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Second-harmonic generation from quantum well states in metal films deposited on a semiconducting sub-
strate is discussed theoretically within a microscopic approach. The thickness dependence of electronic eigen-
states as well as band-structure effects related to motion in the plane of the film are taken into account and
semianalytical quantum well states are obtained at the perturbation level. Based on a general treatment of the
second-harmonic response of inhomogenous systems an effective second-order response tensor is obtained.
Agreement between theory and experiment is demonstrated from a comparison of calculated and measured
thickness dependence of the nonlinear response. In the cas @f curves the agreement is over the entire
range of film thicknesses, whereas the agreement i tioes case is restricted to relatively thin films due to
the applied perturbation approximation. The transitions that are responsible for experimentally observed reso-
nances are identified.

[. INTRODUCTION harmonic signal. Hence, SHG can directly probe the level
structure of the electronic system. Furthermore the quality of
The formation of quantum wel{QW) states in layered the metallic film can be inferred from such a measurement
structures is of great importance for applications as well asince any roughness will tend to smear out the resonances. It
basic solid-state physics. Semiconductor QW'’s play an infollows that the presence of distinct resonances is a clear
creasingly large role in fabrication of devices such as Qwindication of high-quality film growth. An additional advan-
lasers and in fundamental studies of the behavior of quasf2ge of SHG is that different interface properties can be in-
two-dimensional electron systentsee, e.g., Ref.)1 Simi- vestigated by measuring different tensor elements of the non-
larly, QW structures formed in purely metallic systems arein€ar susceptibility. For instance, taking tzeaxis as the
emerging as important tools for studies of, e.g., magneti(?‘uncalce _normal, thezzelement .Of the _susceptlblllty provides
propertie? In comparison, investigations of QW effects in information about the electronic motion perpendicular to the

mixed metal/semiconductor structures are relatively fewsurface. In partiqular,.the effect; of §ize quantization along
This is mainly because of difficulties in producing high- the growth direction W'".be seen in this tensor element. C_on-
. ; . versely, thexxxelement is entirely determined by the motion
qugllty metglhc ovgrlayers n .these systems. A few rePOMSyt electrons in the surface plane. It follows that by measuring
using various linear —optical techniques such - asyq tensor element while rotating the sample around the sur-
photoemissioh and differential reflectance measuremeénts face normal, the in-plane symmetry of the electronic states

have demonstrated the presence of QW states formed in Mgz pe deduced. In fact, thexelement vanishes in an amor-

tallic layers deposited on Si, however. ~phous material and so its magnitude is a direct measure of
Recently, we have applied the unique surface sensitivitghe degree of structural order.
of second-harmonic generati¢gS8HG) to follow the forma- The major incentive for the construction of a theory de-

tion of QW states during growth of atomically flat ARefs.  scribing the second-harmonic response of metall
6 and 7 and Ag(Ref. 8 films on S{111). The sensitivity of  semiconductor QW structures is the need for reliable meth-
SHG derives from the fact that electric dipole contributionsods of interpreting experimental optical data in terms of
vanish in media with inversion symmetry. Hence, in struc-electronic and structural properties. In our previous work,
tures composed from such media, SHG mainly arises fronpreliminary modelling results for thp to s response of Ag
interfaces, which break the symmetry. The interface sensitiven Si111) were presented. In the present paper we wish to
ity has previously been applied in studies of the metaljpresent the detail of the complete theoretical framework de-
semiconductor contaétin the case of an ultrathin overlayer, scribing SHG from QW’s formed by depositing ultrathin me-
however, the electronic coherence extends throughout thellic films on a semiconducting substrate. In particular,
layer and SHG cannot be discussed in terms of separate coneble metals deposited on($11) will be investigated and
tributions from the vacuum/metal and metal/semiconductoresults for all elements of the second harmonic response ten-
interfaces. The added metallic overlayer modifies the elecsor will be presented. Previously, Petukhov and LieBSch
tronic states of the semiconductor and, furthermore, introand Luce and Bennemalirhave performed detailed micro-
duces new electronic states that are localized by the QVEcopic calculations of SHG from metal surfaces. In addition,
potential. Consequently, SHG can be used as a highly sensi-qualitative theoretical treatment of SHG from QW states in
tive probe of the formation of new states during depositionpurely metallic systems has been presenfedl microscopic

of the overlayer. In particular, resonant transitions betweetheory of SHG from QW’s formed in metal/semiconductor
overlayer states will show up as resonances in the secondtructures is lacking, however, making the interpretation of
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SHG data from such structures difficult. In a typical experi-reach thed-band. Hence, in the following a simple Fourier
ment, the reflected second-harmonic signal is monitored duexpanded potential will be assumed. When fitted to match
ing film growth using a fixed set of polarization directions the experimental band structure, however, the Fourier expan-
for the second-harmonic and pump fields and a fixed pumgion coefficients of thes-p potential will indirectly include
photon energy. In order to directly compare experimentathe influence of thal-bands. Consequently, with tleaxis

and theoretical results we consequently have to calculate th@erpendicular to the interfaces, the total potential can be
relevant tensor elements as a function of film thickness. Asvritten
mentioned above, certain tensor elements are a hallmark of

the presence of structural order, i.e., they vanish if the crys-
tallinity of the material is destroyed. In terms of their theo-

retical calculation, this property means that the assumption

of free-electron-like motion in the film plane cannot be ap-WhereG; is the projection of a reciprocal lattice vectGr
plied. Hence, a quantum mechanical description of the elecnto the surface plane. A potential of the form given by Eq.
tronic states including band structure effects will be required(1) leads to electronic states of the general form

In this work, such a quantum description is used and it is

demonstrated how ba_md structure effects_ may be taken into Y1) = LZ oK, ,2)el kKT )
account at both quasiexact and perturbational levels. Subse- 2m K

quently, the induced nonlinear current density is calculated . . .
using the density matrix formalism taking into account theWhe[ek is a surface BIQCh vector, i.e., of the forkrf K&k
spatial variation of the electric fields. For simplicity, we only +ky§, and the summation cz\id.(”_runs over the different
consider the contribution to the nonlinear current due to th¢/alues ofG; . The factor (2r) "~ is introduced for later con-

added electronic states. Thus, the background signal from théenience. Consequently, the Soffirger equation reduces to

substrate will be neglected. This simplification is not a seri-® Set of coupled one-dimensional equations

ous one since the background signal is easily substracted 2 52 o2

from the experimental curves. Consequently, theoretical and — |k+K|12= 5= ==~ Enc{ enk(K|,2)
experimental results are directly comparable. The remaining 2m 2mdz

part of the paper is organized as follows: In the next section,

quasiexact and perturbational calculations of QW states are =—> Vg (2)onk(Ky— Gy ,2). (3
presented. These states are then applied in a description of Gy ”

the nonlinear response in Sec;. i a”‘?' analytical ex_p.n'assionﬁs mentioned above, band structure effects are expected to
for the elements of the effective nonlinear susceptibility aré). minor corrections since we are dealing wittp states
derived. In Sec. IV, numerical calculations of the thicknessg, o sjvely. It follows that the solutions to the simple one-
dependence of the nonlinear response are presented for

ber of diff d . b dffnensional quantum well potentiaVy(z) are excellent
number of different cases and a comparison between experyy ot order approximations to the full solutions. These

mental and_ theoretical results is given. Finally, a summary IS croth-order  solutions are of the forml//(O)(r)
presented in Sec. V. nk

