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Theory of second-harmonic generation from quantum well states in ultrathin metal films
on semiconductors

Thomas Garm Pedersen, Kjeld Pedersen, and Thomas Brun Kristensen
Institute of Physics, Aalborg University, Pontoppidanstrœde 103, DK-9220 Aalborg Øst, Denmark

~Received 13 May 1999; revised manuscript received 9 November 1999!

Second-harmonic generation from quantum well states in metal films deposited on a semiconducting sub-
strate is discussed theoretically within a microscopic approach. The thickness dependence of electronic eigen-
states as well as band-structure effects related to motion in the plane of the film are taken into account and
semianalytical quantum well states are obtained at the perturbation level. Based on a general treatment of the
second-harmonic response of inhomogenous systems an effective second-order response tensor is obtained.
Agreement between theory and experiment is demonstrated from a comparison of calculated and measured
thickness dependence of the nonlinear response. In the case ofp to p curves the agreement is over the entire
range of film thicknesses, whereas the agreement in thep to s case is restricted to relatively thin films due to
the applied perturbation approximation. The transitions that are responsible for experimentally observed reso-
nances are identified.
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I. INTRODUCTION

The formation of quantum well~QW! states in layered
structures is of great importance for applications as wel
basic solid-state physics. Semiconductor QW’s play an
creasingly large role in fabrication of devices such as Q
lasers and in fundamental studies of the behavior of qu
two-dimensional electron systems~see, e.g., Ref. 1!. Simi-
larly, QW structures formed in purely metallic systems a
emerging as important tools for studies of, e.g., magn
properties.2,3 In comparison, investigations of QW effects
mixed metal/semiconductor structures are relatively fe
This is mainly because of difficulties in producing hig
quality metallic overlayers in these systems. A few repo
using various linear optical techniques such
photoemission4 and differential reflectance measuremen5

have demonstrated the presence of QW states formed in
tallic layers deposited on Si, however.

Recently, we have applied the unique surface sensiti
of second-harmonic generation~SHG! to follow the forma-
tion of QW states during growth of atomically flat Au~Refs.
6 and 7! and Ag~Ref. 8! films on Si~111!. The sensitivity of
SHG derives from the fact that electric dipole contributio
vanish in media with inversion symmetry. Hence, in stru
tures composed from such media, SHG mainly arises fr
interfaces, which break the symmetry. The interface sens
ity has previously been applied in studies of the me
semiconductor contact.9 In the case of an ultrathin overlaye
however, the electronic coherence extends throughout
layer and SHG cannot be discussed in terms of separate
tributions from the vacuum/metal and metal/semiconduc
interfaces. The added metallic overlayer modifies the e
tronic states of the semiconductor and, furthermore, in
duces new electronic states that are localized by the
potential. Consequently, SHG can be used as a highly se
tive probe of the formation of new states during deposit
of the overlayer. In particular, resonant transitions betw
overlayer states will show up as resonances in the sec
PRB 610163-1829/2000/61~15!/10255~12!/$15.00
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harmonic signal. Hence, SHG can directly probe the le
structure of the electronic system. Furthermore the quality
the metallic film can be inferred from such a measurem
since any roughness will tend to smear out the resonance
follows that the presence of distinct resonances is a c
indication of high-quality film growth. An additional advan
tage of SHG is that different interface properties can be
vestigated by measuring different tensor elements of the n
linear susceptibility. For instance, taking thez axis as the
surface normal, thezzzelement of the susceptibility provide
information about the electronic motion perpendicular to
surface. In particular, the effects of size quantization alo
the growth direction will be seen in this tensor element. Co
versely, thexxxelement is entirely determined by the motio
of electrons in the surface plane. It follows that by measur
this tensor element while rotating the sample around the
face normal, the in-plane symmetry of the electronic sta
can be deduced. In fact, thexxxelement vanishes in an amo
phous material and so its magnitude is a direct measur
the degree of structural order.

The major incentive for the construction of a theory d
scribing the second-harmonic response of me
semiconductor QW structures is the need for reliable me
ods of interpreting experimental optical data in terms
electronic and structural properties. In our previous wor8

preliminary modelling results for thep to s response of Ag
on Si~111! were presented. In the present paper we wish
present the detail of the complete theoretical framework
scribing SHG from QW’s formed by depositing ultrathin m
tallic films on a semiconducting substrate. In particul
noble metals deposited on Si~111! will be investigated and
results for all elements of the second harmonic response
sor will be presented. Previously, Petukhov and Liebsc10

and Luce and Bennemann11 have performed detailed micro
scopic calculations of SHG from metal surfaces. In additi
a qualitative theoretical treatment of SHG from QW states
purely metallic systems has been presented.12 A microscopic
theory of SHG from QW’s formed in metal/semiconduct
structures is lacking, however, making the interpretation
10 255 ©2000 The American Physical Society
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10 256 PRB 61PEDERSEN, PEDERSEN, AND BRUN KRISTENSEN
SHG data from such structures difficult. In a typical expe
ment, the reflected second-harmonic signal is monitored
ing film growth using a fixed set of polarization direction
for the second-harmonic and pump fields and a fixed pu
photon energy. In order to directly compare experimen
and theoretical results we consequently have to calculate
relevant tensor elements as a function of film thickness.
mentioned above, certain tensor elements are a hallmar
the presence of structural order, i.e., they vanish if the c
tallinity of the material is destroyed. In terms of their the
retical calculation, this property means that the assump
of free-electron-like motion in the film plane cannot be a
plied. Hence, a quantum mechanical description of the e
tronic states including band structure effects will be requir
In this work, such a quantum description is used and i
demonstrated how band structure effects may be taken
account at both quasiexact and perturbational levels. Su
quently, the induced nonlinear current density is calcula
using the density matrix formalism taking into account t
spatial variation of the electric fields. For simplicity, we on
consider the contribution to the nonlinear current due to
added electronic states. Thus, the background signal from
substrate will be neglected. This simplification is not a se
ous one since the background signal is easily substra
from the experimental curves. Consequently, theoretical
experimental results are directly comparable. The remain
part of the paper is organized as follows: In the next sect
quasiexact and perturbational calculations of QW states
presented. These states are then applied in a descriptio
the nonlinear response in Sec. III and analytical express
for the elements of the effective nonlinear susceptibility
derived. In Sec. IV, numerical calculations of the thickne
dependence of the nonlinear response are presented
number of different cases and a comparison between ex
mental and theoretical results is given. Finally, a summar
presented in Sec. V.

