
PHYSICAL REVIEW B 15 APRIL 2000-IVOLUME 61, NUMBER 15
Self-trapping of electromagnetic pulses in narrow-gap semiconductors
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Dynamics of the self-trapping of short laser pulses in narrow-band-gap semiconductors is studied. The
nonparabolicity of the conduction band leads to a nonlinear dielectric response with saturating nonlinearity.
Due to the nonlinearity saturation the beam can be trapped in a self-generated guide, and the formation of
stable two-dimensional spatial solitons can take place.
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Self-focusing and self-guiding of light beams have
ceived much attention in recent years in connection w
their important applications, such as soliton propagation,
optical switching, and logic.1 Stable spatial solitons with two
transverse dimensions can exist in materials characterize
a saturable nonlinearity that exactly compensates for
diffraction.2

Narrow-gap semiconductors, in particular III-V alloy
with a small effective mass of conduction electrons, exhib
large degree of nonparabolicity. In fact, in some narrow-g
semiconductors like InSb, the dispersion relation mimics t
of a relativistic electron with a small effective mass, and w
an effective ‘‘speed of light’’ several order smaller than t
speed of light in a vacuum. In Kane’s model, the dispers
relation can be written in the form3

E5
Eg

2 S 11
p2

m
*
2 c

*
2 D 1/2

2
Eg

2
, ~1!

whereE is the energy of a conduction-band electrons, anp
is a quasimomentum. Herec* 5(Eg/2m* )1/2 plays the part
of the speed of light (c* '331023c for InSb!, m* is
the effective mass of the electrons at the bottom of the c
duction band, andEg is the width of the forbidden gap sepa
rating valence and conduction bands. In response to a l
pulse, due to the velocity-dependent mass the conduc
electrons can simulate the dynamics of a relativistic plas
at the pulse intensity which is a tiny fraction of the intens
required to create similar conditions in a normal gase
plasma. This similarity has been widely exploited in the pa
In particular, using methodologies of relativistic plasmas,
parametric amplification of electromagnetic waves as wel
the parametric excitation of density waves have be
studied.4 Tzoar and Gersten demonstrated that a weak n
parabolicity (p2/m

*
2 c

*
2 !1) in InSb can lead to the self

focusing of the CO2 laser beam.5

These investigations were carried out two decades a
and consequently dynamical properties of the nonlinear
teraction of a laser beam with semiconductors were stud
mainly on nanosecond time scales. We would like to emp
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size that the principal difference between most semicond
tor plasmas and the usual gaseous one concerns the colli
ality. The comparatively small collision time of carriers
semiconductors, typicallytR'10212–10213sec, hinders the
excitation of collective modes.6 On the other hand, for nano
second laser pulses, the field intensity must be much
than 107 W/cm2 to avoid the breakdown of the semicondu
tor. Consequently, the ‘‘relativistic’’ nonparabolicity facto
p2/m

*
2 c

*
2 ;e2E2/m

*
2 c

*
2 v2 had to be kept much lower tha

unity (E and v are the electric field and frequency of th
laser radiation, respectively!. Due to these limitations the
expected effects appeared to be small, and, therefore,
research in this direction was soon abandoned.

Recent achievements in short-pulse generation, howe
have motivated studies of short-pulse propagation in nar
gapn-doped semiconductors when the nonparabolicity of
conduction band is the dominant effect responsible for
nonlinear refraction of the laser pulse.7 Readily available pi-
cosecond~femtosecond! intense pulses with wavelength
ranging from the ultraviolet to the midinfrared can be used
observe the collisionless collective phenomena in semic
ductor plasma. For instance, in the case of InSb, one m
use a CO2 laser with a wavelengthl510.8m to avoid one-
and two-photon absorption. Although the production of
trashort pulses in infrared ranges withl.10m is currently
based on challenging optical parametric down-convers
processes, midinfrared pulses (l'10m) as short as 130 fs
were created a decade ago8 using semiconductor switching
In Ref. 9 the modulation instability in narrow-gap semico
ductors is suggested to produce subpicosecond midinfr
pulses. The applied intensities of such short pulses can b
high as few GW/cm2. Provided the pump fluence is kep
below 0.5 J/cm2, irreversible damage of semiconduct
samples does not take place,10 allowing us to consider effects
with a finite nonparabolicity factorp2/m