=(27) Yo, (2)e™*", where the real-valued functiog,(z)
is a solution to

V(=2 Vg (2)ee, (1)
I

Il. QUANTUM WELL STATES 52 g2
In this section, we present the theoretical framework for “omaz2 TV~ Eaea(2)=0. 4

the calculation of quantum well states including band struc-

ture effects. Highly accurate methods, such as self-consistefnce the set of statgg,} is obtained, each of the unknown

density-functional calculation's;'* exist for this purpose. functionse,(K;,z) can be expanded in this set according to

We wish, however, to obtain semianalytical wave functions,

which will allow us to evaluate the nonlinear response with-

out extensive numerical work. Therefore, an approximate

and simplified theoretical framework is applied below. In

general, the in-plane motion of the high-lyirsgp states is Where we have suppressed the dependence and k of

not expected to deviate much from free electron-like behava.(K;) for notational convenience. An algebraic set of equa-

ior. Hence, these states are well described by a standard trufions determining the coefficiengg,(K;) can be constructed

cated Fourier expansion of the potential. In contrast, thdy rewriting Eq.(3) according to

deeperd states are highly localized and a tight-binding treat-

ment is better suited for their description. This is certainly

the case in noble metals for which the buliband is well

below the Fermi level, e.g., 2.4 and 4.0 eV for Au and Ag,

respectively. In the present study, howe_ver, we will concen- - _2 Vo.(2) oK~ Gy ,2), (6)

trate on the nonlinear response to optical fields of low- or G !

moderate-photon energy for whichband excitations can be - )

ignored. Moreover, this case is well studied experimentallywhere Vg (2) =V (2) —Vo(2) 6 0. In this manner the

due to the availability of Nd:YAG lasers withw=1.17eV  coupled differential equations can be reduced to an algebraic

for which neither pump nor second-harmonic photons carsystem given by

<pnk<KH,z>=§ a,(K)) ¢(2), (5)

2 2

2
d
ﬁ“(—i_ KH|2_ % E“"VO(Z)_Enk (Pnk(KH !Z)
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2
2m KK+ EaEnc the bulk potential a few lattice constants into the metallic
region. For simplicity, however, we will neglect the effects
=—> > V,.5(Gag(K,—G)), (7)  of self consistency in the present study. Hence, the bulk po-
B G tential is assumed to remain valid right up to the metal/
vacuum and metal/Si interfaces, i.e., throughout the region
0=<z=d, whered is the thickness of the metal layer. In order
% - to correctly reproduce the vacuum tail of the wave functions
VaB(Gu)ZJ ?(2)Vg (D) pp(z)dz. (8)  the image potential is added ¥,(z) for z<0. Similarly, the
o coupling between QW states and the substrate valence band
Using the density-functional method of, e.g., Refs. 13 and 14s neglected in that a constant potentiaVg, taken as the
it is possible to obtain self-consistent solutions for the vari-conduction band minimum of Si, is used inside the substrate.
ous components of the potential. This leads to potential funcThe metal/Si interface is modeled by joining the metallic
tions which all decay rapidly to zero in the vacuum half- potential to the Si potential over a distanteusing a linear
space excep¥y(z), which asymptotically approaches the dependence. Hence, the simple quantum well potential
image potentiaf~2# [actually an exponential rather than a V,(z), including the image potential, is taken as

: e } (K,) (2z) ~* behavior is obtained In addition,V (2) approaches
aa K

where

e?8mreg(z—2y) z<0
~Vg 0=<z<d—A/2

V = .
o(2) —(Vg+Vg)/2+(Vg—Vg)(z—d)/A  d—A2<z<d+A/2 ©
—Vg z=d+A/2
|
The location of the image plarg is adjusted so tha¥,(z) - )
is continuous az=0 and— Vj is the spatially constant part VGH(Z):gf Vg +6, &XNiG,2)[0(2)— 6(z—d)],
of the metal potential. Vg is the sum of work functiornb B (10)

and Fermi energ¥g of the metal and in line with the ap-
proximations used above, bulk values of these parameters avéere theVg's are the Fourier components of thelk po-
adopted. For both Ag and A andEr are approximatefyy ~ tential and it is understood that,=0. The matrix elements
4.3 and 5.5 eV, respectively so thdg=9.8eV and, conse- defined by Eq(8) then read

quently, z,=0.73 A. Notice that the bulk Fermi energy is .

only utilized to calculate the potential and that the correct _ ;
thickness-dependent Fermi energy will be applied in the cal- Vas(Gi) é Veyre, fo ¢a(2)EXRIG. 2)¢4(2)d2
culation of the optical response below. One last simplifica- (11
tion concerns the treatment of quasifree states, i.e., stat
with an energy larger thar Vg that are not localized in the
guantum well region. This continuum is difficult to handle
numerically and, hence, artificial barriers are introduced at
distancd inside the Si substrate and into the vacuum. Care is T
taken that is sufficiently large that the final result is virtu-
ally unaffected by this simplification. This is ensured pro- — T~~~ "~"~"""~"F "~~~ F ~~~~~-
vided the spacing between two quasifree states is somewh:z
smaller than the width of these levels given iy, wherer

is the relaxation time. In practice, values arourds0 A are b N b
found to be sufficient. The approximate potential is illus-
trated in Fig. 1. It is seen from the figure that an approximate
value of Vg can be determined from the fact that the
conduction-band minimum of &i11)-7X7 at the surface is
located approximately 0.4 eV above the Fermi [&Vaind,

?ﬁ the bulk limit the discrete index is replaced by a con-
tinuous one k,) and Eq.(7) clearly reduced to the standard
énatrix problem of bulk band-structure calculatidisn fact,

Vacuum level

@ (Work function)

Ey (Fermi energy)

henceVs~3.9 eV. From a fitting procedure described below T S d 1

the valuesA =26 (Au) and A =368 (Ag), where5=2.3A is } » z

the (111)-surface monolayer thickness, have been obtainea =0

for the width of the metal/Si interface. FIG. 1. The one-dimensional quantum well potertig{z). The