II. QUANTUM WELL STATES

In this section, we present the theoretical framework
the calculation of quantum well states including band str
ture effects. Highly accurate methods, such as self-consis
density-functional calculations,13–14 exist for this purpose.
We wish, however, to obtain semianalytical wave functio
which will allow us to evaluate the nonlinear response wi
out extensive numerical work. Therefore, an approxim
and simplified theoretical framework is applied below.
general, the in-plane motion of the high-lyings-p states is
not expected to deviate much from free electron-like beh
ior. Hence, these states are well described by a standard
cated Fourier expansion of the potential. In contrast,
deeperd states are highly localized and a tight-binding tre
ment is better suited for their description. This is certain
the case in noble metals for which the bulkd-band is well
below the Fermi level, e.g., 2.4 and 4.0 eV for Au and A
respectively. In the present study, however, we will conc
trate on the nonlinear response to optical fields of low-
moderate-photon energy for whichd-band excitations can b
ignored. Moreover, this case is well studied experimenta
due to the availability of Nd:YAG lasers with\v51.17 eV
for which neither pump nor second-harmonic photons
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reach thed-band. Hence, in the following a simple Fourie
expanded potential will be assumed. When fitted to ma
the experimental band structure, however, the Fourier exp
sion coefficients of thes-p potential will indirectly include
the influence of thed-bands. Consequently, with thez axis
perpendicular to the interfaces, the total potential can
written

V~r !5(
Gi

VGi
~z!eiGi•r, ~1!

whereGi is the projection of a reciprocal lattice vectorG
onto the surface plane. A potential of the form given by E
~1! leads to electronic states of the general form

cnk~r !5
1

2p (
K i

wnk~K i ,z!ei ~k1K i !•r, ~2!

wherek is a surface Bloch vector, i.e., of the formk5kxx̂
1kyŷ, and the summation overK i runs over the different
values ofGi . The factor (2p)21 is introduced for later con-
venience. Consequently, the Schro¨dinger equation reduces t
a set of coupled one-dimensional equations

H \2

2m
uk1K iu22

\2

2m

d2

dz22EnkJ wnk~K i ,z!

52(
Gi

VGi
~z!wnk~K i2Gi ,z!. ~3!

As mentioned above, band structure effects are expecte
be minor corrections since we are dealing withs-p states
exclusively. It follows that the solutions to the simple on
dimensional quantum well potentialV0(z) are excellent
zeroth-order approximations to the full solutions. The
zeroth-order solutions are of the formcnk

(0)(r )
5(2p)21wn(z)eik•r, where the real-valued functionwa(z)
is a solution to

H 2
\2

2m

d2

dz2 1V0~z!2EaJ wa~z!50. ~4!

Once the set of states$wa% is obtained, each of the unknow
functionswnk(K i ,z) can be expanded in this set according

wnk~K i ,z!5(
a

aa~K i!wa~z!, ~5!

where we have suppressed the dependence onn and k of
aa(K i) for notational convenience. An algebraic set of equ
tions determining the coefficientsaa(K i) can be constructed
by rewriting Eq.~3! according to

H \2

2m
uk1K iu22

\2

2m

d2

dz2 1V0~z!2EnkJ wnk~K i ,z!

52(
Gi

ṼGi
~z!wnk~K i2Gi ,z!, ~6!

where ṼGi
(z)5VGi

(z)2V0(z)dGi,0
. In this manner the

coupled differential equations can be reduced to an algeb
system given by
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H \2

2m
uk1K iu21Ea2EnkJ aa~K i!

52(
b

(
Gi

Vab~Gi!ab~K i2Gi!, ~7!

where

Vab~Gi!5E
2`

`

wa~z!ṼGi
~z!wb~z!dz. ~8!

Using the density-functional method of, e.g., Refs. 13 and
it is possible to obtain self-consistent solutions for the va
ous components of the potential. This leads to potential fu
tions which all decay rapidly to zero in the vacuum ha
space exceptV0(z), which asymptotically approaches th
image potential13–14 @actually an exponential rather than
t
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(2z)21 behavior is obtained#. In addition,VGi
(z) approaches

the bulk potential a few lattice constants into the meta
region. For simplicity, however, we will neglect the effec
of self consistency in the present study. Hence, the bulk
tential is assumed to remain valid right up to the met
vacuum and metal/Si interfaces, i.e., throughout the reg
0<z<d, whered is the thickness of the metal layer. In ord
to correctly reproduce the vacuum tail of the wave functio
the image potential is added toV0(z) for z,0. Similarly, the
coupling between QW states and the substrate valence
is neglected in that a constant potential2VS , taken as the
conduction band minimum of Si, is used inside the substr
The metal/Si interface is modeled by joining the metal
potential to the Si potential over a distanceL using a linear
dependence. Hence, the simple quantum well poten
V0(z), including the image potential, is taken as
V0~z!55
e2/8p«0~z2z0! z,0

2VB 0<z,d2L/2

2~VB1VS!/21~VB2VS!~z2d!/L d2L/2<z,d1L/2

2VS z>d1L/2

. ~9!
d

The location of the image planez0 is adjusted so thatV0(z)
is continuous atz50 and2VB is the spatially constant par
of the metal potential. VB is the sum of work functionF
and Fermi energyEF of the metal and in line with the ap
proximations used above, bulk values of these parameter
adopted. For both Ag and AuF andEF are approximately15

4.3 and 5.5 eV, respectively so thatVB59.8 eV and, conse
quently, z050.73 Å. Notice that the bulk Fermi energy
only utilized to calculate the potential and that the corr
thickness-dependent Fermi energy will be applied in the
culation of the optical response below. One last simplifi
tion concerns the treatment of quasifree states, i.e., s
with an energy larger than2VS that are not localized in the
quantum well region. This continuum is difficult to hand
numerically and, hence, artificial barriers are introduced a
distancel inside the Si substrate and into the vacuum. Car
taken thatl is sufficiently large that the final result is virtu
ally unaffected by this simplification. This is ensured pr
vided the spacing between two quasifree states is some
smaller than the width of these levels given by\/t, wheret
is the relaxation time. In practice, values aroundl'50 Å are
found to be sufficient. The approximate potential is illu
trated in Fig. 1. It is seen from the figure that an approxim
value of VS can be determined from the fact that th
conduction-band minimum of Si~111!-737 at the surface is
located approximately 0.4 eV above the Fermi level16 and,
hence,VS'3.9 eV. From a fitting procedure described belo
the valuesL52d ~Au! andL53d ~Ag!, whered52.3 Å is
the ~111!-surface monolayer thickness, have been obtai
for the width of the metal/Si interface.

For GiÞ0 the use of the bulk crystal potential allows
to write the components of the potential as
are

t
l-
-
tes

a
is

-
at

-
e

d

ṼGi
~z!5(

G'

VGi1G'
exp~ iG'z!@u~z!2u~z2d!#,

~10!

where theVG’s are the Fourier components of thebulk po-
tential and it is understood thatV050. The matrix elements
defined by Eq.~8! then read

Vab~Gi!5(
G'

VGi1G'
E

0

d

wa~z!exp~ iG'z!wb~z!dz.

~11!

