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Self-trapping of electromagnetic pulses in narrow-gap semiconductors

V. Skarka
Laboratoire POMA, EP 130 CNRS UniversiiéAngers, 2 Boulevard Lavoisier, 49045 Angers, Cedex 1, France

V. |. Berezhiani
Institute of Physics, The Georgian Academy of Science, Thilisi 380077, Georgia

V. Boucher
Laboratoire POMA, EP 130 CNRS UniversiiéAngers, 2 Boulevard Lavoisier, 49045 Angers, Cedex 1, France
(Received 4 August 1999

Dynamics of the self-trapping of short laser pulses in narrow-band-gap semiconductors is studied. The
nonparabolicity of the conduction band leads to a nonlinear dielectric response with saturating nonlinearity.
Due to the nonlinearity saturation the beam can be trapped in a self-generated guide, and the formation of
stable two-dimensional spatial solitons can take place.

Self-focusing and self-guiding of light beams have re-size that the principal difference between most semiconduc-
ceived much attention in recent years in connection withtor plasmas and the usual gaseous one concerns the collision-
their important applications, such as soliton propagation, allality. The comparatively small collision time of carriers in
optical switching, and logi¢.Stable spatial solitons with two semiconductors, typicallyg~10~1?-10"*3sec, hinders the
transverse dimensions can exist in materials characterized excitation of collective modes0n the other hand, for nano-

a saturable nonlinearity that exactly compensates for theecond laser pulses, the field intensity must be much less
diffraction? than 1d W/cn? to avoid the breakdown of the semiconduc-

Narrow-gap semiconductors, in particular 111-V alloys tor. Consequently, the “relativistic” nonparabolicity factor
with a small effective mass of conduction electrons, exhibit gp?/m? c2 ~e?E2/m2 c2 »? had to be kept much lower than
large degree of nonparabolicity. In fact, in some narrow-gapnity (E and w are the electric field and frequency of the
semiconductors like InSb, the dispersion relation mimics thafaser radiation, respectivelyDue to these limitations the
of a relativistic electron with a small effective mass, and Withexpected effects appeared to be small, and, therefore, the
an effective “speed of light” several order smaller than theresearch in this direction was soon abandoned.
speed of light in a vacuum. In Kane's model, the dispersion Recent achievements in short-pulse generation, however,
relation can be written in the forin have motivated studies of short-pulse propagation in narrow

, 12 gapn-doped semiconductors when the nonparabolicity of the

p By 1 conduction band is the dominant effect responsible for the
mi Ci 2’ @ nonlinear refraction of the laser pulsé®eadily available pi-
cosecond(femtosecony intense pulses with wavelengths
where€ is the energy of a conduction-band electrons, pnd ranging from the ultraviolet to the midinfrared can be used to
is a quasimomentum. Heig, = (Eg/2m, )"? plays the part observe the collisionless collective phenomena in semicon-
of the speed of light ¢,~3x10 3c for InSb, m, is  ductor plasma. For instance, in the case of InSb, one must
the effective mass of the electrons at the bottom of the condse a CQ laser with a wavelength =10.8u to avoid one-
duction band, ané, is the width of the forbidden gap sepa- and two-photon absorption. Although the production of ul-
rating valence and conduction bands. In response to a lastashort pulses in infrared ranges wixt» 10w is currently
pulse, due to the velocity-dependent mass the conductiobased on challenging optical parametric down-conversion
electrons can simulate the dynamics of a relativistic plasmgyrocesses, midinfrared pulses~10u) as short as 130 fs
at the pulse intensity which is a tiny fraction of the intensity were created a decade &gesing semiconductor switching.
required to create similar conditions in a normal gaseous$n Ref. 9 the modulation instability in narrow-gap semicon-
plasma. This similarity has been widely exploited in the pastductors is suggested to produce subpicosecond midinfrared
In particular, using methodologies of relativistic plasmas, thepulses. The applied intensities of such short pulses can be as
parametric amplification of electromagnetic waves as well aigh as few GW/cri Provided the pump fluence is kept
the parametric excitation of density waves have beerbelow 0.5 J/crf, irreversible damage of semiconductor
studied® Tzoar and Gersten demonstrated that a weak nonsamples does not take pla®allowing us to consider effects
parabolicity ?/m2c2<1) in InSb can lead to the self- with a finite nonparabolicity factop?/m2c2(~1). Finite
focusing of the CQ laser beam. nonparabolicity naturally induces a saturation of the nonlin-