*
2 c

*
2 ('1). Finite

nonparabolicity naturally induces a saturation of the non
ear, intensity-dependent refractive index of semiconducto

In what follows we consider the dynamics of short las
pulses in the plasma of narrow-gap semiconductors.
main effort is devoted to studies of the generation of tw
10 201 ©2000 The American Physical Society
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dimensional stable solitonic channels~filaments! that can be
developed due to the self-focusing of a laser pulse in a b
semiconductor which exhibits the above-mentioned non
earity saturation. It is shown that saturation of the nonlin
response stabilizes the process of self-focusing, and all
the formation of spatial solitons.

The dynamics of short laser pulses in the semicondu
collisionless plasma can be described by Maxwell and qu
hydrodynamic equations.4,5 The validity of the hydrody-
namic approach for the semiconductor plasma requires
both the Fermi energy (EF) and the temperatures are lo
(Eg@EF ,kBT). It can be shown that the equation for th
vector potentialA of the field reads

]2A

]t2
2

c2

e0
DA1ve

2AS 11
e2A2

m
*
2 c

*
2 c2D 21/2

50, ~2!

where ve5(4pe2n0 /m* e0)1/2 is the effective plasma fre
quency,no is electron density in the conduction band, ande0
is the dielectric constant of the lattice~for details, see Refs. 7
and 9!. For the vector potential a Coulomb gauge is assum
(¹•A50). The contribution of the magnetic part of the Lo
entz force causing a nonlinear variation of the plasma den
is negligibly small sincec* /c!1. Consequently, effects re
lated to the density variation of electrons are neglected in
~2!.

A propagating circularly polarized laser pulse, with a c
rying frequencyv and wave numberk, is given as

A5
1

2
~x1 iy!A~r ,t !exp~2 ivt1 ikz!1c.c., ~3!

where A(r ,t) is slowly varying field envelope (v@]/]t,k
@“), and v and k satisfy the dispersion relationv25ve

2

1k2c2/e0. Note that for circularly polarized waves, the ele
tron energy does not depend on the fast time, and co
quently there is no harmonics generation.

From Eq. ~2! one can obtain a nonlinear Schroding
equation~NSE! with saturating nonlinearity using variable
z85z, t5t2z/vg (vg5e0

21/2kc2/v is a group velocity!

i
]A

]z
1D'A1S 12

1

~11uAu2!1/2D A50. ~4!

Here D'5]2/]x21]2/]y2 is a two-dimensional Laplacian
describing pulse diffraction. In Eq.~4! the following
normalizations are used:t/T, z/Z, r' /R, and A/As

where T5v21, Z52e0
21/2cv/ve

2 , R5e0
21/2c/ve and As

5m* cc* /e. Deriving Eq.~4!, we assumed that the semico
ductor sample is moderately doped (n0'1016–1017 cm23),
and that the corresponding plasma is transparent for C2
laser pulses (v@ve). As a consequence, the term related
the temporal spreading of the pulse@;(ve

2/v2)]2A/]t2# is
neglected in Eq.~4!. However, effects related to the tempor
reshaping of the pulse should be important for heavily do
samples, and can lead to the formation of temporal solito
structures.9

Equation ~4! admits a stationary, nondiffracting axiall
symmetric solution of the formA5U(r )exp(ilz), where r
lk
-
r
s

or
i-
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5(x21y2)1/2, and l is the nonlinear wave-vector shift. Th
radially dependent envelopeU(r ) obeys an ordinary nonlin-
ear differential equation

d2U

dr2
1

1

r

dU

dr
2lU1S 12

1

~11U2!1/2D U50. ~5!

This equation corresponds to a boundary value problem
suming thatU has its maximum atr 50, and imposing the
boundary conditionsUr ,Urr →0 asr→`. One can map Eq
~5! in the (U,Ur) plane~phase plane!, and compare the re
sulting equation with a nonconservative motion to show~as
Vakhitov and Kolokolov did for another saturatin
nonlinearity11! that provided the eigenvaluel satisfies the
condition 0,l,1, Eq. ~5! admits an infinity of discrete
bound statesU j (r ) ( j 50,1,2. . . ), characterized byn zeros
at finite r. In what follows we consider only the lowest-orde
nodeless solution of Eq.~5!, i.e., a ‘‘ground state’’ that is
positive and monotonically decreasing with increasingr. Nu-
merical simulations show that the amplitude of the groun
state solution@U0(r 50,l)# is a growing function ofl. The
beam width becomes wider at low and high amplitudes, h
ing its smallest size at some intermediate amplitude.