In the bulk limit the discrete indexa is replaced by a con-
tinuous one (k') and Eq.~7! clearly reduced to the standar
matrix problem of bulk band-structure calculations.15 In fact,

FIG. 1. The one-dimensional quantum well potentialV0(z). The
barriers atz52 l andz5d1 l are introduced artificially in order to
limit the number of levels.
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10 258 PRB 61PEDERSEN, PEDERSEN, AND BRUN KRISTENSEN
solving the algebraic system in Eq.~7! is relatively straight-
forward. This follows from the fact that the dimension of th
coefficient matrix is the number of different eigenstates
$wa% times the number of distinctGi’s. In Refs. 17 and 18,
the bulk band structure of different noble metals was fit
using 4 and 16 different reciprocal lattice vectors, resp
tively. These sets are~a!: ~0, 0, 0!, ~21, 21, 21!, ~21, 21,
1!, ~0, 22, 0! ~Ref. 17! and ~b!: ~0, 0, 0!, eight vectors of
type ~1, 1, 1!, six of type~2, 0, 0! and ~22, 22, 0!.18 For a
~111! face, the parallel components of these vectors
found from Gi5G2(1/3)@(1,1,1)•G#(1,1,1). Conse-
quently, the number of distinctGi’s in these sets is only 3
and 7, respectively. Typically, atd'30 ML ~monolayers! the
set$wa% has about 50 members~counting only bound states!
and, hence, the dimension of the coefficient matrix is
proximately 150 and 350 in case~a! and ~b!. Thus, thek
dependence of both energy eigenvalues and eigenstate
be obtained by implementation of simple numerical mat
diagonalization routines. Numerical problems arise, ho
ever, in the calculation of nonlinear susceptibilities. In ord
to evaluate the sum-over-states expressions presented b
an integration overk is required and in the absence of a
analytical expression for thek dependence of the integran
this task becomes extremely time consuming. As long as
Fourier components of the periodic crystal potential
much smaller than the separation between neighbouring
perturbed energy-eigenvalues, however, a perturbation
proach can be applied. Naturally, the conditionuVGu!Ea11
2Ea is only fulfilled in thin QW’s and, hence, the perturb
tion approach is restricted to this case. Solving Eq.~7! per-
turbatively produces analytical expressions for thek depen-
dence ofEnk andaa(ki) and in fact, as will shown below, i
only the first order correction toaa(ki) is retained the re-
maining integrations can be performed analytically. Us
this approach, the wavefunctions can be written as

cnk~r !5
1

2p
eik•rH wn~z!1(

Gi

wnk~Gi ,z!eiGi•rJ , ~12!

where the perturbative correction is given by

wnk~Gi ,z!5(
a

Vna~Gi!

Ena1
\2

2m
k22

\2

2m
uk1Giu2

wa~z!,

~13!

with Eab5Ea2Eb and it is understood that the diagon
term a5n is excluded from the summation. It is the rel
tively simplek dependence of this correction, which perm
analyticalk integrations.

III. NONLINEAR RESPONSE

The nonlinear response of a metallic QW system is d
ferent from that of a semiconductor system in several
pects. First of all, the absence of a band gap in metals all
for efficient excitations even with a relatively small photo
energy. Hence, there is no wavelength threshold for the n
linear interactions in metallic quantum wells. In additio
semiconductor heterostructures are usually fabricated
varying the content of a substitutional element added to
d
-

re

-

can

-
r
low

e
e
n-
p-

g

-
s-

s

n-

y
e

host material along the growth direction, such as, e.g., A
Al xGa12xAs/GaAs/AlxGa12xAs. Hence, the confining barri
ers in semiconductor structures are relatively low and, f
thermore, the variation in the dielectric constant is relativ
small. Conversely, in the vacuum/metal/semiconductor str
ture, tall barriers are formed and the spatial variations of
dielectric properties are clearly important. Due to the t
barriers the occupied QW states are highly localized and
large confinement energy yields intraband resonances in
eV range. The spatial variations of the dielectric constant,
the other hand, render the usual dipole selection rules inv
since the dipole approximation is inapplicable for field co
ponents that are rapidly varying in space. In addition,
significant absorption in metals produce electric fields t
vary on a scale set by the penetration depth~;10–50 nm!
rather than the wavelength.

In Ref. 19, a framework for the second-order nonline
response to spatially varying fields is constructed based
the density-matrix formalism. This framework relies on t
jellium approximation for the electronic states. The inclusi
of band-structure effect, however, is straightforward. Th
sources contribute to the nonlinear response.19 The first of
these terms is due to the 2v part of the interaction Hamil-
tonian (Av•Av). A second contribution can be traced to th
product of the v part of the interaction Hamiltonian
(p•Av) times the field-induced first harmonic of the dens
matrix rv . Finally, the third term arises from thev part of
the current density operator~diamagnetic part! times rv .
Among these terms, however, only the second one surv
in the limit where the dipole approximation is applied to bo
first- and second-harmonic fields. Thus, this term is gener
expected to dominate in the nonlinear response and in
present work only this term is included. As a result, the no
linear current densityj2v(r ) produced by the electric field
Ev(r ) will be calculated from19

j2v~r !52
1

v2 (
lmn

1

2\v1 i\/t2Enm
H f m2 f l

\v1 i\/t2Elm

1
f n2 f l

\v1 i\/t2Enl
J jmn~r !E j nl~r !•Ev~r !d3r

3E jlm~r !•Ev~r !d2r . ~14!

In this expression, summation over spin degrees of freed
has already been performed and composite indicesl
5$ l ,k9%, m5$m,k8% andn5$n,k% have been introduced fo
notational convenience. In addition,t denotes the intraband
relaxation time,f a is the Fermi distribution function evalu
ated at the energyEa and jab(r ) is the transition current
density element given by

jab~r !52
e\

2im
$ca* ~r !¹cb~r !2cb~r !¹ca* ~r !%. ~15!

The electric fieldEv(r ), which drives the nonlinear curren
density in Eq.~14! is the local field and, in general, quite
different from the incident fieldEv

0 (r ). In a layered structure
displaying full rotational symmetry in the linear optical pro
erties the spatial dependence ofEv(r ) is limited to the form
Ev(r )5Ev(z)eiqi•r, whereqi is the parallel component o



n
in

e
n
s
o
n

e

-

on-
e,
d
or
nt
etal

-

PRB 61 10 259THEORY OF SECOND-HARMONIC GENERATION FROM . . .
the optical wave vector. In addition, the nonlinear curre
density averaged over a surface unit cell will vary accord
to j2v(r )5 j2v(z)ei2qi•r. Sinceqi52p/l0 sin(u), wherel0
is the vacuum wavelength andu is the angle of incidence, th
~x,y! variations of both electric field and nonlinear curre
density occur on a scale set by the wavelength. Con
quently, this dependence can be safely disregarded in c
parison with thez dependence. The amplitude of the incide
field is denotedEv

