of the boundary conditions and more g
eral geometries later.

The normalized ground state ofKeff has the form

uV&5) 8
k

~uk1vkck
†c2k

† !u0&, ~3!

whereu0& is the vacuum containing no fermions. The prim
on the product indicates that each distinct pairk, 2k is to be
taken once.~We will later consider the precise behavior
k50.! The functionsuk andvk are complex and obeyuuku2
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PRB 61 10 271PAIRED STATES OF FERMIONS IN TWO DIMENSIONS. . .
1uvku251 to ensure^VuV&51. They are determined b
considering the Bogoliubov transformation

ak5ukck2vkc2k
† ,

~4!
ak

†5uk* ck
†2vk* c2k ,

so that$ak ,ak8
† %5dkk8 andakuV&50 for all k. By insisting

that @ak ,Keff#5Ekak for all k, which implies that

Keff5(
k

Ekak
†ak1const. ~5!

with Ek>0, one obtains ~the simplest form of! the
Bogoliubov-de Gennes~BdG! equations,

Ekuk5jkuk2Dk* vk

~6!

Ekvk52jkvk2Dkuk .

These imply that

Ek5Ajk
21uDku2, ~7!

vk /uk52~Ek2jk!/Dk* , ~8!

uuku25
1

2 S 11
jk

Ek
D , ~9!

uvku25
1

2 S 12
jk

Ek
D . ~10!

The functionsuk andvk are determined only up to an overa
phase for eachk, so they can be multiplied by ak-dependent
phase,uk→eifkuk , vk→eifkvk without changing any phys
ics. One may adopt a convention that one ofuk andvk is real
and positive; in either case the other must be odd and
p-wave symmetry under rotations. We do not use suc
convention explicitly because there is no single choice tha
convenient for all that follows.

Because of Fermi statistics, which imply (ck
†)250, we

can rewrite the ground state~up to a phase factor! as

uV&5)
k

uuku1/2expS 1

2 (
k

gkck
†c2k

† D u0&, ~11!

wheregk5vk /uk . Then the wave function for the compo
nent of the state withN fermions (N even! is, up to an
N-independent factor,

C~r1 , . . . ,rN!5
1

2N/2~N/2!!
(
P

sgnP

3)
i 51

N/2

g~r P(2i 21)2r P(2i )!, ~12!

whereg(r ) is the inverse Fourier transform ofgk ,

g~r !5L22(
k

eik.rgk , ~13!
of
a
is

andP runs over all permutations ofN objects.~For fermions
with spin, this appears on p. 48 in Ref. 2.! The right-hand
side of Eq. ~12! is a Pfaffian, which for a generalN3N
matrix with elementsMi j ~N even! is defined by

PfM5
1

2N/2~N/2!!
(
P

sgnP)
i 51

N/2

M P(2i 21)P(2i ) , ~14!

or as the square root of the determinant, PfM5AdetM , for
M antisymmetric.

We now consider the form of the solutions to the abo
equations. In the usual BCS problem, the functionsDk and
«k are found self consistently from the gap equation~includ-
ing Hartree-Fock effects!, and m would be determined by
specifying the fermion density. However, we are not int
ested in all these details, but in the nature of the poss
phases and in the transitions between them. We expect
the phases can be accessed by changing the interaction
other parameters of the problem, but we will not address
in detail. In particular, some phases may require that
interactions be strong, while BCS theory is usually thoug
of as weak coupling. We will nonetheless continue to use
BCS mean field equations presented above, as these giv
simplest possible view of the nature of the phases.

From Eqs.~9! and~10!, we see that sinceEk2ujku→0 as
k→0, we will have one of three possibilities for the behavi
at smallk, which will turn out to govern the phases. Ask
→0, either~i! jk.0, in which caseuuku→1, uvku→0, or ~ii !
jk,0, in which caseuuku→0, uvku→1, or ~iii ! jk→0, in
which caseuuku anduvku are both nonzero. We will term the
first case the strong-pairing phase, the second case w
pairing, while the third case, in which the dispersion relati
of the quasiparticles is gapless,Ek→0 ask→0, is the phase
transition between the weak and strong pairing phases. T
for m positive, the system is in the weak pairing phase, fom
negative, the strong-pairing phase, and the transition is a
m50 within our parametrization. The reason for these nam
will be discussed below.

We now discuss the two phases and the transition in m
detail. We expect that the largek behavior ofjk andDk that
would be produced by solving the full system of equatio
will not be affected by the occurrence of the transition whi
involves the smallk’s only. Note that, at largek, vk→0 and
uuku→1, which ensures in particular that the fermion num
ber, which is governed byN̄5(kn̄k , with

^ck
†ck&5n̄k5uvku2, ~15!

will converge. Also we assume thatEk does not vanish a
any otherk, which is generically the case in thel 521
states. Thus, within our mean-field theory we can ignore
dependence of the functionsjk andDk on the distance from
the transition, which we can represent bym.

In the strong-pairing phase,m,0, we havevk}kx2 iky ,
as k→0. Then the leading behavior ingk5vk /uk is }kx
2 iky , which is real-analytic inkx and ky . If gk is real-
analytic in a neighborhood ofk50, theng(r ) will fall ex-
ponentially for larger , g(r );e2r /r 0, but even if not it will
fall rapidly compared with the other cases below. Thus
term this phase the strong-pairing phase because the pa
position space are tightly bound in this sense. Note that
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region ism,0, which would only be reached for strong
attractive coupling of the fermions~we disregard the possi
bility of other nonpairing phases for such couplings!. Be-
causen̄k5uvku2, there is little occupation of the smallk val-
ues in this phase.

In the weak-pairing phase,uk}kx1 iky for k→0, and so
gk}1/(kx1 iky), which gives

g~r !}1/z ~16!

for large r , where z5x1 iy . This long tail in g(r ) is the
reason for the term ‘‘weak pairing.’’This is exactly the be
havior of g(r ) in the Moore-Read (MR) Pfaffian state in th
FQHE. In the latter this form, 1/z, is valid for all distances.
We will therefore try to argue that all the universal behav
associated with the MR state is generic in the weak-pair
phase, when the theory is applied to the paired FQHE sta
Notice that in the weak-pairing phase, the occupation nu
bers of the smallk states approaches 1. Of course, this is a
the behavior of the Fermi sea. When the attractive coup
is weak, one would expect the weak pairing phase. If
imagine that only the magnitude of the coupling is varie
then when it is small and negative, the BCS weak-coupl
description is valid, andEk has a minimum atkF . This isnot
the weak-strong transition. Close to the latter transition,Ek
has a minimum atk50. As the coupling weakens, a point
reached at which the minimum moves away fromk50, and
eventually reachesuku5kF when the coupling strength i
zero and the transition to the Fermi sea~or Fermi liquid
phase! takes place. Thus, the weak-pairing phase does no
require that the coupling be weak, but is continuously c
nected to the weak-couplingBCS region.

At the weak-strong transition,m50, we find at smallk
thatEk5uDku, uuku2, uvku2→1/2, andgk5(kx2 iky)/uku. The
singular behavior ofgk leads to

g~r !}
1

zuzu
~17!

for large r . This behavior is intermediate between those
the two phases. Because, like the strong-pairing behavio
is not a rational function ofz, it does not correspond to
‘‘nice’’ LLL FQHE wave function. Also asm→0, the length
scale on which the asympototics of the two phases is v
(r 0 on the strong-pairing side! diverges. This length should
not necessarily be identified with the coherence lengthj0 of
the paired state. If the latter is viewed as ‘‘the size of a pai
it may be better associated with the decay of the inve
Fourier transform of̂ ckc2k&5uk* vk52Dk /Ek , which de-
velops long-range behavior only at the transition. Also,
some purposes the relevant function may beDk , which is
always nonsingular atk50, and does not vanish at the tra
sition. For the purpose of making contact with the existi
FQHE wave functions,g(r ) is the appropriate quantity.

The distinction between the two phases, which we c
view as requiring the existence of the phase transition, d
not lie in symmetries, unlike many phase transitions; inste
it is topological in nature.4 Within the mean-field treatment
this can be seen in terms of the topology of the functionsuk ,
vk , or of Ek , Dk . We recall thatuk , vk obey uuku21uvku2
51, and that multiplying them both by the same phase
r
g
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irrelevant. These conditions imply that they can be viewed
spinor ~or ‘‘homogeneous’’! coordinates for a 2-sphereS2,
for which two real coordinates are sufficient for a no
redundant parametrization of any neighborhood. As us
we viewu51, v50 as the north poleN, u50, v51 as the
south poleS. We can alternatively parametrize the sphe
using the unit vectornk5(ReDk ,2Im Dk ,jk)/Ek , and this
agrees with the parametrization byuk , vk . This is essen-
tially the ‘‘pseudospin’’ point of view of Anderson,63 who
described thes-wave BCS state as a spherical domain wall
the pseudospin ink space, of radiuskF . Becausevk→0 as
k→` in any direction, we can add a point at infinity ink
space and view it also as topologically a 2-sphere, with
point at infinity atN. The functionsuk , vk thus describe a
mapping fromS2 (k-space! to S2 ~spinor space!, with N
always mapping toN. Such maps are classified topological
into equivalence classes, called homotopy classes, such
maps in the same class can be continuously deformed
each other. The special cases of maps fromSn, n51,2, . . . ,
to any spaceX define the homotopy groupspn(X) ~using a
general method of producing a group structure on the equ
lence classes with base points, which here areN). In our
case,p2(S2)5Z, the group of integers. By inspection, w
find that in the strong-pairing phase, the map is topologica
trivial. In this phase the map can be deformed to t
topologically-trivial map that takes allk to N. In any topo-
logically nontrivial map, ask varies over the plane plus poin
at infinity, u, v ~or n… range over the whole sphere. Indee
the number of times that a given pointÞN, such asS, is
taken byu, v must be at leastumu, for a map in the class
labeled by the integerm. In our case, in the weak-pairin
phase the map passes throughS at least once, namely whe
k50, and possibly~most likely! only once, and we can
choose to identify the class withm51. This nontrivial topol-
ogy in k space associated with non-s-wave weak-pairing
ground states in two dimensions was pointed out
Volovik.4 We also note that thep-wave weak-pairing phase
map is a topologically nontrivial texture of the pseudosp
that is also familiar in physics as a two-dimensional insta
ton, or a skyrmion in a 211-dimensional system, inposition
space, in the O~3! nonlinear sigma model. Since it is impos
sible to pass smoothly betweenm50 and m51, the map
uk , vk must be discontinuous at the transition, which is wh
we found. In fact,uuu2 and uvu2 tend to 1/2 ask→0 at the
transition, which corresponds to points on the equator. T
simplest form of such a map is one that covers just the no
ern hemisphere, centered onN.

The topological distinction between weak- and stron
pairing phases is typical for the fully-gapped complex no
s-wave paired states, and not only when the gap functio
an angular momentum eigenstate. For contrast, note that
s-wave state yields a topologically-trivial (m50) map. For
the s-wave case, it is well known thatuk and vk can be
chosen real, and continuously interpolate between the we
and strong-coupling limits without a phase transition. Als
in three dimensions, the relevant homotopy group for
present spinless case isp3(S2)5Z, and so nontrivial states
do exist in principle, the simplest of which is the Hopf te
ture ink-space. The usuals-wave state is again topologicall
trivial. Note that in the usual BCS model with a separab
interaction, the gap function vanishes outside a thin sh



ht
on
ap

-
d
o
a
n-
a

n
e

an

er
o

e
n
r

w
c

ar
y
b

n

e
th
nd
o

t o
a
g
ec
to

t
le
a

ns

a

a

m

ng
nd-

in
d
se,
e of
d
r

the

are
rgy,
.

here

he
nd
ak-

ct
d, it
und
re

in
tes,
ap-
cted
s
re-

of

in-
the
an-
il-
mic
l
ve

g-
t of
of

is a
the
the
the

PRB 61 10 273PAIRED STATES OF FERMIONS IN TWO DIMENSIONS. . .
around the Fermi surface, which makes the maps slig
discontinuous. We consider only interactions that are c
tinuous ink space, for which the gap function and the m
are continuous except at the transition.

To close this subsection, we consider~as promised ear
lier! the effect on the ground states of the boundary con
tions and the total fermion number. That is, we use a tw
dimensional~Bravais! lattice, and consider a system on
plane with points differing by a lattice vector identified, ge
erally described as periodic or generalized periodic bound
conditions, or by saying that the system is a torus.

To obtain a low-energy state in a translationally invaria
system whenD itself is viewed as a dynamical parameter, w
will assume thatD is position independent, and thus we c
still useDk in the quasiparticle Hamiltonian ink space. To
be consistent with this, the fermions must obey either p
odic or antiperidic boundary conditions for each of the tw
primitive directions of the lattice~or fundamental cycles on
the torus!. For a rectangle withx and x1Lx , y and y1Ly
identified, this means the boundary conditions for thex andy
directions. These choices of boundary conditions are w
known in the description of flux quantization in superco
ductors~see, e.g., Schrieffer2!. We may imagine that eithe
zero or one half of the flux quantumhc/e threads either of
the ‘‘holes’’ ~fundamental cycles! in the torus. The half-flux
quanta could be represented either by a vector potential,
peridic boundary conditions on the fermions in both dire
tions, or by no vector potential and an antiperiodic bound
condition for each direction that wraps around a flux, or b
combination of these. The different choices are related
gauge transformations. We choose to use boundary co
tions and no vector potentials, so thatD is always position-
independent. We should be aware that if the gauge fi
~fluxes! are viewed as external, they are fixed as part of
definition of the problem, and there will be a single grou
state for each of the four possible choices of boundary c
ditions,11, 12, 21, and22, in a notation that should
be obvious. However, if the gauge field is viewed as par
the internal dynamics of the system and can fluctuate qu
tum mechanically~as in highly correlated systems, includin
the FQHE, where it is not interpreted as the ordinary el
tromagnetic field, and also in the usual superconduc
where it is! then the four sectors we consider correspond
four ground states of a single-physical system, in a sing
Hilbert space, albeit treated within a mean-field approxim
tion. The latter is the view we will take.

For each of the four boundary conditions for the fermio
the allowedk values run over the usual sets,kx52pnx /Lx
for 1, 2p(nx11/2)/Lx for 2, wherenx is an integer, and
similarly for ky . In particular,k5(0,0) is a member of the
set of allowedk only in the case11. For a large system,jk
andDk will be essentially the same functions ofk for all four
boundary conditions, but evaluated only at the allowed v
ues. In the paired ground states,k and2k will be either both
occupied or both unoccupied, to take advantage of the p
ing (Dk) term inKeff . Whenk50 is in the set of allowedk,
k50, and2k50 cannot both be occupied, because of Fer
statistics. However,Dk vanishes atk50, so k50 will be
occupied or not depending solely on the sign ofjk50 . That
is, it will be occupied form.0 ~in the weak-pairing phase!,
and unoccupied form,0 ~in the strong-pairing phase!, and
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this is entirely consistent with the limiting behavior ofn̄k
5uvku2 ask→0 in the two phases. At the transition,m50,
the occupied and unoccupied states are degenerate.

We conclude that in either the weak- or strong-pairi
phases, there is a total of four ground states, three for bou
ary conditions12, 21, 22 which are linear combina-
tions of states with even values of the fermion number
both phases, but for11 boundary conditions the groun
state has odd fermion number in the weak-pairing pha
even fermion number in the strong-pairing phase, becaus
the occupation of thek50 state. In most cases, the groun
state is as given in Eq.~3!, but in the weak pairing phase fo
11 boundary conditions, it is

uV&5)
kÞ0

8~uk1vkck
†c2k

† !c0
†u0&. ~18!

The ground states specified, whether forN even or odd, will
have the same energy in the thermodynamic limit~not just
the same energy density!. Note that if thek50 state is oc-
cupied in the strong-pairing phase, or unoccupied in
weak-pairing phase, this costs an energyEk50 , which we are
assuming is nonzero, and all states where quasiparticles
created on top of our ground states cost a nonzero ene
since we assume thatEk is fully gapped in both phases
However, at the transitionm50, the ground states for11
with odd and even particle number are degenerate, and t
is a total of five ground states.

If we now compare with results for the MR state on t
torus,32,44 which were derived as exact zero-energy grou
states of a certain Hamiltonian, then we see that the we
pairing phase forevenfermion number agrees with the exa
result that there are three ground states. On the other han
was stated in Ref. 44 that there are no zero-energy gro
states forN odd. Unfortunately, that result was in error; the
is just one such state for11 boundary conditions, which
can be constructed by analogy with that for the 331 state
Ref. 44. Before turning to the wave functions of these sta
we also mention that the behavior found in the present
proach in the strong-pairing phase agrees with that expe
in the Halperin point of view11 on the paired states, a
Laughlin states of charge-2 bosons. That point of view p
dicts four ground states forN even, none forN odd. Note that
in comparing with FQHE states, we factor out the center
mass degeneracy, which is always the denominatorq of the
filling factor n5p/q ~where p and q have no common
factors!.64 The remaining degeneracy in a given phase is
dependent ofn in the sense that it does not change under
operation of vortex attachment, which maps a state to
other in which 1/n is increased by 1, and for generic Ham
tonians this degeneracy is exact only in the thermodyna
limit. We note that Greiteret al.32 claimed that the specia
Hamiltonian for which the MR state is exact should ha
four ground states on the torus forN even, though they found
only three. They did not distinguish the weak- and stron
pairing phases, and by assuming that the Halperin poin
view is always valid, they in effect ascribed the properties
the strong-pairing phase to the MR state. In fact, there
total of four ground states in the weak-pairing phase, but
fourth is at odd fermion number. They also claimed that
statistics would be abelian, even though they considered
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10 274 PRB 61N. READ AND DMITRY GREEN
MR state, and suggested that the prediction of nonabe
statistics by Moore and Read14 would hold only at some
special point.