The stability of the ground-state solution can be analyz
using the well-known stability criterion of Vakhitov an
Kolokolov.11 According to this criterion the ground-state s
lution is stable against a small perturbation if]P/]l.0,
where P represents the integrated intensity~power! of the
trapped mode:

P~l!52E
0

`

U0~r ,l!rdr . ~6!

Such a stable nondiffracting solution~also see Ref. 13! can
be called a soliton according to the modern terminolo
Curven in Fig. 1 corresponds to the power as a function
the amplitudeA obtained using the numerical solution of E
~5!. Since this curve has a positive slope andl is a growing
function of the amplitudeA, the derivative of the power is
positive @P8(l)5P8(A)A8(l).0#, and the corresponding
ground-state solution is stable for any amplitude. The
merical simulations of Eq.~4! confirm the stability of the
ground-state soliton solution. Even if a small initial pertu
bation is imposed, the soliton propagates without distort
for a long distance.

The complex dynamics of a beam governed by a N
with saturating nonlinearity can be analyzed by the var

FIG. 1. Equilibrium power as a function of the amplitude. Th
equilibrium curvee together with the numerically obtainedn curve
and trapping curvet.
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tional approach.12 This approach determines the relations b
tween the characteristic parameters of the localized solu
approximated by a trial function. The variational meth
gives qualitatively good results, provided the beam does
undergo structural changes during its evolution. The fi
standard step is to construct the Lagrangian

L5u¹'Au1
i

2
~A]zA* 2c.c.!2F~ uAu2!, ~7!

where the asterisk denotes complex conjugation, andF
5uAu212@12(11uAu2)1/2# is the nonlinear term. Appropri
ate variation of the Lagrangian yields Eq.~4! as the Euler-
Lagrange equation. In the optimization procedure, the fi
variation of the variational function must vanish on a su
ably chosen trial function. As a trial function, we will use th
Gaussian-shaped beam,

A5A0~z!expF2
x2

2ax
2~z!

2
y2

2ay
2~z!

1 if~z!G , ~8!

where f5x2bx(z)1y2by(z)1f0(z). The evolution of the
laser field is parametrized byz-dependent amplitudeA0, spa-
tial widthsax anday , and phasef0. The parametersbx and
by are the wave-front curvatures. Substituting expression~8!
into Eq.~7!, and demanding that the variation of the spatia
averaged Lagrangian with respect to each of these pa
eters is zero, we obtain the corresponding set of Eu
Lagrange equations,

d2R'

dz2
522

]

]R'

V~R'!, ~9!

where the vectorR'5(ax ,ay) is the width. The effective
potentialV has the form

V5
1

ax
2

1
1

ay
2

2
K~A0

2!

A0
2

, ~10!

with the nonlinearity function

K~u!52u18@12~11u!1/2#18 ln$0.5@11~11u!1/2#%.
~11!

During the field evolution, the power is conserved,P
5A0

2(z)ax(z)ay(z)5const. Thus Eqs.~9! and~10! are analo-
gous to those describing the dynamics of a particle in a t
dimensional potential. Straightforward analysis shows tha
the power of the pulse is less than a critical one,P,Pc58,
the potential has a negative slope]V/]R',0, and conse-
quently the force pushes an effective particle in the posi
R' direction. In other words, the effective width of the bea
increases continuously, leading to its diffraction. Howev
for P.Pc the potential becomes a two-dimensional w
where the effective particle is trapped and oscillates, bou
ing elastically from the walls. If the beam initially has
plane front@i.e.,bx(0)5by(0)50], the trapping condition is
a0x

221a0y
22,A0m

22K(A0m
2 ), whereA0m , a0x , anda0y are the

initial amplitude and transverse dimensions of the beam,
spectively. The generation of a two-dimensional oscillat
waveguide takes place. The equilibrium parameters of
beam that correspond to the effective particle settled in
-
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bottom of the well~obtained by using relation]V/]R'50)
areaeq5aex,ey521/2@K8(Aeq