These investigations were carried out two decades ag®&ar, intensity-dependent refractive index of semiconductors.
and consequently dynamical properties of the nonlinear in- In what follows we consider the dynamics of short laser
teraction of a laser beam with semiconductors were studiedulses in the plasma of narrow-gap semiconductors. The
mainly on nanosecond time scales. We would like to emphamain effort is devoted to studies of the generation of two-
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dimensional stable solitonic channéfdamentg that can be P T T
developed due to the self-focusing of a laser pulse in a bulk
semiconductor which exhibits the above-mentioned nonlin- 40 - A
earity saturation. It is shown that saturation of the nonlinear 30 | n i
response stabilizes the process of self-focusing, and allows

the formation of spatial solitons. 20 | P

The dynamics of short laser pulses in the semiconductor t

collisionless plasma can be described by Maxwell and quasi- 10 | S 7
hydrodynamic equatiorfss The validity of the hydrody- . .

namic approach for the semiconductor plasma requires that 0 0 1 2 A

both the Fermi energyHg) and the temperatures are low

(Eg>Eg kgT). It can be shown that the equation for the F_I_G..l. Equilibrium power as afunction_ of the an_1p|itude. The

vector potentiald of the field reads equilibrium curvee together with the numerically obtainedcurve
and trapping curve.

2 2 272 \ T2
IA C—AA+ W2Al 1+ _EAT _o ) =(x%+y)Y2 and\ is the nonlinear wave-vector shift. The
g2 € € mi Ci c? ' radially dependent envelopé(r) obeys an ordinary nonlin-

ear differential equation
where w,= (4me’ny/m, €,)*? is the effective plasma fre-
quency,n, is electron density in the conduction band, agd d’U 1duU
is the dielectric constant of the latti¢tr details, see Refs. 7 dr? Ty dr AU+|1- (1+U?)12
and 9. For the vector potential a Coulomb gauge is assumed
(V-A=0). The contribution of the magnetic part of the Lor- This equation corresponds to a boundary value problem as-
entz force causing a nonlinear variation of the plasma densitfuming thatU has its maximum at =0, and imposing the
is negligibly small sinces, /c<1. Consequently, effects re- Poundary conditions), ,U,;—0 asr—. One can map Eq.

lated to the density variation of electrons are neglected in E¢®) in the (U,U,) plane(phase plang and compare the re-

u=o0. (5

2). sulting equation with a nonconservative motion to shiew
A propagating circularly polarized laser pulse, with a car-Vakhitov and Kolokolov did for another saturating
rying frequencyw and wave numbek, is given as nonlinearity?) that provided the eigenvalug satisfies the

condition 0<\<1, Eqg. (5 admits an infinity of discrete

1 bound states);(r) (j=0,1,2...), characterized by zeros
A= E(X+ iyY)A(r,t)exp —iwt+ikz)+c.c., (3 at finiter. In what follows we consider only the lowest-order

nodeless solution of E(5), i.e., a “ground state” that is

: : ' s positive and monotonically decreasing with increaginyu-
where A(r,t) is sIowa_varymg f|_eld er_1ve|opeu_é>(3/_o7t,lé merical simulations show that the amplitude of the ground-
>V), and v and k satisfy the dispersion relation“= wg state solutiorf Uo(r =0\)] is a growing funct n Th

P ; : 0 , growing function oi. The
+k“c“/ 9. Note that for circularly polarized waves, the elec- beam width becomes wider at low and high amplitudes, hav-
tron (telnet:]gy dpes nr(])t depe.”d on thet.fast time, and cons%g its smallest size at some intermediate amplitude.
qutla:n y Eere(g no armonlcé)? genera '0?' Schrodi The stability of the ground-state solution can be analyzed

rom Eg. one can obtain a noninear Scnrof Ingerusing the well-known stability criterion of Vakhitov and

equation(NSE) with satur_altllgg znon.llneanty using vgnables Kolokolov.* According to this criterion the ground-state so-
2'=z, 7=t=2lvg (vg=¢€ "kC’w is a group velocity lution is stable against a small perturbationd®/Jx>0,
where P represents the integrated intensifyowen of the

trapped mode:

1 A=0. (4

oA +A A+
I_ B —
2 (L+|A]2)»2

[

P()\)=2f Uo(r,\)rdr. (6)