If we consider the position-space wave functions of
paired states on the torus, then for evenN in the weak-
pairing phase we once again find exact agreement of
long-distance behavior ofg(r i2r j ) with that which holds for
all distances in the eigenstates of the spec
Hamiltonian.32,44 Here, long-distance meansg(r ) wherer is
not close to a lattice point (mLx ,nLy), m, n integers. The
long-distance formg;1/z in the plane is replaced by a
elliptic function ~or ratio of Jacobi theta functions!32,44 for
12, 21, 22. The ground state forN odd with 11
boundary conditions can be written, similarly to one forN
even in the 331 case,44 as

C11~r1 , . . . ,rN!5
1

2(N21)/2@~N21!/2#!
(
P

sgnP

3 )
i 51

(N21)/2

g11~r P(2i )2r P(2i 11)!.

~19!

Here we can take the torus to have sidesLx , Lxt in the
complex plane (Imt.0, andt5 iL y /Lx for the rectangle!,
and

g11~r !5
u18~z/Lxut!

u1~z/Lxut!
1

2p iy

Lx Im t
~20!

where u1 is a Jacobi theta function, andu18(zut)
5du1(zut)/dz. g11(r ) is periodic because of properties
the functionu1 mentioned for example in Ref. 44, and has
simple poleg11}1/z asz→0. For the ground state withN
odd, the non-~complex!-analytic dependence ony in g11

cancels. Notice that the unpaired fermion withi 5P(1) in
the terms inC11 occupies the constant,k50 single-particle
state. When used as part of a wave function in the LLL,
present function is the zero energy state for11 boundary
conditions on the torus forN odd, which was omitted in Ref
44.

B. Majorana fermions, edges and vortices

In this section, we consider the problems of edges an
vortices ~which correspond to FQHE quasiparticles!, on
which we argue there are chiral fermions and zero mod
respectively, in the weak-pairing phase. Again, this supp
the identification with the MR state.

We begin by considering in more detail the low-ener
spectrum near the transition atm50. When m and k are
small, we can use

jk.2m,
~21!

Dk.D̂~kx2 iky!,

whereD̂ can be complex, and find

Ek.AuD̂u2uku21m2, ~22!
n

e

e

l

e

of

s,
ts

which is a relativistic dispersion withuD̂u playing the role of
the speed of light. Further, using the same approximat
the BdG equations become in position space

i
]u

]t
52mu1D̂* i S ]

]x
1 i

]

]yD v,

~23!

i
]v
]t

5mv1D̂ i S ]

]x
2 i

]

]yDu,

which is a form of the Dirac equation for a spinor (u,v). The
BdG equations are compatible withu(r ,t)5v(r ,t)* , and
this is related to the existence of only a single fermion ex
tation mode for eachk. Thus the quasiparticles are their ow
antiparticles; Dirac fermions with this property are known
Majorana fermions. Near the transition, the BCS quasipa
cles make up a single Majorana fermion quantum field, a
at the mean field level the critical theory is a single massl
Majorana fermion. There is a diverging length scale at
transition,;D̂/umu, and the diverging lengths mentioned
the last subsection should all diverge proportionately to th
at least within mean field theory.

Next we wish to consider the behavior near an edge; o
side the edge the particle number density should go to z
In the Hamiltonian, this can be arranged by having a pot
tial V(r ) that is large and positive outside the edge. In t
quasiparticle effective Hamiltonian, this can be viewed
makingm large and negative outside the edge, and we w
use this notation.

In general, the problem with the edge should be solv
self consistently, which involves solving the gap equation
D in the presence of the edge. We are interested in the
neric properties of the solution, and wish to avoid the co
plexities. Accordingly, we will consider only a simplifie
problem, which is the effective Hamiltonian with a given ga
function. Sincem becomes negative outside the edge, it m
change sign near the edge if it is positive inside the bulk
the system. But in the bulk at least, a change in sign acro
line represents a domain wall between the weak- and stro
pairing phases, sincem50 is the point at which the transi
tion occurs in our treatment. Thus, we are arguing that
weak-pairing phase~wherem is positive! must have a do-
main wall at an edge, while the strong-pairing phase n
not. We will consider a domain wall in the bulk as a mod
for the edge of the weak-pairing phase. In the latter the
gion of strong pairing between the domain wall and the
tual edge may be extremely narrow and we might say ther
no well-defined strong-pairing region. But the point is t
topological distinction between the phases. The stro
pairing phase has the same topology as the vacuum, and
be continuously connected to it. The weak-pairing phase
nontrivial and the generic properties of an edge should
captured by a domain wall.65

We consider a straight domain wall parallel to they-axis,
with m(r )5m(x) small and positive forx.0 and small and
negative forx,0, and also varying slowly such that th
above long-wavelength approximation can be used, withm
now x dependent.

We can consider solutions with definiteky , which at first
we set to zero. Then, we have a 111-dimensional Dirac
equation. We assume thatumu→m0, a constant, asuxu→`.
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At E50 there is a normalizable bound state solution fi
obtained by Jackiw and Rebbi.66 The equations are~with D̂
real and.0)

D̂ i ]v/]x5m~x!u,
~24!

D̂ i ]u/]x52m~x!v.

By putting v5 iu, we find the unique normalizable solutio

u~x!}e2 ip/4exp2
1

D̂
Ex

m~x!dx, ~25!

where the phase was inserted to retainv5u* . Solutions at
finite E should exhibit a gap, as in the bulk in either phas

At finite ky , the equations become

Eu52mu1D̂ i S ]v
]x

2kyv D ,

~26!

Ev5mu1D̂ i S ]u

]x
1kyuD .

For E52D̂ky , these have solutions that are bound to
domain wall, and clearly they propagate in one direct
along the wall. There is only one fermion mode for eachky ,
and so we have a chiral Majorana~or Majorana-Weyl! fer-
mion field on the domain wall.

It will be important to consider also a pair of doma
walls. We consider two walls, lying atx50 andx5W, with
m.0 in 0,x,W andm,0 outside. Again, we assumeky
50 initially. This time66 there are noE50 modes for finite
W. Clearly asW→` we expect to find anE50 mode on
either wall, so we expect bound solutions for smallE when
W is large but finite. For non-zeroE we can replace the pai
of first-order equations with a single second-order equa
for either ofu6 iv, ~with kyÞ0 for generality!,

~E22D̂2ky
2!~u6 iv !5S 2D̂2

]2

]x2
1m26D̂

]m

]x D ~u6 iv !.

~27!

Whenm varies slowly compared with its magnitudem0 far
from the walls, we may study the equations by the WK
method. We may view the equation foru6 iv as a Schro-
dinger equation with potential

V6~x!5m26D̂
]m

]x
. ~28!

If ]m/]x has extrema atx50, W, as is reasonable, the
V2(x) has minima atx50, W, but that atx50 is deeper
than that atx5W. The reverse is true forV1(x). As W
→`, there will be aky50 solution forE2, which →0 ex-
ponentially and which corresponds to a normalizable eig
function for u2 iv that is concentrated atx50 with negli-
gible weight atx5W, and similarly an eigenfunction foru
1 iv concentrated atx5W. The subtle but important point i
that these solutions are not independent, because they
related by the original first-order system, for any nonzeroE.
There is only a single normalizable solution for the pairu, v
for E small positive, and another forE,0. Consequently,
t

.

e
n

n

-

are

there is only a single fermion mode, shared between the
domain walls, not one on each. For nonzeroky , the eigen-
functions forE.0 become concentrated on one wall or t
other, depending on the sign ofky . Thus, the set of low-
energy states can be viewed as a single nonchiral Majo
fermion theory, with the left-moving modes on one wall, t
right-moving modes on the other, and theky50 mode shared
between the two.This agrees precisely with the results
Ref. 42 on the edge states of the MR state on the cylind.

We next consider the quasiparticle spectrum in the pr
ence of vortices of the order parameter; in two dimensio
vortices are point objects. These necessarily contain an i
ger number of half-flux quanta in the gauge field; without t
gauge field the vorticity is quantized but the total energy
an isolated vortex diverges logarithmically. We will not s
these effects in the energy here because we only conside
quasiparticle excitation spectrum in the presence of a gi
gap function and gauge field configuration. Up to now,
have ignored theU(1) gauge field except in discussing th
boundary conditions on the torus and cylinder. It could
the standard electromagnetic field in a superconductor, or
CS field in the FQHE. We will only consider vortices of th
minimal flux, namely a half-flux quantum, because additi
of any integer number of flux quanta can be viewed,
scales larger than the penetration depth, as a gauge tran
mation, which does not affect the spectrum. Outside the v
tex core, which we assume is small, the covariant deriva
of the gap function must vanish. As in the case of the tor
we will choose a gauge in which the gap function is sing
valued and independent of the angle relative to the posi
of the nearby vortex, but the Fermi fields are double valu
on going around the vortex.

The basic idea is to consider a vortex as a small circu
edge, with vacuum~vanishing density! at the center. Accord-
ingly, we expect that nothing interesting happens at su
ciently low energies for vortices in the strong-pairing pha
But a vortex in the weak-pairing phase must include a c
centric circular domain wall to separate the vacuum at
center from the weak-pairing phase outside. We now st
this using the Majorana fermion equations near the tra
tion, assuming that the wall has large enough radius;
vortex core~whereD vanishes! can be taken to have negl
gible size and the boundary condition atr→0 is unimpor-
tant. With our choice, the BdG equations for a single vor
and forE50 becomes in polar coordinatesr, u

D̂ ieiuS ]

]r
1

i

r

]

]u D v5mu,

~29!

D̂ ie2 iuS ]

]r
2

i

r

]

]u Du52mv;

u obeysu(r ,u12p)52u(r ,u), and similarly forv. We can
assumem→m0.0 as r→`, m→2m0 as r→0. The nor-
malizable solutions have the form

u5~ i z̄!21/2f ~r !,
~30!

v5~2 iz!21/2f ~r !5u* ,

where f (r ) is a real function. The equations reduce to



e
m
ak
b

t e
n

-
ta
a

ot
ve
s

s
ts
t
e
s

t

er
ie

s
f 2

m
r
n
flu

ra

th
e

tio
um

4

e
e

ac-
ugh

m-

the
he
t
und

ver,
ries,

e
.

ec-
i-
the
ex-

the

dG
ion,
na
ion

as
r a

the
ly
e-

and
nd
rved

gth

r

-

-
ctor

10 276 PRB 61N. READ AND DMITRY GREEN
d f /dr52m~r ! f ~r !/D̂, ~31!

with solution

f ~r !}expS 2E r

m~r 8!dr8/D̂ D . ~32!

Thus, we find just one normalizable bound state at zero
ergy. Again we expect this to persist as we relax our assu
tions, as long as the bulk outside the vortex is in the we
pairing phase. We point out that our result should
contrasted with the known result for a vortex in ans-wave
superconductor, which has bound quasiparticle modes a
ergies that are low in the weak-coupling limit, but not ge
erally zero as ours are here.67 Since we mainly work at mod
erate or strong coupling, analogous modes are not impor
for our purposes. We note that a zero mode on a vortex in
A-phasep-wave paired state was first found in Ref. 68.

For the case of 2n well-separated vortices, we have n
obtained analytic solutions for the bound states. Howe
we can give a simple argument. The problem is analogou
a double-well potential. We take a set of 2n E50 solutions
like Eqs.~30! and~32! centered at each vortex, and use the
as a basis set~we must introduce additional branch poin
into each basis state to satisfy the boundary conditions a
the other vortices!; at finite separation there is mixing of th
states, and the energies split away from zero. Since the
lutions to the Dirac equation are either zero modes orE,
2E pairs, we expect to obtainn E.0 solutions,n E,0
solutions. In general, eachE.0 solution of the Dirac or
BdG equation corresponds to a creation operator, and
relatedE,0 solution to the adjoint~destruction! operator,
while anE50 solution would correspond to a real~or Ma-
jorana! fermion operator. In our case, this means that th
aren modes in which we may create fermions, with energ
E tending to zero as the separation diverges.~A similar pic-
ture applies for 2n domain walls.! This is in agreement with
the results for the special Hamiltonian.44 This result is cru-
cial for the nonabelian statistics we expect in the FQHE ca
since by occupying the zero modes one obtains a total on

degenerate states, or 2n21 for either even or odd fermion
number N, when there are 2n vortices (n.0); this was
found for the special Hamiltonian in Refs. 43 and 44.

We may also consider here the edge states of a syste
the form of a disk of radiusR, by studying a large circula
domain wall enclosing the weak-pairing phase, and stro
pairing phase or vacuum outside. In this case, there is no
enclosed by the wall, andu and v are single valued. One
does not findE50 states, but instead there is a set of chi
fermion modes with angular momentumm quantized to half-
integral values,mPZ11/2, andE}m/R ~this fixes the defi-
nition of m50). These are just the modes expected for
chiral Majorana fermion on such a domain wall with th
ground state inside, since an antiperiodic boundary condi
is natural for the ground state sector. If a half-flux quant
is added at the center of the disk, the quantization ismPZ,
and this extends the result for the zero modem50 of a
single vortex.These results agree with the results of Refs.
and 42 for a disk of the MR state.

We also note that the form of the modes near a vort
containingz21/2 or its conjugate, is similar to the form of th
n-
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fermion zero-mode functions found in Ref. 44, once the f
tors associated with the charge sector are removed, tho
the factorsf (r ) are not. However, the most appropriate co
parison to make is that between themany-fermionwave
functions, as we already made for the ground states on
plane and torus. We will not consider this further here for t
vortex or the edge~or domain wall! states, though we expec
that these should correspond at long distances to those fo
in Refs. 43, 44, and 42, as for the ground states. Howe
we are able to find the ground states on other geomet
namely the sphere and Riemann surfaces of genus~number
of handles! greater than one~the sphere is genus zero, th
torus genus one!. We consider this briefly in Sec. II C below

C. Other geometries and conformal field theory

In this section, we briefly introduce some general conn
tions of pairing theory for p-wave states to relativistic ferm
ons, which enables us to discuss geometries other than
plane and torus, such as the sphere, and to make more
plicit connections with conformal field theory ideas.14 This
section can be omitted on a first reading, but some of
formalism is mentioned again later.

In the preceding section, we used the fact that the B
equations at long wavelengths become the Dirac equat
with a reality condition so that the Fermi field is a Majora
fermion. We also mentioned the coupling of the gap funct
and Fermi fields to aU(1) vector potential~which in the
FQHE context would be the CS vector potential!, which is of
a standard form. But the interpretation of the fermion
Majorana would seem to raise a problem, because fo
single Majorana there is no continuous symmetry of
Yang-Mills type, and so apparently no way to minimal
couple it to a vector potential. We will see that there is non
theless a natural way to incorporate the vector potential
still give an interpretation in terms of the Dirac equation, a
this will also enable us to discuss the ground states on cu
surfaces.

The most general form for thep-wave gap function in
Fourier space, retaining once again only the long-wavelen
part, can be written

Dk5Dxkx2 iDyky . ~33!

Here,Dx,y are two complex coefficients, or equivalently fou
real numbers, which we will arrange into a 232 matrixe. In
position space, thek can be replaced by2 i¹. Then in a
general coordinate systemxi , with corresponding partial de
rivatives] i , (i 5x, y!, the BdG equations become

~] t1
1
2 iv t

bcSbc!c1eiaaa~] i1
1
2 iv i

bcSbc!c1 ibmc50,
~34!

where we use a spinorc5(v,u), and m5m in previous
notation. The indicesa, b, c take the valuesx, y, and the
matrices areax5sx , ay5sy , b5sz ; we use the summa
tion convention. Here, we have also reinstated the ve
potentialAm5vm

xy/2 ~wherem5t, x, y), using the matrix

Sxy5sz . ~35!
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The equation is therefore invariant under U~1! gauge trans-
formationsc→eiLxySxyc, and a corresponding transform
tion of vm , with a real scalar parameterLxy(x

m).
If we multiply through byb, then we obtain the more

covariant form of the Dirac equation,

emagaS ]m1
1

2
vm

bcSbcDc1 imc50, ~36!

with emt5dmt in our case. This has the form of the gene
Dirac equation suitable for use in general coordinate syst
on general curved spaces or spacetimes.69 A similar form
was obtained in Ref. 7. In general,c is a Dirac spinor~with
two components in the 2 and 211 cases of interest here!;
m51,2, . . .d is a spacetime index, whilea,b,c51,2, . . . ,d
is an internal ‘‘local Lorentz’’ index; the vielbeine is a ten-
sor with indices as shown;ga are a set of Dirac matrice
satisfying $ga ,gb%52hab , where h is the Minkowski or
Euclidean metric, andSab5 1

2 i @ga ,gb# are the generators o
SO(d21,1) Lorentz transformations@or simplySO(d) rota-
tions, in the Euclidean case#; the spin connectionv is a
tensor field with one spacetime and two internal Lorentz
dices, and is antisymmetric in the latter. Spacetime indi
are raised and lowered usinggmn and gmn , while internal
Lorentz indices are raised and lowered usinghab and hab .
This form of the Dirac equation is covariant under coordin
transformations~diffeomorphisms!, under which the spinor
is viewed as transforming as a scalar function of positi
and e and v as tensors. It is also covariant underSO(d
21,1) @or SO(d)] local Lorentz transformations, which ac
like gauge transformations, withc transforming in the spinor
representation, the vielbein transforming as a vector in tha
index, andv transforming inhomogeneously as a nonabel
vector potential or connection for the gauge transformatio
This formalism~also known, in four dimensions, as the vie
bein or tetrad formalism! can be used to reformulate, fo
example, general relativity in a form equivalent to the us
one involving Christoffel symbols; this involves imposin
relations

em
a ena5gmn ,

~37!
ea

memb5hab .