For G,#0 the use of the bulk crystal potential allows us barriers az=—1 andz=d+1 are introduced artificially in order to
to write the components of the potential as limit the number of levels.
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solving the algebraic system in E) is relatively straight- host material along the growth direction, such as, e.g., Al in
forward. This follows from the fact that the dimension of the Al,Ga, _,As/GaAs/AlGa, _,As. Hence, the confining barri-
coefficient matrix is the number of different eigenstates iners in semiconductor structures are relatively low and, fur-
{¢,} times the number of distindg,’s. In Refs. 17 and 18, thermore, the variation in the dielectric constant is relatively
the bulk band structure of different noble metals was fittedsmall. Conversely, in the vacuum/metal/semiconductor struc-
using 4 and 16 different reciprocal lattice vectors, respecture, tall barriers are formed and the spatial variations of the
tively. These sets ar@): (0, 0, 0, (—1, —1, —1), (=1, —1, dielectric properties are clearly important. Due to the tall
1), (0, =2, 0 (Ref. 19 and (b): (0, O, 0, eight vectors of barriers the occupied QW states are highly localized and the
type (1, 1, D, six of type(2, 0, 0 and(—2, —2, 0.1 For a  large confinement energy yields intraband resonances in the
(111 face, the parallel components of these vectors areV range. The spatial variations of the dielectric constant, on
found from G;=G-(1/3)[(1,1,1)G](1,1,1). Conse- the other hand, render the usual dipole selection rules invalid
quently, the number of distinds,’s in these sets is only 3 since the dipole approximation is inapplicable for field com-
and 7, respectively. Typically, at~30 ML (monolayersthe  ponents that are rapidly varying in space. In addition, the
set{¢,} has about 50 membe(sounting only bound statgs significant absorption in metals produce electric fields that
and, hence, the dimension of the coefficient matrix is apvary on a scale set by the penetration deft#i0-50 nm
proximately 150 and 350 in cade) and (b). Thus, thek rather than the wavelength.

dependence of both energy eigenvalues and eigenstates canln Ref. 19, a framework for the second-order nonlinear
be obtained by implementation of simple numerical matrixresponse to spatially varying fields is constructed based on
diagonalization routines. Numerical problems arise, how+the density-matrix formalism. This framework relies on the
ever, in the calculation of nonlinear susceptibilities. In orderjellium approximation for the electronic states. The inclusion
to evaluate the sum-over-states expressions presented belofvband-structure effect, however, is straightforward. Three
an integration ovek is required and in the absence of an sources contribute to the nonlinear respotiséhe first of
analytical expression for thie dependence of the integrand these terms is due to thaw2part of the interaction Hamil-
this task becomes extremely time consuming. As long as thgonian (A,-A,). A second contribution can be traced to the
Fourier components of the periodic crystal potential areproduct of the w part of the interaction Hamiltonian
much smaller than the separation between neighbouring urfp-A,) times the field-induced first harmonic of the density
perturbed energy-eigenvalues, however, a perturbation apratrix p,, . Finally, the third term arises from the part of
proach can be applied. Naturally, the conditidy|<E,.;  the current density operatddiamagnetic payttimes p,, .

—E, is only fulfilled in thin QW’s and, hence, the perturba- Among these terms, however, only the second one survives
tion approach is restricted to this case. Solving &g.per- in the limit where the dipole approximation is applied to both
turbatively produces analytical expressions for khdepen-  first- and second-harmonic fields. Thus, this term is generally
dence ofg,,, anda,(k;) and in fact, as will shown below, if expected to dominate in the nonlinear response and in the
only the first order correction ta,(k,) is retained the re- present work only this term is included. As a result, the non-
maining integrations can be performed analytically. Usinglinear current density,,(r) produced by the electric field

this approach, the wavefunctions can be written as E,(r) will be calculated fron®
1 . . . . 1 1 f/.L_ f)\
VD=5 X @D T 2 end G e T, 12 el =T o2, The ThIT—E., | heTifl—EL
where the perturbative correction is given by f,—fy . f . . 3
+fl/w+ih/T_EV)\ Jp,v(r) JV)\(r) Eu)(r)d r
Vina(Gy)
(’an(GH'Z)_Z. B2 h? 2<Pa(2), XJjA#(r)-Ew(r)dzr. (14)
2m 2m

(13 In this expression, summation over spin degrees of freedom
has already been performed and composite indizes
with E,;=E,—Ez and it is understood that the diagonal ={| k"}, u={m,k’} andv={n,k} have been introduced for
term a=n is excluded from the summation. It is the rela- notational convenience. In addition,denotes the intraband
tively simplek dependence of this correction, which permits relaxation time,f,, is the Fermi distribution function evalu-
analyticalk integrations. ated at the energf, andj,p(r) is the transition current
density element given by

IlI. NONLINEAR RESPONSE oh

The nonlinear response of a metallic QW system is dif-  Jap(1) =~ 5 AWa(DV () = ¢p(N VY5 ()} (15
ferent from that of a semiconductor system in several as-
pects. First of all, the absence of a band gap in metals allow$he electric fieldE,(r), which drives the nonlinear current
for efficient excitations even with a relatively small photon density in Eq.(14) is the local field and, in general, quite
energy. Hence, there is no wavelength threshold for the nordifferent from the incident fieItEff)(r). In a layered structure
linear interactions in metallic quantum wells. In addition, displaying full rotational symmetry in the linear optical prop-
semiconductor heterostructures are usually fabricated begrties the spatial dependenceEf(r) is limited to the form
varying the content of a substitutional element added to th&,(r)=E,(z)e'¥", whereq, is the parallel component of
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the optical wave vector. In addition, the nonlinear currentin the case ofs and p polarization the components of the
density averaged over a surface unit cell will vary accordingncident field are ES)= E?U(O,l,O) and ES)
t0 jo,(F) =]j2.(2)€%% . Sinceq,=2m/\qSin(f), wherehg = Eg(cosa,o,sina), respectively. The field distribution func-

is the vacuum wavelength amds the angle of incidence, the tions f’(z) include (i) the discontinuity of the components
(x,y) variations of both electric field and nonlinear current at the material boundaries determined by the dielectric con-
density occur on a scale set by the wavelength. Consestants 1,(€), andeg(Q) of vacuum, metal and substrate,
quently, this dependence can be safely disregarded in conjespectively,(ii) phase variation within each medium, and
parison with thez dependence. The amplitude of the incident(jii) a spatially varying local field enhancement factor. For
field is denotecE’ and thex,y andz components oE,(2) simplicity, we will replace the spatially varying enhancement
can be formally related to those Bf, via the introduction of ~ factor by an average one. Hence, assuming a vacuum/metal

field distribution functions according to dielectric boundary at=a and a metal/Si dielectric bound-
" 0 ary atz=b the field distribution function for the compo-
E.i(2)=f"(2E,;. (1) nent at frequency? is given by