Here A, = 3%/9x?>+ %/ 9y? is a two-dimensional Laplacian 0

describing pulse diffraction. In Eq(4) the following  gych a stable nondiffracting solutigalso see Ref. 13can
normalizations are usedt/T, z/Z, r /R, and A/As  pe called a soliton according to the modern terminology.
where T=0 ™!, Z=2¢;"co/wi, R=€;"*clo. and As  Curven in Fig. 1 corresponds to the power as a function of
=m, cc, /e. Deriving Eq.(4), we assumed that the semicon- the amplitudeA obtained using the numerical solution of Eq.
ductor sample is moderately dopet,10'°~10"" cm™®),  (5). Since this curve has a positive slope ani a growing
and that the corresponding plasma is transparent fos COfunction of the amplituded, the derivative of the power is
laser pulses¢>w¢). As a consequence, the term related topositive [P’ (\)=P’(A)A’(\)>0], and the corresponding
the temporal spreading of the pul[se(wi/wz)(?zA/arz] iS  ground-state solution is stable for any amplitude. The nu-
neglected in Eq(4). However, effects related to the temporal merical simulations of Eq(4) confirm the stability of the
reshaping of the pulse should be important for heavily dopedround-state soliton solution. Even if a small initial pertur-
samples, and can lead to the formation of temporal solitonibation is imposed, the soliton propagates without distortion
structures. for a long distance.

Equation (4) admits a stationary, nondiffracting axially The complex dynamics of a beam governed by a NSE
symmetric solution of the formrA=U(r)exp(\z), wherer with saturating nonlinearity can be analyzed by the varia-
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tional approach? This approach determines the relations be- Ao(2)
tween the characteristic parameters of the localized solution
approximated by a trial function. The variational method 2
gives qualitatively good results, provided the beam does not

undergo structural changes during its evolution. The first
standard step is to construct the Lagrangian

i
L=|VLA|+E(AaZA*—c.c.)—F(|A|2), (7)
where the asterisk denotes complex conjugation, &nd 0 0 50 100 150 z
=|A|?+2[1—(1+|A|®)Y?] is the nonlinear term. Appropri- . . .

Lagrange equation. In the optimization procedure, the firsfained by variational method. Treecurve corresponds to the dif-
variation of the variational function must vanish on a suit-raction. The Kerr nonlinearity is given by ticurve. Thec curve
ably chosen trial function. As a trial function, we will use the €XNibits oscillations around the equilibrium.

Gaussian-shaped beam, bottom of the well(obtained by using relatioaV/JR, = 0)

5 ) aredeq= ey ey= 2V K’ (AZ) —K(AZ)/AZ ]~ Y2 whereae,
A=Ay(z)ex] — ——— ——+ip(2) |, (8) and Ay are the equilibrium width and amplitude of the
2a)2<(z) 2a§(z) beam, respectively. One can see in Fig. 1 that the equilibrium

curvee obtained by the variational approach closely follows
the n curve which corresponds to the exact numerical solu-
tion of Eq. (5). The beam above the critical poweP (

v >P,) is trapped, provided it is in the trapping region, and its
by are the wave-front curvatures. Substituting exprest#on parameters will oscillate around the equilibrium ones. In the

into Eq.(7), and demanding that the variation of the Spatia"yregion above the curve (in Fig. 1) the trapping condition is

averaged Lagrangian with respect to each of these paran: «fied for a symmetric beara,(—a,). As a consequence,

eters Is zero, we obtain the corresponding set of EUIG"r'Ehe beam with initial parameters situated on the left-hand
Lagrange equations,