On the other hand, it is the only known way to couple Dir
fields to curved spacetime; more details can be found in R
69. In our case, we have a distinguished choice of time
ordinate, we consider only the restricted form withemt

5dmt , and require covariance under only theSO(2)
>U(1) subgroup that describes ‘‘internal spatial rotations
Then the Dirac equation becomes precisely the BdG eq
tion. This relation with the vielbein formalism suggests th
the vector potential will play a natural role when we consid
pairing of nonrelativistic fermions on a curved surface.

The problem of spinlessp-wave pairing of nonrelativistic
fermions moving on a general curved manifold should
formulated as follows. The manifold has a metric and a c
responding Riemann curvature tensor, which for two dim
sions reduces to a curvature scalar. We will consider only
case in which this curvature is constant on the manifold,
we will also introduce aU(1) or SO(2) gauge potential. Fo
a large system, the radius of curvature of the manifold
l
s

-
s

e

,

n
s.

l

f.
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t
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large, and locally the solution to the gap equation sho
resemble that in flat space, which we assume is of thel 5
21 form. In order to minimize the energy density, we expe
that the gap function should be as constant as possible
more invariant language, this means that the vielbein sho
be covariantly constant@note that the covariant derivative o
the vielbein must be covariant under both coordinate a
U(1) gauge transformations#, and there should be no vorti
ces. Since the Riemannian geometry~the metric and the
Levi-Civita or metric connection! of the manifold are as-
sumed given, this condition relates the spin connectionv to
derivatives of the vielbein, a result analogous to the us
requirement~for s-wave pairing, in flat space! that the vector
potential be the gradient of the phase of the gap functi
This covariant-constancy condition also appears when
mulating general relativity.69

This condition can be satisfied globally~we assume the
surface on which we are working is compact! only if the field
strength in theSO(2) vector potential is related to the Rie
mann curvature of the manifold. The integral of the lat
over the surface, divided by 4p, is a topological invariant,
the Euler invariant, equal to 2(12g) for a Riemann surface
of genusg ~one withg handles!. In our usual units for flux
quanta, the number of flux quanta in theSO(2) or U(1)
vector potential must beg21. Otherwise, we will have vor-

tices somewhere on the surface, at whichD̂ goes to zero. In
particular, for the sphere, this agrees with the familiar f
for the MR state that the number of fluxNf seen by the
underlying particles is one less than in the Laughlin state
the same filling factor, so the composite fermions see a
flux of 21. Physically, the nonzero angular momentum
the pairs causes them to see the curvature of the manifol
which they move as a gauge field, the field strength of wh
is cancelled~locally, not just globally! by the imposedU(1)
@i.e., SO(2)] gauge field, so that a uniform condensate
possible, much like the condition of vanishing field streng
for uniform s-wave condensates in ordinary superconducto

It can be shown that the long-wavelength wave funct
involves the inverse of~or Green’s function for! part of the
~covariant! Dirac operator we have discussed, namely
partD†, whereD is the part of the Dirac operator, includin
the vector potential, that acts onc† and maps it toc ~like the
earlier gap function! in the Dirac equation.D† contains de-
rivatives like ]/] z̄ in local coordinates. On the sphere,
stereographic coordinates the Green’s function is known
be essentially 1/(zi2zj ) for particlesi andj. For any surface,
this description in terms of inverting the massless Dirac
erator is identical to the problem of finding the correlators
two-dimensional chiral Majorana fermions~in Euclidean
spacetime!, and so it is not surprising that this agrees w
the conformal block forN two-dimensional massless ferm
ons on the sphere in conformal field theory. We note that
paired ground state on the sphere can be described in an
momentum space, in terms of single-particle angul
momentum eigenstates with eigenvaluesj, m ~and j 51/2,
3/2, . . . , due to the single flux quantum!, as BCS pairing of
j, m with j, 2m; antisymmetry and vanishing total angul
momentum for each pair require that thej ’s be half-odd
integral, as they are forp wave.
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We may also consider the cases of Riemann surface
genus greater than one. Here, the explicit functions, wh
again are built out of 1/D†, are more difficult to find, but
certainly exist and describe the MR state on these surfa
The required number of flux seen by the fermions isg21.
The only aspect we wish to discuss further here is the n
ber of distinct ground states forg.1. When handles are
present, the vector potential is determined only up to ad
tion of a pure gauge piece describing holonomy around
2g fundamental cycles of the surface. The holonomy,
phase picked up when a fermion is parallel transpor
around a cycle, can only be61, since it comes from the
double cover ofSO(2) by Spin~2!, the group, which pos-
sesses the spinor representation. This effect, which is a
statement of flux quantization, agrees with and general
the discussion of boundary condition sectors for the tor
There is thus a set of 22g possible boundary condition sec
tors, which in the present differential geometry setup
known as spin structures. The spin structures on a geng
surface can be divided into two sets, known as the even-
odd-spin structures. The difference between these, for
purposes, is that the odd-spin structures possess a single
mode for the Dirac operator, and the even spin structu
possess none. Then the BCS ground states in the w
pairing phase will include one fermion occupying the ze
mode when one exists, and since the other fermions ar
paired, we conclude that the odd-spin structures give ris
ground states withN odd, and the even-spin structures toN
even, and these ground states will be degenerate in the
modynamic limit. It is known that there are 2g21(2g11)
even spin structures, and 2g21(2g21) odd-spin structures
so these formulas give the number of ground states foN
even and odd, for allg>0. These numbers~and the long-
distance wave functions! agree with the conformal blocks fo
a correlator on the genusg surface withN Majorana fields
inserted. All of this is in beautiful agreement with the CF
picture of Ref. 14. We note that theU(1) charge sector tha
is present in the FQHE states gives another factorqg in the
degeneracy for filling factorn5p/q, in the thermodynamic
limit,70 which generalizes the center-of-mass degeneracyq of
the torus.70

III. SPIN-TRIPLET COMPLEX p-WAVE PAIRING

In this section we consider spin-tripletp-wave pairing.
Since the general classification of such states is complic
~compare the three-dimensional version in Ref. 3!, we con-
centrate on a particular case directly related to the FQ
The FQHE system we have in mind is the double-layer s
tem atn51/2.37 This is assumed to be spin polarized, but t
layer index of the electrons plays the role of a spin, which
refer to as isospin, to avoid confusion with the pseudos
discussed in the previous section. TheSz values of the isos-
pin will be denoted↑, ↓ for the two layers.

In the double-layer FQHE system, as in the other syste
we discuss, we go to a CS fermion representation by us
layer-independent fluxes attached to the CS fermions.
cause interactions between electrons in the same and in
ferent layers are different~though the two layers are on a
equal footing!, the Hamiltonian will not haveSU(2) sym-
metry. However, in the absence of a tunneling term and
of
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interactions that transfer electrons between layers, the n
berN↑2N↓ is conserved, and since this quantity is twice t
total Sz of the isospin, there is aU(1)>SO(2) symmetry
that rotates the isospin about thez axis. Also interchange of
the two layers~or reflection in the plane midway between th
two layers! is a Z2 symmetry. Together these make up
O(2) symmetry. We also consider the effect of a tunneli
term2tsx for each particle;t is the tunneling amplitude and
sx , etc, denote the Pauli matrices. Nonzerot breaks the sym-
metry to theZ2 of layer exchange.

The FQHE system atn51/2 has a possible ground sta
that is a 331 state, which can be viewed as complexp-wave
pairing of composite fermions.44 The pairing and the effec
tive quasiparticle Hamiltonian are best considered in ter
of isospin states which are eigenstates ofsx , namely e
5(↑1↓)/A2, o5(↑2↓)/A2, which are respectively even
odd under theZ2. As in the earlier work on this problem, w
assume that theZ2 symmetry, and fort50 the O(2) sym-
metry, are not broken spontaneously. Then, symmetry
tates that the effective quasiparticle Hamiltonian has
form

Keff5(
k

F ~jk2t !cke
† cke1

1

2
~Dke* c2kecke1Dkecke

† c2ke
† !

1~jk1t !cko
† cko1

1

2
~Dko* c2kocko1Dkocko

† c2ko
† !G .

~38!

We have taken the same kinetic termjk.k2/2m* 2m for
both e and o since a difference here is unimportant~and
forbidden by symmetry whent50). For t50, Dke5Dko ,
and in general we assume both havep-wave symmetry, with

Dke.D̂e~kx2 iky! ~39!

at smallk, and similarly forDko . We have also neglected th
possibility of many-body renormalization of the splitting 2t
betweene ando ~such as an exchange enhancement!.

We see that the unbrokenZ2 symmetry has led to decou
pled e and o Hamiltonians. These are the same as for
spinlessp-wave case. Consequently, we see that sepa
transitions from weak to strong pairing are possible whet
Þ0. For t50, these coincide. The pairing functiong(r ) in
the wave function is now a four-component object beca
of the isospin variables. We write it as a vector in the ten
product space of the two spinors. When at least one of
two components is in its weak-pairing phase, the pair
function at long distances has the form

cos~u2p/4!eiej1sin~u2p/4!oioj

zi2zj
. ~40!

This is the form that was assumed for all distances in R
36, 71, and 44. Fort50, we would putu50, in which case
it reduces to

↑ i↓ j1↓ i↓ j

zi2zj
, ~41!

which is the form in the 331 state. Ast increases, neglecting
the likely change inDke , Dko momentarily, a point is
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reached at which theo spins have an effective chemical p
tential m2t50, and undergo a transition to strong pairin
Then the long distance behavior iseiej /(zi2zj ), so u
5p/4 at the transition and remains at that value thereaf
The resulting phase is expected to have the statistics pro
ties of the MR state, unaffected by the strong-pairingoo
pairs present in the ground state.

Whenm is decreased, there will be a transition from t
MR phase to strong pairing in both components whenm1t
50. Thus, we obtain the phase diagram shown in Fig. 1.
have also included labels of the analogous phases in He3.3 In
He3, the roles ofe, o are played by↑, ↓, and that oft is
played by the Zeeman splitting due to a fieldh along thez
direction. In He3, there is fullSU(2) symmetry of spin ro-
tations whenh50, that is broken spontaneously in any sp
triplet phase, but this distinction is unimportant here. T
state fort50 has the structure of the ABM state orA phase,
adapted to two dimensions, while fortÞ0, we expect that
self-consistent solution of the gap equation would giveD̂e

.D̂o , and this state has the structure of the A2 phase of H3.
As t increases, a point may be reached at whichDko50 for
all k, which gives theA1 phase~we ignore intermediate
possibilities in whichDko vanishes only in some region ofk
space!. For m2t.0, which would be the case in He3, the
A1 phase is a distinct phase, which would have a Fe
surface foro spins. On the other hand, form2t,0, no ex-
citations become gapless at the point whereDko vanishes,
and the change is merely the disappearance ofoo pairs from
the ground state, so this is not a true phase transition; th
indicated by the dashed line in Fig. 1. The position of t
boundary, if it occurs at all, is very uncertain. We simp
wish to emphasize that the boundaries betweenA, A2, and
A1 in general donot coincide with the weak- to strong
pairing transitions. However, for the wave functions that
of the form Pfg with g given by Eq.~40! for all distances,
the transition atu5p/4 to the MR state can also be consi
ered as theA2-A1 transition. We discuss this further below

For t50, the quasiparticle excitations neark50 andm

FIG. 1. Schematic phase diagram for thep-wave phases, as
discussed in the text. The A-phase with unbroken U~1! symmetry
appears as the vertical axist50, with the regionm.0 being the
331 phase. Similarly, the Fermi-liquid phase in which pairing d
appears is identified with the linem5EF , since that is the value o
m there at fixed density, neglecting Hartree-Fock corrections.
.
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.0 form a Dirac relativistic fermion spectrum, which ha
two distinct but degenerate particle and antiparticle exc
tions. These are eigenstates of theU(1) symmetry of eigen-
values11, 21, respectively, so the particle is associat
with one layer, the antiparticle with the other. A Dirac fe
mion field is equivalent to two Majorana fields, which can
thought of roughly as its real and imaginary components.
tÞ0, these Majorana fermions have different masses~and

different velocities if D̂eÞD̂o), and the transitions occu
when one or other mass changes sign.

The ground-state degeneracies, edge state, and vo
~quasiparticle! properties in the different phases can now
read off from the above and the results for the spinl
p-wave case. Form.0 andt50, we find the same results a
for the 331 state.42,44 The FQHE state is abelian and can
described in Coulomb plasma language because of
Cauchy determinant identity, as explained in Refs. 42 a
44. The equivalence of the results for the neutral edge e
tations, or for the quasihole states, in terms of bosonic fie
or the two-component plasma mapping, and Dirac ferm
fields, corresponds to bosonization42,44 and will not be re-
peated here in full. We will mention only an instructive e
ample, consisting of a pair of vortices in the weak pairi
phasem.0. Given that there is a singleE50 mode for the
pair, which can here be occupied by either type of fermi
then there are four states. Since the fermions in the↑-↓ basis
haveSz quantum numbers61/2, the four states haveSz val-
ues 1/2, 0, 0,21/2 ~half of these states have odd tot
fermion numberN). These states must be interpreted as s
ing that each of these elementary vortices carriesSz of 61/4,
so there is a fractionalization of theSz quantum number. For
N even we have only two states, both withSz50, if there are
no other excitations of the system, due to global select
rules related to the total quantum numbers. This agrees
the two-component plasma description for the 331 states
including the charge degree of freedom in the incompress
FHQE system.42,44 In the latter formulation, the fractionalSz
is analogous to the fractional charge of the Laughlin qua
particles.

For tÞ0, the U(1) symmetry is lost, and the quantum
field theories, whether the massive theory in the bulk or
chiral theory on the edge or at the vortices, in the ph
labeled ‘‘weak-pairing abelian’’ must be described as tw
Majorana fermions. However, the counting of the edge ex
tations, or of the vortex states just discussed, will be
same@though unimportant degeneracies among edge exc
tions, that previously were due to theU(1) symmetry, may
be lost#, and the universal statistics properties in this pha
which are abelian, are the same as in theU(1) symmetric or
Dirac fermion case. As already mentioned, when the tra
tion to strong pairing occurs for theo spins, the system en
ters the MR nonabelian phase, and when thee spins are also
in the strong-pairing phase, the FQHE system has the ra
trivial abelian statistics of the Laughlin state of charge
bosons.

Ideas of Ho71 involving a two-body pseudopotentia
Hamiltonian, the ground state of which interpolates betwe
the 331 state atu50 and the MR state atu5p/4 were dis-
cussed critically in Ref. 44. The model Hamiltonian conta
a parameter corresponding tou, which directly determines

-
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theu that describes the ground state wave function. Excep
u5p/4, the results of the model agree with the above d
cussion of the abelian phase, though we do not now bel
that theU(1) symmetry is ‘‘reappearing in the low-energ
properties.’’44 At u5p/4, Ho’s model is pathological, an
the upshot of the discussion was that if the three-body in
action of Greiteret al. is also added as a isospin-independ
interaction, then this pathology of Ho’s model is remove
and the ground state is nondegenerate~on the sphere, withou
quasiholes! for all u between 0 andp/4. It was noted that,
even for this model, there are still peculiarities of theu
5p/4 point. In fact, there are unexpected degenerac
larger than those of the 331 or 0<u,p/4 states, in the edge
quasihole and toroidal ground states atu5p/4. These arise
because the zero modes can be occupied by eithere or o
fermions, even though there are noos in the ground state. In
particular, on the torus in the11 sector, there are degene
ate states that differ only in the presence or absence ofk
50 o fermion ~these extra degeneracies in this model at t
point were overlooked in Ref. 44, but can be obtained by
same methods used there!. This clearly suggests that the di
persion relationEko for theo Majorana fermions is gapless a
this point, and seems to confirm thatthis model atu5p/4 is
actually at the transition point between the weak-pairi
abelian and MR nonabelian phases. This is consistent with
the result of the analysis here that when the leading lo
distance part ofg is described byu5p/4, the system is ei-
ther at the transition or in the MR phase. This is certainly
the case foru,p/4, as indicated by the degeneracies fou
for the Ho Hamiltonian plus three-body in Ref. 44. Howev
the fact that the ground state of the model atu5p/4 contains
no o fermion pairs at all, suggests that this point is at t
A2-A1 boundary as well as at the weak-MR transition. In t
quasiparticle effective Hamiltonian, this would correspond
vanishingDo as well asm, and therefore we would expec
the dispersion relation for theo fermions to beEk}uku2.
Clearly this is nongeneric behavior. When tunnelingt is also
included, the value ofu in the ground state cannot be rea
off the Hamiltonian in general, but we expect that the we
to MR transition, which should now be generic, is pushed
another value of the parameter in the Hamiltonian, so
region in the MR phase withu5p/4 widens, while the
A2-A1 boundary is still at the value corresponding tou
5p/4 originally, where the ground state is known exactly44

and again contains noo fermions.