0 and thex,y and z components ofEv(z)
can be formally related to those ofEv

0 via the introduction of
field distribution functions according to

Ev,i~z!5 f i
v~z!Ev,i

0 . ~16!
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In the case ofs and p polarization the components of th
incident field are Ev

0 5Ev
0 (0,1,0) and Ev

0

5Ev
0 (cosu,0,sinu), respectively. The field distribution func

tions f i
v(z) include~i! the discontinuity of thez components

at the material boundaries determined by the dielectric c
stants 1,«~V!, and«Si(V) of vacuum, metal and substrat
respectively,~ii ! phase variation within each medium, an
~iii ! a spatially varying local field enhancement factor. F
simplicity, we will replace the spatially varying enhanceme
factor by an average one. Hence, assuming a vacuum/m
dielectric boundary atz5a and a metal/Si dielectric bound
ary at z5b the field distribution function for thez compo-
nent at frequencyV is given by
f z
V~z!5H LV$eiq0~z2a!1r pe2 iq0~z2a!% z,a

«21~V!LV~11r 01!/~11r 01r 12e
i2q1d̃!$eiq1~z2a!1r 12e

i2q1d̃e2 iq1~z2a!% a<z<b

«Si
21~V!LV~11r 01!~11r 12!/~11r 01r 12e

i2q1d̃!eiq1d̃eiq2~z2b! z.b

. ~17!
st
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In this expression,d̃[b2a,LV is the average local field
factor at frequencyV and q0 , q1 , and q2 are the
z-components of the wave vectors in the three regions. A
r 01 and r 12 are thep-polarized coefficients of reflection fo
the vacuum/metal and metal/Si interfaces, respectively

r p5(r 011r 12e
i2q1d̃)/(11r 01r 12e

i2q1d̃) is thep-polarized co-
efficient of reflection for the entire structure. It is understo
that all these quantities are to be evaluated at the freque
V. Similarly, f x

V(z) and f y
V(z) denote tangential field distri

bution functions at frequencyV. These functions are quit
analogous to Eq.~17! in that f x

V(z) and f y
V(z) are obtained

from f z
V(z) simply by removing«21(V) and «Si

21(V) and
making the substitutionsr i j

p →2r i j
p and r i j

p →r i j
s , respec-

tively, wherer i j
p,s is the reflection coefficient between laye

i and j, the superscript indicatingp or s polarization. Due to
the absence of«21(V) and «Si

21(V) the z dependence o
f x

V(z) and f y
V(z) is only via phase factors of the forme6 iqiz

and in the limitz/l'0 these functions reduce to the co
stantsLV(12r p) andLV(11r s), respectively. The discon
tinuities of the normal component of the electric field, ho
ever, yieldf z

V(z)'LV(11r p)«21(V;z) in this limit, where
«21(V;z) is the inverse dielectric function atz. The appear-
ance of two different tangential field distribution function
f x

V(z) and f y
V(z) will complicate matters as they give rise

different matrix elements. It is easily seen, however, that t
high degree of accuracy the relationf y

V(z)5gV f x
V(z) with

gV5@11r s(V)#/@12r p(V)# is valid. Hence, they-matrix
elements are simply proportional to thex-matrix elements in
this approximation.

The induced nonlinear polarization p2v(r )
5p2v(z)ei2qi•r is related to the nonlinear current dens
throughj2v(z)522ivp2v(z) and, using Eq.~16!, this quan-
tity can be related to the incident field. In this manner, av
aging Eq.~14! over a surface unit cell produces an effecti
z-dependent nonlinear susceptibility, i.e.,
o,

d

cy

-

a

-

p2v~z!5«0xJ~z!:Ev
0 Ev

0 , ~18!

where the elements ofxJ(z) are given by

x i jk~z!5
1

2i«0v3AUC
(
lmn

1

2\v1 i\/t2Enm

3H f m2 f l

\v1 i\/t2Elm
1

f n2 f l

\v1 i\/t2Enl
J

3E
UC

jmn~r !•êid
2r E j nl~r !•êj f j

v~z!d3r

3E jlm~r !•êkf k
v~z!d3r , ~19!

where AUC is the area of a surface unit cell and the fir
integral is over this area. It is noted that taking theqi→0
limit has reduced the problem of calculating nonlinear fie
and polarizations to a one-dimensional one. In fact, tak
the qi→0 limit has the additional advantage of greatly sim
plifying the rotational symmetry properties of the nonline
response since these are now solely determined by the m
rial properties. For a~111! face the surface symmetry oper
tions are reflections in three mirror planes and rotations b
multiple of 120° around the surface normal. By requirin
invariance under these operations the number of indepen
tensor elements is reduced to four.20 In a coordinate system
with thex andy axes fixed by the requirement that they axis
be perpendicular to one of the mirror planes, these ten
elements are20 xxxx , xzxx, xxzx and xzzz. In general, the
plane of incidence is rotated by an anglef around the sur-
face normal with respect to this coordinate system. In ter
of this angle the nonlinear polarization is given by20

p2v~z!52«0xxxx~z!ugvu2uEv
0 u2sin 3f ŷ sv to s2v

p2v~z!5«0xxxx~z!uEv
0 u2cos2 u sin 3f ŷ pv to s2v
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p2v~z!52«0xxxx~z!ugvu2uEv
0 u2cos 3f x̂

1«0xzxx~z!ugvu2uEv
0 u2ẑ sv to p2v .

p2v~z!5«0@xxxx~z!cos 3f cos2 u

1xxzx~z!sin 2u#uEv
0 u2x̂ pv to p2v

1«0@xzxx~z!cos2 u1xzzz~z!sin2 u#uEv
0 u2ẑ.

~20!

The reflected second-harmonic field is of the formE2v(z)
5ê2vE2ve2 iq0z, whereê2v is a polarization vector and th
scalar amplitudeE2v can be related to the nonlinear pola
ization via a vectorial Green’s function according to

E2v5E
2`

`

G2v~z!•p2v~z!dz. ~21!

In the case of thes-polarized second-harmonic field only th
y element of the Green’s function is relevant, whereas box
and z components contribute to the magnitude of the
flected field in thep-polarized case. Using results from Re
21 the explicit expression for these functions can be writ

Gi
2v~z!52 ivAm0

«0
f i

2v~z!3H 1 i 5x

1 i 5y

tanu i 5z

, ~22!

where f i
2v(z) is, in fact, thei component of the field distri-

bution of a field at frequency 2v. By utilizing the various
Green’s functions we finally arrive at the following expre
sions for the second-harmonic reflectivityh5I 2v /(I v)2:

hs to s52v2~m0 /c!uxxxxu2ugvu4ug2vu2 sin2 3f

hp to s52v2~m0 /c!uxxxxu2ug2vu2 cos2 u sin23f

hs to p52v2~m0 /c!uxxxx cos 3f2xzxxtanuu2ugvu4

hp to p52v2~m0 /c!uxxxx cos 3f cos2u1xxzxsin 2u

1xzxxcos2 u tanu1xzzzsin2 u tanuu2. ~23!