side of the equilibrium curve will focus initially, while for
42R p the state on the right of this curve it will first be defocused.
SR By R,), (99  Note that in the case of weak nonparabolicipk|f<1), Eq.
dz? IR, (4) reduces to a NSE with cubic nonlinearity, and a beam
with above critical power will collapse after a finite distance
of propagation.
In Fig. 2 we plot the evolution of the beam amplitude
1 1 KA obtained by numerical simulations of E¢R). The initial
Ve — + —— 0 ' (10) Gaussian beam is assumed to be symmedijes=ao, = 10,
a; a§ AS and to have the powé?=20. Thea curve corresponds to the
case when the nonlinearity is neglected. The beam amplitude
is reduced by half at the distana@g~60. The? curve is
_ _ 1/2 1 associated with the Kerr-type nonlinearity [A|¢). As one
K(W)=2u+8[1~(1+u)*]+8Inf0.F1+(1+u) z]%il) might expect, the beam collapses at a distance shorter than
the diffraction lengttezy . The saturation nonlinearity, related
During the field evolution, the power is conservel, to the finite nonparobolicity of the band structure, prevents
=A§(z)ax(z)ay(z)=const. Thus Eqg9) and(10) are analo-  the infinite growth of the field amplitude, resulting in an
gous to those describing the dynamics of a particle in a twoescillatory wave guided curve. A similar behavior can be
dimensional potential. Straightforward analysis shows that ibbtained for an asymmetric bearag(+aoy), provided the
the power of the pulse is less than a critical oRe;sP.=8,  trapping condition is satisfied.
the potential has a negative slop¥/JR, <0, and conse- Results of the variational approach can be used to under-
guently the force pushes an effective particle in the positivestand the main features of the beam dynamics. For instance,
R, direction. In other words, the effective width of the beamthe predicted equilibrium curve lies reasonably close to the
increases continuously, leading to its diffraction. However,numerically obtained one. Although this approach describes
for P>P, the potential becomes a two-dimensional wellthe beam dynamics qualitatively well, it is unable to account
where the effective particle is trapped and oscillates, bouncfor structural changes of the beam shape. The exact dynam-
ing elastically from the walls. If the beam initially has a ics of the beam is obtained by numerical simulations of Eq.
plane fronfi.e., b,(0)=b,(0)=0], the trapping condition is (4). The typical behavior of the trapped beam is shown in
g+ a0, <AgeK(A5y), whereAqy,, ao, anday, are the  Fig. 3, where the field amplitude of the initially symmetric
initial amplitude and transverse dimensions of the beam, reGaussian bearpA| =Agnexd —(%+y?)/2a3] is plotted ver-
spectively. The generation of a two-dimensional oscillatingsus the radius and the propagation coordinateThe beam
waveguide takes place. The equilibrium parameters of th@ower istAﬁmaézzo, while its width isay=10. As has
beam that correspond to the effective particle settled in théeen predicted by the variational approach, the beam is self-

where ¢=x2b,(2) +y?by(2) + ¢o(2). The evolution of the
laser field is parametrized kyydependent amplituda,, spa-
tial widthsa, anday, and phasep,. The parameters, and

where the vectoR, =(ay,a,) is the width. The effective
potentialV has the form

with the nonlinearity function
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FIG. 3. The numerically obtained beam evolution exhibiting
damped oscillations toward equilibrium.

trapped, and its parameters oscillate near the equilibrium
state, corresponding to the pow+ 20. Note, however, that
due to the appearance of the radiation spectrum the ampli-
tude of these oscillations is monotonically decreasing with
increasingz (see also Refs. 12 and J14For largerz the
oscillations are damped out, and the formation of a ground
solitonic state takes place. If the initial profile of the beam is
close to the equilibrium one, then the beam quickly reaches
the profile of ground-state equilibrium, and propagates for a
long distance without distortion of its shape. The initial beam
in the trapping region, even quite far from equilibrium, will
either focus or defocus to the ground state, exhibiting
damped oscillations around it. Essentially the same damped
behavior, leading to the formation of a symmetric ground-

state soliton, can be obtained for an initially asymmetric Z=300
beam. Consequently, the ground-state equilibrium seems to
be an attractor. FIG. 4. The initial beam intensity pattern followed by beam

Such an evolution scenario can be altered due to th@reakup patterns of interacting filaments at propagation distances
modulation instability(MI), and under certain conditions it Z=150 and 300.
will result in the beam breakup. Indeed, MI can take place

for laser beams with a power much higher than the criticatoward its own equilibrium state, corresponding to the power
one. If such a beam is sufficiently wide, it may be unstablejt carries. However, due to the mutual interactions of fila-
with respect to small perturbations of its spatial structurements, further dynamics is difficult to interpret. Therefore,
Rigorous treatment of Ml is beyond the scope of this paperwe cannot conclude that at the final state of their evolution
However, to obtain some insight into this problem, we anatnhose filaments form a stable solitonic structure. Ml simula-
lyze the stability of a constant amplitude field with respect totjons for low-power beamsR.<P<60) have been made,
small  perturbations. ~Assuming thatA=Ao+€expxz  puyt the instability was not observed even in the case of wide
+ik,r, ), wheree<<|Aq|(= const), from Eq(4) we find that  peams. We believe that for such a beady{<1) the
the region of instability is determined by the conditidn|  growth rate of the instability ~AZ2.) becomes negligibly