IV. COMPLEX d-WAVE SPIN-SINGLET PAIRING

In this section, we considerl 522 complexd-wave pair-
ing of fermions, and more generally dx22y21 idxy , which are
necessarily spin-singlet. This has been conside
recently.59,55–58 We argue that the Haldane-Rezayi~HR!
state,13 which has this symmetry, isat the transition from
weak to strong pairing. The weak-pairing phase, like
strong, is abelian; we work out its properties and its latt
description from the pairing point of view, and identify th
universality class as one that has been obtained befor
various methods, including a trial wave-function approa
by Jain.22,72–74We relate these properties to the Hall condu
tivity for spin, which we calculate explicitly in an Appendix
at
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A. Weak- and strong-pairing phases,
and the Haldane-Rezayi FQHE state

The basic structure of the problem is once again simila
the spinlessp-wave case, or~since it is spin singlet! to the
original BCS treatment, except for beingd wave. The quasi-
particle effective Hamiltonian is

Keff5(
ks

~jkcks
† cks1Dk* c2k↓ck↑1Dkck↑

† c2k↓
† !, ~42!

whereDk.D̂(kx2 iky)
2 at smallk. The structure of the so

lution is similar to the spinless case. However, the dispers
relation is now

Ek5A~k2/2m* 2m!21uD̂ku2k4, ~43!

so at the transition point (m50), Ek5k2@ uD̂u2

1(2m* )22#1/2. For m nonzero,

Ek.umu2
k2

2m*
sgnm, ~44!

at smallk, which implies there is a minimum at nonzerok in
the weak-pairing phase,m.0.

The position-space wave function forN particles, of
which N/2 have spin↑, N/2 have↓, has the form

C}detg~r i↑2r j↓!, ~45!

whereg is the inverse Fourier transform ofgk5vk /uk ~this
is equivalent to a result in Ref. 2, p. 48!. In the strong-pairing
phase,vk /uk;(kx2 iky)

2, andg(r ) falls rapidly with r . In
the weak-pairing phase,vk /uk;(kx1 iky)

22, we find

g~r !} z̄/z ~46!

for larger . Thus,ugu; constant, andg is very long-range. At
the critical point,vk /uk;uku2/(kx1 iky)

2 ~with a coefficient
that depends onD̂ andm* , unlike thep-wave case! and

g~r !}1/z2. ~47!

This is the same behavior as in the Haldane-Rezayi~HR!
state,13 when the latter is interpreted in terms of pairing
composite fermions.14 Therefore, we suggest thatthe HR
state is precisely at the weak-strong pairing transition poi
and has gapless excitations in the bulk.

Further evidence for the criticality of the HR state com
from the ground states on the torus. For the quasipart
effective HamiltonianKeff , the presence of two spin state
means that thek50 states, which occur only for11 bound-
ary conditions~see Sec. II!, can be unoccupied in the strong
pairing phase, and doubly-occupied in the weak-pair
phase. Thus there is a total of four ground states, all withN
even, and none withN odd, in both phases. However, at th
critical point, Ek5050, and thek50 state can be occupie
zero, one, or two times, with no energy penalty. Hence,
11 boundary conditions, there are two ground states foN
even, and two forN odd. The latter pair, in whichk50 is
singly occupied, form a spin-1/2 doublet. Thus~on including
the three ground states in the other sectors! there is a total of
five ground states forN even, two forN odd. This is exactly
what was found for the ground states of the hollow-co
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model of HR,13 ~for which the HR state is the exact groun
state on the sphere!, both numerically75,44 and analytically.44

The long-distance behavior of the wave functions implied
the present approach agrees with that in Ref. 44, as in ea
cases. Also, we cite the energy spectrum of the hollow-c
model, which was obtained numerically forN58 particles
on the sphere in Ref. 44. No clear gap can be seen in
spectrum. In view of these results, other numerical work
this model should also be reconsidered. Analytical results
zero-energy ‘‘edge’’ and ‘‘quasihole’’ states of the hollo
core model,42,44 remain valid, but the earlier interpretatio
assumed a fully-gapped bulk ground state, and so if the b
is gapless, the questions about the conformal field the
pictures of the bulk wave functions and the fermionic ed
excitations14,41,42,45are presumably moot. It is actually quit
interesting that the hollow-core model~like the Ho plus
three-body model in Sec. III! is critical. In this it resembles
also certain other special Hamiltonians for which the ex
ground states are known;76,77 the latter cases involve pairin
of composite bosons.

B. Structure of the weak-pairing abelian phase

It is now of interest to find the properties of thed-wave
weak-pairing phase~the strong pairing phase has the sa
rather trivial properties as the others discussed previous!.
This phase has been discussed recently.57 Here we wish to
consider its application as a paired state in the FQHE. Th
are differences in the symmetry here compared with Ref.
which necessitate a certain amount of discussion. As we
see, the method of analysis of the edge and vortex states
previously does not seem satisfactory in the present c
Therefore, it seems necessary to use a more devious
proach, which we now describe.

It is not difficult to see that, in the weak-pairing phase, t
map fromk to uk , vk is topologically nontrivial and hasm
52, that is, it wraps around the sphere twice. Because of
and itsd-wave (l 522) symmetry, it has double zeroes
k50 andk5`. While such behavior at̀ can be regarded a
fixed by requirements of convergence and finite parti
number, as mentioned earlier, that atk50 is nongeneric
from the topological point of view. More generically, th
map could pass over the south poleS in Anderson pseu-
dospin space at two differentk values, but this would require
that the rotational symmetry be broken.

It will be useful to analyze such generic behavior in ord
to find the properties even of thed-wave case, as we wil
argue below. A convenient way to break rotational symme
is to introduce ans-wave componentDks of the gap function
Dk , in addition to thed-wave partDkd ~s-wave is the sim-
plest choice, and the gap function must remain even ink, to
retain the spin-singlet ground state!. Then at smallk the
behavior is

Dk.Ds1D̂~kx2 iky!2, ~48!

andDs andD̂ are both complex. In this case, whenDks is a
sufficiently small perturbation on the weak-pairingd-wave
phase, the effect is thatEk has a minimum at just two non
zero values ofk, of the form6k0 by symmetry. This does
not change the topology of theuk , vk , and since the system
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is fully gapped as far as the quasiparticles are concerne
should not change any physical properties. However, ifDks

is large and dominatesDkd for all k, then the system is
essentially in ans-wave state, which must be topological
trivial. This is the same phase as the strong-pairing d-w
phase, even though the rotational symmetry is differe
these limits can be connected asDks , Dkd , andm are varied,
without crossing another transition. Therefore, there mus
a phase transition asuDks /Dkdu varies at fixedm.0, similar
to those discussed above. In this case, the dispersion rel
Ek vanishes linearly at two points6k0 at the transition, and
the map fromk to uk , vk is discontinuous at these tw
points. These will be points wherejk5k2/2m* 2m50, as
well as Dk50, and so occur at somem.0. As m→0, k0
→0, and these points coalesce to give the previous dis
sion in whichDks50 for all k.

The two points6k0 at whichEk has a conical form give
a spectrum similar to a spin-1/2 doublet of Dirac fermion
This is similar to behavior well known in other condense
matter models, including fermions on a lattice in a magne
field, andd-wave pairing with adx22y2 structure~perhaps
induced by a square lattice!.57 By concentrating on the de
grees of freedom near these points, and shifting them ik
space to the origin~which produces oscillating factors i
real-space correlation functions of the fermions!, the fermion
excitations can be mapped onto a complex~i.e., Dirac, not
Majorana! spin-1/2 doublet of relativistic fermions for eac
pair of such points ink space. Near the transition point, or b
varying parameters in the other models mentioned~the dxy
part of the gap function in the second model!, the Dirac
fermions gain a mass. If we now apply to this a simil
analysis for edges to that we used previously when
minima were atk50, then we find that the edge excitation
form a spin-1/2 doublet of chiral Dirac~or Weyl! fermion
fields,57 and we can give a similar analysis for the vortice

For our purposes, we are interested in unbroken rotatio
symmetry in the bulk, so the preceding remarks do not se
to apply directly. However, if we analyze the edge exci
tions using the method of previous sections applied to
d-wave model, by simply considering the effect ofm chang-
ing sign on a domain wall, we do not find any edge mod
But we are suspicious of this result because of the non
neric form ofuk , vk , and previously we were relying on th
assumption that the results are robust because of the t
logical nature of the phenomena. In the present case,
results should be the same as if we examine a domain
caused by varyingDks so as to cross the transition, becau
the phases are the same, and therefore the edge state
vortex properties should be those of the Dirac fermion d
blet. We expect that what happens, even if the bulk pha
are rotationally invariant, is that the edge or domain w
breaks rotational symmetry, and induces a splitting of
zeroes ofDk , in so far as this function ink space is mean-
ingful. With the symmetry broken, the previous analysis c
be applied. Of course, what should be done in all cases
full solution of the BdG equations with the reduced symm
try, and of the gap equation self-consistently. This is clea
difficult, though it has sometimes been attempted, an
deeper analysis that explains why arguments of the type
have given yield the correct results would be preferable.
will attempt to give such an argument below. We note that
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we consider perturbations analogous to thes-wave compo-
nent in the cases in earlier sections, we do not find
change in those results.

A feature of the Dirac-like nature of the fermion edg
spectrum is that there are two doublets of fermion mod
particles and antiparticles. These correspond to the
points 6k0 in k space from which they arose. This can
described by saying that there is aU(1) quantum number o
‘‘charge,’’ which we will call M, and that the particle and
antiparticle carry opposite values ofM. It may be that the
additionalU(1) symmetry, which must not be confused e
ther with any part of theSU(2) of spin, or with theU(1) of
underlying particle-number conservation, which is alrea
broken spontaneously by the pairing, is in fact broken by
dynamics, since there seems to be no symmetry to prote
However, as in the case of the 331 state plus tunneling, e
when the symmetry is broken, the counting of edge exc
tions, and the statistics properties, etc, should be unchan

If we continue to assume theU(1) symmetry exists, for
the sake of the latter analysis, then the doublet of chiral D
fermions on an edge in fact has a larger symmetry~note that
there are no interactions to consider in the theory!. The fields
are equivalent to four Majorana fermions, and there
SO(4) symmetry. We note that, as Lie algebras,SO(4)
>SU(2)3SU(2), andhere the firstSU(2) can be identified
with the spin-rotation symmetry group, while the seco
contains theU(1) symmetry just discussed as a subalgeb
generated by, say, rotation about thez axis in the second
space. Thus the Dirac field and its conjugate can be vie
as carrying spinM561/2 under the secondSU(2). Alter-
natively, viewing the theory just as two Dirac fields, the
can be bosonized, and we obtain two chiral bosons.
allowed ‘‘charge’’ states for the edge, which take values
the Cartan subalgebra ofSO(4), lie on atwo-dimensional
lattice. This lattice is a direct product of two copies of t
weight lattice ofSU(2). Points in the lattice simply describ
the totalSz of spin and the totalM on the edge. The sam
desciption applies to a vortex, since we can view it as
edge rolled up into a small circle. In the latter case,
half-flux quantum we assume in the vortex corresponds
changing to periodic boundary conditions for the fermio
on the straight edge, for all components of the fermions
addition to these different boundary condition sectors, th
are also selection rules from the global quantum numb
These are similar to the rules described in detail in Ref.
Specifically, forN even, one can have the ground state w
no edge excitations, or one can create fermions on the e
but only in even numbers. In the present situation, each
these fermions can be in any of the four states in the re
sentation of spins~1/2,1/2! underSU(2)3SU(2). For odd
total fermion number, there must be one unpaired ferm
which we can put on the edge to obtain a low-energy st
Then the charge~or particle number! differs by one from the
ground state, in addition to the nontrivialSO(4) quantum
numbers. Additional fermion pairs can be excited in this c
also. If we consider two parallel edges, as for a system o
cylinder, then we build up the full spectrum by applyin
these rules to the two edges together, and there will be
ferent sectors corresponding to the presence of either ze
one half of a flux quantum threaded through the cylinder
the FQHE application, there are also chiral bosons for cha
y
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excitations on the edge, and there are fractional charge
tors for each edge, though the total charge must be integ
and the total charge~or particle number! is correlated with
the fermion excitations through its parity, as already e
plained.

The quantum numbers of the vortices~or FQHE quasipar-
ticles! correspond closely to the possible quantum numb
for the edges, and are obtained in a similar way. As a sim
example, we again consider two vortices. The situation
equivalent to the existence of a single fermion zero mode
the pair, which can be occupied by any of four types
fermions. Thus there is a total of 16 states, of which h
haveN even, half haveN odd. These should be analyzed
a product of four states possible for each vortex. The sta
for a vortex transform as (1/2,0)% (0,1/2) underSO(4), that
is they either carry spin 1/2 and noM, or vice versa. These
correspond to the states for two edges with a half flux qu
tum through the cylinder, in which the zero mode shared
the two edges can be occupied by any of the four types
fermions. For any even number of vortices, the results
similar, and the counting of degenerate low-energy state
fully accounted for by the four states for each vortex, a
hence there is no nonabelian statistics. Thus ad-wave paired
state, or even a superconductor, in two dimensions, posse
vortices that may carry spin 1/2, but not simply becaus
fermionic quasiparticle can sit on the vortex. In the FQH
these vortices also have well-defined charge of61/(2q) for
filling factor n51/q, whereq must be even when the pa
ticles are fermions~such as electrons!. This is also true in all
other cases discussed in this paper. It arises from the e
tive half quantum of flux that the vortices carry, and they c
exist only in even numbers if the system has no edges.

We hope that the above discussion gives a sufficient
pression of the quantum numbers of the vortex states.
readers familiar with the general theory of abelian FQH
states, we will now give a precise definition of the structu
of the state, using the Gram~or K! matrix language, which
specifies the lattice formed by the possible quantum numb
~including charge! of the FQHE quasiparticles, as well a
their statistics, and the order parameters and chiral algeb
the edge theory.48,49,78,42

The full lattice of possible quantum numbers of a vorte
or the total quantum numbers of a set of multiple vortices
denotedL* ~as in Ref. 48!. We will describe it first as a se
of vectors inR3, using an orthonormal basis with the sta
dard inner product. ThenL* consists of the set of vectors o
the form

v5~r 1 /A2,r 2 /A2,r 3 /@2Aq# !, ~49!

wherer 1 , r 2 , r 3 are integers obeyingr 11r 21r 350 ~mod
2!. Also the statistics of the excitation isu/p5v2, whereu is
the phase picked up by exchanging two identical such q
siparticles, and the conformal weight of the correspond
operator in the edge theory isv2/2. The basis has been cho
sen so that the three quantum numbers carried by the ex
tions are proportional to the components in this basis. In f
the spinSz5r 1/2, M5r 2/2, and the charge isQ5r 3 /(2q).
From these rules we see that the smallest possible vortex~the
one with the smallest nonzerov2) carries eitherSz561/2 or
M561/2, and charge61/(2q), as stated above, and ha
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statisticsu/p51/211/(4q) ~mod 2). It is easy to verify tha
the full latticeL* is obtained as the set of all linear comb
nations, with integer-valued coefficients, of the vectors
scribing the quantum numbers of the basic~smallest! vorti-
ces, and thus represents the possible quantum numbe
any collection of vortices.

The excitation latticeL* is the dual lattice to the conden
sate latticeL, and L is a sublattice ofL* . In the present
case,L is the set of vectorsw that are linear combination
with integer coefficients of the vectors (61/A2,61/A2,
6Aq) ~with all three signs independent! which represent the
underlying particles. These represent possible states f
particle~electron! tunneling into an edge, and these electr
operators, as we may term them in spite of the emergenM
quantum number, are usually part of the condensate lat
as they are in the hierarchy theory.~An exception to this is
the strong-pairing phases, where only operators of char
multiple of two appear.! The fact thatL and L* are dual
means that for anyvPL* , we havev•wPZ for all wPL,
and vice versa. It suffices to check this for thew’s represent-
ing the electron operators.

Both lattices possess neutral sublattices, that is lattice
vectors such thatQ50. The neutral sublattice ofL, denoted
L', consists of vectors withr 1 andr 2 even. Thus these form
a direct sumZ % Z of one-dimensional lattices. Each of th
latter can be viewed as the root lattice ofSU(2) in Lie
algebra theory, andL' is the root lattice ofSO(4). The
neutral sublattice ofL* , denotedL*', is the set of vectors
with r 350, and sor 11r 250 ~mod 2!. This is a sublattice of
the weight lattice ofSO(4), which would be the dual ofL'

as a two-dimensional lattice. The simplest nontrivial neu
vector is of the form (61/A2,61/A2,0) ~with independent
plus and minus signs!, and these represent the neutral ferm
ons, that is the BCS quasiparticles considered in this pa
These cannot be created individually on a single edge; o
excitations lying inL, such as even numbers of such ferm
ons, can be.42

An integral basis for a lattice is a set of vectors in t
lattice that are linearly independent~over R), such that all
vectors in the lattice can be written as linear combinations
those in the set, with integer coeffecients. Such a basis
not be an orthogonal set of vectors, unless the lattice
direct sum of one-dimensional lattices. In our case, a con
nient integral basis forL ~other than a suitable set of three
the electron operators above!, is e15(1/A2,1/A2,Aq), e2

5(A2,0,0), e35(0,A2,0). The Gram matrix of the lattice i
the set of inner products of these vectors,Gi j 5ei•ej , and in
this case is

G5S q11 1 1

1 2 0

1 0 2
D . ~50!