2 )2K(Aeq
2 )/Aeq

2 #21/2, whereaeq

and Aeq are the equilibrium width and amplitude of th
beam, respectively. One can see in Fig. 1 that the equilibr
curvee obtained by the variational approach closely follow
the n curve which corresponds to the exact numerical so
tion of Eq. ~5!. The beam above the critical power (P
.Pc) is trapped, provided it is in the trapping region, and
parameters will oscillate around the equilibrium ones. In
region above thet curve~in Fig. 1! the trapping condition is
satisfied for a symmetric beam (ax5ay). As a consequence
the beam with initial parameters situated on the left-ha
side of the equilibrium curve will focus initially, while for
the state on the right of this curve it will first be defocuse
Note that in the case of weak nonparabolicity (uAu2!1), Eq.
~4! reduces to a NSE with cubic nonlinearity, and a be
with above critical power will collapse after a finite distan
of propagation.

In Fig. 2 we plot the evolution of the beam amplitud
obtained by numerical simulations of Eq.~9!. The initial
Gaussian beam is assumed to be symmetric,a0x5a0y510,
and to have the powerP520. Thea curve corresponds to th
case when the nonlinearity is neglected. The beam amplit
is reduced by half at the distancezd'60. The b curve is
associated with the Kerr-type nonlinearity (;uAu2). As one
might expect, the beam collapses at a distance shorter
the diffraction lengthzd . The saturation nonlinearity, relate
to the finite nonparobolicity of the band structure, preve
the infinite growth of the field amplitude, resulting in a
oscillatory wave guide (c curve!. A similar behavior can be
obtained for an asymmetric beam (a0xÞa0y), provided the
trapping condition is satisfied.

Results of the variational approach can be used to un
stand the main features of the beam dynamics. For insta
the predicted equilibrium curve lies reasonably close to
numerically obtained one. Although this approach descri
the beam dynamics qualitatively well, it is unable to accou
for structural changes of the beam shape. The exact dyn
ics of the beam is obtained by numerical simulations of E
~4!. The typical behavior of the trapped beam is shown
Fig. 3, where the field amplitude of the initially symmetr
Gaussian beamuAu5A0mexp@2(x21y2)/2a0

2# is plotted ver-
sus the radiusr and the propagation coordinatez. The beam
power isP5A0m

2 a0
2520, while its width isa0510. As has

been predicted by the variational approach, the beam is s

FIG. 2. The amplitudeA0 as a function of propagationz ob-
tained by variational method. Thea curve corresponds to the dif
fraction. The Kerr nonlinearity is given by theb curve. Thec curve
exhibits oscillations around the equilibrium.
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trapped, and its parameters oscillate near the equilibr
state, corresponding to the powerP520. Note, however, tha
due to the appearance of the radiation spectrum the am
tude of these oscillations is monotonically decreasing w
increasingz ~see also Refs. 12 and 14!. For largerz the
oscillations are damped out, and the formation of a grou
solitonic state takes place. If the initial profile of the beam
close to the equilibrium one, then the beam quickly reac
the profile of ground-state equilibrium, and propagates fo
long distance without distortion of its shape. The initial bea
in the trapping region, even quite far from equilibrium, w
either focus or defocus to the ground state, exhibit
damped oscillations around it. Essentially the same dam
behavior, leading to the formation of a symmetric groun
state soliton, can be obtained for an initially asymmet
beam. Consequently, the ground-state equilibrium seem
be an attractor.

Such an evolution scenario can be altered due to
modulation instability~MI !, and under certain conditions
will result in the beam breakup. Indeed, MI can take pla
for laser beams with a power much higher than the criti
one. If such a beam is sufficiently wide, it may be unsta
with respect to small perturbations of its spatial structu
Rigorous treatment of MI is beyond the scope of this pap
However, to obtain some insight into this problem, we a
lyze the stability of a constant amplitude field with respect
small perturbations. Assuming thatA5A01e exp(xz
1ik'r'), wheree!uA0u(5const), from Eq.~4! we find that
the region of instability is determined by the conditionuk'u
,km5uA0u/(11uA0u2)3/4, while the growth ratex reaches
its maximumxm5km

2 /2 for perturbations with a transvers
spatial periodL'523/2p/km .