Lo{€'%@ @4y g1z @} 7<q
f2(2)={ e M Q)La(1+ro)/(1+royr i2qla){eiq1<zfa>+r i2qlae*iql(zfa)} a<z<b
2 Q 0 01l 12€ 126 . (17

st (Q)L (14100 (14T 19/ (141 g 102018 gldidgidz(z-b) 7

In this expressiond=b—a,Lq is the average local field P2u(Z)=£0X(2):E°E?, (18
factor at frequency() and qu, ¢;, and g, are the .

z-components of the wave vect(())rs ié the three2 regions. Also\fvhere the elements gf(z) are given by

rop andrq, are thep-polarized coefficients of reflection for 1 1

the vacuum/njetgl and metaI/Si interfaces, respectively and Xijk(2) = DicowAuc 1= 2t ikl T— E,.
ro=(r o2+ 1126 2%%)/ (141 g1 16299 is the p-polarized co-
efficient of reflection for the entire structure. It is understood
that all these quantities are to be evaluated at the frequency
Q. Similarly, f;}(z) andf(z) denote tangential field distri-
bution functions at frequencg). These functions are quite Xf J',w(f)'éidsz jm(r)~éjf]f"(z)d3r
analogous to Eq(17) in that f{(z) andf}'(z) are obtained uc

from f}(z) simply by removinge ~*(Q) and e5'(Q) and

making the substitutionsf——rf and rf—rf, respec- ijm(f)'ékfﬁ)(z)dSY, 19

tively, whererf;® is the reflection coefficient between layers ) ) )

i andj, the superscript indicating or s polarization. Due to  Where Ayc is the area of a surface unit cell and the first

the absence of ~(Q) and e5%(Q) the z dependence of integral is over this area. It is noted that taking tije-0
£2(2) andf2(2) is only via phase factors of the forat 9iZ limit has r_edu_ced the problerr_] of ca_lculatmg nonlinear f|el_ds
XA YA . and polarizations to a one-dimensional one. In fact, taking
2tnadnt§Lth(el Iw:nt)z; };1 :E t(hlej? ;ur;gts'gre‘itirj’:l;cﬁ_;g élri]secgﬁn- the g,— 0 limit has the additional advantage of greatly sim-

o\+71Ip Q s/ . -

o e plifying the rotational symmetry properties of the nonlinear
tinuities of the normal component of the electric field, how- response since these are now solely determined by the mate-

ever, yieldf; (2) ~Lq(1+rp)e1(Q;2) in this limit, where  yial properties. For &111) face the surface symmetry opera-
e~ 1(Q;2) is the inverse dielectric function at The appear- tions are reflections in three mirror planes and rotations by a
ance of two different tangential field distribution functions multiple of 120° around the surface normal. By requiring
f(2) andfi,’(z) will complicate matters as they give rise to invariance under these operations the number of independent
different matrix elements. It is easily seen, however, that to densor elements is reduced to ffiin a coordinate system
high degree of accuracy the relatiéfi(z) = yofy () with  with thex andy axes fixed by the requirement that thexis
Yo=[1+r(Q)1[1-r,(9)] is valid. Hence, the/-matrix be perpendicular to one of the mirror planes, these tensor
elements are simply proportional to tkenatrix elements in ~ elements af® Xuux: Xzxxo Xxzx @Nd Xz55. In general, the
this approximation. plane of incidence is rotated by an anglearound the sur-
The induced nonlinear polarization p,,(r) face normal with respect to this coordinate system. In terms
=p,,(2)e?%" is related to the nonlinear current density Of this angle the nonlinear polarization is givertby
throughj,,(z) = — 2i wp,,(z) and, using Eq(16), this quan- B 210
tity can be related to the incident field. In this manner, aver-  P2o(2)=~goxxxx(2)| vul °|E,,
aging Eq.(14) over a surface unit cell produces an effective 0
zdependent nonlinear susceptibility, i.e., P20,(2) =&oxxxx(2)|E,,

f,—f, f,—

yn

f
% - + -V A
hotifilt—E,, fho+tiflT—E,

I%sin3¢9 s, to s,,

|2cog 6sin3¢y p, tO Sy,
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P20(2) = — €0Xxxx(2)] 7w|2|E‘j,Izcos 3% summation ovefl,m,n} as well as a threefold integral over
{k",k’ ,k}. Explicit expressions for the effective tensor ele-
+&0X2xd 2)| 7w|2|E?u|22 S, 10 P2, - ments are presented in the Appendix. From these results it is
seen that two different types of matrix elements denmﬁg
P2,(2) = ol Xxxx(2)€OS 3 COS 6 and z{}B [defined in Eq.(A3)] are involved. These matrix

elements describe electron motion parallel and perpendicular
to the surface, respectively. In the case of an electric field
+ £0[ X2( 2)COS O+ x5,4Z)sir? 6]|E?|?2. with a slow spatial variation, the selection rules implied by
these matrix elements are quite different, however. This fol-
(20 lows from the fact that in the dipole approximation the field
The reflected second-harmonic field is of the foly,(z) distribution functionsf(z) and f$}(z) reduce to the con-
=&,,E,,e 1% where&,, is a polarization vector and the stantsL(1—r,) andL,(1+r,), respectively. Hence, using
scalar amplitudée,,, can be related to the nonlinear polar- Eq. (A3) it is seen thatX,z=La(1—rp)d,s and 22,3
ization via a vectorial Green’s function according to =Lo(1+rp)(¢.lzleg) in the dipole approximation. The
Kronecker delta obtained fcﬁ(gﬁ is readily seen to imply
. that xyxx= Xxzx= Xzxx= 0- It is concluded that only,,, sur-
E2w=J G2°(2) - Py, (2)dz. (21)  Vives in this limit and, in fact, this conclusion holds even if
— only field variations of the forne*'%Z are neglected. It fol-
lows that the magnitude of,,,is expected to be much larger
In the case of the-polarized second-harmonic field only the than those Ofyuy, Xxzx» aNdxzxx-
y element of the Green'’s function is relevant, whereas Roth
and z components contribute to the magnitude of the re-
flected field in thep-polarized case. Using results from Ref.
21 the explicit expression for these functions can be written At a first glance, it would seem that the expressions given
in Eqg. (23) are readily applicable for a comparison between
) theory and experiment. A number of subtleties must be con-
1 =X sidered, however. One difficulty is related to the fact that Eq.
G (2)=—iw \/Effw(z)x 1 i=y, (220 (23 is an expression for the second-harmonic signal gener-
€0