The diagonal structure of the lower-right 232 block reflects
the direct product nature of theSO(4) root lattice. The de-
terminant ofG, detG54q, determines the index ofL as a
subgroup ofL* , that is the number of equivalence classes
vectors in L* modulo L. It gives the number of ground
states of the system on a torus, or the number of sector
edge states. Factoring off the center-of-mass degeneraq,
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we find that there are four, in agreement with the analy
based on the quasiparticle effective Hamiltonian. The Gr
matrix, together with distinguished vectors that specify t
chargeQ and spinSz quantum numbers, is sufficient infor
mation from which to reconstruct the latticesL andL* , and
hence the universal aspects of the phase, such as ground
degeneracies, quasiparticle statistics, and the theory of
edge states. In this context, the Gram matrix is often ca
the K matrix.

This completes the analysis we will give of the phase. I
a generalized hierarchy state in the sense of Ref. 48,
resembles the 331 phase. The latter lacks theSU(2) of spin
and hence has a two-dimensional lattice; its structure
described in detail in Refs. 42 and 44.

We may now compare the universal properties of t
state with others analyzed previously. We find that seve
other constructions of this spin-singlet phase have alre
been given. In Ref. 48, this was mentioned briefly as
structure of both a spin-singlet state forn51/2 proposed by
Jain22 ~see also Ref. 72!, and one proposed by Lee an
Kane.74 A more detailed analysis was given in Ref. 7
where it was also identified with a hierarchical constructio
In the latter, one starts with the Halperin spin-singlet 2
state,11 which is a 332 state in the Coulomb plasma langua
and then one makes a finite density of spinless quasielec
excitations of that state, each carrying charge 2/5. T
quasielectrons are then put in a Laughlin 1/2 state, to ob
a singlet state withn51/2. The hierarchical step implies tha
the resulting state has a three-dimensional lattice. In Ref.
this and the Jain construction were shown to coincide. U
fortunately, the formulas there contain a small mistake:
final basis vector in Eq.~4.8! in that reference should b
reduced by a factor of two, as should the entries in the fi
row and column of the Gram matrix in Eq.~4.9! there. The
resulting matrix is then identical toG above, withq52, after
permuting the basis vectors. This basis is the natural one
the hierarchy approach. In ourG above, the top left 232
block ~with q52) describes the Halperin 2/5 state, and
flects its origin.~The 2/5 state itself has the sameG as the
spin-polarized hierarchy 2/5 state, which descends fromn
51/3, as reflected by theq1153 at the top left.!

The Jainn51/q spin-singlet state was proposed as a tr
wave function, namely

C5x1
q21x2x1,1. ~51!

Here, xm stands for the wave function form filled Landau
levels of spinless particles,~so x1 is the Vandermonde de
terminant or Laughlin-Jastrow factor! andx1,1 is the lowest
Landau level filled with particles of both spins. We igno
the Gaussian factors in these wave functions, and have o
ted the projection to the LLL. The filling factor is again 1/q.
This wave function can be loosely viewed as a Coulo
plasma of particles carrying charge, spin and another qu
tum numberM561/2 to represent the two Landau levels
x2. The exponents in the wave function correspond to in
products of corresponding vectors, which are just those
the four electron operators withQ51. This establishes the
equivalence, as for the hierarchy states in Ref. 48. In fact,
extraSU(2) that appears here acts on the LL indices inx2 in
Jain’s function, just like the SU(n) that appeared forn Lan-
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dau levels in the spin-polarized Jain states22 and the corre-
sponding hierarchy states withn levels in the hierarchy. The
state is a combination of the Halperin spin-singlet struct
with the spinless composite-fermion/hierarchy structure.
should point out that the number of flux for Jain’s state
the sphere isNf5q(N21)22, the same as for the HR stat
which follows from our analysis, and was notice
previously.72 This is of course essential in order for it to b
possible to vary parameters smoothly to reach the transit

Thus the samen51/2 ~more generally,n51/q) spin-
singlet phase has arisen in four different ways. We wan
emphasize that the equivalence of the universal long-dista
properties does not mean that the trial wave functions
different approaches are the same. For example the pa
wave function found here and Jain’s above do not look ali
It may be that one is a much better description~has a much
larger overlap with an exact ground state! for medium size
systems than the other, even though they describe the s
phase. The equivalence found here is analagous to tha
tween the 331 state and the A-phasep-wave state, howeve
in that case there was an exact equivalence of certain w
functions through the Cauchy determinant identity. We m
still expect some equivalence in the long-distance form
the wave functions.

C. Induced Chern-Simons actions
and analogs of the Hall conductivity

The arguments given so far for the edge states and
zero modes on vortices, on which the identifications of
weak-pairing phases have been based, may appear not
very well founded, as they have been based on analyzing
BdG equations for special forms of the gap function a
variation of the parameterm, though we did argue by conti
nuity that the states found must persist as the equations
varied while staying in the same phase. In this Section,
argue that the results we have obtained are in fact very
bust, because the edge states, and the form of the bulk th
described by the Gram matrix of the condensate lattice,
required as a consequence of transport properties of the
weak-pairing phases. These transport properties are the q
tization of the spin and heat analogs of the Hall conductiv
which we prove explicitly for the spin case. They imply th
existence of certain edge state structures, just as in the
of charge transport in the QHE, and when the weak-pair
phases correspond to abelian FQHE states, the Hall spin
ductivity is actually a part of the Gram matrix descriptio
The remainder of this section discusses these points, bu
technical details are relegated to the Appendix. We sho
point out that the form of the argument has already appea
in Ref. 57 for the cases withSU(2) or U(1) spin symme-
tries, though the explicit derivation of the Hall conductivitie
was not given there.

For the cases of spin-singlet pairing, and ofp-wave pair-
ing with an unbrokenU(1) symmetry, we derive in the Ap
pendix the Hall spin conductivitysxy

s , and show that in any
fully-gapped translationally-invariant superconducting ph
it is given by a topological invariant, which within the BC
approximation is proportional to the same winding numb
we discussed earlier in Sec. II and subsequently. Some s
lar statements appeared earlier, but were for the charge
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conductivity,4,8 and also for the existence of a Hopf term a
of a nonabelian CS term, in the two-dimensional A-pha
with SU(2) symmetry broken spontaneously.5 In this paper,
we restrict ourselves to the Hall conductivies for conserv
quantities for which the corresponding symmetry is not b
ken spontaneously in the paired state, such as spin and
ergy. For quantities for which this is not true, such as char
we do not find quantized Hall conductivities in superco
ductors~though of course we do find quantized Hall condu
tivity in the QHE systems!. Since our point of view differs
somewhat from that in, for example, Ref. 5, we give a se
contained discussion.

To be precise, for the Hall spin conductivity in a spi
singlet paired state, we find that if the particles are viewed
carrying spin 1/2~we usually set\51), the Hall response to
an applied spin analog of the electric field, such as a grad
in the Zeeman splitting, is

sxy
s 5m

~\/2!2

2p\
, ~52!

wherem is the winding number, which is62 in a d-wave
weak-pairing phase. We have written the Hall spin cond
tivity in this form to emphasize the similarity to the usu
e2/h, with e replaced by\/2 here. In\51 units, we obtain
in our d-wave weak-pairing phasesxy

s 51/4p. We chose the
1 sign, since in the FQHE applications of thel 522 state,
the edge modes propagate in the same direction as the ch
modes. This agrees with Refs. 56 and 57, where differ
arguments were used. For thep-wave case, we view the fer
mions as carrying isospin61, and hence the Hall spin con
ductivity we obtain is

sxy
s 5m

1

2p\
, ~53!

where the winding numberm is 61 in the weak-pairing
p-wave phases, again withm51 for the l 521 case.

These results agree with the descriptions we have alre
given of the weak-pairing FQHE phases using the Gram m
trix or lattice theory. In fact, we should point out that
quantized Hall spin conductivity is not unusual in FQH
systems, though it is not always emphasized. It occurs
example in any spin-polarized state, such as the integer
Laughlin states withn51/q, because the electrons carry sp
1/2 as well as charge, and so the two Hall conductivities
proportional. It also occurs in some spin-singlet Hall sta
~abelian examples were discussed in Ref. 73!, including the
n52 state with the LLL filled with both spins, and the Ha
perin mmnstates withm5n11, m odd, which are a gener
alization of then52 state. In these cases, we obtain the f
SU(2) version of the Hall spin conductivity, withsxy

s taking
the same value as in thed-wave weak-pairing phase. Th
same quantized Hall spin conductivity was also found
certain spin-liquid states for lattice antiferromagnets.79 The
wave functions of these states are the same as that o
Halperin state, with the charge degree of freedom remo
~i.e., the wave function is 1/2,1/2,21/2), and the spin-1/2
particles restricted to lattice sites, explaining this result.

The result that the Hall conductivity, in units of~quantum
number! 2/h, is a topological invariant given by an integra
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over k space, is similar to one form of the ordinary char
Hall conductivity, found originally for a noninteracting per
odic system with a rational number of flux quanta per u
cell, as an integral over the Brillouin zone.80 In systems
wherek is not a good quantum number, such as the sa
system with irrational flux, or when disorder is present, or
other geometries, including those with edges, that br
translational invariance, such a topological invariant is
parently not available. Yet the idea of quantization as res
ing from the conductivity being a topological invariant th
measures an intrinsic local property of the ground st
seems too good to give up. For the noninteracting QHE w
disorder, the topological invariant has been extended u
noncommutative geometry, so that the Hall conductivity
an integral over a ‘‘noncommutative Brillouin zone,’’ and
this way quantization has been proved even for the ph
cally relevant case of a nonzero density of localized state
the Fermi energy.81 It would be interesting to extend this t
other cases, including the paired states with disorder, wh
we discuss in the next section. In the Appendix, we g
arguments that the form we obtain is exact to all orders in
interactions, but only for a translationally invariant system

Now we can use the results on the Hall spin conductiv
to argue that the edge state properties we have obtaine
indeed correct. In the Appendix, we derive the Hall sp
conductivities by obtaining the induced action for an exter
gauge field that couples to the spin or isospin. The acti
that result~cf. Ref. 82! are CS terms for anSU(2) gauge
field in the spin-singlet~d-wave! case, and for aU(1) gauge
field in thep-wave case. Now, using either the Hall condu
tivities and arguing as in the QHE literature83 ~see also Refs
84 and 85!, or using the induced actions and arguing as in
field theory literature86 ~quite similar arguments appear
Ref. 87 and references therein!, we can conclude that on
domain wall between phases with differentsxy

s ’s ~one of the
phases might be the vacuum outside an edge, withsxy

s 50)
there must be chiral edge excitations. In the presence
uniform spin-electric field, a spin current is induced in
region with sxy

s Þ0, and the normal component of this at
domain wall has a discontinuity, representing a net inflow
spin onto the wall. To avoid violating the continuity equatio
for the spin density and spin current density, there mus
chiral modes on the wall, and a ‘‘gauge anomaly’’ in th
conservation of spin on the wall alone. The tangential fi
induces a nonzero divergence~i.e., an anomaly! of spin cur-
rent along the wall, which cancels the net inflow from t
bulk. Such an anomaly can occur only if gapless chiral
citations exist on the domain wall. The minimal chiral theo
required to produce the anomaly is the usual chiral Luttin
liquid ~or chiral Gaussian model! in the U(1) case, with the
value of the coupling that corresponds to a free chiral Di
~Weyl! fermion in 111 dimensions, and theSU(2) chiral
Wess-Zumino-Witten~WZW! theory88 with k5m/251 in
the SU(2) case. All of this applies even within the BC
mean field framework we used before, and then the e
excitations must be free fermions. In thep-wave case, we
therefore expect simply a single chiral Dirac fermion
propagate on the edge. In thed-wave case we must have a
SU(2) doublet of chiral Dirac fermions, which can be re
resented by thek51 chiral WZW model, together with an
t
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additional chiralU(1) degree of freedom, which we argue
earlier must exist, and calledM. We have therefore repro
duced the claimed results about the edge states, negle
the charge degree of freedom.

We note that, when formulating such arguments for
nature of the chiral edge theories, we can presumably ass
that the theories are unitary, conformal fields with local c
rent operators for physical conserved quantities~as usual,
Lorentz invariance may be spoiled by the presence of dif
ent velocities for different excitations, but this will not ma
ter for the statistics and other universal properties in wh
we are interested!. Previously, we might not have assume
this, because of the example of the Haldane-Rezayi~HR!
state in particular. But we have learned that the HR state
a critical point, and previous discussions of the edge a
quasiparticle properties of that state are irrelevant. Thus, w
the demise of the HR state as a bulk phase, it becomes
tractive to believe that the edge theories of incompress
FQHE phases are always unitary conformal field theor
With this assumption, in theories withSU(2) Hall spin con-
ductivities, unitarity of the edge theory requires quite gen
ally that k be an integer,88,39 and sosxy

s 5k/(4p) in the
above conventions.

The preceding arguments do not apply to the spinl
p-wave case, in which there is no continuous unbroken sy
metry. This is unfortunate in view of the great interest in t
nonabelian properties of the weak-pairing phase. But ther
another Hall-type conductivity, which exists in all cases,
cluding those without a continuous symmetry. This is t
Leduc-Righi~LR! conductivity, which is thexy component
kxy of the thermal conductivity, and is of course related
the transport of energy, a conserved quantity. Like the H
conductivities for charge and spin, this is a nondissipat
transport quantity that can only be nonzero when parity a
time-reversal symmetries are broken. In systems with a
for all bulk excitations and with chiral edge excitations,
can be argued that the LR conductivity is nonzero.89,57Thus,
this applies to QHE systems, and to superconductors~paired
systems! if there is no gapless collective charge mode. T
value of kxy can be obtained89,57 by considering a sample
with two edges and a small temperature difference betw
the edges~strictly speaking, the following argument yield
the LR conductance, not the conductivity!. The chiral exci-
tations on each edge are excited by different temperatu
and this produces a larger heat current on one edge in
direction than that on the other edge in the other, and he
a net heat current. This shows that the current is relate
the heat capacity of each mode on an edge, times the velo
of the mode, summed over modes. It is known that the h
capacity for each mode is related to the Virasoro cen
charge c in the conformal field theory of the edg
excitations.90 In kxy , the velocities cancel, and the remainin
number is proportional to the total central charge of the e
theory~including the charge modes in the FQHE!; precisely,

kxy5c
p2kB

2T

6p\
. ~54!

This is the fundamental relationship governing the LR co
ductivity in all quantum Hall problems.Here, we assumed
that all modes on an edge propagate in the same directio
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10 286 PRB 61N. READ AND DMITRY GREEN
not, thenc should be replaced by the difference of the cen
charges for the right and left-moving theories. Related
this, the two-probe thermal conductance of such a syste
also equal tokxy ~for a case with all edge modes propagati
in the same direction!, just as the two-probe conductance
equal to the quantizedsxy of the bulk. It has been found tha
the two-probe thermal conductances of the Laughlin state
variousn51/q are independent ofq, even though the theo
ries of the chiral Luttinger liquids containq as a parameter.91

This is because the central charge isc51, independent ofq.
The formula forkxy is similar in structure to that for the

Hall spin conductivity. However, the central chargec does
not have to be an integer, and indeed for a single Major
fermion,c51/2,92 so that for free fermions in general,c is a
multiple of 1/2. Nonetheless, we do expect it to be quantiz
in the sense of invariant under small deformations of
theory ~including adding weak disorder!.

The argument above for the LR conductivity made use
the edge states. However, we want to use it to back up
results on the fermionic edge modes of the MR state,
analogy with the arguments for the other cases, which u
the Hall spin conductivities. Hence we need an independ
argument for the value of the LR conductivity. We belie
that it should be possible to derive such a result, analogo
to the Hall spin conductivities, by considering the system
externalgravitationalfields. Here the Christoffel symbols, o
the spin connection, play the role of the external gauge fie
we used in the spin case, but should be viewed as determ
by the metric of spacetime, which we treat as the indep
dent variable and set to the usual Minkowski metric af
calculating responses. The role of the currents, to which
vector potentials couple, is played by the energy-momen
tensor, which includes the energy flux among its com
nents. The significance of changing the metric should
clear if we recall that equilibrium systems can be represen
in imaginary time, with the imaginary time direction per
odic, the period being 1/kBT. Thus a temperature gradien
might be viewed as changing the geometry of space
~imaginary! time. A more rigorous derivation would avoi
imaginary time, but should still involve the response
changes in the metric. The leading term in the induced ac
for the external gravitational field in 211 dimensions will in
general be the gravitational CS term, which can be written
terms of the spin connection in close analogy to the usual
terms:

1

4p

c

24E d3r emnltrS vm]nvl1
2

3
vmvnvnD ~55!

where we view the spin connectionv as a 333 matrix,
determined by the metric.~Such a term was also propose
earlier for He3-A films in Ref. 7.! The coefficient contains
c/24, which shows the relation to the central chargec in a
corresponding chiral conformal field theory on a boundary39

is needed to cancel the anomaly in energy-momentum c
servation on the boundary by an inflow~LR ‘‘Hall’’ current !
from the bulk,86 as for the charge and spin Hall conductiv
ties.