Here, effectivez-independent tensor elements have been
troduced according to

x i jk5
1

2i«0v3AUC
(
lmn

1

2\v1 i\/t2Enm

3H f m2 f l

\v1 i\/t2Elm
1

f n2 f l

\v1 i\/t2Enl
J

3E
UC

jmn~r !•êi f i
2v~z!d3r E j nl~r !•êj f j

v~z!d3r

3E jlm~r !•êkf k
v~z!d3r . ~24!

In evaluating this expression it should be remembered
the threefold summation over$l,m,n% actually entails a
-

n

-

at

summation over$ l ,m,n% as well as a threefold integral ove
$k9,k8,k%. Explicit expressions for the effective tensor el
ments are presented in the Appendix. From these results
seen that two different types of matrix elements denotedXab

V

and Zab
V @defined in Eq.~A3!# are involved. These matrix

elements describe electron motion parallel and perpendic
to the surface, respectively. In the case of an electric fi
with a slow spatial variation, the selection rules implied
these matrix elements are quite different, however. This
lows from the fact that in the dipole approximation the fie
distribution functionsf x

V(z) and f z
V(z) reduce to the con-

stantsLV(12r p) andLV(11r p), respectively. Hence, using
Eq. ~A3! it is seen thatXab

V 5LV(12r p)dab and Zab
V

5LV(11r p)^wauzuwb& in the dipole approximation. The
Kronecker delta obtained forXab

V is readily seen to imply
that xxxx5xxzx5xzxx50. It is concluded that onlyxzzz sur-
vives in this limit and, in fact, this conclusion holds even
only field variations of the forme6 iqiz are neglected. It fol-
lows that the magnitude ofxzzz is expected to be much large
than those ofxxxx , xxzx, andxzxx.

IV. NUMERICAL CALCULATIONS

At a first glance, it would seem that the expressions giv
in Eq. ~23! are readily applicable for a comparison betwe
theory and experiment. A number of subtleties must be c
sidered, however. One difficulty is related to the fact that E
~23! is an expression for the second-harmonic signal gen
ated by a perfectly smooth QW of arbitrary thicknessd. Even
under ideal growing conditions, i.e., layer-by-layer grow
the physical QW will display a minimum roughness of o
monolayer, however, since the topmost atomic layer w
cover only a certain fraction of the surface area. Hence
given surface will contain a mixture of areas with, e.g.,n and
n11ML’s, respectively. The fraction of the total surfac
area with preciselyn ML’s will be denotedPn and it may be
considered as the probability of encountering a thicknes
preciselyn ML’s in random sampling. More generally, de
viations from layer-by-layer growth will be found and
hence, a binomial distribution of the form

Pn5S N

n D pn~12p!N2n ~25!

will be appropriate. In using this expression,d should now
be regarded as themeanthickness and the parametersN and
p must be expressed in terms ofd and the width of the
distributions(d), which may, in general, depend ond. The
appropriate relations arep512s2/d and N5d2/(d2s2).
The requirement thatN must be an integer is only met a
certain values ofd and, hence, quadratic interpolation is us
between these values. Next, an open question is whethe
contributions from areas of different thickness should
added coherently, i.e., by adding the generated currents
incoherently by adding the intensities. Obviously, two co
tributions which are imaged onto different points in the d
tection system~photomultiplier tube! should be added inco
herently and for simplicity we will assume that this case
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valid generally. Consequently, for a sample with mean thi
nessd, the second-harmonic reflectivityh(d) should be cal-
culated from

h~d!5(
n

h~nd!Pn , ~26!

whered52.3 Å is the thickness of a monolayer for a~111!
surface. An attractive feature of the present microscopic
proach is that the calculations are based on either mi
scopic quantities, e.g., Fourier components of the electro
potential, or quantities that can be determined independe
such as the dielectric constant of the Si substrate use
evaluate field distribution functions. An exception, howev
is the relaxation timet, which determines the width of th
resonances in Eq.~24! and, in fact, also influences th
screening of the fields inside the metallic layer. The di
culty encountered in the present context is thatt cannot be
expected to attain its bulk value in a thin film due to surfa
scattering. Hence, the relaxation time varies with thickn
in a manner that is unknown except that a monotonica
increasing dependence is expected on physical grounds~see
Ref. 5, however!. If the rate of scattering events is the sum
surface and other contributions,t21 will consist of a con-
stant termt0

21 and monotonically decreasing surface ter
i.e.,

t21~d!5t0
211ts

21~d!. ~27!

The thickness dependent functionst21(d) ands(d) will be
determined from a fitting procedure. In fact, these quanti
may serve as measures of the film quality since they ma
derive from the density of scatterers and the surface rou
ness. In addition, it should be noted that the location of re
nances in the thickness or frequency dependence of the
culated second-harmonic signal is insensitive to the value
these parameters since they only determine the width of
resonances.

The linear optical properties of the structure determine
field distribution functions. Thus, these properties actua
play an essential role in determining the nonlinear opti
properties as well. As shown above, onlyxzzz survives if
field variations through the structure are neglected and so
magnitudes ofxxxx , xxzx, andxzxx will be critically depen-
dent on the actual field variations and thereby on the lin
optical properties. The dielectric properties of the Si su
strate can be taken from experimental bulk data.22 For an
ultrathin metallic layer, however, the bulk dielectric functio
cannot be applied directly primarily because of the modifi
relaxation time given by Eq.~27!. Generally, the dielectric
function «(v) contains an interband term«8(v) as well as
an intraband contribution given by the Drude formula:
-
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d

«~v!5«8~v!2
vp

2

v~v1 i /t!
, ~28!

wherevp is the unscreened plasma frequency. The interb
contribution can be approximated by its bulk value and
the thickness dependence of the expression above is onl
t. In the low frequency range far from interband resonan
«8(v) is approximately constant and by fitting the expe
mental bulk data22 to Eq. ~28! the following bulk values are
found: \vp58.72 eV and\/tbulk50.074 eV for Ag and
\vp59.39 eV and\/tbulk50.079 eV for Au. As usual, the
optical relaxation frequency is slightly larger than the cor
sponding dc resistivity value.15 Using these values«8(v) is
calculated by subtracting the bulk intraband contributi
from the experimental values of«~v!. In turn, the values of
«8(v) and vp allow us to compute the correction to th
dielectric constant due to Eq.~27!. Given «~v!, the average
local field factor is simply taken asLv5$21@«(v)
1«Si(v)#/2%/3. The remaining problem concerning the lin
ear optical properties lies in determining the location of t
dielectric boundariesa and b. In a simple picture, these
would coincide with 0 andd. However, the delocalized meta
electron density extends into the vacuum and Si regions,
effectively broadening the screening region. The metal e
tron density is a weighted summation of contribution due
the differentboundelectron states. Hence, the spatial exte
of the bound states approximately coincides with the scre
ing region. The more delocalized excited states may ext
beyond the screening region, however. For simplici
though, we will assume that all wave functions at the me
vacuum interface are sufficiently well localized that t
metal dielectric function applies throughout this regio
Similarly, the location of the dielectric boundaryb is ex-
pected to lie somewhat beyond the ‘‘electronic’’ boundaryd.
From the fitting procedure described below, the valuesb
5d12d ~Au! and b5d11.5d ~Ag! have been found to
yield satisfactory agreement with experiment.