+ Xxzd 2)SIN 20]|ED|?X  p,, O Pa,

IV. NUMERICAL CALCULATIONS

ated by a perfectly smooth QW of arbitrary thicknels&ven
under ideal growing conditions, i.e., layer-by-layer growth,
wheref?°(z) is, in fact, thei component of the field distri- the physical QW will display a minimum roughness of one
bution of a field at frequency@ By utilizing the various ~monolayer, however, since the topmost atomic layer will
Green’s functions we finally arrive at the following expres- cover only a certain fraction of the surface area. Hence, a

tanfd 1=z

sions for the second-harmonic reflectivig=1,,/(1,)?: given surface will contain a mixture of areas with, ergand
n+1ML’s, respectively. The fraction of the total surface
s tos= 20°(10/C) | Xxxd | Yol | V20l * SITF 3¢ area with precisely ML’s will be denotedP,, and it may be
5 5 5 ) considered as the probability of encountering a thickness of
Mo tos= 20°(110/€) Xyl * V20| COS O5iNF3 ¢ preciselyn ML's in random sampling. More generally, de-
5 o 12 viations from layer-by-layer growth will be found and,
s to p=20°(10/C)| XxxxCOS 3p— xzxxtano|<| y,| hence, a binomial distribution of the form

Mp 1o p=202( o/ C)| Xxxx COS 3p COF O+ Xy SiN 20

+ X2xxCOS Otand+ x,,,si? Atang|?. (23 N
o . Po=| _|p"(1-p)N°" (25)
Here, effectivez-independent tensor elements have been in- n
troduced according to
1 1 will be appropriate. In using this expressiahshould now
Xijk=5; 3A hotih/—E be regarded as thmeanthickness and the parametétsand
Fo Ruc auy RO T e p must be expressed in terms dfand the width of the
f,—f\ f,—f, distribution o(d), which may, in general, depend ain The
N FoFifile E, Ry p— N appropriate relations arp=1—¢?/d and N=d?/(d— o?).
“ v

The requirement thal must be an integer is only met at
. 2w s [ o 3 certain values ofl and, hence, quadratic interpolation is used
X JUCJuv(r)‘eifi (2)d rJ’ In(r)- &y (2)dr between these values. Next, an open question is whether the
contributions from areas of different thickness should be
] . w 3 added coherently, i.e., by adding the generated currents, or
X f () &f(2)dr. (24 incoherently by adding the intensities. Obviously, two con-
tributions which are imaged onto different points in the de-
In evaluating this expression it should be remembered thatection systen{photomultiplier tubg should be added inco-
the threefold summation ovef\,u,v} actually entails a herently and for simplicity we will assume that this case is
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valid generally. Consequently, for a sample with mean thick- w?
nessd, the second-harmonic reflectivity(d) should be cal- e(w)=¢'(w)— w(w—fI/T) (29)

culated from

herew, is the unscreened plasma frequency. The interband
d)=> 7(nd)P,, 26) \Wherewp P quency
7(d) n 7(n4)Pn (26) contribution can be approximated by its bulk value and so
the thickness dependence of the expression above is only via

where 5=2.3 A is the thickness of a monolayer for(f11) 7. In the low frequency range far from interband resonances
surface. An attractive feature of the present microscopic aps’(w) is approximately constant and by fitting the experi-
proach is that the calculations are based on either micromental bulk dat? to Eq.(28) the following bulk values are
scopic quantities, e.g., Fourier components of the electronitound: 7 w,=8.72eV and#/r,,,=0.074eV for Ag and
potential, or quantities that can be determined independentlfw,=9.39 eV andh/r,,,=0.079 eV for Au. As usual, the
such as the dielectric constant of the Si substrate used fgptical relaxation frequency is slightly larger than the corre-
evaluate field distribution functions. An exception, however,sponding dc resistivity valuk. Using these values’ (o) is

is the relaxation timer, which determines the width of the cajculated by subtracting the bulk intraband contribution
resonances in Eq(24) and, in fact, also influences the from the experimental values efw). In turn, the values of
screening of the fields inside the metallic layer. The diffi-s/(w) and w, allow us to compute the correction to the

culty encountered in the present context is th@annot be  yigleciric constant due to E€R7). Given (w), the average
expected to attain its bulk value in a thin film due to surfacelocal field factor is simply taken ad,={2+[s(w)
scattering. Hence, the relaxation time varies with thicknesgLg (@)]/2}/3. The remaining problem coﬁcerning the lin
N a manner that is unlfnown except that a monotomcallyear optical properties lies in determining the location of the
increasing dependence is expected on physical gro(seds

Ref. 5, however If the rate of scattering events is the sum Ofd|e|ectr|c_ b‘?“”d‘?”e?“ and b. In a simple plctu_re, these
surface and other contributions—" will consist of a con-  Would coincide with 0 and. However, the delocalized metal

stant termrg1 and monotonically decreasing surface term,electrpn density ext-ends into the vacuum and Siregions, thus
e effectively broadening the screening region. The metal elec-
' tron density is a weighted summation of contribution due to
the differentboundelectron states. Hence, the spatial extent

7 1(d)= 7-51+ TS Y. (27 of the bound states approximately coincides with the screen-

ing region. The more delocalized excited states may extend

The thickness dependent functiorisl(d) ando(d) will be beyond the screening  region, howeverj For simplicity,
determined from a fitting procedure. In fact, these quantitie$0ugh, we will assume that all wave functions at the metal/
may serve as measures of the film quality since they mainlyacuum interface are sufficiently well localized that the
derive from the density of scatterers and the surface roughhetal dielectric function applies throughout this region.
ness. In addition, it should be noted that the location of resoSimilarly, the location of the dielectric boundatyis ex-
nances in the thickness or frequency dependence of the cdlected to lie somewhat beyond the “electronic” bounddry
culated second-harmonic signal is insensitive to the values dfrom the fitting procedure described below, the valbes
these parameters since they only determine the width of the d+246 (Au) and b=d+1.56 (Ag) have been found to
resonances. yield satisfactory agreement with experiment.