We carried out numerical simulations of nonlinear d
namics of MI for a wide, high-power Gaussian beam with
initial amplitudeA0m51 and widthsa0x5a0y5100. For the
amplitudee50.1 of imposed perturbation, the wave vecto
kx5ky50.2 are chosen to be in the domain of instabili
The intensity pattern at three different propagation distan
z in Fig. 4 demonstrates the breakup of the beam into high
intensity filaments. Each filament has the tendency to evo

FIG. 3. The numerically obtained beam evolution exhibiti
damped oscillations toward equilibrium.
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toward its own equilibrium state, corresponding to the pow
it carries. However, due to the mutual interactions of fi
ments, further dynamics is difficult to interpret. Therefor
we cannot conclude that at the final state of their evolut
those filaments form a stable solitonic structure. MI simu
tions for low-power beams (Pc,P,60) have been made
but the instability was not observed even in the case of w
beams. We believe that for such a beam (A0m!1) the
growth rate of the instability (x;A0m

2 ) becomes negligibly
small, and the beam reaches its equilibrium state before
develops.

In dimensional units the intensity and the power of t
laser beam are defined asI 5e0

1/2cuEu2/4p andP5pa0
2I , re-

spectively, wherea0 is the spot size of the beam. The critic
power is expressed as

Pc52e0
21/2c3

m
*
2 c

*
2

e2 S v

ve
D 2

. ~12!

FIG. 4. The initial beam intensity pattern followed by bea
breakup patterns of interacting filaments at propagation distan
z5150 and 300.
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In the case of an InSb semiconductor, the relevant par
eters areT577 K, m* 5me/74, c* 5c/253, ande0516.
The critical power isPc512(v/ve)

2 W. For a CO2 laser
beam with a frequencyv51.7431014 rad/sec propagating
in InSb with a carrier densityn05231016 cm23, the critical
power for the self-trapping isPc'1.3 kW. The real num-
bers for the normalization introduced in Eq.~4! are Z
589 mm, T557310216 s, R54,4 mm, andEs5vAs /c
51.63105 V/cm. Using these parameters, the simula
dynamics in Fig. 3 corresponds to a laser beam of powe
kW, spot size ~i.e., the beam width at half maximum!
73 mm, and initial intensity 0.05 GW/cm2. The first focus,
i.e., the first maximum of the field intensity corresponding
0.86 GW/cm2, appears at a distancezf54 mm. Notice that
the nonparabolicity factor is 1 at the intensityI s
50.27 GW/cm2. For the chosen laser frequency the con
tion 2\v,Eg is satisfied and, consequently, the effects
lated to the multiphoton absorption are negligibly small. T
relaxation time of free carriers is assumed to bet0R55
310213 sec using data on the Hall mobility. Therefore, t
absorption length related to the scattering of carriers app
to be l abs'(v/ve)

2ct0R510 mm. However, a strong lase
field itself contributes to increase the relaxation time. Inde
if in the semiconductors the momentum losses of carr
occur predominantly through the scattering on ionized im
rities ~that is likely to be case for InSb at temperature 77!
it is generally assumed that the relaxation time is given b
power lawtR5t0R(ēE /ē0)3/2, whereēE and ē0 are the total
h.
-

d
1

-
-
e

rs

,
rs
-

a

average energy of the carriers in the presence and absen
the field, respectively. Considering the parameters prese
above, one obtainstR;102t0R . As a consequence, the non
linear dynamics of the laser field develops at a dista
shorter than the absorption length. However, if the abso
tion losses are determined by carrier–optical phonon sca
ing ~for instance, at room temperature! the relaxation time
turns out to be smaller thant0R and in samples of a few
millimeters the field will be strongly attenuated before t
nonlinear processes manifest themselves significantly. T
the relaxation time is very much case dependent, and
each particular semiconductor sample should be evalu
carefully. To insure the generation of a solitonic structure
a few of microns, the laser field parameters have to be c
to the ground-state equilibrium.

In conclusion, we show that ultrashort intense laser pul
propagating in the semiconductor plasma can be trapped
self-generated guide. After the emission of a certain amo
of radiation, the trapped beam converges toward a sta
equilibrium, with the eventual formation of stable spat
solitons. We believe that narrow-band-gap semiconduc
are good candidates for applications in optical informat
processing systems based on soliton interactions at midin
red wavelengths.
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