We have not completed a calculation~analogous to those
in the Appendix! of the induced action or LR conductivit
for the bulk from first principles. It would involve coupling
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the underlying system to an arbitrary metric, then us
Ward identities to relate the response to a topological inv
ant. However, if we assume a spectrum of relativistic ferm
ons at low energies, with a minimal coupling to the gravi
tional field, then the calculation can be carried out, and
known in the literature.93 The coefficient of the induced
gravitational CS term again has the form of the same to
logical invariant as in the Appendix, but integrated over on
half the sphere, as in the similar treatment of the spin ca
For a single Majorana, this yields the above form withc
replaced by61/4 on the two sides of the transition. Inclusio
of the contribution of a Pauli-Villars regulator then produc
c50 on one side,c51/2 on the other. We expect that for ou
nonrelativistic system, where the largek behavior is explic-
itly known, we would obtain such a result also, withc in a
general system of paired fermions being proportional to
same topological invariant~winding number! we have seen
already, and~allowing for factors of two associated with spi
degeneracy! we would find c51/2 in the spinlessp-wave
weak-pairing phase, and alsoc51 ~2! in the tripletp-wave
~singlet d-wave! cases.~These are the results for the paire
fermions, and in the FQHE would have to be supplemen
by addingc51 for the charge degrees of freedom.! There-
fore, we believe that the existence of the edge states
vortex degeneracies in the MR phase can be placed on a
footing.

A somewhat related issue is to obtain effective actio
describing the weak-pairing phases. We emphasize that
CS actions discussed in this section areinducedactions for
external fields that act as sources, and should not be conf
with effectiveactions, which contain fields that should b
functionally integrated over, and represent the dynamics
the system at low energies and long wavelengths. For
abelian FQHE states, the effective actions fall into the fram
work of the known theory, based on the Gram~K! matrix.78

For the MR, and other similar, phases, something differen
required. For the abelian phases, there is an evident sim
ity between the induced and effective actions. For exam
in thed-wave case, neglecting the charge degree of freed
one would expect the bulk effective action to be anSU(2)
3U(1) CS theory, withk51 for the SU(2) part ~here, in
the effective action,k must be an integer to maintain gaug
invariance!. This theory is determined by the requireme
that it produce the correct edge theory.39 @The U(1) part
could possibly be extended to a secondSU(2) with k51, to
agree with theSO(4) edge theory discussed above.# It is
known that such an effective theory also produces the
sired induced gravitational CS term in all cases.39 By anal-
ogy, we are led to expect that the MR phase, where the e
theory involves only thec51/2 representations of the Vira
soro algebra, can be described by an effective theory tha
some sort of gravitational CS theory~similarly, there were
earlier proposals for gravitational-type effective actions
three-dimensional paired states6!. Quantization of such a
theory should yield Virasoro conformal blocks in the sam
way that quantization of CS theory yielded current alge
blocks,39 and thus be closely related to the wave functio
discussed in Sec. II and in Refs. 14 and 44. This hope
encouraged by the identification of the parameterD̂ and the
vector potentialA, which should be functionally integrate
over in the full treatment, as the vielbein and spin connect
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of 211 gravity, or at least as the part relating toSO(2)
rotations of space only, as discussed in Sec. II. The hop
producing conformal blocks in this manner from a gravi
tional analog of CS theory has been around for a long tim39

but does not seem to have reached fruition, in spite of
interesting attempt by Verlinde.94 Such a theory would be a
interesting, possibly more natural, alternative to the ‘‘co
ventional’’ approach, along lines anticipated in Ref. 14, o
CS analog of a coset construction.47

We also wish to comment on whether our results im
that fractional and nonabelian statistics occur in paired
perfluids, as opposed to FQHE systems. For example,
weak-pairing d-wave and spin-tripletp-wave phases hav
nontrivial Hall spin conductivity, and the smallest possib
vortices carry spin~or M ) quantum numbers. Hence the sp
degrees of freedom contribute a fractional amount to
Berry phase on exchanging such vortices. Similarly,
changing vortices in the weak-pairing spinlessp-wave phase
should produce a matrix action on the space of degene
states we have identified, which we may be tempted to t
nonabelian statistics. However, although these contribut
from the spin~or fermion number! sector are well defined, in
a neutral superfluid the charge degree of freedom is gap
and the vortices act on the charge~particle number! variables
also, so as with vortices in a simple neutral superfluid, wh
carry no well defined particle number, the contribution to t
total Berry phase is not well defined, due to the cha
sector.95 Nonabelian statistics is still meaningful, modu
phase factors. In the incompressible FQHE phases, this p
lem disappears, and the statistics properties have been
acterized above, in detail for the abelian cases. Also, i
superfluid with a Coulomb interaction, there is again
problem, even if the interaction is;1/r , which does not
produce a plasmon gap in two dimensions. Vortices are n
tral because of screening, and so nonabelian statistics
fractional statistics in the tripletp-wave case, can occur, wit
no contribution from the charge sector. There are also ‘‘n
tral’’ vortex excitations with no net~spin-independent! vor-
ticity acting in the charge sector, which would not be subj
to the problem in compressible superfluids, but these
found not to have fractional statistics. Note that a simi
problem as for the charge sector~in the compressible case!
occurs in the spin sector in connection with any subgroup
SU(2) that is spontaneously broken.

V. EFFECTS OF DISORDER ON THE TRANSITIONS

In this Section, we discuss the effects of disorder on
phases above, and on the transitions between them. We
sider the phase-coherent, zero-temperature case, and ne
all interactions between the quasiparticles~including the
gauge field fluctuations!. The problem then reduces again
the quasiparticle effective HamiltoniansKeff , this time with
jk and Dk replaced by operators that are local in positi
space, with short-range correlations of the disorder. We c
sider the problems above in reverse order, starting with
d-wave case, which has the most symmetry@SU(2) of spin
rotations#, thend or p wave with onlyU(1) symmetry, and
finally the spinlessp-wave case, with no continuous symm
try. The first case has been studied recently in the contex
disordered superconductors,52–58while we will argue that the
of
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second maps onto the usual noninteracting QHE transit
and the last includes an unusual intermediate phase w
the heat transport is similar to that in a disorderedmetal. In
all cases, we expect the qualitative results to be unaffec
by interactions~or quantum fluctuations around the mea
field theories used!, though the universality classes may b
changed.

The problem of the noninteracting BCS quasiparticles
disordered paired fermion systems was discussed by Altl
and Zirnbauer~AZ!,52 where a symmetry classification o
random matrix ensembles was proposed, that is analogou
the familiar classification for ordinary one-particle Hamilt
nians into orthogonal, unitary, and symplectic ensembles~or
symmetry classes!. In these ensembles, no particular value
the energy is singled out as special, so that they apply
phenomena near generic energy~or Fermi energy! values,
where the average density of states is nonzero. The di
dered paired systems differ first in that the fermion numbe
not conserved, because of the pairing terms. The full Ham
tonian of course conserves number, but this involves the
lective response of the condensate. In applying these mo
in the FQHE, this is again true, but leads to the Hall
sponse, not a superfluid response. Therefore, we disre
particle number transport, and concentrate on conser
quantities carried by the quasiparticles only. The latter qu
tities include spin, when this symmetry is not broken spo
taneously by the pairing. Then the classification of e
sembles by AZ is according to whether time-rever
symmetry~T! is broken or not, and whether or not there is
unbrokenSU(2) spin rotation symmetry; the latter is unbro
ken in spin-singlet paired states. By making certain trans
mations, such as a particle-hole transformation on the↓ spins
in the cases whereSz ~at least! is conserved, the quasiparticl
Hamiltonians can be related to number-conserving Hami
nians, and thus to single-particle or random matrix proble
In this way, AZ identified four classes of random-matrix e
sembles for disordered paired systems, which they labeleC,
CI, D, DIII . For the quasiparticle Hamiltonians, the zero
quasiparticle energyE is a special point, where in most cas
the average density of states of the quasiparticles in the
ordered system vanishes. Thus, these four classes are di
from the usual three mentioned above.

The case of spin-singlet paired states with disorder w
considered in more detail.51,53,54 The symmetry classes ar
CI ~with time reversal symmetry!, andC ~without time re-
versal!. In the particular case of classC, it is natural to con-
sider in two dimensions the possibility of a Hall spin co
ductivity sxy

s , as in the weak-pairingd-wave phase.56,57

There are nonlinear sigma model formulations for classC,
either using replicas, which lead to target manifo
Sp(2n)/U(n) ~with n→0) in the compact formulation,53 or
supersymmetry, which leads to the target supermanif
Osp(2nu2n)/U(nun) ~with n.0 arbitrary!.52 The Hall spin
conductivity shows up in that a topological term with coe
ficient u proportional tosxy

s can be included in these model
when the dimension of space is two.53 Analysis of the model,
and numerical work on a network model with the symmetr
appropriate to classC,56 has shown that this system ha
phases with quantizedsxy

s , which are the same, or multiple
of, those we discussed in the pure system in Sec. IV C. Th
phases can therefore be viewed as the disordered analo
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the weak- and strong-pairing phases. In these phases
BCS quasiparticle~fermion! excitations at low energies hav
a nonzero density of states which vanishes quadraticall
E→0, and these states are localized.55 The situation is thus
similar to the usual QHE, in which the low-energy excit
tions are localized and have nonvanishing density of state
the Fermi energy. Localization is necessary to obtain
quantized Hall conductivity. In the weak-pairing phase,
therefore expect thatthe results for the edge and statistic
properties obtained in Sec.IVare still valid when disorder is
included. We do not expect this conclusion to be affected
the inclusion of interactions in the analysis.

The transition between these two phases, and the rol
sxy

s , can be understood via a renormalization-group~RG!
flow diagram, shown schematically in Fig. 2~a!. The flows
can be thought of as representing the values of the lo
conductivity parameterssxx

s , sxy
s that would be measured a

a given length scale, and how they change with this scale
the nonlinear sigma model, similar parameters appear in
action of the quantum field theory. It is natural to define t
renormalized values of these couplings at any scale to be
conductivities that would be measured at that scale, in wh
case the flows are the same as the RG flows within the fi
theory model. The conductivities should be understood
this way from here on, instead of as the bare values, w
which they coincide only when the scale is of order the me
free path. Quantized values refer to the renormalized va
at very large scales. In the case of classC, the form of the
flows is identical to that in the IQHE for noninteractin
electrons.96 Similarly to the usual IQHE, the transition oc
curs because of a nontrivial fixed point, at whichsxy

s is mid-
way between adjacent quantized values, andsxx

s will take
some nontrivial universal value. However, the spin quant
Hall transition in classC is in a different universality class
from the IQHE. Recent numerical work has obtained so
of the critical exponents for this transition, both from th

FIG. 2. Proposed renormalization group flow diagrams for~a!
the unitary ensemble~IQHE!, as in96, and class C, and~b! class D.
The dashed curves represent schematically the~nonuniversal! bare
values of the coupling parameters. Other features are unive
when the renormalized couplings are defined using the as-meas
conductivity parameters, as explained in the text, and repeat
odically in theu variable.
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network model,56 and from a mapping of the network mod
to a supersymmetric vertex model and a supers
chain,55,58,57which was then analyzed numerically.57 The re-
sults are in excellent agreement with exact values of so
exponents, which were proposed using the relation of
supersymmetric vertex model to classical percolation.58 For
example, the localization length exponent isn54/3, and at
the critical point the density of states vanishes asE1/7. The
effect of interactions on these results is presently unknow

Inclusion of a Zeeman splitting}h, which was neglected
so far, will split the transition, and the phase diagram a
function ofm andh will be similar to Fig. 4 in Ref. 57. There
will be an intermediate phase in whichsxy

s is quantized and
halfway between the quantized values in the phases on e
side.~This is somewhat like the intermediate MR phase p
duced by tunnelingt in thep-wave case.! In the present case
the Zeeman term leaves unbroken aU(1) subgroup of the
SU(2) symmetry present in the spin-singlet paired state;
h parallel to thez axis in spin space, thisU(1) is generated
by Sz . The pairing is still between spin↑ and spin↓, and so
the symmetry is the same as in thep-wave case: with disor-
der, the distinction betweenp-wave andd-wave, and be-
tween spin singlet and spin-triplet, is lost. Therefore we
pect that in this intermediate phase, there is a single ch
Dirac fermion mode on the edge, and that the statistics pr
erties are the same as those of the 331 state. Also, the
sitions from the weak-pairing abelian phase, in which t
statistics properties will be unchanged even though
SU(2) symmetry is broken~similar to the effect oft on the
331 state!, to this phase, and from this phase to the stro
pairing phase withsxy

s 50, are expected to be in the unive
sality class of the usual IQHE.56–58Here, the unbrokenU(1)
of spin is playing the role of the particle number in the usu
IQHE case; the real particle number is of course still n
conserved in the paired state. The appearance of this sym
try class in a disordered superconductor was seemingly o
looked by AZ; in fact, there are two such possible classes
which there is an unbrokenU(1) @not SU(2)], and T may be
either unbroken or broken. By applying the methods used
AZ in the case of broken T and unbrokenU(1) symmetry,
one is led back to the usual unitary ensemble, with the sp↑
and spin↓ quasiparticles playing the role of particles an
holes, respectively. It follows that these phases at nonzeh
possess a nonvanishing density of~localized! states for the
quasiparticles atE→0. In the two-dimensional case, the un
tary class admits a topological term with coefficient}sxy

s in
our case, and thus an IQHE transition. This is consistent w
the results in Ref. 56. Note that the relevant interaction
fects in the case of paired states and the IQHE may turn
to be different, however, so the equivalence might not h
when interactions are taken into account.

Turning to thep-wave states relevant to the double-lay
system in the FQHE, fort50 and with nonzero disorder w
are once again in the situation just discussed of broken T
unbroken U(1). Hence, for this case, we again expe
within our model of noninteracting quasiparticles, a tran
tion between quantizedsxy

s phases~analogs of the weak and
strong-pairing phases! that is in the universality class of th
noninteracting IQHE. WithtÞ0, we saw in the pure cas
that the transition splits into two, each in the class of t
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spinlessp-wave case, and the intermediate phase had
properties of the MR state. The nonzero tunneling breaks
U(1) symmetry. We consider this case next, and then re
to its application to the double-layer system.

The symmetry classes of pairing of spinless fermions
with SU(2) symmetry fully broken by the Hamiltonian, ar
denotedDIII ~with unbroken T! andD ~with broken T! by
AZ. These cases were not analyzed in two dimensions
viously, but some of our results have been found indep
dently in Ref. 97~see also a remark in Ref. 54!. Our interest
is in classD, with broken T. In this case the nonlinear sigm
model target~super-! manifold isSO(2n)/U(n) ~using rep-
licas in the compact formulation, withn→0), or
Osp(2nu2n)/U(nun) using supersymmetry~with n.0
arbitrary!.52 In the supersymmetric formulations, classesC
andD differ in that, while the bosonic submanifolds are re
forms of SO(2n)/U(n)3Sp(2n)/U(n) in both cases, in
classC the first factor is noncompact and the second co
pact, and in classD it is the other way round~corresponding
to the compact replica formulation!.52 ~These statements ar
for n.1. For n51, the first factor is a single point in bot
cases.! In the two-dimensional case, classD admits a topo-
logical term in the nonlinear sigma model, like classC. In
the case of classD, there is no continuous symmetry in th
underlying fermion problem. The only candidates for t
physical meaning of the couplings in the nonlinear sig
model are in terms of thermal conductivities, since energ
still a conserved quantity.53 The diagonal~dissipative! ther-
mal conductivitykxx5kyy , and the off-diagonal LR conduc
tivity kxy have the dimensions ofkB

2T/h ~h is Planck’s con-
stant,52p in our units! at low temperatures. We define

kxx5
p2kB

2T

3h
k̃xx ,

~56!

kxy5
p2kB

2T

3h
k̃xy ,

where the numerical factor ofp2/3 is that which arises in the
quantized values ofkxy ~see Sec. IV C!, and so may be con
veniently included here. Then we expect that the sig
model couplings are~similarly to the charge and spin tran
port cases, where no factors ofkB

2T are involved! 1/g2

;k̃xx , andu54pk̃xy . Since the quantized values ofk̃xy are
k̃xy5c, which is a multiple of 1/2 for Majorana fermions, w
have arranged that the quantized values ofu would be mul-
tiples of 2p. We expect that if the nonlinear sigma model f
classD is derived microscopically at weak coupling, whic
we will not attempt here, then the above relation foru will
hold. We note here that in classD, the density of states a
E→0 in the localized~quantizedk̃xy) phases is expected t
approach a nonzero nonuniversal constant, as one can
from the random matrix expressions in AZ,52 using an argu-
ment in Ref. 55. We want to emphasise that the nonlin
sigma model in classD describes only the case of very g
neric disorder, and not necessarily more restricted form
disorder. We will return to this point below.