The linear optical properties of the structure determine the Our fitting procedure relies on the fact thgi,, is the
field distribution functions. Thus, these properties actuallydominant tensor element. Hence, thex xzx andzxxcon-
play an essential role in determining the nonlinear opticalributions toz,,, are safely neglected. Accordingly, by fit-
properties as well. As shown above, only,, survives if  ting the experimentap to p conversion efficiency to the
field variations through the structure are neglected and so th@mplified expression for,, , , found in this approximation
magnitudes Ofyxxx, Xxzx» aNdx,xx Will be critically depen-  a simple procedure for determining the paramet¢dy and
dent on the actual field variations and thereby on the lineav(d) as well as the remaining parameters is obtained. It
optical properties. The dielectric properties of the Si subshould be noticed that this method is only weakly dependent
strate can be taken from experimental bulk dat&or an  on band structure effects, singe,,is governed by the mo-
ultrathin metallic layer, however, the bulk dielectric function tion of electrons perpendicular to the interfaces. In fact, as
cannot be applied directly primarily because of the modifiedargued in the Appendix, band-structure effects may be ne-
relaxation time given by Eq27). Generally, the dielectric glected altogether in the calculation pf,,in the case of low
function e (w) contains an interband tera' (w) as well as incident photon energies. Using the result fgy,, derived in
an intraband contribution given by the Drude formula: the Appendix we find that

0.15+0.3exg—d/45A)+0.9exp — (d/15A)2]  for Au

ITA=1 0,10+ 0.2ex— 0135 A) + 0.8exi — (d/12A)2]  for Ag

(29
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6 Y T T T T T 1.0 T T T
I Au on Si(111) ] A l: Auon Si(111) (a)
E 5 Vo Pump energt)}'l.e:).ﬁ eV o8 ! Pump energy: 1.17 ¢V 1
= I . ry t |
oS 4F ! \ ———— ) A E ' |
5 AN P ospl ! 1
E \ / o Wi 2
=0, \ )/ 0.4 ' -
N o) ] ]
o l‘ I/ S~ | /-.
1rvs N 2 |/,t/xzx /Z/zzz
0 : ' ' ' ' ' 0.0 e
0 5 10 15 2 25 30 35 ,
Coverage [ML] o5t "“ Ag on Si(111) (b) |
it Pump energy: 1.17 eV
FIG. 2. Comparison between theoretical and experimentap 04kl \ .
second-harmonic reflectivity, , , as a function of film coverage. N
The curves are for Au on Gi1J). 03!\ 1
I 1
. . - - . b /
in units of eV. Similarly, the fitting procedure yields?(d) 021 /2
=d-0.25A for Au ando®(d)=d-0.13 A for Ag. At a thick- ot o
ness of 10 ML these values correspond to a roughness of Ay A N e ———
approximately 1 ML(Au) and 0.7 ML(Ag). 0.0, s ” 5
We now turn to a comparison between theoretical and Coverage [ML]

experimental results. All experimental curves are obtained

using the procedure described in Refs. 7 and 8. A compari- FIG. 4. lllustration of the relative contribution to the nonlinear
son between experiments and the theoretical curves obtainégsponse due to thexandzxxtensor elementsa): Au on Si111),
using the above relations is shown in Figs. 2 and 3. A quitéb) Ag on S(111).

convincing agreement between experimental and theoretic . . .
gag b %W states are indeed responsible for the nonlinear response.
a

curves is noted. The location of theoretical and experiment ' ! ) N
P ur fitted values for the width of the height distribution in-

resonances agree within a few monolayers except for a smaif ; .
9 4 P dicate, however, that the structures display a substantial

resonance in the Ag/Si curve at=1ML, which is seen variation in film thickness along the surface. Unfortunately,

experimentally but not reproduced in the theoretical curves; : S
P y P the lateral size distribution of the plateaus cannot be deduced

Most likely, this resonance cannot be attributed to QW tran,, .
sitions but rather to a modified surface state a localized from the present analysis. The fact that QW resonances are

plasmon resonance in isolated Ag islafdis addition to the seen, fhowle\:er, Qemonsr]trlates t?ﬁt th{ﬁ t);]pl_ca;:tla};ﬁ_ral d'mfn'
agreement between the experimental and theoretical thickON O @ piateau Is much farger than the height. This conclu-

ness dependence, the magnitudes of the calculated and m%c_)n Is supported by atomic force microscope scans, which

sured signals are estimated to be in rough agreement. In o or an Ag f'lm. of d.:ﬂ ML have revealed triangular pla-
der to confirm thaty,,, dominates the to p response the eaus Wlt_h typical sizes of several hundred nanometers.
(2105 | X Xozd AND | Xune X2pd (MO averaged over differ- We will now turn to the theoretical evaluation gf,.

ent thicknessegsare calculated as illustrated in Fig. 4. A large We will only investigate the thin film case for which the

value of these ratios is seen at low coverage. This feature %eerr?':rtl,zitlOrzsgi?)lﬁzI?g??h:fretl):\r;gr-jtrr#;tt:il;eeIiz f:ﬁg;islzr?ffr;
a result of smally,,, values rather than largg,,x or Xxyzx - EXp P

values, however. On an absolute scale, all tensor eIemen??nted n the Appendix. In order to obtain a reliable result a
symmetrical set o5, vectors must be used. For the set of

are small at low coverage. At larger film thicknegs,, and .
Y CONtribUte oN average only about 10—20% and, hencebqu-G vectors we may take that of Ref. 18 excluding the

can be neglected as assumed. The close agreement betwgé\%]rir;?q?;(_Zér;IIZéICZ'onVhIc()::ekr)wrt::aokfstr:geres%girr:]iﬁt%ﬁz::?o?sn-
experimental and theoretical results is a clear indication tha¥ gp P

can be written

12 T T T T
. 27 /8
Agon Si(111) (k) _ e S : ¢
Pump energy: 117 eV G, 7 \/;[cos( ka/3)X+ sin(kw/3)¥],
theory

ke{0,1,2,3,4,5, (30)

wherea is the lattice constanf4.08 A). These vectors are
seen to be of equal length and oriented at an akdlmes
60° with respect to thex axis. The corresponding potential
matrix elements given by Eq11) read

aaaaa

7,10, (107 cm’/W]
N

0 5 10 15 20 25 d
Coverage [ML] Vqﬁ(Gﬁk)):f @a(z){vllleXFﬁGf)z)
0

FIG. 3. Theoretical and experimentalto p second-harmonic

reflectivity for Ag on S{111). +Va00eX)iG?2)} o p(2)dz=W, 5, (31)
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ke{0.2.4, a0 )= ZSVICIVms(GIT(2)
where GM=-2x/(v3a) and G!¥=-2G. For k 2 (2)= i IM{W}, W} ’
e{1,3,5 the result\/aB(Gﬁk)) =W is found. These simple where, for instance,
relations allow us to perform the summation o@Granalyti-
cally. TheG, dependence of,, is via the potential matrix (3) 7 _ Al (33,9, g (31)
elements and, as shown in the Appendix, TH¥(Z) func- Sa(2)=6KT(2) = 5 KT(2). (33
tions defined by Eq(A14). As exemplified by Eq(A17) in
the casep=2 the TP (Z) functions have a simple depen-
dence on the azimuthal angle Gf. In the present case the {rate the importance of these results we consider the summa-

azimuthal angle_oGﬁk) is simply kr/3 and allG{) are of  tion overG, for the particular component of,, considered
equal length. This allows us to express the result of the sumin the Appendix. The final contribution from this part can be

(32)

The K{P?(Z) functions are defined in E4A16) and simi-
larly simple results are obtained fpr=0, 1 and 2. To illus-

mation overG, through the quantities expressed as
|
2
1 _ e’h® XXX IM{W, Wi g}
Xxxx—