_ 2304\ b . g
<kin=|Aol/(1+]Ao|*)™, while the growth ratey reaches gsma|, and the beam reaches its equilibrium state before M
its maximum y,,=ki,/2 for perturbations with a transverse gevelops.

spatial period, =23%m/ky,. In dimensional units the intensity and the power of the

We carried out numerical simulations of nonlinear dy-|aser beam are defined bs e}%c|E|%/4m andP=7a2l, re-

namics of MI for a wide, high-power Gaussian beam with angpectively, whera, is the spot size of the beam. The critical
initial amplitudeAq,= 1 and widthsag,=ag,=100. For the power is expressed as

amplitudee=0.1 of imposed perturbation, the wave vectors
k,=ky,=0.2 are chosen to be in the domain of instability.

The intensity pattern at three different propagation distances m2 2 2
zin Fig. 4 demonstrates the breakup of the beam into higher- P.=2¢, Y23 L( ﬂ) _ (12)
intensity filaments. Each filament has the tendency to evolve e? |we
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In the case of an InSb semiconductor, the relevant paranaverage energy of the carriers in the presence and absence of
eters areT=77 K, m,=mJ/74, c, =c/253, andey=16. the field, respectively. Considering the parameters presented
The critical power isP.=12(w/wes)?> W. For a CQ laser  above, one obtainsg~10%7,5. As a consequence, the non-
beam with a frequencyw=1.74x 10'* rad/sec propagating linear dynamics of the laser field develops at a distance
in INSb with a carrier densiti,=2x10'® cm™?, the critical  shorter than the absorption length. However, if the absorp-
power for the self-trapping i®.~1.3 kW. The real num- tion losses are determined by carrier—optical phonon scatter-
bers for the normalization introduced in E() are Z  ing (for instance, at room temperatiirthe relaxation time
=89 um, T=57x10"'° s, R=4,4 um, andEs=wAs/C  tyrns out to be smaller thamg and in samples of a few
=1.6x10° V/em. Using these parameters, the simulatedmijlimeters the field will be strongly attenuated before the
dynamics in Fig. 3 corresponds to a laser beam of power 3}, jinear processes manifest themselves significantly. Thus
KW, spot size(i.e., the beam width at half maximum he rejaxation time is very much case dependent, and for

.73 Mrr]n,fgnd |n|t|z_1l mteniltz Ofp?d _GW/c?_n The first foggs, each particular semiconductor sample should be evaluated
.., the first maximum of the field intensity corresponding tocarefully. To insure the generation of a solitonic structure in

'?HSG r%\:]w ;‘:bsf_’g‘farsf;ét‘g‘rd'S_;an‘fe:a‘: rtr;]rg '\.I:tg]i.ihat a few of microns, the laser field parameters have to be close
p Icity ' : Ws 1o the ground-state equilibrium.

=0.27 GW/cn. For the chosen laser frequency the condi- . .
In conclusion, we show that ultrashort intense laser pulses

tion 2w <Ey is satisfied and, consequently, the effects re- ropagating in the semiconductor plasma can be trapoed in a
lated to the multiphoton absorption are negligibly small. TheProPagating P PP

relaxation time of free carriers is assumed to Bg=5 self-generated guide. After the emission of a certain amount
X 10~ 13 sec using data on the Hall mobility. Therefore, theOf radiation, the trapped beam converges toward a stable

absorption length related to the scattering of carriers appeafdUilibrium, with the eventual formation of stable spatial
t0 bel e (0l wg)2cTor=10 mm. However, a strong laser solitons. We believe that narrow-band-gap semiconductors

field itself contributes to increase the relaxation time. Indeed@r® good candidates for applications in optical information
if in the semiconductors the momentum losses of carrierfrocessing systems based on soliton interactions at midinfra-

occur predominantly through the scattering on ionized impufed wavelengths.

rities (that is likely to be case for InSb at temperature 77 K The work of V.I1.B. was partially supported by INTAS
it is generally assumed that the relaxation time is given by "beorgian call-97 'G'ra.nt No. 52

power law s = or(ex/€0)¥% whereeg ande, are the total
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