We may now consider the form of the RG flows for cla
D in two dimensions. We begin with perturbation theory
weak coupling, that is largek̃xx . This was considered previ
e
e

rn

r

e-
n-
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a
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r
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t

ously for classes C and CI,51,53 and for classD is mentioned
in Ref. 54. We define the RG beta function as

bxx~g2![
d~g2!

d ln L
, ~57!

whereg2 is the nonlinear sigma model coupling squared, a
g2;1/k̃xx , andL is the length scale on which the renorma
ized coupling is defined. In two dimensions this has the fo

bxx~g2!5ag41O~g6! ~58!

at weak coupling~small g2); effects of the topological term
involving u, if the model admits one, are nonperturbative
g2, of order e2b/g2

, and contain theu dependence.~Also,
there will be another beta functionbxy[du/d ln L for u,
which will be entirely nonperturbative.! Here a and b are
constants. In classesC andCI, a is positive,51,53and the flow
is towards strong coupling, that is localization, as shown
Fig. 2~a! for classC. However, in classesD andDIII , a is
negative, and in fact equal to minus its values inC andCI,
respectively.54,98 The reason lies in the relation of the targ
~super-!manifolds in the nonlinear sigma models, describ
above. This relation is similar to that between the manifo
in the symplectic~spin-orbit scattering! and orthogonal~po-
tential scattering! ensembles of the usual random matrix
localization problems, where thea’s also have opposite
signs. The origin of this is that thea term in the beta function
of any nonlinear sigma model is related to the Ricci curv
ture tensor of the target manifold. When we compare th
for the compact and noncompact versions of the ‘‘same s
metry,’’ such asSp(2n)/U(n) ~at n a positive integer!, we
find that they are of opposite sign: the noncompact case
negative curvature, the compact positive. These geome
phenomena for symmetric Riemannian~non-super-! mani-
folds are discussed by Helgason.99 The noncompact spac
Sp(2n,R)/U(n) at n→0 represents classD in perturbation
theory, as does the compact spaceSO(2n)/U(n) in the same
limit, and so their perturbativeb functions are equal. This
establishes the result using replicas. Likewise for the tar
supermanifolds, the factors in the bosonic parts each h
opposite curvature in the two cases, and this presumably
tends to the full supermanifold. Consequently,a has the op-
posite sign in the two cases. A similar result also holds in
principal chiral models with target spacesSp(2n) and
SO(2n) in the compact replica approach, withn→0, which
describe classesCI andDIII , respectively. Note that in the
unitary case the target supermanifold isU(n,nu2n)/
@U(nun)3U(nun)#, and the bosonic part contains just th
compact and noncompact forms ofU(2n)/@U(n)3U(n)#,
so the model maps to itself under interchange of comp
and noncompact, and hence the net coefficienta in the uni-
tary case vanishes, as is well known.

We now try to find the simplest possible flow diagra
compatible with the weak-coupling behavior and some ot
simple requirements. In the unitary case, the flows in F
2~a! can be considered to be the simplest possible, on inc
ing nonperturbativeu-dependent effects that cause the attr
tive fixed points to be atu[0 ~mod 2p). These flows are in
fact obtained if one takes the dilute instanton gas calculati
of Pruisken, which are the leading nonperturbative effect
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10 290 PRB 61N. READ AND DMITRY GREEN
weak coupling, together with the perturbation theory res
just discussed, and uses these forms for all coupling value96

The nontrivial fixed point atu5p and at some universalsxx

controls the transition between the quantized fixed point
this case. The picture obtained from these flows seems t
in qualitative agreement with what is known from numeric
work for this transition in the unitary ensemble, and for cla
C.56

For classD we can try to guess the nonperturbative fo
of the flows without calculation. In view of the weak
coupling result, we could try reversing the arrows on t
flows for unitary and classC. However, we also expect tha
the stable, attractive fixed points, which will represent qu
tized values ofk̃xy at k̃xx50, will be at u[0 ~mod 2p)
again, not atp ~mod 2p). In particular, this means that a
insulating phase with quantizedk̃xy50 is possible. It seems
reasonable that sufficiently smallk̃xx can produce localiza
tion when k̃xy50, in spite of the flow tok̃xx5` in the
weak-coupling region, just as in other localization problem
including the case of spin-orbit scattering, and this should
stable against small changes ink̃xy . In order to achieve this
we also shift the flows byp along theu direction. The result
is the flow diagram shown in Fig. 2~b!. The interesting non-
trivial fixed points now occur on the linesu[0 ~mod 2p).
These flows could be checked in the weak-coupling reg
by comparing them with a dilute instanton gas calculation
in the unitary case. Indeed, if the latter calculation is
sumed to give the same form as in the unitary case,96 as is
plausible, then the competition with the perturbative ter
will give the flows as shown.

In order to use the RG flow diagram to make predictio
about the effects of disorder on the pure transition from w
to strong pairing with T broken and no spin-rotation symm
try, we need to know where the bare values ofk̃xx and k̃xy
lie on the diagram. In the usual IQHE unitary case, and a
for class C, the values are shown as the dashed curve in
2~a!. If one uses the self-consistent Born approximation
obtain the values in the IQHE case, for disorder weak co
pared with the cyclotron energy, then one obtains a se
circle in the sxx-sxy plane.96 The precise position of the
curve is unimportant, but it associates the transition, at wh
sxy is half an odd integer, with the middle of the disorde
broadened Landau bands. Similar behavior occurs for c
C.

In the present case of classD, we again expect the bar
values ofk̃xx andk̃xy to lie on an arc, as shown in Fig. 2~b!.
These values pass through the quantized points atk̃xx50
(g25`) and u[0 ~mod 2p) ~quantizedk̃xy). This is rea-
sonable, as these are the values in the two phases in the
case, and disorder that is weak compared with the gapumu in
the spectrum should produce only small corrections to th
values. Connecting these regions with the dashed arc,
always produce a curve of the form shown for topologi
reasons. This curve intersects the separatrices shown, w
flow into the nontrivial fixed points. We see that the regio
near the quantized fixed points flow into those fixed poin
so thatthe quantized phases, one of which corresponds to
nonabelian statistics phase in the pure case, still exist in
presence of disorderaccording to our proposed flow dia
lt
.
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gram. But there is an intermediate set of bare values neu
[p ~mod 2p), which flow to weak coupling, and at larg

scales they map onto the entire interval ofk̃xy values be-
tween the two quantized values in question, with ak̃xx that
increases logarithmically withL, according to the weak cou
pling beta functionbxx above. This is therefore aninterme-
diate phase with metallic behavior of the thermal conducti
ties, between the two quantized phases. The intermediate
phase is separated by phase boundaries from the quan
phases, and the critical behavior at these transitions is g
erned by the nontrivial fixed points. At these fixed poin
k̃xy is equal to the quantized value in the neighboring qu
tized phase. The critical exponents for these transitions
unknown at present. Experimentally, one would see plate
in k̃xy , separated by intermediate regions, and the width
the latter will stay nonzero as the system size goes to infin
and as the temperature goes to zero. In the intermediate
gions,k̃xy will vary continuously to interpolate its neighbor
ing quantized values, andk̃xx will have a peak, the height o
which will grow logarithmically with increasing system siz
or inverse temperature. We emphasize that the charge tr
port properties are still either superconducting or quanti
Hall, depending on the system considered, and unaffecte
the transition in the quasiparticles@there would be a collec-
tive mode~phonon-like! contribution to thermal transport in
a neutral superfluid case, such as a He3 film#.

We should respond to one possible objection to our cla
that there will generically be an intermediate metallic pha
in the class-D problem~this point is raised in Ref. 97!. This
objection begins with the pure problem, in which~since we
assume noninteracting quasiparticles! the critical theory is a
Majorana fermi field with a mass term that changes sign,
then considers weak disorder as a perturbation of this c
tinuum theory. The similar problem of a Dirac field has be
analyzed in recent years,100 and a central argument is that fo
E50, one can consider the problem as a Dirac field in t
~Euclidean! dimensions. It is then argued that there are o
a few possible random terms that can be included in
two-dimensional~2D! Dirac action that are marginal or re
evant by power counting at the pure fixed point. These ter
which are bilinears in the Dirac field since the problem
noninteracting, are a randomU(1) vector potential and two
types of random mass term. For the random Majorana
mion, no U(1) vector potential is possible, and there is
unique mass term. It is further known that the mass term
marginally irrelevant for weak disorder; this type of random
ness arises when one considers the 2D Ising model with
order in the intersite Ising couplings.101 If one assumes tha
the disordered paired system we consider here must fall
this scheme, then the only possible randomness is irrelev
and there will be a transition directly between the disorde
versions of the weak- and strong-pairing phases, with
critical properties of the pure system, up to logarithmic c
rections, in disagreement with our prediction of an interm
diate phase and a different universality class.

There is, however, a form of disorder not considered
this argument. In Sec. II, we discussed vortices in the g
function, and in Sec. II C related their description in terms
the gap function and the vector potential of the underly
problem to the vielbein and spin connection that appea
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the general Majorana action. We should consider the po
bility that these are random; indeed, the general analysi
AZ requires generic randomness, even though the Dira
Majorana actions do not explicitly appear there. Not all
the random fluctuations of these quantities are necess
relevant. For example, small random fluctuations of the m
nitude of the vielbein~i.e., of uD̂u) around its non-zero mea
are irrelevant by power counting. Also, if the gap function
nonzero the vector potential can mostly be gauged away
cause the superconductor is a Meissner phase. However
is clearly not true at a vortex, and for general probabil
distributions of the disorder, vortices will be present. In t
FQHE application, there is underlying potential disord
which couples to the particle density, and for unbound
distributions of disorder, or for sufficiently strong disord
with a bounded distribution, it will nucleate vortices~FQHE
quasiparticles! in the ground state, which can occur in isol
tion from other vortices since they have finite energy. It
not difficult to see, either intuitively or formally, that a sma
density of randomly placed vortices will be highly relevant
the massless Majorana critical point. Intuitively, they intr
duce destructive phase interference. Formally, in the 2D M
jorana action, the effect is to insert the spin fields of t
Majorana theory~so-called because they represent the Is
spins in the related Ising model!, which ~in the same gauge
choice as earlier! cause square-root branch points in the M
jorana field.92 Such random vortices do not seem to ha
been considered in previous work on random Dirac fiel
They are relevant because, while the spin field in the crit
Majorana theory has scaling dimension 1/8~which corre-
sponds to a relevant perturbation even in the non-rand
case!, on replicating or supersymmetrizing the system,
spin fields act on all the components simultaneously,
hence their dimension is then 031/850. Thus the coeffi-
cient with which these fields appear in the action after av
aging has scaling dimension 2, showing they are stron
relevant.98 This will cause an RG flow away from the pur
Majorana fixed point, and we expect the generic behavio
classD, with the intermediate metallic phase, to result. A
other possible form of disorder is that which violates thel
521 symmetry, that is general px1 ipy pairing with random
coefficients. If both were completely random, the avera
would restore parity, that is the symmetry of reflection in a
line, and prevent the existence of nonzerok̃xy , so this form
of disorder is not completely acceptable in our physical s
tems; we must allow for a net violation of parity. Thus, t
generic disorder that defines classD should include all of
these relevant effects, and randomly placed, isolated vort
alone are a relevant perturbation that leads to a flow a
from the pure Majorana critical theory. Notice that, with ra
dom vortices included, the ordered phase we are descri
is no longer a superconductor in the strict sense, due to
random phases frozen into the gap function. Instead i
what has been called a gauge glass, since the order in the
function is similar to that in a spin glass.

In contrast, in the random bond Ising model~a subject
also raised in Ref. 97!, negative bonds produce frustrate
plaquettes, and a string of negative bonds produces two f
trated plaquettes at the ends of the string. The insertion
semi-infinite string of negative bonds is the definition of t
Ising disorder operator of Kadanoff and Ceva,102 which is
si-
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dual to, and at the critical point has the same scaling dim
sion as, the Ising spin field. However, in this case the ana
sis of weak randomness in terms of a random mass is ju
fied, because for a low probability of negative bonds t
disorder variables~vortices! appear only in closely-space
pairs, not in isolation. In the continuum critical field theor
the operator product of two disorder operators, which rep
sents the close pair, produces the Majorana mass oper
and thus the randomness generates the random mass
We see that the distribution of the randomness in the Is
problem with weak bond disorder differs substantially fro
the problem we wish to consider. While the random bo
Ising model in 2D does have a direct transition between
two quantizedk̃xy phases, and a multicritical point, there
no reason to suppose that these occur in classD.

The properties of the disordered version of the MR pha
which has a nonzero quantizedk̃xy , are subtle. Since we
have assumed that isolated vortices are possible, which
localized FQHE quasiparticles analogous to those in
usual states on the plateaus in the FQHE, these will ca
zero modes, and there will be 2n21 many-particle states
when the system contains 2n vortices. These are very nearl
degenerate when the vortices are well separated, since
energy splittings are expected to decrease exponentiall
the separation of the vortices. Nonabelian statistics of ad
tional vortex ~FQHE quasiparticle! excitations should be
considered in terms of exchanges of such quasiparticles s
rated by many times the typical separation of the vortices
the ground state. Then the fermion zero modes of the gro
state can interfere with those on the added quasipartic
complicating the nonabelian statistics properties. Furt
study of these effects is beyond the scope of this paper.

Finally, we return as promised to the case of the doub
layer system with tunnelingt. Then the phase boundaries
nonzerot between the weak-pairing, abelian phase, the M
phase, and the strong-pairing phase will be broadened
replaced by an intermediate region in which metallic therm
properties will occur, again with sharp phase boundaries
tween this and the other phases. Ast→0, this intermediate
phase will shrink in width to become a single point att50,
where we have already explained that a direct transition
the IQHE universality class occurs. Thus this transiti
broadens to become the intermediate metallic phase at fi
t. We expect that at sufficiently smallt, there is a single
region of the metallic phase, which interpolates betweenk̃xy
values differing by two steps, which are the values in tht
50 weak and strong-pairing phases. Ast increases, a point is
reached at which another plateau ink̃xy appears, which is the
MR-type phase. Such behavior is allowed by our flow d
gram, if we plot it fromu50 to u54p, and the initial val-
ues lie on an arc between the quantized fixed points at th
u values that avoids the basin of attraction of the quanti
fixed point at u52p completely for smallt, but not for
larger t.

VI. CONCLUSION

In this paper, we have considered exotic properties of
and T-violating paired states of fermions in two dimensio
and the relation to the FQHE using pairing of compos
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fermions. The results have been summarized in the Introd
tion.

To conclude, our main results are:~i! p-wave pairing in
spinless or spin-polarized fermions in the weak-pairing ph
leads to the properties also found in the FQHE in the M
states, and supports the ideas of nonabelian statistics
robust property, at least in the case of a pure system. S
statistics will also occur for the vortices in such ap-wave
state in general in charged superfluids, and in neutral su
fluids moduloU(1) phase factors that arise from the com
pressible charge sector;~ii ! in anA-phase typep-wave phase,
statistics may be abelian, though tunneling or a Zeeman t
may lead to a transition to a MR phase;~iii ! in the d-wave
spin-singlet case, the HR state corresponds to the trans
point, and, from now on, may be disregarded in consider
generic spin-singlet FQHE systems, which will most like
be in the weak-pairing phase. The latter is abelian, but h
nonzero Hall spin conductivity, and spin-1/2 chiral Dirac fe
mions on the edge;57 ~iv! disorder does not destroy th
phases in question, but may modify the MR phase in
essential way. In the spinlessp-wave case, randomly place
vortices are a relevant perturbation of the pure transition,
there is an intermediate phase with metallic thermal cond
tivity properties due to delocalized BCS quasiparticles.

Issues which remain to be addressed include the full
fective theories for the states, and for the transitions betw
them, and the effect of interactions on the random proble
Also, a direct derivation of nonabelian statistics in terms
pairing of fermions in the MR case is desirable.

One further comment on tunneling into the edge is
order. Such tunneling could provide a useful diagnostic
the paired states in the FQHE. Since the fermion excitati
on the edge in the weak-pairing phases are now always D
~or Majorana!, their contribution to the exponent is alway
the same. Thus, at filling factorn51/q ~whereq will be 2, 4,
. . . , for fermions such as electrons!, the current will scale
as I;Va with a5q11 in all the weak-pairing or MR
phases. In contrast, in the Halperin-type paired states,
havea54q.44 The former result is the same as in the co
pressible Fermi-liquid-like states.103 Assuming that edge
theories of fully gapped bulk states must always be unit
conformal field theories, as argued in Sec. IV, the expon
for tunneling into an edge on which all modes propagate
the same direction must in fact always be an odd integer
a consequence of the Fermi statistics of the electrons. Fo
5/2 state, theI;V contribution of the LLL will presumably
dominate.

Note Added:In view of a suggestion which has circulate
that the Fermi-liquid-like phase of Ref. 25 may generica
have an instability to pairing in some channel, albeit at
tremely low energy or temperature scales, we will consi
here the case of a weak-pairing phase of spin-polarized
mions in an arbitrary angular momentuml eigenstate (l must
be odd!. Similar arguments as before show that there will
u l u chiral Majorana fermion modes on an edge, and co
spondingly 2u l un21 degenerate states for 2n vortices. Since
u l u must be odd, this always leads to nonabelian statis
with the same monodromy properties as forl 521 up to
Berry phase factors~because each added pair of Majoran
makes a Dirac fermion which contributes only abelian
fects!.
c-

e

s a
ch

r-

m

on
g

a

n

d
c-

f-
en
s.
f

r
s

ac

e
-

y
nt
n
as
he

-
r
r-

e
-

s,

s
-

ACKNOWLEDGMENTS

We thank M.P.A. Fisher, I.A. Gruzberg, F.D.M. Haldan
B.I. Halperin, T.-L. Ho, A.W.W. Ludwig, M.V. Milo-
vanović, G. Moore, E.H. Rezayi, and T. Senthil for informa
tive comments and helpful discussions. N.R. is grateful
the hospitality of the Institut Henri Poincare´, Paris, where
this paper was completed. This work was supported by N
Grants Nos. DMR-9157484 and DMR-9818259.