8T°eqw M |nffap (Emg—Ei10)(2hw+ih/T—Eqp)

St (Ei) =S ”(Eie)  SY(Eia) =S*(Eie) SR (Emp) = S”(Emg)  SP(Emg) —= S”(Emg)
hot+ifilT—E)y, ho+inlT—E,, hot+ifilT—E)y, ho+ihlT—E,

(34

The fact that theG, summation can be performed analyti- between the Fermi level and the conduction band edge. In
cally in the present case leads to a la¢gj&fold) reduction in  fact, if the states above the conduction-band edge are ignored
computation time. the calculated value ofy, ,, is reduced to approximately
The xxx element is probed irs to s andp to s SHG ~ 10-20% and the location of the resonances is shifted signifi-
experiments and in the present work we focusig, s for can'gly. In order t_o determine the nc_>n|inear response duetoa
which experimental curves exist. A comparison is only at-Particular occupied state we rewrite E@5) in the form
tempted in the rangd<7 ML since the steeply rising theo- Xzzz= ZmocoXzzAM), Wherex,,{m) is the contribution from
retical curve beyond this range indicates a breakdown of théhe mth occupied state. This form of the equation is obtained
perturbation approach. At coverages below 7 ML, howeverby relabeling indices according fo~m andn<m in the
the agreement is reasonable as seen in Fig. 5 in which tHearts proportional té4, andH,, respectively. Thenth term
theoreticalp to s curves(not averagedare compared to ex- Of the resulting expression is then proportional #0Er
perimental data. The agreement is obviously less convincing

than in thep to p case, which we partially attribute to the use T sy @

of the perturbation approach. In addition, the assumption of \ Pump energy: 117eV

perfect structural order may be questioned. The differences 075[ Yy Tt theory 7 T TP ]

between experiment and theory cannot be explained by our O S

neglect ofy,,, and x,x Since these elements do not contrib- osob ,/

ute to thep to sresponse. As in thp to p case, an additional \\ L,

resonance, which is not accounted for in the QW model is — | e

seen in the experimental Ag curve around 1 ML. The reso- NE 02

nance around 4-5 ML is reproduced by theory for both Au 5

and Ag, however. We believe that this fact demonstrates the ~ §_ 00—+ TA oS0, ‘ ' ‘

soundness of the model and indicates that the entire coverage = i Pumpgenergy: L17 eV (b) |

range can be modeled by going beyond the perturbation ap- é | ) = theory

proach. ST/, T e T
The relatively good agreement between theory and ex- 6_': . '

periment allow us to use our model to locate the physical [ \

origin of the nonlinear response. The calculated response 4 / N

may be broken down into contributions stemming from a [ /' ~

particular combination of occupied and excited levels. For 2Ly

Au on Si the coverage dependence of the energy eigenvalues 0 * +

of these levels is illustrated in Fig. 6. The topmost part of 0 : 2 > ¢ > ¥ 7

C ML
this graph is the pseudocontinuum of Si conduction-band overage [ML]

states. Below this region the bound QW states are seen. The FIG. 5. Theoretical and experimentplto s second-harmonic
resonant transitions are mainly between the bound states amgtlectivity for Au (a) and Ag(b) on Si111). The theoretical curve
the Si conduction-band continuum due to the close proximityis obtained using the perturbation approach explained in the text.



10 264 PEDERSEN, PEDERSEN, AND BRUN KRISTENSEN PRB 61

.

SUMMARY

In summary, a complete microscopic framework describ-
ing second-harmonic generation from quantum well states
Fermi formed in thin-metal layers deposited on semiconductors has
been formulated. The major problem of obtaining suffi-
ciently accurate electronic eigenstates taking band-structure
effects into account has been solved by means of a truncated
expansion technique. Furthermore, analytical solutions at the
perturbation level have been obtained. Based on these elec-
7 = tronic wave functions, explicit expressions for all relevant
p 10 5 20 25 20 elements of an effective second-order response tensor have
Coverage [ML] been derived. Theoretical and experimental curvep wf p
and p to s second-harmonic signals versus film thickness
FIG. 6. The thickness dependence of the energy levels for an Aggye been compared for Au on(811) and Ag on Si111).

quantum well on SiL11). The thickness-dependent Fermi level is o poth structures, convincing agreement between theoreti-
indicated by the additional line. The dramatic change arouBd

eV marks the Si conduction band edge cal and measureg to p curves was found over the entire
ge- range of film thicknesses under study. The experimentally

—E.»- In this manner, we obtain the contribution to the non_observed resonances are rep roduced by theory and the abso-

linear response due, thenth occupied state in the form lute magnitude of the s_lgn_al is roughly correct. In the case of

7o 0o(M) % x,a{M)|2.  The thickness dependence of ptos second—hgrmomg signals the perturbat_|on calcglanon

77” ”(m) for Au on Si shown in Fig. 7. Note thap was shown to yield satisfactory agreement with experiments

ptop . . ptop . . . . _ .

# 2 moccllp to p(M) since interference terms between different'” @ limited th.|ckness rang@_ 7 monolayersbeyond which

levels are absent. Hence, ,,(M) can be regarded as the the per’gurbaﬂon apprqach IS fognd.to break down._ From a

nonlinear response of a 'f)ictf)tious QW containing only theComparison of the various contributions to the nonlinear re-

mth occupied state. From Fig. 7 it is seen that, o(m) sponse it is concluded that the resonances cannot be ascribed

. . t oy e . . . .

peaks in a particular coverage range. This range ggrrespon&%trans't'ons involving only a single occupied quantum.well

approximately to the interval w<E,— E, <2/ w. The fig- state. Rather, the resonances are composed from simulta-

ure clearly shows that the first resonann;:e obtained theore 1eously excited transitions betw_een several localized quan-

cally aroundd~7 ML, contains contributio’n from levels in UM well states and the unoccupied states of the conduction-

the rangeme{2,...,1Q. Similarly, the second resonance at band continuum.

d~27 ML is composed from contributions in the range

e{12,...,24. The range in which a particular level contrib- .

utes is seen to increase with This is due to the fact that the APPENDIX: EFFECTIVE TENSOR ELEMENTS

magnitude of the slope diy, versusd is decreasing withm. In this Appendix, explicit expressions for the various ef-

Hence, a particular level is resonantly excited in a broadefective tensor elements are derived. Among these elements,
range. Based on these results it is concluded that the resQ- s a special one since it vanishes in amorphous materi-
nances observed experimentally cannot be attributed 0 s Hence, even in free-electron-like materials band struc-

single electronic transition but rather to simultaneously eXy e effects must be included in order to calculgge, . Con-
cited transitions between several highly localized occupieq,4riwise. the remaining tensor elementg,,, x and
) ' XZX1