Our fitting procedure relies on the fact thatxzzz is the
dominant tensor element. Hence, thexxx, xzx, andzxx con-
tributions tohp to p are safely neglected. Accordingly, by fi
ting the experimentalp to p conversion efficiency to the
simplified expression forhp to p found in this approximation
a simple procedure for determining the parameterst(d) and
s(d) as well as the remaining parameters is obtained
should be noticed that this method is only weakly depend
on band structure effects, sincexzzz is governed by the mo-
tion of electrons perpendicular to the interfaces. In fact,
argued in the Appendix, band-structure effects may be
glected altogether in the calculation ofxzzz in the case of low
incident photon energies. Using the result forxzzzderived in
the Appendix we find that
\/t~d!5H 0.1510.3 exp~2d/45 Å!10.9 exp@2~d/15 Å!2# for Au

0.1010.2exp~2d/35 Å!10.8 exp@2~d/12 Å!2# for Ag
~29!



s

n
e
a
in
it

tic
nt
m

e
an

ic
m

-
e

re

e

c
tw
th

nse.
-
tial

ly,
ced
are
en-
lu-
ich
-

e
ffi-
re-

lt a
of
he
-

l

.

ar

10 262 PRB 61PEDERSEN, PEDERSEN, AND BRUN KRISTENSEN
in units of eV. Similarly, the fitting procedure yieldss2(d)
5d•0.25 Å for Au ands2(d)5d•0.13 Å for Ag. At a thick-
ness of 10 ML these values correspond to a roughnes
approximately 1 ML~Au! and 0.7 ML~Ag!.

We now turn to a comparison between theoretical a
experimental results. All experimental curves are obtain
using the procedure described in Refs. 7 and 8. A comp
son between experiments and the theoretical curves obta
using the above relations is shown in Figs. 2 and 3. A qu
convincing agreement between experimental and theore
curves is noted. The location of theoretical and experime
resonances agree within a few monolayers except for a s
resonance in the Ag/Si curve atd'1 ML, which is seen
experimentally but not reproduced in the theoretical curv
Most likely, this resonance cannot be attributed to QW tr
sitions but rather to a modified surface state4 or a localized
plasmon resonance in isolated Ag islands.23 In addition to the
agreement between the experimental and theoretical th
ness dependence, the magnitudes of the calculated and
sured signals are estimated to be in rough agreement. In
der to confirm thatxzzz dominates thep to p response the
ratios uxzxx/xzzzu and uxxzx/xzzzu ~not averaged over differ
ent thicknesses! are calculated as illustrated in Fig. 4. A larg
value of these ratios is seen at low coverage. This featu
a result of smallxzzz values rather than largexzxx or xxzx
values, however. On an absolute scale, all tensor elem
are small at low coverage. At larger film thickness,xzxx and
xxzx contribute on average only about 10–20% and, hen
can be neglected as assumed. The close agreement be
experimental and theoretical results is a clear indication

FIG. 2. Comparison between theoretical and experimentalp to p
second-harmonic reflectivityhp to p as a function of film coverage
The curves are for Au on Si~111!.

FIG. 3. Theoretical and experimentalp to p second-harmonic
reflectivity for Ag on Si~111!.
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QW states are indeed responsible for the nonlinear respo
Our fitted values for the width of the height distribution in
dicate, however, that the structures display a substan
variation in film thickness along the surface. Unfortunate
the lateral size distribution of the plateaus cannot be dedu
from the present analysis. The fact that QW resonances
seen, however, demonstrates that the typical lateral dim
sion of a plateau is much larger than the height. This conc
sion is supported by atomic force microscope scans, wh
for an Ag film of d511 ML have revealed triangular pla
teaus with typical sizes of several hundred nanometers.

We will now turn to the theoretical evaluation ofxxxx .
We will only investigate the thin film case for which th
perturbation calculation of band-structure effects is su
cient. Expressions for the relevant matrix elements are p
sented in the Appendix. In order to obtain a reliable resu
symmetrical set ofGi vectors must be used. For the set
bulk-G vectors we may take that of Ref. 18 excluding t
element~22, 22, 0!, which breaks the symmetry. The non
vanishing parallel components of the remaining 15G vectors
can be written

Gi
~k!5

2p

a
A8

3
@cos~kp/3!x̂1sin~kp/3!ŷ#,

kP$0,1,2,3,4,5%, ~30!

wherea is the lattice constant~4.08 Å!. These vectors are
seen to be of equal length and oriented at an anglek times
60° with respect to thex axis. The corresponding potentia
matrix elements given by Eq.~11! read

Vab~Gi
~k!!5E

0

d

wa~z!$V111exp~ iG'
~1!z!

1V200exp~ iG'
~2!z!%wb~z!dz[Wab , ~31!

FIG. 4. Illustration of the relative contribution to the nonline
response due to thexzxandzxxtensor elements.~a!: Au on Si~111!,
~b! Ag on Si~111!.
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kP$0,2,4%,

where G'
(1)522p/()a) and G'

(2)522G'
(1) . For k

P$1,3,5% the resultVab(Gi
(k))5Wab* is found. These simple

relations allow us to perform the summation overGi analyti-
cally. TheGi dependence ofxxxx is via the potential matrix
elements and, as shown in the Appendix, theTa

(p)(Z) func-
tions defined by Eq.~A14!. As exemplified by Eq.~A17! in
the casep52 the Ta

(p)(Z) functions have a simple depen
dence on the azimuthal angle ofGi . In the present case th
azimuthal angle ofGi

(k) is simply kp/3 and allGi
(k) are of

equal length. This allows us to express the result of the s
mation overGi through the quantities
ti-

at
-
th
e
t

-
in
e
o

c
o

b-
l
l
so
Au
th
ra
a

e
ica
n
a
o
lu
o
n
T
a
it
-

Sa
~p!~Z![

(Gi
Vla* ~Gi!Vmb~Gi!Ta

~p!~Z!

i Im$Wla* Wmb%
, ~32!

where, for instance,

Sa
~3!~Z!56Ka

~33!~Z!2
9

2
Ka

~31!~Z!. ~33!