APPENDIX A: QUANTIZED HALL CONDUCTIVITY
FOR SPIN

In this Appendix, we provide a detailed derivation of th
Hall conductivity in ~iso-! spin transport in thed- and
p-wave (A-phase! cases. This is equivalent to showing th
the induced action for the system in an external gauge fi
that couples to the~iso-! spin is a CS term. In thed-wave
case, the system is spin-rotation invariant, so we obtain
SU(2) CS term, while in thep-wave case, there is only
U(1) symmetry, so we find aU(1) CS term. In both cases
the Hall spin conductivity is given in suitable units by
topological invariant. Within the BCS mean field approac
using a suitable conserving approximation, this topologi
invariant is the winding number of (uk ,vk) discussed in Sec
II, and is therefore an integer, which is the statement
quantization. We argue that the quantization in terms o
topological invariant is more general than the approximat
used.

Considering first the spin-singlet paired states, we use
Nambu basis where the symmetries are transparent. De

C5
1

A2
S c

isyc
†D , ~A1!

with

c5S c↑
c↓

D , ~A2!

so thatC transforms as a tensor product of particle-hole a
spin-space spinors. We consider an interacting system
approximate it as in BCS theory, then with a minimal co
pling to the gauge field, we use a conserving approximat
to obtain the spin response. In Fourier space, we should
that

Ck5
1

A2
S ck

isyc2k
† D . ~A3!

In the Nambu basis, the kinetic energy becomes~again,K
5H2mN)

K05(
k

jk
0~ck↑

† ck↑1ck↓
† ck↓!5(

k
jk

0Ck
†~sz^ I !Ck ,

~A4!

where jk
05uku2/(2m)2m is the kinetic energy, containing

the bare massm, and the products in the spinor space a
understood. Products likesz^ I act on the Nambu spinors
with the first factor acting in the particle-hole factor, th
second in the spin-space factor. The interaction term, fo
spin-independent interactionV, is
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K int5
1

2 (
kk8q

Vq :Ck1q
† ~sz^ I !CkCk82q

†
~sz^ I !Ck8 :.

~A5!

Here the colons :. . . : denote normal ordering, that is all th
c†s are brought to the left. In the BCS-extended Hartr
Fock approximation, the effective quasiparticle Hamiltoni
~for later reference! is

Keff5(
k

Ck
†@jk~sz^ I !1ReDk~sx^ I !

2Im Dk~sy^ I !#Ck . ~A6!

This is for singlet pairing, whereD2k5Dk , and not just for
d-wave. Here,jk is jk

0 plus the Hartree-Fock corrections.
we define a vector

Ek5~ReDk ,2Im Dk ,jk! ~A7!

then the quasiparticle energyEk5uEku, and

Keff5(
k

Ck
†~Ek•s^ I !Ck . ~A8!

In the Nambu notation, it is clear thatK5K01K int , and
Keff , are invariant under globalSU(2) rotations that act on
the spin-space, that is the second factor in the tensor p
ucts. The spin density, the integral of which over all spac
the total spin and generates such global transformations,
the spin current densities are given by

J0
a~q!5

1

2 (
k

Ck2q/2
† ~ I ^ sa!Ck1q/2 ~A9!

Ji
a~q!5

1

2 (
k

ki

m
Ck2q/2

† ~sz^ sa!Ck1q/2 , ~A10!

where i 5x, y is the spatial index, anda5x,y,z is the spin-
space index. Spin conservation implies the continuity eq
tion, as an operator equation,

]Jm
a /]xm50, ~A11!

wherem50,x,y, and the summation convention is in force
So far we have not introduced a gauge field for sp

Since the spin is conserved locally, we can turn the sym
try into a local gauge symmetry by introducing anSU(2)
vector potential, and making all derivatives covariant. T
effect onK is to add the integral of

Am
a Jm

a 1
1

8m
Ai

aAi
aC†~sz^ I !C. ~A12!

The gauge field is to be used solely as an external sou
with which to probe the spin response of the system,
then set to zero.

If we now consider integrating out the fermions, then w
can obtain an action in the external gauge fields, which
be expanded in powers ofAm

a . The zeroth-order term is th
free energy density, times the volume of spacetime, and
first-order term vanishes by spin-rotation invariance. T
second-order term corresponds to linear response: the se
-

d-
is
nd

a-

.
e-

e

e,
d

n

e
e
nd

functional derivative with respect toAm
a , atAm

a 50, yields the
~matrix of! linear response functions. In particular, the spa
components yield the conductivity tensor in the usual w
Therefore we consider the imaginary-time time-order
function,

Pmn
ab52 i ^Jm

a ~q!Jn
b~2q!&, ~A13!

where time-ordering is understood, and from here on we
a convention thatp, q, etc. stand for three-vectorsp
5(p0 ,p), and furtherp05 iv is imaginary for imaginary
time. For m5n5 i 5x or y, an additional ‘‘diamagnetic’’
term n̄dab/4m is present inPmn

ab , which we do not show
explicitly. As consequences of the continuity equation a
the related gauge invariance,Pmn must be divergenceless o
both variables,qmPmn5qnPmn50. To maintain these when
using the BCS-Hartree-Fock approximation for the equil
rium properties, one must use a conserving approxima
for the response function, which in this case means summ
ladder diagrams~compare the charge case in Ref. 2, p
224–237!.

One begins with the BCS-Hartree-Fock approximatio
which can be written in terms of Green’s functions as~we
consider only zero temperature, and*dp0 is along the imagi-
nary p0 axis throughout!

G21~p!5p02jp
0sz^ I 2S~p!, ~A14!

S~p!5 i E d3k

~2p!3
~sz^ I !G~k!~sz^ I !V~k2q!.

~A15!

Note thatG(p) andS(p) are matrices acting on the tens
product space. The equations are solved by

G21~p!5p02Ep•s^ I , ~A16!

~we write 1 for I ^ I ) as one can also see from the effecti
quasiparticle HamiltonianKeff , and Dp obeys the standard
gap equation.

In the response function, the ladder series can be sum
and included by dressingone vertex, to obtain~again not
showing the diamagnetic term!

Pmn
ab~q!52 i E d3p

~2p!3
tr@gm

a ~p,p1q!G~p1q!

3Gn
b~p1q,p!G~p!#, ~A17!

wheregm
a is the bare vertex,

g0
a~p,p1q!5

1

2
I ^ sa , ~A18!

g i
a~p,p1q!52

~p1 1
2 q! i

2m
sz^ sa , ~A19!

andGm
a is the dressed vertex satisfying
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Gn
b~p1q,p!5gn

b~p1q,p!1 i E d3k

~2p!3
sz^ IG~k1q!

3Gn
b~k1q,k!G~k!sz^ IV~p2k!. ~A20!

At small q, we can obtain useful information about this fun
tion from the Ward identity that results from the continui
equation. The particular Ward identity we use here is
exact relation of the vertex function to the self-energy, a
the conserving approximation~the ladder series! was con-
structed to ensure that it holds also for the approxima
vertex and self energy functions.

Following Schrieffer’s treatment,2 we consider the vertex
function with external legs included:

Lm
a ~r 1 ,r 2 ,r 3!5^Jm

a ~r 3!C~r 1!C†~r 2!&, ~A21!

for spacetime coordinatesr 1 , r 2 , r 3. Applying ]/]r 3m to
both sides and using the operator continuity equation,
obtain the exact identity in Fourier space

qmGm
a ~p1q,p!5 1

2 I ^ saG21~p!2 1
2 G21~p1q!I ^ sa .

~A22!

SinceG21 is trivial in the spin-space indices, it commute
with I ^ sa . Hence, atq→0, the right-hand side vanishes, s
G(p1q,p) has no singularities asq→0. This differs from
the charge case, for example, where this calculation~using
the ladder series approximation! leads to the discovery of th
collective mode.63 Since the spin symmetry is unbroken, n
collective mode is necessary to restore this conservation
and so there is no singularity in the vertex function for sp

One can verify that the Ward identity is satisfied using
BCS-Hartree-FockG21 and the ladder series forG. At q
50, this yields the important results

Gm
a ~p,p!52 1

2 ]mG21~p!I ^ sa , ~A23!

or explicitly,

G0
a~p,p!5 1

2 I ^ sa ,

G i
a52 1

2 ] iG
21~p!I ^ sa , ~A24!

where] i and ]m stand for]/]pi , ]/]pm from here on, and
the extra minus in the first relation is consistent because
plicitly qmGm5q0G02qiG i .

We now calculateP at smallq. To zeroth order, use o
the Ward identity shows that theJ-J function gives zero,
except whenm5n5 i . In that case, it reduces to a consta
that cancels the diamagnetic term also present in just
case. Hence, we require only the part first-order inq. In the
expression forP above, we first shiftp→p2 1

2 q, so thatq
no longer appears in any bare vertices, but does appear i
Green’s functions on both sides of the ladder, between
rungs that are the interaction lines. Hence to first order,
obtain a factor6 1

2 ]mG57 1
2 G]G21G in place ofG in one

position in the ladder. Since there may be any number
rungs~including zero! between this and either of the vertice
n
d

d

e

w,
.
e

-

t
at

the
e
e

f

at the ends, the terms can be summed up into a ladder d
ing each vertex, evaluated atq50. Hence, we obtain to firs
order

Pmn
ab~q!52

i

2E d3p

~2p!3
tr@Gm

a ~p,p!ql]lGGn
b~p,p!G~p!

2Gm
a ~p,p!G~p!Gn

b~p,p!ql]lG#. ~A25!

Using the Ward identity, this becomes

Pmn
ab~q!5

i

8
qlE d3p

~2p!3
tr$~ I ^ sa!~ I ^ sb!G]mG21

3@G]lG21,G]nG21#%. ~A26!

Since theG’s are independent of the spin-space indices,
explicit s ’s factor off, and the result isdab times a spin-
independent part. The latter can be simplified using the BC
Hartree-Fock form ofG, by writing the latter as

G~p!5
p01Ep•s^ I

p0
22Ep

2
. ~A27!

The spin-independent factor containsemnl since it is anti-
symmetric in these labels. Keeping track of the signs,
find for the quadratic term in the induced action

1

4p

M
4 E d3rAm

a
]An

a

]r l
emnl , ~A28!

with M given by the topological invariant

M5E d2p

8p
e i j Ep•~] iEp3] jEp!/Ep

3 . ~A29!

The right-hand side is exactly the winding numberm dis-
cussed in Sec. II, and is an integer as long asE is a continu-
ous, differentiable function ofp; it is 2 for thed-wave case.

To ensureSU(2) gauge invariance, the CS term shou
include also a term cubic inA, with no derivatives. For this
term we evaluate the triangle one-loop diagrams with th
insertions ofJ, with each vertex dressed by the ladder seri
Setting the external momenta to zero, the Ward identity
be used for all three vertices, and the result can be seen t

Pmnl
abc ~0,0!52

1

24E d3p

~2p!3
tr@~ I ^ sa!G]mG21

3$~ I ^ sb!G]nG21,~ I ^ sc!G]lG21%#.

~A30!

The anticommutator$ , % arises since the result must be sym
metric under permutations of the index pairsm, a, etc. The
productsasbsc , when traced over the spin-space indice
yields a factor 2i eabc , which is antisymmetric, and so th
remainder must containemnl to maintain symmetry; the res
of the structure is the same as before. Hence, the full resu
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the SU(2) CS term, which we write in terms of the 232
matrix vector potentialsAm5 1

2 saAm
a ,

k

4pE d3xemnltrS Am]nAl1
2

3
AmAnAlD . ~A31!

Here, k is the conventional notation for the coefficient
such a term, in this same normalization; if we wished
quantize the theory by functionally integrating overA, we
would needk5 an integer. In our casek5M/251 for d
wave.

For the spin-triplet case with an unbrokenU(1) symme-
try, we must use the fact thatD2k52Dk . For example, in
the two-dimensionalA phase, as occurs in the 331 state
the double-layer FQHE system with zero tunneling, d
cussed in Sec. III, the pairs are in the isospinSz50 triplet
state↑ i↓ j1↓ i↑ j , and theU(1) symmetry generated bySz is
unbroken; we recall that the underlying Hamiltonian is n
assumed to have a fullSU(2) symmetry. The effective qua
siparticle Hamiltonian~38! becomes, in the Nambu-style no
tation,

Keff5(
k

Ck
†@jk~sz^ I !1ReDk~sx^ sz!

2Im Dk~sy^ sz!#Ck . ~A32!

The U(1) vector potentialAm couples toSz , and the vertex
functions containI ^ sz , which commutes with the BCS
Hartree-Fock Green’s functionG. The tensors appearing i
the three terms inKeff obey the same algebra as the three
that for the spin-singlet case~where they were trivial in the
second factor!, and as in that case commute withI ^ sz .
Consequently, the derivation for the induced action to q
dratic order inAm is similar to that for theSU(2) singlet
case above, and the traces in the Nambu indices can be
ried out with the same result as before, to obtain the abe
CS term

1

4p
ME d3rAm

]An

]r l
emnl , ~A33!

and no cubic term. In this case,M is again given by the
winding numberm, which is 0 or61 in thep-wave strong
and weak-pairing phases~respectively! discussed in this pa
per.

We note that the effect of the vertex corrections we
cluded as ladder series is to renormalize theq50 vertices as
shown in Eq.~A23! for the spin-singlet case, and use these
one-loop diagrams with no further corrections. This cor
sponds to the minimal couplingp→p2A in the action, as
one would expect by gauge invariance. If we assume su
coupling, and treat the low-energy, long-wavelength the
near the weak-strong transition as Dirac fermions with re
tivistic dispersion and minimal coupling to the extern
gauge field, then the expression forM as an integral overp
covers only half the sphere inn space, and we would get61
~d-wave!, 61/2 ~p-wave!. The missing part results from th
ultraviolet regulator in the field theory version of th
calculation,82 or from a second fermion with a fixed mass
some lattice models.100 In our calculation, the remainder i
provided by the ultraviolet region, whereDk→0 ask→`.
-

t

-

ar-
n

-

n
-

a
y
-

l

At the transition,m50, the map is discontinuous and cove
exactly half the sphere in thep-wave case, soM51/2, as in
other problems. In thed-wave case with rotational symme
try, the value ofuvk /uku ask→0 is nonuniversal, as noted i
Sec. IV A, and hence so is the value ofsxy

s at the transition.
This is a consequence of the nonrelativistic form of the d
persion relation of the low-energy fermions in this case. W
may also note that for a paired system on a lattice, as
models of highTc superconductors, a similar calculation w
give an integral over the Brillouin zone, which is a torusT2,
instead of thek plane, which can be compactified toS2. But
maps fromT2 to S2 are again classified by the integers, a
the integer winding number is given by the same express
so quantization is unaffected.

We can also argue that the quantization result away fr
a transition is exact in a translationally invariant system,
least in all orders in perturbation theory. For this we use
form in Eq. ~A26! or ~A30!, where the Ward identity for the
vertex has been used. Diagrammatically, it is clear that
exact expression can be similarly written, using the ex
~i.e., all orders in perturbation! Green’s function and vertex
function. ~This is also true when the CS gauge field intera
tion is included.! The Ward identity that relates them is e
act, and the result forsxy

s is of the same form as shown. Th
next step, the frequency integrals, cannot be done explic
in this case, because the precise form of the Green’s func
is unknown, and the analogs ofjk , Dk ~or of uk , vk) do not
exist. The latter do not exist because in general the pole
the Green’s function, which would represent the quasipa
cles, are broadened by scattering processes, except fo
lowest energies for kinematical reasons. However, the fo
in Eq. ~A26! is itself a topological invariant, as we will now
argue. As long as there is a gap in the support of the spe
function of G, G(p) is continuous and differentiable on th
imaginary frequency axis, and tends toI ^ I /p0 as p0→
6 i`. Thus,G21 exists and never vanishes. Considering t
spin-singlet case for convenience, the spin-space structu
trivial, so we may perform the corresponding traces, and t
G or G21 is a 232 matrix, with the same reality propertie
on the imaginaryp0 axis as in the BCS-Hartree-Fock ap
proximation. ~The spin-triplet case should work out sim
larly, because of the algebraic structure already mention!
It thus represents a real non-zero 4-component vector
R420, which topologically is the same asS3. S3 is obtained
by dividing G by its norm, (trG†G)1/2, and the normalizedG
is a 232 unitary matrix with determinant21, so it lies in
S3. Thek space can be compactified toS2 as before, and the
frequency variable can be viewed as an element of the in
val I5(21,1), so the integral is overS23I. However, since
the limit of the Green’s function asp0→6 i` for fixed k is
independent ofk, we can view this as simplyS3. Thus, we
are dealing with maps fromS3 to S3, the equivalence classe
of which are classified by the homotopy groupp3(S3)5Z.
The integral we have obtained simply calculates the inte
winding number or Pontryagin index of the map, when pro
erly normalized@G can be normalized to lie inSU(2) with-
out affecting the integral#. This establishes the quantizatio
of sxy

s in a translationally-invariant system with a gap,
least to all orders in perturbation theory, and probably can
made fully non-perturbative~as the Ward identity is already!.
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