?tates and the unoccupied states of the conduction-band COP- 3 can be obtained without taking band structure effects
inuum.

into account. These effects are expected to be minor correc-
tions as long as only states belonging to thp band are
excited and therefore such a treatment presumably suffices.
Hence, for these tensor elements wavefunctions of the simple
form yO(r)=(27) e, (2)€*" apply and thex- and
z-matrix elements needed in E@4) give

Energy eigenvalues {eV]

2

7, 0,(m) 107 cm

[BREEE

eh ®
== Ekxﬁwwn(zm(z)fi’(z)dza(k—k")

eh Q
0 5 10 15 20 25 30 =—FkXXn|5(k—k"), (Al)

Level number m

FIG. 7. Plot of the contribution to the nonlinear response due to
the mth occupied quantum well level in the case of Au ol3$L). and
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eh
f jn(n)- 22 (2)d%r = - o—

% de(2) and the mathematical details are complicated by the corre-
®n(2) “dz sponding modification of the wave functions. The advantage
of the perturbational approach lies in the fact that all three

den(2)] ., k-integrations can be performed analytically. In order to
—@i(2) T]fz (z)dzo(k—k") demonstrate this, the general expression for the electronic

states, given by Eq2), is taken as a starting point. Using

2im J .

e 0 this result, the second integral in the Eg4) yields
= = EnZpd(k—k"), (A2)
i iati jor(r)-Xf2(z)d%
where we have introduced the abbreviations A X
0 eﬁ ©
Xap= f_w%(Z)soﬁ(Z)f?(z)dz :_FGEK (kX+GX)J endGy.2)
AN -

and

X ()D|k”(K|| ,Z)f‘;’(z)d25(k+GH—k"— KH)'

Q * z Q0 ’ (AS)
Zysg= | eDep(2)| f,(2')dz'dz (A3)
- 0 A similar expression is obtained for the last integral. Due to

In the last equality in Eq(A2) integration by parts has been the delta functions in these expressions the integrals lover
applied. In the low-temperature limit, the Fermi functidng ~ @ndk” are readily carried out. The resulting form of £g4)

are simple step function,, = 8(E— E,—#2k%2m). Due then contains a sixfold summation over the seGgh. One

to the simplek-dependence of the matrix elements above®f these summations can be eliminated using conservation of
only the following two integrals involvingd ,, are needed:  crystal momentum, which is required by the integral over the

and

whereH,=(Er—E,;) 0(Eg—E,). It should be noted that the
Bloch wave vectoik is not restricted to the first Brillouin
zone in the present treatment. When these results are utilize
the final expressions for the effective tensor elements read

Xzzz—

Xzxx—

Xxzx—

surface unit cell in Eq(24). In the remaining five-fold sum-
1 5 m mation a zeroth-order term in which &l,’s equal zero ex-
mj fud®k= 5z Hn ists. As expected, it may readily be shown that this contribu-
tion to x4, Vanishes. This follows from the fact that in this
case all three integrals in E§24) contribute a factok,.

1 2 Hence, the integrand is an odd functionkgfand the integral
J' f o K2d%k= m H2 (A4) vanishes. Due to the absence of a zeroth-order term it can be
2 nkfx ﬁ4 ns . . . .
4w 4w shown that the leading contribution tg,,, contains 15

terms, in each of which twe,’s are nonzero. The calcula-

tions are rather tedious and in order to avoid unnecessary
etails we choose as an example to present only the results
or the first among the 15 terms. This contribution can be

written
+ e3m5 . EIm.EmnEnI ) ie3ﬁ3 ,
daeph w® fon 2ho+ifilT—Eqn, X;x)x:m > %"n Fimn(K, K, k)k2
o AmzH L FemH a0 X (K, + G,) X29X2 X (3)d2k (A9)
hotifl—Ep | hotifilr—Ey| méniéim: (K G XX Xim(3)d°K,
(A5)  Where we have introduced the notation
3
e E 1
- 33 —on Fimn(k,K",kK")= -
8meph w® fmn 2how+ih/T—E,, 2hw+ihl7—Eq+ Eqpe
HZ—H? H2—H? Fnker = Fiier
x T Z2aXE X, "R+ ihlT—Ep+E
hotiilT—E, hotihl/t—E, w Ik T Emk’
(A6) frr = fiier
+hﬁ)+iﬁ/7_Enk+E|ku ’ (Alo)
3
e En
8meghw® fah 2hw+ihl/T—Epn and
Ho— HY Mo ] uzuxs X2(3 F 5(G G,.2)f%2)dz (ALl
X ﬁw+iﬁ/T_E|m+hw+ifL/T_En| anznlxlm' aﬁ( )_ _w@ak( II'Z)(PBk( H!Z) x(Z) Z ( )

(A7) By applying Eq.(13) and a partial fraction expansion of the

The calculation ofy, proceeds along similar lines as those k-dependent denominator of the matrix elemifjt(3) it is
above. Band structure effects cannot be ignored, howevefpund that
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353 ra(GH)VmB(GH)XzﬁXanw ° By writing G,=G; ,00,55 and using polar coordinates and the
E _E low temperature limit theTgp)(Z) functions can be further
mp e decomposed in terms of the integrals

X(l):
XX BTeqw M G imnes

XA (E1o) = A2 Emp)], (A12)

. o m 5/2
where we have introduced the abbreviation K{PO(z)= F) EX20(Er—E,)

kR(ke+Gy) 3P +1
Afr%)n(Z)Emen(k,k,k) ﬁzx . ﬁé d2k. kaafzw kP+Lcod o dodk
Z+ﬁk2_ﬁ|k+GH|2 o Jo ZIE,—1—2kcose '

(A13) (A16)

Thek dependence dfin(k k,k) is via the Fermi functions  \yhereE, =#2G?/(2m), E is the thickness-dependent Fermi
f.« and, hence, integrals of the form energy that can be calculated from the charge neutrality con-
p 3-p dition, #(x) is the step function ankl,= \(Er—E,)/E,. For
(p) Kx(kyt G 2 instance
Ta (Z): fak hZ ﬁ2 d k1 (A14) ’
Z+ _kz_ _|k+ GH|2
2m 2m

T (2)={coss(cog 6—3 sir? 5)K3¥(2)+3 sirf 6

are needed. This notation allows us to write ><Kf.fl)(Z)+sin2 5K(32°’(Z)+(c0525—sin2 5)

P P— T(2)-Ti"2) XK (2)}. (AL7)
2ho+ihlT—E | Ao+if/t—E)y
2) T/ 2) TheK{P9(Z) integrals are readily evaluated using tabltes
n \2) I J (A15)  analytical computer software. Finally, the remaining contri-
ho+ihlT—Ey, butions toy,xx are evaluated in a similar fashion.
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