The Ka
(pq)(Z) functions are defined in Eq.~A16! and simi-

larly simple results are obtained forp50, 1 and 2. To illus-
trate the importance of these results we consider the sum
tion overGi for the particular component ofxxxx considered
in the Appendix. The final contribution from this part can b
expressed as
xxxx
~1! 52

e3\3

8p2«0v3m3 (
lmn,ab

Xab
v Xmn

2vXnl
v Im$Wla* Wmb%

~Emb2Ela!~2\v1 i\/t2Enm!

3H Sm
~2!~Ela!2Sl

~2!~Ela!

\v1 i\/t2Elm
1

Sn
~2!~Ela!2Sl

~2!~Ela!

\v1 i\/t2Enl
2

Sm
~2!~Emb!2Sl

~2!~Emb!

\v1 i\/t2Elm
2

Sn
~2!~Emb!2Sl

~2!~Emb!

\v1 i\/t2Enl
J . ~34!
. In
ored

nifi-
to a

ed

xt.
The fact that theGi summation can be performed analy
cally in the present case leads to a large~sixfold! reduction in
computation time.

The xxx element is probed ins to s and p to s SHG
experiments and in the present work we focus onhp to s for
which experimental curves exist. A comparison is only
tempted in the ranged<7 ML since the steeply rising theo
retical curve beyond this range indicates a breakdown of
perturbation approach. At coverages below 7 ML, howev
the agreement is reasonable as seen in Fig. 5 in which
theoreticalp to s curves~not averaged! are compared to ex
perimental data. The agreement is obviously less convinc
than in thep to p case, which we partially attribute to the us
of the perturbation approach. In addition, the assumption
perfect structural order may be questioned. The differen
between experiment and theory cannot be explained by
neglect ofxzxx andxxzx since these elements do not contri
ute to thep to s response. As in thep to p case, an additiona
resonance, which is not accounted for in the QW mode
seen in the experimental Ag curve around 1 ML. The re
nance around 4–5 ML is reproduced by theory for both
and Ag, however. We believe that this fact demonstrates
soundness of the model and indicates that the entire cove
range can be modeled by going beyond the perturbation
proach.

The relatively good agreement between theory and
periment allow us to use our model to locate the phys
origin of the nonlinear response. The calculated respo
may be broken down into contributions stemming from
particular combination of occupied and excited levels. F
Au on Si the coverage dependence of the energy eigenva
of these levels is illustrated in Fig. 6. The topmost part
this graph is the pseudocontinuum of Si conduction-ba
states. Below this region the bound QW states are seen.
resonant transitions are mainly between the bound states
the Si conduction-band continuum due to the close proxim
-
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between the Fermi level and the conduction band edge
fact, if the states above the conduction-band edge are ign
the calculated value ofhp to p is reduced to approximately
10–20% and the location of the resonances is shifted sig
cantly. In order to determine the nonlinear response due
particular occupied state we rewrite Eq.~A5! in the form
xzzz5(moccxzzz(m), wherexzzz(m) is the contribution from
themth occupied state. This form of the equation is obtain
by relabeling indices according tol↔m and n↔m in the
parts proportional toHl andHn , respectively. Themth term
of the resulting expression is then proportional tou(EF

FIG. 5. Theoretical and experimentalp to s second-harmonic
reflectivity for Au ~a! and Ag~b! on Si~111!. The theoretical curve
is obtained using the perturbation approach explained in the te
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2Em). In this manner, we obtain the contribution to the no
linear response due themth occupied state in the form
hp to p(m)}uxzzz(m)u2. The thickness dependence
hp to p(m) for Au on Si shown in Fig. 7. Note thathp to p
Þ(mocchp to p(m) since interference terms between differe
levels are absent. Hence,hp to p(m) can be regarded as th
nonlinear response of a fictitious QW containing only t
mth occupied state. From Fig. 7 it is seen thathp to p(m)
peaks in a particular coverage range. This range corresp
approximately to the interval\v<EF2Em<2\v. The fig-
ure clearly shows that the first resonance, obtained theo
cally aroundd;7 ML, contains contribution from levels in
the rangemP$2,...,10%. Similarly, the second resonance
d;27 ML is composed from contributions in the rangem
P$12,...,24%. The range in which a particular level contrib
utes is seen to increase withm. This is due to the fact that th
magnitude of the slope ofEm versusd is decreasing withm.
Hence, a particular level is resonantly excited in a broa
range. Based on these results it is concluded that the r
nances observed experimentally cannot be attributed
single electronic transition but rather to simultaneously
cited transitions between several highly localized occup
states and the unoccupied states of the conduction-band
tinuum.

FIG. 6. The thickness dependence of the energy levels for an
quantum well on Si~111!. The thickness-dependent Fermi level
indicated by the additional line. The dramatic change around43.9
eV marks the Si conduction band edge.

FIG. 7. Plot of the contribution to the nonlinear response due
the mth occupied quantum well level in the case of Au on Si~111!.
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SUMMARY

In summary, a complete microscopic framework descr
ing second-harmonic generation from quantum well sta
formed in thin-metal layers deposited on semiconductors
been formulated. The major problem of obtaining suf
ciently accurate electronic eigenstates taking band-struc
effects into account has been solved by means of a trunc
expansion technique. Furthermore, analytical solutions at
perturbation level have been obtained. Based on these e
tronic wave functions, explicit expressions for all releva
elements of an effective second-order response tensor
been derived. Theoretical and experimental curves ofp to p
and p to s second-harmonic signals versus film thickne
have been compared for Au on Si~111! and Ag on Si~111!.
For both structures, convincing agreement between theo
cal and measuredp to p curves was found over the entir
range of film thicknesses under study. The experiment
observed resonances are reproduced by theory and the
lute magnitude of the signal is roughly correct. In the case
p to s second-harmonic signals the perturbation calculat
was shown to yield satisfactory agreement with experime
in a limited thickness range~0–7 monolayers! beyond which
the perturbation approach is found to break down. From
comparison of the various contributions to the nonlinear
sponse it is concluded that the resonances cannot be asc
to transitions involving only a single occupied quantum w
state. Rather, the resonances are composed from sim
neously excited transitions between several localized qu
tum well states and the unoccupied states of the conduct
band continuum.

APPENDIX: EFFECTIVE TENSOR ELEMENTS

In this Appendix, explicit expressions for the various e
fective tensor elements are derived. Among these eleme
xxxx is a special one since it vanishes in amorphous mat
als. Hence, even in free-electron-like materials band str
ture effects must be included in order to calculatexxxx . Con-
trariwise, the remaining tensor elements (xzxx, xxzx, and
xzzz) can be obtained without taking band structure effe
into account. These effects are expected to be minor cor
tions as long as only states belonging to thes-p band are
excited and therefore such a treatment presumably suffi
Hence, for these tensor elements wavefunctions of the sim
form cnk

(0)(r )5(2p)21wn(z)eik•r apply and the x- and
z-matrix elements needed in Eq.~24! give

E j nl~r !• x̂ f x
V~z!d3r

52
e\

m
kxE

2`

`

wn~z!w l~z! f x
V~z!dzd~k2k9!

52
e\

m
kxXnl

Vd~k2k9!, ~A1!

and

u

o
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E j nl~r !• ẑf x
V~z!d3r 52

e\

2im E
2`

` H wn~z!
dw l~z!

dz

2w l~z!
dwn~z!

dz J f z
V~z!dzd~k2k9!

5
e

i\
EnlZnl

Vd~k2k9!, ~A2!

where we have introduced the abbreviations

Xab
V 5E

2`

`

wa~z!wb~z! f x
V~z!dz

and

Zab
V 5E

2`

`

wa~z!wb~z!E
0

z

f z
V~z8!dz8dz. ~A3!

In the last equality in Eq.~A2! integration by parts has bee
applied. In the low-temperature limit, the Fermi functionsf nk
are simple step functionsf nk5u(EF2En2\2k2/2m). Due
to the simplek-dependence of the matrix elements abo
only the following two integrals involvingf nk are needed:

1

4p2 E f nkd
2k5

m

2p\2 Hn

and

1

4p2 E f nkkx
2d2k5

m2

4p\4 Hn
2, ~A4!

whereHn5(EF2En)u(EF2En). It should be noted that the
Bloch wave vectork is not restricted to the first Brillouin
zone in the present treatment. When these results are util
the final expressions for the effective tensor elements re

xzzz51
e3m

4p«0\5v3 (
lmn

ElmEmnEnl

2\v1 i\/t2Enm

3H Hm2Hl

\v1 i\/t2Elm
1

Hn2Hl

\v1 i\/t2Enl
J Zmn

2vZnl
v Zlm

v ,

~A5!

xzxx52
e3

8p«0\3v3 (
lmn

Emn

2\v1 i\/t2Enm

3H Hm
2 2Hl

2

\v1 i\/t2Elm
1

Hn
22Hl

2

\v1 i\/t2Enl
J Zmn

2vXnl
v Xlm

v ,

~A6!

xxzx52
e3

8p«0\3v3 (
lmn

Enl

2\v1 i\/t2Enm

3H Hm
2 2Hl

2

\v1 i\/t2Elm
1

Hn
22Hl

2

\v1 i\/t2Enl
J Xmn

2vZnl
v Xlm

v .

~A7!

The calculation ofxxxx proceeds along similar lines as tho
above. Band structure effects cannot be ignored, howe
e

d,

r,

and the mathematical details are complicated by the co
sponding modification of the wave functions. The advanta
of the perturbational approach lies in the fact that all th
k-integrations can be performed analytically. In order
demonstrate this, the general expression for the electr
states, given by Eq.~2!, is taken as a starting point. Usin
this result, the second integral in the Eq.~24! yields

E j nl~r !• x̂ f x
v~z!d3r

52
e\

m (
Gi ,K i

~kx1Gx!E
2`

`

wnk* ~Gi ,z!

3w lk9~K i ,z! f x
v~z!dzd~k1Gi2k92K i!.

~A8!

A similar expression is obtained for the last integral. Due
the delta functions in these expressions the integrals ovek8
andk9 are readily carried out. The resulting form of Eq.~24!
then contains a sixfold summation over the set ofGi’s. One
of these summations can be eliminated using conservatio
crystal momentum, which is required by the integral over
surface unit cell in Eq.~24!. In the remaining five-fold sum-
mation a zeroth-order term in which allGi’s equal zero ex-
ists. As expected, it may readily be shown that this contri
tion to xxxx vanishes. This follows from the fact that in th
case all three integrals in Eq.~24! contribute a factorkx .
Hence, the integrand is an odd function ofkx and the integral
vanishes. Due to the absence of a zeroth-order term it ca
shown that the leading contribution toxxxx contains 15
terms, in each of which twoGi’s are nonzero. The calcula
tions are rather tedious and in order to avoid unneces
details we choose as an example to present only the re
for the first among the 15 terms. This contribution can
written

xxxx
~1! 5

ie3\3

8p2«0v3m3 (
Gi

E (
lmn

Flmn~k,k,k!kx
2

3~kx1Gx!Xmn
2vXnl

v Xlm
v ~3!d2k, ~A9!

where we have introduced the notation

Flmn~k,k8,k9!5
1

2\v1 i\/t2Enk1Emk8

3H f mk82 f lk9
\v1 i\/t2Elk91Emk8

1
f nk82 f lk9

\v1 i\/t2Enk1Elk9
J , ~A10!

and

Xab
V ~3!5E

2`

`

wak* ~Gi ,z!wbk~Gi ,z! f x
V~z!dz. ~A11!

By applying Eq.~13! and a partial fraction expansion of th
k-dependent denominator of the matrix elementXlm

v (3) it is
found that
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xxxx
~1! 5

ie3\3

8p2«0v3m3 (
Gi

(
lmn,ab

Vla* ~Gi!Vmb~Gi!Xab
v Xmn

2vXnl
v

Emb2Ela

3@Almn
~2! ~Ela!2Almn

~2! ~Emb!#, ~A12!

where we have introduced the abbreviation

Almn
~p! ~Z![E Flmn~k,k,k!

kx
p~kx1Gx!

32p

Z1
\2

2m
k22

\2

2m
uk1Giu2

d2k.

~A13!

Thek dependence ofFlmn(k,k,k) is via the Fermi functions
f ak and, hence, integrals of the form

Ta
~p!~Z!5E f ak

kx
p~kx1Gx!

32p

Z1
\2

2m
k22

\2

2m
uk1Giu2

d2k, ~A14!

are needed. This notation allows us to write

Almn
~p! ~Z!5

1

2\v1 i\/t2Enm
H Tm

~p!~Z!2Tl
~p!~Z!

\v1 i\/t2Elm

1
Tn

~p!~Z!2Tl
~p!~Z!

\v1 i\/t2Enl
J . ~A15!
s.

ys

v.

ys

ge

v

.

By writing Gx5Gi cosd and using polar coordinates and th
low temperature limit theTa

(p)(Z) functions can be further
decomposed in terms of the integrals

Ka
~pq!~Z!5S 2m

\2 D 5/2

Ei
3/2u~EF2Ea!

3E
0

kaE
0

2p kp11 cosq w

Z/Ei2122k cosw
dwdk,

~A16!

whereEi5\2Gi
2/(2m), EF is the thickness-dependent Ferm

energy that can be calculated from the charge neutrality c
dition, u(x) is the step function andka5A(EF2Ea)/Ei. For
instance,

Ta
~2!~Z!5$cosd~cos2 d23 sin2 d!Ka

~33!~Z!13 sin2 d

3Ka
~31!~Z!1sin2 dKa

~20!~Z!1~cos2d2sin2 d!

3Ka
~22!~Z!%. ~A17!

TheKa
(pq)(Z) integrals are readily evaluated using tables24 or

analytical computer software. Finally, the remaining con
butions toxxxx are evaluated in a similar fashion.
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